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Separation of Duty (SoD) is widely considered to be a fundamental principle in computer security. A Static SoD
(SSoD) policy states that in order to have all permissions necessary to complete a sensitive task, the cooperation
of at least a certain number of users is required. Role-Based Access Control (RBAC) is today’s dominant access
control model. It is widely believed that one of RBAC’s main strengths is that it enables the use of constraints to
support policies such as Separation of Duty. In RBAC Statically Mutually Exclusive Roles (SMER) constraints
are used to enforce SSoD policies. In this paper, we formulate and study fundamental computational problems
related to the use of SMER constraints to enforce SSoD policies. We show that directly enforcing SSoD policies
is intractable (coNP-complete), while checking whether an RBAC state satisfies a set of SMER constraints is
efficient; however, verifying whether a given set of SMER constraints enforces an SSoD policy is also intractable
(coNP-complete). We discuss the implications of these results. We show also how to generate SMER constraints
that are as accurate as possible for enforcing an SSoD policy.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—Access controls;
K.6.5 [Management of Computing and Information Systems]: Security and Protection; F.2.2 [Analysis of
Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems—Complexity of proof proce-
dures

General Terms: Security, Theory
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1. INTRODUCTION

Separation of Duty (SoD) is widely considered to be a fundamental principle in computer
security [Clark and Wilson 1987; Saltzer and Schroeder 1975]. In its simplest form, the
principle states that if a sensitive task is comprised of two steps, then a different user should
perform each step. More generally, when a sensitive task is comprised of n steps, an SoD
policy requires the cooperation of at least k (for some k ≤ n) different users to complete
the task. While the concept of SoD has long existed in the physical world, sometimes under
the name “the two-man rule”, in the computer security literature, its first mention seems
to be by Saltzer and Schroeder [Saltzer and Schroeder 1975] under the name “separation
of privilege.” In Clark and Wilson’s highly influential work [Clark and Wilson 1987] on
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commercial security policies for integrity protection, SoD was identified together with
Well-formed Transformations as the two high-level mechanisms that are “at the heart of
fraud and error control” and can be used to “enforce commercial security policies related
to data integrity”.

Consider the following example of buying and paying for goods, taken from the work
by Clark and Wilson [Clark and Wilson 1987]. The steps that comprise such a task are:
(1) ordering the goods and recording the details of the order; (2) recording the arrival of
the invoice and verifying that the details on the invoice match the details of the order; (3)
verifying that the goods have been received, and the features of the goods match the details
on the invoice; and (4) authorizing payment to the supplier against the invoice. We would
want to ensure that payment is not released on an order that was never placed, and that the
received goods match those in the order and those in the invoice. A policy that requires
a different user to perform each step may be too restrictive. It may be permissible, for
instance, that the user who places the order also records the arrival of the invoice. One may
require that (a) the cooperation of at least three users is needed to perform all four steps,
and (b) two different users perform steps (1) and (4) (i.e., no single user can order goods
and authorize payment for them).

There are at least two approaches to enforce an SoD policy. In one approach, the system
maintains a history of each task instance (e.g., a particular order in the above example).
The history includes information on who performed each step. Before a user performs
a step on the instance, the system checks to ensure that the SoD policy is not violated.
This is referred to as Dynamic SoD in the literature [Foley 1997; Nash and Poland 1990;
Sandhu 1988]. (Foley [Foley 1997] refers to this as dynamic segregation of duties. Nash
and Poland [Nash and Poland 1990] refer to this as object SoD and consider it as a kind of
Dynamic SoD.) In Dynamic SoD, a user may be able to perform any step in a task instance;
however, once the user has performed one step, the user cannot perform other steps in that
instance.

Another approach to enforce SoD policies is to use Static SoD (SSoD) policies. Each
SSoD policy states that no k−1 users together have all permissions to complete a sensitive
task. Such an SSoD policy can be enforced by carefully assigning permissions to users,
without maintaining a history for every task instance. It may seem that if an SSoD policy is
satisfied, then the corresponding SoD policy is also satisfied. However, care must be taken
to ensure this. Consider the example described above. Suppose that initially a user Bob has
the permission to order goods. After placing an order, Bob’s order permission is revoked
and then Bob is assigned the permission to authorize payments. Now Bob can authorize a
payment against the order he placed earlier. The SoD policy is violated even though Bob
never has the order permission and payment permission at the same time. Such situations
can be avoided, for example, by requiring that when a permission is revoked from a user,
all active task instances that involve this permission are removed from the system first, or
by treating such task instances specially (e.g., by maintaining a history for them).

Separation of Duty has been studied extensively in Role-Based Access Control (RBAC).
Initially studied in database security research [Baldwin 1990; Ting 1988] about 15 years
ago, RBAC [ANSI 2004; Ferraiolo et al. 1995; Ferraiolo and Kuhn 1992; Ferraiolo et al.
2003; Ferraiolo et al. 2001; Sandhu et al. 1996] has become today’s dominant access con-
trol model. Over the past decade, interest in RBAC has increased dramatically, with most
major information technology vendors offering products that incorporate some form of
ACM Journal Name, Vol. V, No. N, Month 20YY.
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RBAC in them. Today, all major database management systems support RBAC. In Win-
dows Server 2003, Microsoft introduced Authorization Manager, which brings RBAC to
the Windows family of operating systems. The commercial success of RBAC is often at-
tributed to the following two advantages it has over previous approaches: reduced cost of
administration and the ability to configure and enforce commercial security policies.

It has been recognized that “one of RBAC’s great advantages is that SoD rules can
be implemented in a natural and efficient way” [Ferraiolo et al. 2003]. In this paper we
formulate and study fundamental computational problems related to the implementation
of SoD in RBAC. In RBAC, permissions are associated with roles, and users are granted
membership in appropriate roles, thereby acquiring the roles’ permissions. RBAC uses
mutual exclusion constraints to implement SoD policies.

The most common kind of constraints used limits the role membership of users. For
example, one may declare two roles to be mutually exclusive in that no user is allowed to be
a member of both roles. More generally, a constraint may require that no user is a member
of t or more roles in a set of m roles {r1, r2, · · · , rm}. We call such constraints Statically
Mutually Exclusive Roles (SMER) constraints. SMER constraints are part of most RBAC
models, including the RBAC96 models by Sandhu et al. [Sandhu et al. 1996] and the
proposed and adopted ANSI/NIST standard for RBAC [ANSI 2004; Ferraiolo et al. 2001].
Literature in RBAC also studies constraints that prevent any user from activating mutually
exclusively roles simultaneously in a session. We call these constraints dynamic mutually
exclusive role (DMER) constraints. The importance of SMER constraints and DMER
constraints is illustrated by the fact that they are the only types of constraints included in
the ANSI/NIST standard for RBAC [ANSI 2004; Ferraiolo et al. 2001].

SSoD policies are objectives that need to be achieved. They exist independent of whether
RBAC is used to manage the access permissions or not. Each SSoD policy specifies the
minimum number of users that are allowed to together possess all permissions for a sen-
sitive task. On the other hand, SMER constraints are mechanisms used to achieve SSoD
policies. These constraints are specific to RBAC. Each constraint limits the role member-
ships a single user is allowed to have. Whether a set of SMER constraints enforces a given
SSoD policy depends upon how permissions are assigned to roles. For example, if all per-
missions that are needed to complete a sensitive task are assigned to a single role, SMER
constraints cannot ensure that no single user possess all those permissions. Note that the
distinction between mechanisms and objectives is a relative one. While SMER constraints
are mechanisms to enforce SSoD policies, they may be implemented using other, lower-
level mechanisms. At the same time, a SSoD policy, which specifies a lower-bound on the
sizes of the sets of users that possess all permissions to complete a sensitive task, may be
viewed as a mechanism to ensure that at least a certain number of users is involved for any
instance of the sensitive task.

In the literature, this distinction between SSoD policy objectives and SMER constraints
as a mechanism to enforce them is sometimes not clearly made. This is evident in the
way these constraints are referred to in the literature. SMER constraints are often called
Static SoD constraints, and DMER are called Dynamic SoD constraints. For example, in
the ANSI RBAC standard [ANSI 2004], SMER constraints are called SSD constraints,
and DMER constraints are called DSD constraints. As we discuss in Section 2.2, DMER
constraints are not suitable for enforcing SoD policies. In fact, DMER constraints are
motivated by the Least Privilege principle rather than the Separation of Duty principle. A
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danger with equating SMER constraints with SoD policies is that the SMER constraints
may be specified without a clear specification of what objectives they are intended to meet;
consequently, it is unclear whether the higher-level objectives are met by the constraints
or not. Another danger with equating SMER constraints with SoD policies is that even
though when SMER constraints are specified there exist a clear understanding of what
SoD policies are desired, when the assignment of permissions to roles changes, the SMER
constraints may no longer be adequate for enforcing the desired SSoD policies.

When we make a clear distinction between objectives (SSoD policies) and mechanisms
(SMER constraints), several interesting problems arise. For example, the verification prob-
lem is: “does a set of SMER constraints indeed enforce an SSoD policy?”, and the gener-
ation problem is: “how do we generate a set of constraints that is adequate to enforce an
SSoD policy?” Although the use of SMER constraints to support SoD has been studied
for over a decade, and several authors (e.g., [Kuhn 1997; Sandhu et al. 1996]) have recog-
nized that SMER constraints are a mechanism to enforce SoD policies, surprisingly these
problems have not been examined in the literature, to the best of our knowledge.

1.1 Contributions and organization

Our contributions in this paper are as follows.

—We provide precise definitions for SSoD policies and SMER constraints, and precise
formulations for the verification and generation problems. Through these definitions, we
clearly illustrate the difference between SSoD policies as policy objectives and SMER
constraints as mechanisms.

—We show that directly enforcing SSoD policies in RBAC is intractable (coNP-
complete), while enforcing SMER constraints is efficient; however, the verification
problem is intractable (coNP-complete), even for a basic subcase of the problem. We
also show that the verification reduces naturally to the satisfiability problem (SAT), for
which there exist algorithms that have been proven to work well in practice [Du et al.
1997]. We discuss the implications of these results.

—We define what it means for a set of SMER constraints to precisely enforce an SSoD
policy, characterize the policies for which such constraints exist, and show how they
are generated. For other kinds of SSoD policies, we present an efficient algorithm that
generates sets of SMER constraints that minimally enforce the policies.

The results reported here are fundamental to understand the effectiveness of using con-
straints to enforce high-level SoD policies in RBAC. The verification and generation al-
gorithms are also of practical significance in RBAC systems that use SMER constraints to
enforce SSoD policies.

The remainder of the paper is organized as follows. We discuss related work in the
next section. In Section 3, we give definitions of SSoD policies and SMER constraints,
as well as the computational complexities for enforcing them. In Section 4, we study the
verification problem. In Sections 5 and 6, we study the generation problem. We conclude
with Section 7.

2. RELATED WORK

The concept of SoD has long existed in the physical world, sometimes under the name
“the two-man rule”, for example, in the banking industry and the military. To our knowl-
edge, in the information security literature the notion of SoD first appeared in Saltzer and
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Schroeder [Saltzer and Schroeder 1975] under the name “separation of privilege.” They
credited Roger Needham with making the following observation in 1973: “a protection
mechanism that requires two keys to unlock it is more robust and flexible than one that
requires only a single key. No single accident, deception, or breach of trust is sufficient to
compromise the protected information.”

Clark and Wilson’s commercial security policy for integrity [Clark and Wilson 1987]
identified SoD along with well-formed transactions as two major mechanisms for control-
ling fraud and error. The use of well-formed transactions ensures that information within
the computer system is internally consistent. Separation of duty ensures that the objects in
the physical world are consistent with the information about these objects in the computer
system. As Clark and Wilson [Clark and Wilson 1987] explained: “Because computers do
not normally have direct sensors to monitor the real world, computers cannot verify exter-
nal consistency directly. Rather, the correspondence is ensured indirectly by separating all
operations into several subparts and requiring that each subpart be executed by a different
person.”

Sandhu [Sandhu 1990; 1988] presented Transaction Control Expressions, a history-
based mechanism for dynamically enforcing SoD policies. Nash and Poland [Nash and
Poland 1990] explained the difference between dynamic and static enforcement of SoD
policies. In the former, a user may perform any step in a sensitive task provided that the
user does not also perform another step on that data item. In the latter, users are constrained
a-priori from performing certain steps. Foley [Foley 1997] proposed a framework based on
relabel policies [Foley et al. 1996] to express dynamic SoD requirements. Sandhu and Jajo-
dia [Sandhu and Jajodia 1990] studied what mechanisms are required in a general-purpose
multiuser database management system (DBMS) to facilitate the integrity objectives of
information systems. They identified SoD as a “timed-honored principle for prevention
of fraud and errors, going back to the very beginning of commerce” and explained SoD
as “Simply stated, no single individual should be in a position to misappropriate assets
on his own. Operationally, this means that a chain of events which affects the balance of
assets must require different individuals to be involved at key points, so that without their
collusion the overall chain cannot take effect.”

2.1 SoD and RBAC

In one of the earliest papers on RBAC, Ferraiolo and Kuhn [Ferraiolo and Kuhn 1992] used
the terms Static and Dynamic SoD to refer to static and dynamic enforcement of SoD. In
a subsequent paper, Ferraiolo et al. [Ferraiolo et al. 1995] defined Static SoD as: “A user
is authorized as a member of a role only if that role is not mutually exclusive with any of
the other roles for which the user already possesses membership.” This is the requirement
of SMER constraints and not an SoD policy. Similarly, Dynamic SoD was defined as
forbidding a user from activating roles that are mutually exclusive. We call these DMER
constraints. As we argue in Section 2.2, DMER constraints are motivated by the least
privilege principle rather than the SoD principle. The NIST standard for RBAC [ANSI
2004; Ferraiolo et al. 2001] adopts the same terminology as Ferraiolo et al. [Ferraiolo et al.
1995].

This distinction between SoD policies as objectives and SMER constraints as a mech-
anisms has been recognized in the literature. Simon and Zurko [Simon and Zurko 1997]
stated “Separation of Duty is a security principle used to formulate multi-person control
policies, requiring that two or more different people be responsible for the completion of a
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task or a set of related tasks.”

Sandhu et al. [Sandhu et al. 1996] stated, in their widely cited paper that introduced the
highly influential RBAC96 family of RBAC models, “The most common RBAC constraint
is mutually exclusive roles. The same user can be assigned to at most one rule in a mutually
exclusive set. This supports separation of duties, which is further ensured by a mutual
exclusion constraint on permission assignment.” This clearly shows that SMER constraints
are not SoD policies themselves but rather mechanisms that can be used to enforce SoD
policies. Sandhu et al. [Sandhu et al. 1996] pointed out that constraints on permission
assignment can be used together with SMER constraints to better enforce SoD policies.

This distinction is made even clearer by Kuhn [Kuhn 1997], whose work has the title
“Mutual exclusion of roles as a means of implementing separation of duty in role-based
access control systems”. Kuhn’s work [Kuhn 1997] is perhaps the closest in spirit to this
paper. Kuhn discussed mutual exclusion of roles for separation of duty and proposed a
safety condition: that no one user should possess the privilege to execute every step of
a task, thereby being able to complete the task. Our definition for safety in Section 3.1
is a generalization of Kuhn’s definition [Kuhn 1997]: setting k to 2 gives us Kuhn’s def-
inition. Kuhn [Kuhn 1997] studied the kinds of constraint mechanisms on permission
assignment that are needed in addition to SMER constraints to achieve SoD. One such
mechanism is complete exclusion in permission assignment, which requires that, if two
roles r1 and r2 are declared to be mutually exclusive by a SMER constraint, then a privi-
lege that is assigned to one of r1 and r2 cannot be assigned to any other role in the RBAC
system. Kuhn [Kuhn 1997] showed that SMER constraints together with complete ex-
clusion are sufficient to enforce the special case of SSoD policies he considered. This
conclusion is only about the power of the particular constraint mechanism; it says nothing
about whether a particular constraint configuration enforces a set of SSoD policies, or how
such constraints may be generated. In this paper, in addition to the problem of whether
SMER constraints are sufficient to enforce SSoD policies, we consider such verification
and constraint generation problems that are not studied by Kuhn [Kuhn 1997].

There also exists a wealth of literature [Ahn and Sandhu 1999; 2000; Crampton 2003;
Gligor et al. 1998; Jaeger 1999; Jaeger and Tidswell 2001; Simon and Zurko 1997;
Tidswell and Jaeger 2000] on constraints other than SMER and DMER constraints in the
context of RBAC. They either proposed and classified new kinds of constraints [Gligor
et al. 1998; Simon and Zurko 1997] or proposed new languages for specifying sophis-
ticated constraints [Ahn and Sandhu 1999; 2000; Crampton 2003; Jaeger and Tidswell
2001; Tidswell and Jaeger 2000]. Most of the proposed constraints are variants of SMER
and DMER constraints, for example, one may declare two permissions to be mutually ex-
clusive, so that no role or user can be authorized for both permissions, or that two users are
mutually exclusive, so that they cannot be assigned to the same role. The study of verifica-
tion and generation problems related to those more sophisticated constraints is beyond the
scope of this paper.

There has also been recent interest in static and dynamic constraints to enforce separa-
tion of duty in workflow systems. Atluri and Huang [Atluri and Huang 1996] proposed
an access control model for workflow environment, which supports temporal constraints.
Bertino et al. [Bertino et al. 1999] proposed a language for specifying static and dynamic
constraints for separation of duty in role-based workflow systems. They also discussed an
algorithm for the problem of consistency checking in workflows; that is, to check whether a
ACM Journal Name, Vol. V, No. N, Month 20YY.
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workflow with such constraints has a valid user-to-task assignment. Botha and Eloff [Botha
and Eloff 2001] introduced the “coAP administration paradigm” to express separation of
duty constraints in workflow environments, and asserted that it is the first work that allows
for the specification of constraints among users, permissions, roles and tasks. They also
presented a prototype implementation. Crampton et al. [Crampton 2004; 2005; Tan et al.
2004] considered the consistency checking problem in workflows. Apart from constraints
to enforce separation of duty, they also considered other goals, such as binding of duty. A
binding of duty constraint mandates that if a particular user is assigned to perform a certain
task, then he must also be assigned to perform a certain other task in a workflow instance.
Knorr and Stormer [Knorr and Stormer 2001] proposed SSoDL (Simple SoD Language)
to specify constraints. A constraint in SSoDL takes the form (s1, t1) 6→ (s2, t2), which
means that if a subject s1 has performed task t1, then s2 must not perform task t2. Such
constraints can be used to dynamically enforce SoD policies. Kandala and Sandhu [Kan-
dala and Sandhu 2002] proposed to use Transaction Control Expressions [Sandhu 1988]
to enforce SoD policies dynamically. We point out that none of the work on constraints in
workflow systems has considered the verification and generation problems for constraints
that we consider in this paper. The problems considered there are how to enforce the
constraints proposed there and whether the constraints are consistent with each other; it is
generally assumed in such work that constraints are already specified to meet some implicit
objective.

2.2 DMER Constraints

DMER constraints are introduced in [Ferraiolo et al. 1995] under the name DSoD con-
straints. A DMER constraint prevents a user from simultaneously activating mutually ex-
clusive roles in a session. DMER constraints are called DSoD constraints because they are
the “dynamic” version of SMER constraints, which are referred to as SSoD constraints in
[Ferraiolo et al. 1995]. However, DMER constraints do not seem to enforce SoD policies at
all, because even though they limit the roles a user can activate in a single session, they do
not prevent a single user from activating mutually exclusive roles across multiple sessions
and finishing a sensitive task on his own. In RBAC, each session has only one user. Thus, a
sensitive task that requires multiple users to complete cannot be completed in one session;
several sessions are required. For example, suppose that two roles r1 and r2 are declared to
be dynamically mutually exclusive in a DMER constraint; presumably because in order to
complete a sensitive task, one has to combine permissions assigned to r1 with permissions
assigned to r2. As each session can have only one user, this task cannot be finished in any
single session, and multiple sessions are needed to complete the task. A user can thus start
a session, activate r1, use the permissions of r1 to work on the task, end the session, start
another session, activate r2, and use the permissions of r2 to finish the task. This does not
violate the DMER constraint, but clearly violates the intended SoD policy.

In fact, DMER constraints are motivated by the least privilege principle rather than the
SoD principle. The least privilege principle mandates that “every program and every user
of the system should operate using the least set of privileges necessary to complete the
job” [Saltzer and Schroeder 1975]. By requiring certain roles to be not activated at the
same time, one can limit the privileges that a user may use in a session. This aspect is also
identified in the ANSI/NIST standard in RBAC: “DSD properties provide extended support
for the principle of least privilege in that each user has different levels of permission at
different times, depending on the task being performed.”
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k-n SSoD policy k-out-of-n Static Separation of Duty policy

Notation 1 in Section 3.1
t-m SMER constraint t-out-of-m Static Mutually Exclusive Roles

Notation 5 in Section 3.2
k-n RSSoD requirement k-out-of-n Role-based Static Separation of Duty

Notation 14 in Section 5.2
the SC-SSOD problem the Safety Checking problem for SSoD policies

Definition 4 in Section 3.1
the SC-SMER problem the Satisfaction Checking problem for SMER constraints

Definition 7 in Section 3.2
the EV problem the Enforcement Verification problem

Definition 10 in Section 4
the CEV problem the Canonical Enforcement Verification problem

Definition 12 in Section 4.1

Table I. List of acronyms used in the paper, what they stand for, and where they are defined.

SMER constraints and DMER constraints are the only types of constraints that are in-
cluded in the ANSI/NIST standard for RBAC [ANSI 2004; Ferraiolo et al. 2001], because
they are considered to be the most fundamental and widely supported kinds of constraints.
As we discuss above, DMER constraints cannot enforce SoD, we focus on SMER con-
straints in the rest of this paper.

3. STATIC SEPARATION OF DUTY AND MUTUALLY EXCLUSIVE ROLES

In this section, we give precise definitions for SSoD policies, RBAC, and SMER con-
straints. Table I lists the acronyms we use in this paper.

Users and permissions are at the core of an access control system. The state of an access
control system specifies the set of permissions each user has. In this paper, we treat permis-
sions as if they are opaque, i.e., we do not consider the internal structure of permissions.
We assume also that permissions are not related to one another, e.g., the possession of one
or more permissions does not imply the possession of another permission.

3.1 Static Separation of Duty (SSoD) policies

We now formally define SSoD policies.

NOTATION 1. A k-n SSoD (k-out-of-n Static Separation of Duty) policy is expressed
as

ssod〈{p1, . . . , pn} , k〉
where each pi is a permission and n and k are integers such that 1 < k ≤ n.

Intuitively, the policy ssod〈{p1, . . . , pn} k〉 means that at least k users are required to
perform a task that requires all these permissions. In other words, there should not exist a
set of fewer than k users that together have all the permissions in {p1, . . . , pn}.

The permissions in a k-n SSoD policy are the permissions needed to carry out a sensitive
task, and the policy guarantees that at least k users are needed to successfully complete it.
If one wants to specify an SSoD policy, one should first identify a sensitive task, then
identify the permissions needed to complete the task, and finally determine the minimum
number of collaborating users authorized to complete it.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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We now introduce the notion of an RBAC state. We assume that there are three countably
infinite sets: U (the set of all possible users), R (the set of all possible roles), and P (the
set of all possible permissions).

NOTATION 2. An RBAC state γ is a 3-tuple 〈UA,PA,RH 〉, in which the user as-
signment relation UA ⊂ U × R associates users with roles, the permission assignment
relation PA ⊂ R × P associates roles with permissions, and the role hierarchy relation
RH ⊂ R×R specifies a relation among roles.

The reflexive, transitive closure of RH (denoted by RH ∗) is a partial order among roles
in R. When (r1, r2) ∈ RH ∗, we often write r1 ≥ r2 and say that r1 is senior to r2,
which means that every user who is a member of r1 is also a member of r2, and that every
permission associated with r2 is also associated with r1.

We use Roles[PA] to denote the set of roles that appear in PA, and Roles[RH ] to denote
the set of roles that appear in RH .

An RBAC state γ = 〈UA,PA,RH 〉 determines the set of roles of which a user is a
member, and the set of permissions for which a user is authorized. Formally, γ is associated
with two functions, auth rolesγ : U → 2R and auth permsγ : U → 2P , where 2R is the
powerset of R, and 2P is the powerset of P . The two functions are defined as follows:

auth rolesγ [u] = { r ∈ R | ∃r1 ∈ R [ (u, r1) ∈ UA ∧ (r1, r) ∈ RH ∗ ] }
auth permsγ [u] = { p ∈ P | ∃r1, r2 ∈ R [ (u, r1) ∈ UA ∧

(r1, r2) ∈ RH ∗ ∧ (r2, p) ∈ PA ] }
As auth roles〈UA,PA,RH 〉[u] is determined only by UA and RH , we sometimes write

auth roles(UA,RH)[u].

DEFINITION 3. We say that an RBAC state γ is safe with respect to an SSoD policy
e = ssod〈{p1, . . . , pn} , k〉, which we denote by safee(γ), if and only if in state γ no k−1
users together have all the permissions in the policy. More precisely,

safee(γ) , ∀u1 · · ·uk−1 ∈ U
((

k−1⋃

i=1

auth permsγ [ui]

)
6⊇ {p1, . . . , pn}

)
.

An RBAC state γ is safe with respect to a set E of SSoD policies, which we denote by
safeE(γ), if and only if γ is safe with respect to every policy in the set.

DEFINITION 4. SC-SSOD (the Safety Checking problem for SSoD policies) is defined
to be the following problem: Given an RBAC state γ and a set E of SSoD policies, deter-
mine if safeE(γ) is true.

Observe that if no k − 1 users together have all the permissions in a policy, then no set
of fewer than k users together have all the permissions.

EXAMPLE 1. Consider the task of ordering and paying for goods discussed in Sec-
tion 1. We have a permission corresponding to each step in the task; these permissions are
porder , pinvoice , pgoods , and ppayment . We have the following set of SSoD policies:

E1 = {e1, e2}
e1 = ssod〈{porder , pinvoice , pgoods , ppayment} , 3〉
e2 = ssod〈{porder , ppayment} , 2〉

Consider the RBAC state γ1 = 〈UA1,PA1,RH 1〉, where UA1 =
{(Alice, Warehouse), (Alice, Finance), (Bob, Accounting), (Bob, Quality),
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Employee

Engineering Quality Warehouse Accounting Finance

order goods invoice payment
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RH 1 = { (Engineering, Employee), (Quality, Employee), (Warehouse, Employee),
(Accounting, Employee), (Finance, Employee) }.

PA1 = { (Engineering, porder ), (Quality, porder ), (Warehouse, pgoods),
(Accounting, pinvoice), (Finance, ppayment) }.

Fig. 1. A sample role hierarchy and permission assignment. Roles are shown in solid
boxes, and permissions in dashed boxes. A line segment represents either a role-role rela-
tionship, or the assignment of a permission to a role.

(Carl, Engineering)}, and PA1 and RH 1 are given in Figure 1. The state γ1 is not
safe with respect to e1, a 3-4 SSoD policy, as the 2 users Alice and Bob together possess
all 4 permissions in e1.

Given a set E of SSoD policies, suppose an RBAC system starts at a state that is safe
with respect to E. Each time one is about to make a change to the system that may affect
safety, one checks whether the RBAC state that results from the proposed change is safe
and makes the change only when the answer is affirmative. Such a change may be the
addition of a new user-role assignment to UA, a new role-permission assignment to PA, or
a new pair to RH . This approach to ensuring that an RBAC system is safe requires solving
SC-SSOD, which turns out to be intractable.

THEOREM 1. SC-SSOD is coNP-complete.

PROOF. Consider the complement of SC-SSOD, i.e., given an RBAC state γ and a set
E of SSoD policies, determine if safeE(γ) is false, which is denoted by SC-SSOD. It
suffices to show that SC-SSOD is NP-complete.

We first show that SC-SSOD is in NP. If an RBAC state γ is not safe wrt. E, then there
exists a k-n SSoD policy in E and k − 1 users such that in γ these k − 1 users together
have the n permissions in the SSoD policy. If one correctly guesses the k-n SSoD policy
and the k− 1 users that together have all the n permissions in the policy, verifying that the
guess is correct can be done in polynomial time: compute the union of the k − 1 users’
permissions and check whether it is a superset of the set of permissions in the SSoD policy.

We now show that SC-SSOD is NP-hard by reducing the set covering problem to it.
In the set covering problem, the inputs are a finite set S , a family F = {S1, . . . , S`} of
subsets of S , and a budget B. The goal is to determine whether there exist B sets in F
whose union is S . This problem is NP-complete [Garey and Johnson 1979; Papadimitriou
ACM Journal Name, Vol. V, No. N, Month 20YY.
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1994].
The reduction is as follows. Given S , F , and B, construct an SSoD policy e as follows:

Let each element in S map to a permission in the policy, let k be B+1 and let n be the size
of S . We have constructed a k-n SSoD policy ssod〈S,B + 1〉. Construct an RBAC state γ
as follows. For each corresponding permission in S , create a role to which the permission
is assigned. For each different subset Si (1 ≤ i ≤ `) in F , create a user ui to which all
roles in Si are assigned. The resulting RBAC state γ is not safe with respect to {e} if and
only if B sets in F cover S .

In the reduction in the proof, each permission is assigned to one role and the role hier-
archy relation is empty; thus the problem remains coNP-complete even when we restrict
ourselves to the case of RBAC without a role hierarchy.

While SC-SSOD is in in general intractable, efficient algorithms for SC-SSOD exist
when all the SSoD policies in E have small k. For example, when checking whether γ is
safe with respect to a 2-n SSoD policy, one only needs to compute the set of permissions
of every user and check whether it is a superset of the permissions in the policy. This has
a worst-case time complexity of O(Nu(Nr + Np)), where Nu is the number of users in
γ, Nr the number of roles, and Np the number of permissions. More generally, a straight-
forward algorithm for solving SC-SSOD for a k-n SSoD policy has running time grows
polynomially in the number of users and roles and exponentially only in k.

3.2 Statically mutually exclusive role (SMER) constraints

In RBAC, constraints such as mutually exclusive roles are introduced to enforce SSoD
policies. In the most basic form, two roles may be declared to be mutually exclusive in the
sense that no user is allowed to be a member of both roles. We now present a generalized
form of such constraints.

NOTATION 5. A t-m SMER (t-out-of-m Statically Mutually Exclusive Role) con-
straint is expressed as

smer〈{r1, . . . , rm} , t〉
where each ri is a role, and m and t are integers such that 1 < t ≤ m. Such a constraint is
said to be canonical of cardinality t when t = m.

DEFINITION 6. We say that an RBAC state γ satisfies a t-m SMER constraint c =
smer〈{r1, . . . , rm} , t〉, which we denote by satisfiesc(γ), if and only if no user is a mem-
ber of t or more roles in {r1, . . . , rm}. More formally,

satisfiesc(γ) , ∀u ∈ U (| auth rolesγ [u] ∩ {r1, . . . , rm} | < t) .

When γ does not satisfy a SMER constraint, we say that γ violates the SMER constraint.
An RBAC state γ satisfies a set C of SMER constraints, which we denote by satisfiesC(γ),
if and only if γ satisfies every constraint in the set.

DEFINITION 7. SC-SMER (the Satisfaction Checking problem for SMER constraints)
is defined to be the following problem: Given an RBAC state γ and a set C of SMER
constraints, determine whether γ satisfies C.

We point out that our notion of auth rolesγ (for an RBAC state, γ) from Notation 2
incorporates the role hierarchy. That is, the user u is a member of the role r in state
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γ if and only if r ∈ auth rolesγ [u]. This definition for SMER constraints is consistent
with the definition for static separation of duty constraints from the ANSI standard for
RBAC [ANSI 2004].

Each SMER constraint restricts the role memberships of a single user, in contrast to a k-
n SSoD policy, which restricts the permissions possessed by a set of k−1 users. Therefore,
there is an efficient algorithm to check whether an RBAC state γ satisfies a set C of SMER
constraints.

THEOREM 2. SC-SMER is in P.

PROOF. One algorithm for solving SC-SMER is as follows. For each t-m SMER con-
straint in C and for each user in γ, one first computes the set of all roles the user is a
member of, then counts how many roles in this set also appear in the set of roles in the
SMER constraint, and finally compares this number with t. This algorithm has a time
complexity of O(NuNrM), where Nu is the number of users in γ, Nr the number of roles
in γ, and M is the number of constraints.

Given an RBAC state γ that satisfies a set C of SMER constraints, in order to ensure that
the state that results from adding a new user-role assignment to γ still satisfies C, one needs
to only check the role memberships of that user, which can be done in time O(NrM). This
is more efficient than solving the SC-SSOD problem each time an assignment is added to
ensure that the state that results is safe with respect to the SSoD policies.

4. THE ENFORCEMENT VERIFICATION PROBLEM

The facts that SC-SSOD is intractable and that an efficient algorithm exists for SC-SMER
appear to provide a justification for using SMER constraints to enforce SSoD policies.
However, when using SMER constraints to enforce SSoD policies, one needs to answer
the question whether a set of SMER constraints is adequate to enforce a set of SSoD
policies. The answer to this question depends on what permissions each role has, which is
determined by the permission assignment PA and the role hierarchy RH . For instance, if
all permissions in an SSoD policy are assigned to one role, then no set of SMER constraints
enforces that policy.

NOTATION 8. An SSoD configuration is a 3-tuple 〈E,PA,RH 〉, where E is a set of
SSoD policies, PA is a permission assignment relation, and RH is a role hierarchy.

DEFINITION 9. We say that a set C of SMER constraints enforces the SSoD configu-
ration 〈E,PA,RH 〉 if and only if the following is true.

∀UA ⊂ U ×R [satisfiesC(〈UA,PA,RH 〉) ⇒ safeE(〈UA,PA,RH 〉)]
DEFINITION 10. EV (the Enforcement Verification problem) is defined to be the fol-

lowing problem: Given an SSoD configuration 〈E,PA,RH 〉 and a set C of SMER con-
straints, determine whether C enforces 〈E,PA,RH 〉.

If C enforces an SSoD configuration 〈E,PA,RH 〉, then no matter how the user assign-
ment relation UA changes, as long as it results in an RBAC state that satisfies C, the state
is safe with respect to the SSoD policies in E.
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EXAMPLE 2. Continuing from Example 1, we consider the following set of SMER
constraints

C1 = {c1, c2, c3}
c1 = smer〈{Warehouse, Accounting, Finance}, 2〉
c2 = smer〈{Engineering,Finance}, 2〉
c3 = smer〈{Quality, Finance}, 2〉

The constraint c1 ensures that no user is a member of any two roles in Warehouse,
Accounting, and Finance; thus, the smallest number of users that have memberships in
all the three roles is three, and therefore, the smallest number of users that the permissions
pgoods , pinvoice , and ppayment is also three. This ensures safety with respect to the SSoD
policy e1. The constraints c2 and c3 together ensure safety with respect to e2. Thus C1

enforces 〈E1,PA1,RH 1〉.
In Example 1, we observed that the state γ1 is not safe with respect to E1; therefore, it

does not satisfy C1. In particular, γ1 violates the constraint c1 because Alice is assigned to
both Warehouse and Accounting.

We now establish an upper bound on the computational complexity of EV.

LEMMA 3. EV is in coNP.

PROOF. Consider the complement problem of EV, denoted by EV, i.e., determine
whether C does not enforce 〈E,PA,RH 〉. This problem is essentially one of determining
whether there exists a user-role assignment such that satisfiesC(〈UA,PA,RH 〉) is true,
but safeE(〈UA,PA,RH 〉) is false. It suffices to show that EV is in NP. To do this, we
show that if C does not enforce 〈E,PA,RH 〉, then a short (polynomial in the input size)
evidence exists that can be verified in polynomial time.

If a set C of t-m SMER constraints does not enforce 〈E,PA,RH 〉, then there exists a
counter-example, i.e., a user-role assignment UA such that satisfiesC(〈UA,PA,RH 〉) is
true but safeE(〈UA,PA,RH 〉) is false. That is, there exists a k-n SSoD policy in E that
is violated by k − 1 users. If such an UA exists, then a subset of the UA that consists of
just the k− 1 users is also a counter-example. Thus, the smallest counter-example has size
linear in the size of the input. Once the counter-example is guessed, its correctness can be
verified in time polynomial in the size of the input. This shows that EV is in NP.

4.1 A special case of the EV problem

In this section, we show that every set of SMER constraints can be equivalently represented
using a set of canonical (t-t) SMER constraints. Therefore, we need to consider only
such constraints. We then study the enforcement verification problem for canonical SMER
constraints.

DEFINITION 11. Let C1 and C2 be two sets of SMER constraints. We say that C1 and
C2 are equivalent if and only if for every RBAC state γ, γ satisfies C1 if and only if γ
satisfies C2.

Clearly, if C1 and C2 are equivalent, then C1 enforces 〈E,PA,RH 〉 if and only if C2

enforces 〈E,PA,RH 〉.
LEMMA 4. For every t-m SMER constraint c, there exists a set C ′ of canonical SMER

constraints of cardinality t such that C ′ and {c} are equivalent.
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PROOF. Given a t-m SMER constraint c = 〈{r1, . . . , rm} , t〉, where m > t. Let C ′ be

{ smer〈R, t〉 | R ⊂ {r1, . . . , rm} ∧ |R| = t }.
That is, C ′ is the set of all constraints smer〈R, t〉 such that R is a size-t subset of

{r1, . . . , rm}. It is easy to see that the violation of any constraint in C ′ implies the vi-
olation of the constraint c and the violation of the constraint c implies the violation of
some constraint in C ′. Therefore, C ′ and {c} are equivalent.

It follows from Lemma 4 that for every set C of SMER constraints, there exists a set
C ′ of canonical SMER constraints such that C and C ′ are equivalent with respect to the
allowed configurations. Furthermore, given an instance of EV in which the set E contains
more than one SSoD policy, one can verify these policies one by one. Therefore, without
loss of generality, we assume that E is a singleton set, i.e., E = {e} consists of one policy.
This enables us to limit our attention to the following special case of EV.

DEFINITION 12. CEV (the Canonical Enforcement Verification problem) is defined as
follows: Given PA, RH , a singleton set {e} of SSoD policies and a set C of canonical
SMER constraints, determine whether C enforces 〈{e},PA,RH 〉.

An algorithm solving CEV can be used to solve EV, as any EV instance can be trans-
lated into a set of CEV instances. However, the resulting CEV instance may have an
exponential blowup in size, as we would have

(
m
t

)
canonical SMER constraints for each

t-m SMER constraint. On the other hand, if an RBAC system uses only canonical con-
straints to start with, then such blowup does not occur.

4.2 Computational complexities of CEV and EV

We now show that CEV is coNP-hard by showing that a special case of it is coNP-
complete. The special case we consider is whether a set of 2-2 SMER constraints satisfies
a 2-n SSoD policy. Recall that a 2-2 SMER constraint specifies that two roles are mutually
exclusive, i.e., no user can be a member of both roles. This is the most common kind of
constraints considered in the literature. A 2-n SSoD specifies that no single user is allowed
to possess all of n given permissions. This is the simplest and most common kind of SSoD
policy. This special case is thus arguably the simplest verification problem.

THEOREM 5. Determining whether a set of 2-2 SMER constraints enforces
〈{e},PA,RH 〉, where e is a 2-n SSoD policy, is coNP-complete.

PROOF. That this problem is in coNP follows from Lemma 3.
We prove that this problem is coNP-hard by reducing MONOTONE-3-2-SAT to the

complement of this problem. We define MONOTONE-3-2-SAT as being a special case of
monotone-CNF-SAT where each clause is composed of either three positive literals or two
negative literals. We show in Appendix A that MONOTONE-3-2-SAT is NP-complete.

Given a MONOTONE-3-2-SAT problem instance composed of positive clauses of the
form (vi1 ∨ vi2 ∨ vi3), 1 ≤ i ≤ n, and negative clauses (¬vj1 ∨ ¬vj2), 1 ≤ j ≤ m,
we do the following reduction: (1) Each propositional variable v is mapped to a role r(v).
Intuitively, that v is assigned true means that a user u is assigned to be a member of r(v).
(2) Each positive clause (vi1 ∨ vi2 ∨ vi3) is mapped to a permission pi assigned to the
three roles r(vi1), r(vi2), and r(vi3). Intuitively, the clause is true if and only if the user
u has permission pi. (3) Each negative clause (¬vj1 ∨ ¬vj2) is mapped to a 2-2 SMER
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constraint smer〈{r(vj1), r(vj2)}, 2〉. This negative clause is true if and only if the user is
not a member of both r(vj1) and r(vj2).

The MONOTONE-3-2-SAT instance is satisfiable if and only if the 2-n SSoD pol-
icy ssod〈{p1, p2, ..., pn}, 2)〉 can be violated while satisfying all the 2-2 SMER con-
straints.

COROLLARY 6. EV and CEV are coNP-complete.

PROOF. Follows directly from Lemma 3 and Theorem 5.

4.3 Solving CEV using SAT

It is easier to think about the complement of CEV, denoted by CEV: If C does not enforce
an SSoD configuration 〈{ssod〈{p1, · · · , pn}, k〉},PA,RH 〉, then there exists a user-to-
role assignment UA such that all the SMER constraints in C are satisfied by the state
〈UA,PA,RH 〉 but there are k− 1 users together possess all permissions {p1, · · · , pn}. In
the rest of this section, we show that the CEV naturally reduces to SAT. An implication
of the existence of such a reduction is that we can use algorithms for SAT to solve CEV.
Given a CEV instance, the answer is yes if and only if the corresponding SAT instance is
not satisfiable. SAT has been studied extensively for several decades (see, for example, [Du
et al. 1997]). Many clever algorithms exist that can answer most instances efficiently. The
fact that CEV naturally reduces to SAT means that one can benefit from the extensive
research on SAT to provide practical enforcement checking.

An instance of the CEV problem is given by PA, RH , a set C of canonical constraints,
and a k-n SSoD policy e. We need to map such an instance to a SAT instance such that
the SAT instance is satisfiable if and only if C does not enforce 〈{e},PA,RH 〉. In other
words, if the SAT instance is satisfiable, then we can find a user assignment relation UA
such that the constraints in C are satisfied but the state 〈UA,PA,RH 〉 is not safe with
respect to e.

We first give such a mapping for a subcase of CEV where e is a 2-n SSoD policy, i.e.,
no single user has all n permissions in e. When constructing a SAT instance from such a
CEV instance, our goal is to find a user-to-role assignment for one single user such that
this user has all permissions in e without violating any constraint in C.

The SAT instance is constructed as follows. For each role r appearing in PA,RH , C,
create a propositional variable vr. Intuitively, if vr is true, then the user is a member of the
role vr. Construct the set of clauses for the SAT instance as follows.

—For each permission p in e, if r′1, r
′
2, · · · , r′` are all the roles that are associated with the

permission p, then add the clause

vr′1 ∨ vr′2 ∨ · · · ∨ vr′`

This clause means that, to have the permission p, the user must be a member of one of
the roles that are associated with the permission p.

—For each constraint c = smer〈{r1, r2, · · · , rt}, t〉 in C, add to the instance the following
clause

¬vr1 ∨ ¬vr2 ∨ · · · ∨ ¬vrt

This clause means that, to satisfy the constraint, there must be at least one role in
{r1, r2, · · · , rt} of which the user is not a member.
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—For each role hierarchy relationship (r1, r2) ∈ RH , add to the instance the following

clause

¬vr1 ∨ vr2

This clause means that if a user is a member of r1, then it must also be a member of r2.

If the SAT instance is satisfiable, let I be a truth assignment that makes the instance true,
then assign the user to be a member of every role r such that vr is true in I . The user has
all permissions in e without violating any constraint in C; therefore, C does not enforce
〈{e},PA,RH 〉. On the other hand, if C does not enforce 〈{e},PA,RH 〉, then there exists
a UA such that in the RBAC state 〈UA,PA,RH 〉 there exists a user who has all permis-
sions in e, and the role memberships of the user in this state give rise to a truth assignment
that make the SAT instance true.

We now give the mapping for any instance of CEV. Given a k-n SSoD policy e where
k > 2, we need to consider role memberships of k − 1 different users at the same time.
Our goal is to find a user assignment relation such that k− 1 together have all permissions
in e, yet none of the k − 1 user’s role memberships violate constraints in C.

Given PA and RH , let C be a set of canonical constraints and e be a k-n SSoD policy.
Construct a SAT instance as follows. For each role the appears in PA,RH and C, create
k − 1 proposition variables. The propositional variables created for a role r is denoted
v1

r , v2
r , · · · , vk−1

r . Intuitively, vi
r is true when the ith user is a member of the role r. Then

construct the set of clauses for the SAT instance as follows.

—For each permission p in e, if r′1, r
′
2, · · · , r′` are all the roles that are associated with the

permission p, then add the clause

v1
r′1
∨ · · · ∨ vk−1

r′1
∨ v1

r′2
∨ · · · ∨ vk−1

r′2
∨ · · · ∨ v1

r′`
∨ · · · ∨ vk−1

r′`

To have the permission p, at least one of the k − 1 users must be a member of one of
these roles.

—For each constraint c ∈ C, let c = smer〈{r1, r2, · · · , rt}, t〉; for each i from 1 to k − 1,
add the following clause

¬vi
r1
∨ ¬vi

r2
∨ · · · ∨ ¬vi

rt

To satisfy the constraint, for every user, there must exist a role in {r1, r2, · · · , rt} of
which the user is not a member.

—For each role hierarchy relationship (r1, r2) ∈ RH , and for each i from 1 to k − 1, add
the following clause

¬vi
r1
∨ vi

r2

This clause means that if a user is a member of r1, then it must also be a member of r2.

The SAT instance is satisfiable if and only if C does not enforce 〈{e},PA,RH 〉.
4.4 Comparing approaches for enforcing SSoD policies

In Section 3.1 we discussed one approach for enforcing SSoD policies. Each time one
is about to make a change to the system that may affect safety, one checks whether the
RBAC state that results from the proposed change is safe and makes the change only when
the answer is affirmative. We call this approach direct enforcement; it requires solving
SC-SSOD.
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One can also use SMER constraints for enforcing SSoD policies; we call this indirect
enforcement. This requires solving SC-SMER. This approach also requires one to ensure
that existing SMER constraints enforce the desired SSoD policies. One way to achieve
this to by solving EV. Another way to achieve this is to generating SMER constraints
from SSoD policies with the guarantee that the generated constraints always enforce the
policies. We will show how to perform constraint generation in Sections 5 and 6.

In summary, we have three approaches for enforcing SSoD policies:

(1) direct enforcement by solving SC-SSOD,

(2) indirect enforcement by solving SC-SMER and EV, and

(3) indirect enforcement by solving SC-SMER and the constraint generation problem.

We now compare these approaches.
Recall that SC-SSOD is intractable (coNP-complete) in general; however it is effi-

ciently solvable when the value k in a k-n SSoD policy is small. SC-SMER is efficiently
solvable; however, EV is intractable (coNP-complete). In fact, we have shown that ver-
ifying whether a set of 2-2 SMER constraints enforces 〈{e},PA,RH 〉, where e is a 2-n
SSoD policy, may be intractable. This result is quite surprising, and casts doubts on the
effectiveness of the approach of using SMER constraints to enforce SSoD policies, which
has been adopted in the literature without being questioned for years. From computation
complexity point of view, we can conclude the following. For SSoD policies with smaller
k value, approach (1) is more advantageous than approach (2). For more general SSoD
policies, approach (3) is the most advantageous if one can solve the constraint generation
problem efficiently.

Going beyond complexity class in comparing approaches (1) and (2), we make two
observations that favor approach (2).

First, when using SMER constraints to enforce SSoD policies, EV, which can be com-
putationally expensive, needs to be performed only when either a new role-role relation-
ship is added to the role hierarchy or a permission in an SSoD policy is assigned to some
role. When a user is assigned to a role, only constraint checking (SC-SMER) needs to
be performed, which is quite efficient. On the other hand, when enforcing SSoD policies
directly, the expensive safety checking (SC-SSOD) needs to be performed every time a
user is assigned to a role of which the user was not already a member. As user-to-role
assignment is the most dynamic relation, enforcing SSoD policies directly may be overall
more expensive than using SMER constraints.

Second, the complexity of SC-SSOD is calculated in the number of users plus the num-
ber of roles, and the complexity of CEV is calculated in the number of roles only. (In
both cases, one needs to consider only the permissions in the SSoD policies, rather than
all permissions in the RBAC state.) As most RBAC systems have many more users than
roles, solving EV is likely to be more efficient than solving SC-SSOD in practice. For
example, in a case study of the RBAC system of an European bank [Schaad et al. 2001],
it has been reported that there are about 40000 users and 1300 roles, with a role/user ratio
of approximately 3.2%. The study [Schaad et al. 2001] also cites an oral estimate that
was given at the RBAC2000 workshop, suggesting that the number of roles in a role-based
system is approximately 3-4% of the user population.

Given the above comparisons, we can see that both approach (1) and approach (2) have
advantages over each other, and approach (3) seems to be the most promising approach.
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More conclusive comparisons among them require access to data in real-world systems and
are beyond the scope of this paper. To decide which approach to use in a given situation,
one would need to know the kinds of SSoD policies and constraints that one is likely to
encounter. Results in this paper provide helpful information in making the decision.

5. CONSTRAINT GENERATION: FROM SSOD POLICIES TO RSSOD RE-
QUIREMENTS

Section 4 considers the problem of verifying that SMER constraints in RBAC enforce the
desired SSoD policies. In this section and the next section we study the problem of gener-
ating a set of SMER constraints that are adequate for enforcing SSoD policies. The gen-
eration problem that we study is as follows: Given an SSoD configuration 〈E,PA,RH 〉,
where E is a set of SSoD policies, PA is a permission assignment relation, and RH is a
role hierarchy, generate a set C of SMER constraints that enforces 〈E,PA,RH 〉. Such a
set C ensures that for every possible user assignment relation UA, as long as all constraints
in C are satisfied, the RBAC state is guaranteed to be safe with respect to E. This way,
when the UA relation is changed, one only needs to check whether constraints in C remain
satisfied.

In Section 5.1, we study the problem of determining whether an SSoD configuration is
enforceable. In Section 5.2, we introduce the notion of Role-level Static Separation of Duty
(RSSoD) requirements as an intermediate step from SSoD policies to SMER constraints. In
Section 5.3, we study the computational complexity of several problems related to RSSoD
requirements.

5.1 Enforceability of SSoD configurations

Given an SSoD configuration 〈E,PA,RH 〉, there may not exist a set C of constraints that
enforces 〈E,PA,RH 〉.

DEFINITION 13. An SSoD configuration 〈E,PA,RH 〉 is enforceable if and only if
there exists a set C of SMER constraints such that C enforces 〈E,PA,RH 〉.

LEMMA 7. An SSoD configuration 〈E,PA,RH 〉 is not enforceable if and only if there
exist an SSoD policy ssod〈{p1, · · · , pn}, k〉 in E and k − 1 roles in PA such that these
k−1 roles together have all the permissions in {p1, · · · , pn} and none of these k−1 roles
is senior to a role other than itself.

PROOF. For the “only if” part, we show that if the condition in the lemma does not
exist then the SSoD configuration is enforceable. Consider the set C of constraints that
includes a 2-2 SMER constraint for every pair of roles in PA and RH ; this means that
every pair of roles is mutually exclusive. This forbids any user from being assigned to any
role that is senior to a role other than itself. For example, if r1 ≥ r2, then to satisfy the
constraint smer〈{r1, r2}, 2〉, no user can be a member of r1. In any state that satisfies these
constraints, only those roles that are not senior to any role other than itself can have any
member. Furthermore, no user is a member of two roles. Therefore, k − 1 users together
can be member of at most k − 1 roles. If the condition in the lemma does not exist, then
no k − 1 users have all permissions in {p1, · · · , pn}. Therefore, C enforces the SSoD
configuration.

For the “if” part, consider the following. If there exist an SSoD policy
ssod〈{p1, · · · , pn}, k〉 in E and k − 1 roles in PA such that these k − 1 roles together
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have all the permissions in {p1, · · · , pn} and none of these k − 1 roles is senior to a role
other than itself, then one can construct an RBAC state in which there are k − 1 users and
each of the user is assigned one of the k − 1 role. Such a state is unsafe with respect to E.
In such an RBAC state, each user is a member of only one role, thus no SMER constraint
is violated. Therefore, no matter which set of SMER constraints one specifies, the state
will satisfy the constraints, while being unsafe.

We observe from the proof of the above lemma that given any enforceable configuration,
2-2 SMER constraints are sufficient to enforce it.

THEOREM 8. Determining whether an SSoD configuration is enforceable is coNP-
complete.

PROOF. We consider the complement of the problem, that is, to determine whether an
SSoD configuration is not enforceable. We first show that this problem is in NP: From
Lemma 7 given a solution set of k− 1 roles we compute the set of permissions assigned to
those roles, and check whether it is a superset of the set of permissions in the SSoD policy.

We show that the problem is NP-hard by reducing the set covering problem, which is
NP-complete, to it. In the set covering problem, the inputs are a finite set S , a family
F = {S1, . . . , S`} of subsets of S , and a budget B. The goal is to determine whether there
exists B sets in F whose union is S . Given an instance of the set covering problem: S , F ,
and B, construct an SSoD policy e as follows. Let each element in S map to a permission
in the policy ssod〈S, B+1〉, let k be B+1, and let n be the size of S . We have constructed
a k-n SSoD policy. For each different subset Si (1 ≤ i ≤ `) in F , create a role ri and
assign to it all permissions corresponding to the elements in Si. B sets in F cover S if and
only if the SSoD configuration is not enforceable.

Similar to SC-SSOD, efficient algorithms exist when all the SSoD policies in the con-
figuration have small k.

5.2 RSSoD requirements

SSoD policies are expressed in terms of restrictions on permissions. On the other hand,
SMER constraints are expressed in term of restrictions on role memberships. In order
to generate SMER constraints for enforcing SSoD policies, the first step is to translate
restrictions on permissions expressed in SSoD policies to restrictions on role memberships.
We now define such role-level SSoD requirements.

NOTATION 14. A k-n RSSoD (k-out-of-n Role-based Static Separation of Duty) re-
quirement has the form

rssod〈{r1, . . . , rn} , k〉
where each ri is a role and n and k are integers such that 1 < k ≤ n.

When a set of users together have memberships in every role in a set of roles, we say
that these users cover the roles in the set.

DEFINITION 15. We say that an RBAC state γ is safe with respect to the RSSoD re-
quirement d = rssod〈{r1, . . . , rn} , k〉, denoted by safed(γ), if and only if there does not
exist a set of fewer than k users that cover the n roles in d. More formally,

safed(γ) , ∀u1 · · ·uk−1 ∈ U
((

k−1⋃

i=1

auth rolesγ [ui]

)
6⊇ {r1, . . . , rn}

)
.
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An RBAC state γ is safe with respect to a set D of RSSoD requirements, denoted by
safeD(γ), if and only if it is safe with respect to every requirement in D.

We now show that, given an SSoD configuration 〈E,PA,RH 〉, one can generate a set
D of RSSoD requirements from E and PA such that D captures the security restrictions
inherent in the configuration.

DEFINITION 16. Given PA and E, the standard set of RSSoD requirements derived
from PA and E, denoted by DS(E,PA), is defined as follows:

—if there exist ssod〈P, k〉 ∈ E and R ∈ 2R such that (|R| < k) ∧ (auth permsPA[R] ⊇
P ), then DS(E,PA) = ∅, where ∅ is the empty set, and auth permsPA[R] = {p |
(r, p) ∈ PA ∧ r ∈ R} gives the set of all permissions that are assigned to some role in
R according to PA;

—otherwise, DS(E,PA) includes rssod〈R, k〉 for each ssod〈P, k〉 ∈ E and each R ∈ 2R

such that (auth permsPA[R] ⊇ P ) ∧ ∀R′⊂R (auth permsPA[R′] 6⊇ P ).

In other words, DS(E,PA) can be computed as follows: for each ssod〈P, k〉 ∈ E, and
for each minimal set of roles that have all permissions in P according to PA, declare that
no k − 1 users can cover all roles in the set. If any of the set of roles so computed has
size smaller than k, then set DS(E,PA) to ∅. We point out DS(E,PA) = ∅ if and only if
either 〈E,PA,RH 〉 is not enforceable (see Lemma 7), or 〈UA,PA,RH 〉 is trivially safe
(that is, some permission from P is not assigned to any role).

The following theorem shows that for any SSoD configuration 〈E,PA,RH 〉, the set
DS(E,PA) captures the security requirement in the configuration.

THEOREM 9. Given E and PA, the set DS(E,PA) satisfies the following condition.

∀UA ∀RH
[
safeE(〈UA,PA,RH 〉) ⇔ safeDS(E,PA)(〈UA,PA,RH 〉)

]

PROOF. Given any UA and RH , if γ = 〈UA,PA,RH 〉 is not safe with respect to
DS(E,PA), then there is an RSSoD requirement rssod〈R, k〉 in DS(E,PA) and there
exist k− 1 users in γ such that these users together are authorized for all roles in R. Given
the way in which DS(E,PA) is defined, there exists an SSoD policy in E such that the
roles in R together have all permissions in it; therefore γ is not safe with respect to E.

If γ = 〈UA,PA,RH 〉 is not safe with respect to E, then there exist e =
ssod〈{p1, . . . , pn} , k〉 and k − 1 users that together have all permissions in {p1, . . . , pn}.
Let R1 be the set of all roles that these users are members of in γ, and let R2 be
the set of roles in PA, then the set of permissions that are authorized to R1 ∩ R2 in-
cludes {p1, . . . , pn}. By the definition of DS(E,PA), there exists an RSSoD requirement
d = rssod〈R, k〉 such that R ⊆ R1 ∩R2; γ is not safe with respect to d; and thus not safe
with respect to DS(E,PA).

EXAMPLE 3. Consider the SSoD configuration given in Example 1, the following set
of RSSoD requirements precisely captures the security requirements in the configuration.

D1 = {d1, d2, d3, d4}
d1 = rssod〈{ Engineering, Warehouse, Accounting, Finance} , 3〉
d2 = rssod〈{ Quality, Warehouse, Accounting, Finance} , 3〉
d3 = rssod〈{ Engineering, Finance} , 2〉
d4 = rssod〈{ Quality, Finance} , 2〉
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5.3 Runtime Checking and Verification for RSSoD Requirements

Our main objective to introduce RSSoD requirements is to use them as an intermediate
step from SSoD policies to SMER constraints. Several problems naturally come up, and
we now study their computational complexities.

DEFINITION 17. The Runtime RSSoD Checking Problem is as follows: Given an
RBAC state γ and a set D of RSSoD requirements, determine whether safeD(γ).

THEOREM 10. The Runtime RSSoD Checking Problem is coNP-complete.

PROOF. The proof is essentially the same as that for Theorem 1, by reducing the set-
covering problem to the complement of the Runtime RSSoD Checking Problem. The
universe S is mapped to the set of all roles in the RSSoD requirement and each subset Si

(1 ≤ i ≤ `) in F is mapped to the set of roles assigned to a user.

DEFINITION 18. The RSSoD Verification Problem is as follows: Given PA,RH , a
set D of RSSoD requirements, and a set C of SMER constraints, determine whether C
enforces D (under PA and RH ), that is, whether

∀UA
[
satisfies〈UA,PA,RH 〉(C) ⇒ safe〈UA,PA,RH 〉(D)

]

The RSSoD Verification Problem can be viewed as a special case of the Enforcement
Verification Problem in which the role hierarchy is empty and the permission assignment is
degenerated (i.e., each permission is assigned to a different role). Because the permission
assignment is degenerated, the hardness of this problem does not follow from the coNP-
completeness of the problem to determine whether a set of 2-2 SMER constraints enforces
a 2-n SSoD policy; the proof there involves a reduction from MONOTONE-3-2-SAT that
uses permission assignment in a non-degenerated way.

THEOREM 11. The problem of verifying whether a set of 2-2 SMER constraints en-
forces a 4-n RSSoD requirement is coNP-complete.

PROOF. We consider the complement of the problem: determine whether there exists a
user-role assignment such that the SMER constraints are satisfied and k− 1 users together
are authorized for n roles in the RSSoD requirement. We need to show that the complement
is NP-complete.

That the complement problem is in NP follows from the fact that the EV problem is in
coNP. (Lemma 3)

To show NP-hardness, we use a reduction from the GRAPH 3-COLORABILITY prob-
lem [Garey and Johnson 1979], which determines whether a graph G is 3-colorable. Given
a graph with n vertices, we map each vertex in the graph to a role, and each edge in the
graph to a 2-2 SMER constraint where the two roles are the ones corresponding to the
two endpoints of the edge. Let r1, · · · , rn be all roles that result from this process and
let C be the set of resultant constraints. A 4-n RSSoD requirement d is constructed as
rssod〈{r1, . . . , rn} , 4〉. We now show that C does not enforce {d} if and only if the graph
is 3-colorable. Each user is viewed as a color, and a node is assigned a color means that the
user is a member of the role corresponding to the node. The graph is 3-colorable if and only
if there are 3 users who can cover all n roles without violating any of the constraints.
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6. CONSTRAINT GENERATION: FROM RSSOD REQUIREMENTS TO SMER

CONSTRAINTS

In this section, we show how to generate SMER constraints from a set of RSSoD require-
ments. In Section 5.2, we have shown how to compute a set of RSSoD requirements that
capture the security requirements inherent in an SSoD configuration 〈E,PA,RH 〉. To-
gether these sections show how one can generate SMER constraints to enforce an SSoD
configuration.

As there are often multiple sets of constraints that can enforce the same set of SSoD poli-
cies, we would like to generate constraint sets that are not “more restrictive than necessary”.
For this purpose, we formally define the notion of “precise enforcement” and “minimal en-
forcement”. In Section 6.1, we show that in two cases one can generate SMER constraints
that precisely enforce RSSoD requirements and that precise enforcement is impossible in
other cases. In Section 6.2, we show that while 2-2 SMER constraints are sufficient to
enforce any RSSoD requirements, having k-k SMER constraints for larger k enables more
precise enforcement. In Section 6.3, we show how to generate all singleton constraint sets
that minimally enforce an RSSoD requirement.

6.1 Precise enforcement of RSSoD requirements

One way to enforce a set of RSSoD requirements is to declare every pair of roles to be mu-
tually exclusive. However, this is often times too restrictive. Ideally, we want to generate
constraints that precisely enforce the RSSoD requirements.

DEFINITION 19. Let D be a set of RSSoD requirements and C be a set of SMER
constraints, we say that C enforces D if and only if the following holds:

∀ RBAC state γ [satisfiesC(γ) ⇒ safeD(γ)]

We say that C is necessary to enforce D if and only if the following holds:

∀ RBAC state γ [safeD(γ) ∧ liveD(γ) ⇒ satisfiesC(γ)]

where liveD(γ) means that for every role r appearing in D, there exists a user who is a
member of r.
We say C precisely enforces D if and only if C both enforces D and is necessary to enforce
D.

EXAMPLE 4. To understand the reason that liveD(UA,RH ) is needed in Definition 19,
consider the following example.

D = {rssod〈{r1, r2, r3}, 3〉}
C = {smer〈{r1, r2, r3}, 2〉}

The RSSoD requirement means that at least 3 users are required to cover the 3 roles
{r1, r2, r3}. To enforce this, one would naturally require that no single user is a mem-
ber of 2 or more roles in {r1, r2, r3}, which is the constraint in C. Intuitively, C is
necessary to enforce E. However, ∀γ [safeD(γ) ⇒ satisfiesC(γ)] is not true, as there
exist RBAC states that violate C and are safe with respect to D. Consider RH = ∅ and
UA = {(u1, r1), (u1, r2)}. The constraint in C is violated because u1 is a member of both
r1 and r2. Yet (UA,RH ) is safe with respect to D, as no user is a member of r3, and thus
no 2 users cover {r1, r2, r3}. However, if we extend the RBAC state to make some user a
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member of r3, then the resulting state is not safe with respect to D. The extra condition
liveD(UA,RH ) addresses this issue.

We now give two cases where precise enforcement is possible.

LEMMA 12. Given a k-k RSSoD requirement d = rssod〈{r1, · · · , rk}, k〉, the singleton
constraint set {c = smer〈{r1, · · · , rk}, 2〉} precisely enforces {d}.

PROOF. The requirement d means that k users are required to cover all k roles. The
constraint c means that no user is allowed to be a member of 2 roles in the set. We first
show that {c} enforces {d}. If no user is a member of 2 roles from the set of k roles, then
k users are needed to cover the k roles. To show that c is necessary, consider the following.
Given an RBAC state γ that violates c, we show that live{d}(γ) and safe{d}(γ) cannot
both be true. As γ violates c, there exists a user who has memberships in 2 roles from the
set of k roles. If live{d}(γ) is true, then for every role other than the 2 roles there exists a
user who is a member of it. Thus k− 1 users cover the k roles, and safe{d}(γ) is false.

LEMMA 13. Given a 2-n RSSoD requirement d = rssod〈{r1, · · · , rn}, 2〉, the single-
ton constraint set { c = smer〈{r1, · · · , rn}, n〉 } precisely enforces { d }.

PROOF. The requirement d means that 2 users are required to cover all n roles. The
constraint c means that no user is allowed to be a member of all the roles in the set. We
first show that { c } enforces { d }. If no user is allowed to be authorized for all n roles
from the set, then at least 2 users are required to cover all the n roles. To show that { c }
is necessary, consider the following. Given an RBAC state γ that violates c, there is a user
that is a member of all roles from the set of n roles. Thus safe{d}(γ) is false.

In fact, as we prove in Lemma 21 (in Section 6.3 after results needed for the proof
have been developed), for every k and n such that 2 < k < n, there exists no set of SMER
constraints that precisely enforces a k-n RSSoD requirement. That is, the two special cases
in Lemmas 12 and 13 are the only cases where precise enforcement can be achieved. As
precise enforcement is not achievable in many cases, we give a method to generate “good”
sets of SMER constraints that are as precise as possible.

6.2 Expressive power of different t-m SMER constraints

Before discussing the generation of “good” sets of SMER constraints, we look at the ex-
pressive power of t-m SMER constraints using different values of t and m. We would like
to answer questions such as: Does an RBAC system that supports 3-3 SMER constraints
have more expressive power than an RBAC system that supports only 2-2 SMER con-
straints? Answers to such questions will help developers of RBAC systems decide which
kinds of constraints to support.

From Lemma 4 we know that t-m SMER constraints, where m > t, can be equivalently
represented using t-t SMER constraints; thus non-canonical constraints do not add addi-
tional expressive power in terms of enforcing SSoD policies. From the proof of Lemma 7,
we know that 2-2 SMER constraints are sufficient for enforcing (albeit not always pre-
cisely) any enforceable SSoD configuration. We now show that 2-2 SMER constraints (or
2-n SMER constraints which can be equivalently expressed using 2-2 SMER constraints)
are required in the sense that they cannot be replaced with other k-n SMER (where k ≥ 3)
constraints.
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LEMMA 14. There exist RSSoD requirements that cannot be enforced without using

2-n SMER constraints.

PROOF. A t-t RSSoD requirement rssod〈{r1, · · · , rt}, t〉 requires that no t − 1 users
cover all t roles. It can be enforced only by using 2-n SMER constraints, as these are the
only type of constraints that prevent two roles from being assigned to a single user.

Although in all cases, 2-2 SMER constraints are sufficient to enforce enforceable SSoD
configurations, using only such constraints is not always desirable as other kinds of con-
straints may provide more precise enforcement. The following lemma expresses this.

LEMMA 15. For any n > 2, there exists an RSSoD requirement that can be precisely
enforced using a canonical constraint of cardinality n but cannot be precisely enforced
using any set of t-m SMER constraints with t < n.

PROOF. Consider the 2-n RSSoD requirement d = rssod〈{r1, · · · , rn}, 2〉 (at
least 2 users are required to cover the n roles). The n-n SMER constraint c =
smer〈{r1, · · · , rn}, n〉 (no single user is allowed to be authorized for all n roles) precisely
enforces the configuration, as was shown in lemma 13.

We now show that no set of t-m SMER constraints with t < n precisely enforces { d }.
Assume, for the sake of contradiction, that there exists such a set. Then there exists a set
C of canonical constraints of cardinalities less than n that also precisely enforces { d }. At
least one constraint, c, in C must be such that all roles in the constraint are in {r1, · · · , rn};
otherwise, one could assign one user to have all roles in {r1, · · · , rn}without violating any
constraint in C. Because c is a canonical constraint of cardinality t < n, the set S of roles
in c is a strict subset of {r1, · · · , rn}. This constraint c is not necessary for implementing
the SSoD configuration, as an RBAC state in which a user is assigned to be a member of
all roles in S is safe with respect to the requirement d, as long as the user is not a member
of some role in {r1, · · · , rn} − S.

This lemma suggests that if one wants to enforce an arbitrary RSSoD requirement as
precisely as possible, then one needs to support n-n SMER constraints for arbitrary n.

6.3 “Good” sets of SMER constraints: Definition

While two sets of constraints may both enforce the same RSSoD requirements, they have
different degrees of restrictiveness.

DEFINITION 20. Let C1 and C2 be two sets of SMER constraints. We say that C1 is at
least as restrictive as C2 (denoted by C1 º C2) if and only if the following holds:

∀ RBAC state γ
[
satisfiesC1

(γ) ⇒ satisfiesC2
(γ)

]
.

The º relation among all sets of SMER constraints is a partial order. When C1 º C2

but not C2 º C1, we say that C1 is more restrictive than C2 (denoted by C1 Â C2). By
definition, C1 and C2 are equivalent (Definition 11) if and only if C1 º C2 and C2 º C1.

When neither C1 º C2 nor C2 º C1, we say C1 and C2 are incomparable.

When both C and C ′ enforce a set D of RSSoD requirements, there are four cases:

(1) C Â C ′, in which case C ′ is preferable to C for enforcing D as it is less restrictive
(and thus more precise);

(2) C ′ Â C, in which C is preferable to C ′;
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(3) C and C ′ are equivalent, in which case either C or C ′ can be used;
(4) C and C ′ are incomparable, in which case the decision to choose C over C ′ (or C ′

over C) depends on considerations other than SSoD policies.

DEFINITION 21. Given a set D of RSSoD requirements, we say that a set C of SMER
constraints is minimal for enforcing D if and only if C enforces D and there does not exist
a different set C ′ of SMER constraints such that C ′ also enforces D and C Â C ′ (C is
more restrictive than C ′).

Our approach to dealing with the generation problem is to exhaustively generate all
singleton sets of SMER constraints that are minimal for enforcing D (for any such set, no
other set is strictly more preferable to it based on precision of enforcement) and leave the
choice to the system administrator.

LEMMA 16. If a set C of SMER constraints precisely enforces a set D of RSSoD re-
quirements, then for any C ′ that also enforces D, C ′ º C, i.e., C ′ is at least as restrictive
as C.

PROOF. Given C that precisely enforces D and C ′ that also enforces D, we need to
show that: (a) ∀γ(satisfiesC′(γ) ⇒ satisfiesC(γ)).

From the fact that C ′ enforces D, we have (by Definition 19) ∀γ(satisfiesC′(γ) ⇒
safeD(γ)). From the fact that C precisely enforces D, we know that C is necessary for
enforcing D. By Definition 19, we have ∀γ(liveD(γ) ∧ safeD(γ) ⇒ satisfiesC(γ)).
Combining the two, we have: (b) ∀γ(liveD(γ) ∧ satisfiesC′(γ)) ⇒ satisfiesC(γ)).

Note that (a) and (b) differ in that (b) has liveD(γ) in the antecedent inside the range of
the quantifier ∀γ. We now show that (b) implies (a). Suppose, for the sake of contradiction,
that (b) is true but (a) is not. Then there exists a state γ such that satisfiesC′(γ) is true, but
satisfiesC(γ) is not. If such a state γ exists, then there exists a state γ1 such that the role
hierarchy relation in γ1 is empty, and satisfiesC′(γ1) is true, but satisfiesC(γ1) is false.
The state γ1 can be constructed by computing all role memberships in γ and assigning these
role memberships using UA. We then construct a state γ2 by adding to γ1 the following
user-to-role assignments: for each role r mentioned in D assign a new user (one who is
not a member of any role in γ1) to be a member of r. (Different users are used for different
roles, so each new user is a member of exactly one role.) We denote the resultant state
γ2. Clearly, liveD(γ2) is true. Furthermore, by construction of γ2, satisfiesC′(γ) ⇔
satisfiesC′(γ2), and satisfiesC(γ) ⇔ satisfiesC(γ2). Therefore, satisfiesC′(γ2) is true
but satisfiesC(γ2) is not. This is in contradiction to (b) being true.

LEMMA 17. Let C be a set of SMER constraints that precisely enforces a set D of
RSSoD requirements. C is minimal for enforcing D. Furthermore, if C1 is also minimal
for enforcing D, then C and C1 are equivalent.

PROOF. Given any C ′ that also enforces D, it follows from Lemma 16 that C ′ º C,
thus it cannot be C Â C ′ (which implies that ¬(C ′ º C)). This shows that C is minimal.

Given any C1 that is also minimal for enforcing D, it follows from Lemma 16 that
C1 º C. Then either C1 Â C, or C1 and C is equivalent. As we have just shown that
C1 Â C is impossible, C1 and C must be equivalent.

LEMMA 18. Given a set D of RSSoD requirements, if both C1 and C2 are minimal
for enforcing D and C1 and C2 are incomparable, then there exists no set C of SMER
constraints that precisely enforces D.
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PROOF. By Contradiction. If there exists a set C that precisely enforces D, then from

Lemma 17, C is equivalent to C1 and to C2. This contradicts the fact that C1 and C2 are
incomparable.

6.4 Generating Minimal Sets of SMER Constraints

Below we define the function SMER-Gen, where SMER-Gen(rssod〈R, k〉) gives all sin-
gleton sets of SMER constraints that are minimal for enforcing one RSSoD requirement.

SMER-Gen (rssod〈R, k=2〉) = { { smer〈R,n〉} }

SMER-Gen (rssod〈R, k≥3〉) =
bn−1

k−1 c+1⋃

j=2

{
{ smer〈R′, j〉}

∣∣∣∣
R′ ⊆ R ∧

|R′| = (k−1)(j−1)+1

}

To understand the definition of SMER-Gen, observe the following.

—When given rssod〈R, 2〉 (requiring 2 users to cover all roles in R) as the input, SMER-
Gen contains one set {smer〈R, |R|〉} (no user can be a member of all roles in R).

—When given rssod〈R, |R|〉 (requiring |R| users to cover all roles in R) as the input, we
have t = n = |R|, and SMER-Gen contains one set {smer〈R, 2〉} (no user can be a
member of two roles in R).

—When given rssod〈{r1, r2, r3, r4}, 3〉 (requiring 3 users to cover all 4 roles) as
the input, SMER-Gen contains four singleton constraint sets. One of them is
{smer〈{r1, r2, r3}, 2〉}, which means that no user can be a member of 2 or more roles in
{r1, r2, r3}, which means that 3 users are required to cover all 3 roles. The other three
constraint sets that are generated use other size-3 subsets of {r1, r2, r3, r4}. Each of the
4 generated constraint sets is minimal for enforcing the 3-4 RSSoD requirement.

—Given rssod〈{r1, r2, r3, r4, r5}, 3〉 (requiring 3 users to cover all 5 roles) as the input,
SMER-Gen contains a total of 11 singleton constraint sets. Ten of them (one for each
size-3 subset of the set of roles0 each contains one 2-3 SMER constraint. The 11’th
one contains one 3-5 SMER constraint smer〈{r1, r2, r3, r4, r5}, 3〉, which mandates that
each user is a member of at most 2 roles in the set of 5 roles, and is sufficient to ensure
that 3 users are required to cover all 5 roles.

EXAMPLE 5. SMER-Gen(rssod〈{Engineering,Warehouse, Accounting, Finance} , 3〉)
contains the following four singleton sets of SMER constraints:

C4 = { smer〈{Warehouse, Accounting,Finance}, 2〉 }
C5 = { smer〈{Engineering,Accounting, Finance}, 2〉 }
C6 = { smer〈{Engineering,Warehouse, Finance}, 2〉 }
C7 = { smer〈{Engineering,Warehouse, Accounting}, 2〉 }

Any SMER constraint from above is sufficient to satisfy the RSSoD requirement. Each
constraint is minimal and the constraints are incomparable with each other. Each leaves a
different role unconstrained. For example, if one picks C5 as the constraint to use, then the
role Warehouse is not constrained.

The correctness of this algorithm is justified by the following two lemmas.

LEMMA 19. Given an RSSoD requirement d, each SMER constraint generated by
SMER-Gen(d) is minimal for enforcing { d }.
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PROOF. Let d = rssod〈Rd, k〉 be an k-n RSSoD requirement, and c = smer〈Rc, j〉 be
a j-m SMER constraint generated by the algorithm with d as input. Then n = |Rd| and
m = |Rc|.

By Lemma 4 we know that c can be equivalently expressed as a set C of j-j SMER
constraints. Assume, for the sake of contradiction, that { c } is not minimal. Then there
exists a set C ′ of SMER constraints that also enforces { d } and C ′ is less restrictive than
C, i.e., (C º C ′) ∧ ¬(C ′ º C).

Because ¬(C ′ º C), there exists a state γ such that satisfiesC′(γ) is true but
satisfiesC(γ) is not. This means that at least one j-j SMER constraint cv ∈ C is vio-
lated by γ. Let Rv be the set of j roles in cv; there exists a user in γ who is a member of
the j roles in Rv . As γ satisfies C ′, having one user being a member of all roles in Rv does
not violate C ′.

We now construct another state γ′ such that satisfiesC′(γ′) is true, but safe{d}(γ′) is
not. This would contradict the assertion that C ′ enforces { d }.

In order to construct γ′, we first construct another state γ1 as follows:

—Use k− 2 users to cover the roles in Rc−Rv with each user being a member of at most
j − 1 roles in Rc − Rv . This is possible for the following reasons. First, |Rc − Rv| =
m − j. Second, from the algorithm, m = (k − 1)(j − 1) + 1. Thus k − 2 users can
cover (k − 2)(j − 1) roles, where (k − 2)(j − 1) = m− j.

—Assign one of the k − 2 users to be a member of all roles in Rd −Rc.

Observe that γ1 satisfies c = smer〈Rc, j〉. This is because c does not place any restriction
on role memberships about roles in Rd−Rc and each user in γ1 has at most j−1 roles in Rc.
Because C is equivalent to {c}, satisfiesC(γ1) is true. Because C º C ′, satisfiesC′(γ1)
is also true.

We now construct γ′ by adding to γ1 a new user and assigning the user to be a member
of all roles in Rv . The state γ′ has k− 1 users; together they have memberships in all roles
in Rd. Thus safe{d}(γ′) is false. The state γ′ also satisfies C ′, as the role memberships of
the k − 2 users in γ1 do not violate C ′ and neither does the new user who is a member of
all roles in Rv .

LEMMA 20. Given an RSSoD requirement d, every SMER constraint that is minimal
for enforcing { d } is generated by SMER-Gen(d).

PROOF. Given an k-n RSSoD requirement d = rssod〈Rd, k〉, we show that any j′-m′

SMER c = smer〈Rc, j
′〉 that is not generated by the algorithm is not minimal in enforcing

{ d }. We show this using case-by-case analysis for c. In each case, we show that either
{ c } does not enforce { d }, { c } is not minimal in enforcing { d }, or { c } is generated by
the algorithm. The conditions in the five cases cover all possible situations.
Case 1: j′ >

⌊
n−1
k−1

⌋
+ 1.

Then j′ ≥
⌊

n−1
k−1

⌋
+ 2. By assigning to each of k − 1 users j′ − 1 roles, we are able to

cover (k−1)(j′−1) roles without violating the constraint c. Observe that for every pair of
positive integers x, y,

⌊
y
x

⌋ ≥ y−(x−1)
x . Thus, (k − 1)(j′ − 1) ≥ (k − 1)

(⌊
n−1
k−1

⌋
+ 1

)
≥

(k − 1)
(

(n−1)−(k−2)
k−1 + 1

)
= n. Therefore, { c } does not enforce { d }.

Case 2: j′ ≤
⌊

n−1
k−1

⌋
+ 1 and Rc 6⊆ Rd.
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Consider the SMER constraint c′ = smer〈j′, Rc ∩ Rd〉. Clearly, { c } Â { c′ }, as vio-

lating c′ means violating c. Furthermore, { c′ } enforces { d } if and only if { c } enforces
{ d }, as any restrictions c has on memberships in roles that appear d also exist in c′. There-
fore { c } is not minimal.
Case 3: j′ ≤

⌊
n−1
k−1

⌋
+ 1, Rc ⊆ Rd, and m′ = m, where m = (k − 1)(j′ − 1) + 1.

Such a constraint c is generated by the algorithm.
Case 4: j′ ≤

⌊
n−1
k−1

⌋
+ 1, Rc ⊆ Rd, and m′ > m.

As the algorithm generates a j′-m SMER constraint for each size-m subset of Rd, there
exist a constraint c′ generated by the algorithm with a set of roles R′ such that R′ ⊂ Rc.
This implies { c′ } Â { c }, therefore { c′ } is not minimal.
Case 5: j′ ≤

⌊
n−1
k−1

⌋
+ 1, Rc ⊆ Rd, and m′ < m.

We have m′ ≤ (k − 1)(j′ − 1). By assigning to k − 1 users at most j′ − 1 roles each,
we are able to cover all m′ roles in c without violating c. By further assigning one user to
be a member of all roles in Rd −Rc, the state is not safe with respect to d while satisfying
c. Thus { c } does not enforce { d }.

Lemmas 18 and 19 enable us to prove the following Lemma.

LEMMA 21. Given a k-n RSSoD requirement where 2 < k < n, there exists no set of
SMER constraints that precisely enforces it.

PROOF. Assume that RH = ∅. It suffices to prove that when 2 < k < n, the algorithm
generates at least two SMER constraints, as then, we know that each such constraint is
minimal (Lemma 19) and therefore there exists no set of SMER constraints that precisely
enforces the RSSoD requirement (Lemma 18).

To show that the algorithm generates at least two SMER constraints when 2 < k < n,
we observe that either (1)

⌊
n−1
k−1

⌋
> 1, or (2)

⌊
n−1
k−1

⌋
= 1. If (1) is true, then j takes on

at least the two values 2 and 3 in the outer loop, and therefore the inner loop (lines 7–8)
is executed at least twice for different values of j, thereby generating two different SMER
constraints.

If (2) is true, then the outer loop (line 5) is executed only once. For that execution of the
outer loop, m = k < n. Thus there exist more than one size-m subsets of R. Therefore,
the inner loop (lines 7–8) executes at least twice for two different size-m subsets R′ of R,
thereby giving two different SMER constraints.

Our algorithm does not generate all sets of SMER constraints that are minimal to en-
force an RSSoD requirement. Constraint sets of cardinality greater than 1 may exist that
are minimal for enforcing the requirement. Our algorithm generates all possible minimal
singleton sets of k-m SMER constraints.

7. CONCLUSIONS AND FUTURE WORK

We have posed and answered several fundamental questions related to the use of SMER
constraints to enforce SSoD policies, while making a clear distinction between objectives
and mechanisms. We have shown that directly enforcing SSoD policies is intractable
(coNP-complete), while enforcing SMER constraints is efficient. We have also shown
that verifying whether a set of SMER constraints enforces a set of SSoD policies is in-
tractable (coNP-complete), even for a basic subcase of the problem, but reduces naturally
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to the satisfiability problem (SAT), for which there exist algorithms that have been proven
to work well in practice [Du et al. 1997]. We have discussed why these intractability results
should not lead us to conclude that SMER constraints are not an appropriate mechanism
for enforcing SSoD policies.

We have defined minimal and precise enforcement. We have also characterized the
kinds of policies for which precise enforcement is achievable and shown what constraints
precisely enforce such policies. We have also presented an algorithm that generates all
singleton SMER constraint sets each of which minimally enforces an RSSoD requirement.

An interesting problem that remains is whether the generation algorithm can be im-
proved to consider preexisting SMER constraints and to consider a set of SSoD policies
as a whole rather than individually. Other kinds of constraints also have been proposed
for RBAC, e.g., cardinality constraints and constraints on permission assignment [Sandhu
et al. 1996]. It would be interesting to examine the use of SMER constraints together with
these constraints to enforce SSoD policies.
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A. SAT

A boolean literal or variable is one that can take on a value from {0, 1}. A boolean expres-
sion is one of the following: (a) a boolean variable, (b) ¬φ, (c) φ1 ∨ φ2, or (d) φ1 ∧ φ2,
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where φ, φ1 and φ2 are boolean expressions. (c) is called a disjunction, and (d) is called
a conjunction. A truth assignment to a boolean expression is the assignment of either 0
or 1 to each variable in the expression. A boolean expression is in Conjunctive Normal
Form (CNF), if it can be written as

∧n
i=1 Ci where n ≥ 1 and each Ci is called a clause, a

clause is either a literal or a disjunction of literals, and a literal is either a boolean variable
or its complement. A boolean expression is satisfiable if there exists a truth assignment
to it such that it evaluates to 1. The SAT problem is the problem of determining whether
an expression in CNF is satisfiable. The complement of the satisfiability problem is the
validity problem: whether for any truth assignment, the expression evaluates to 1.

The 3-SAT problem is SAT with each clause has exactly 3 literals. It is well-known
that SAT and MONOTONE-SAT are NP-complete, and their complements are coNP-
complete.

Monotone 3-2-SAT is NP-complete

MONOTONE-3-SAT is 3-SAT with each clause containing either only positive literals or
only negative literals; it is known to be NP-complete [Garey and Johnson 1979]. We use
MONOTONE-3-2-SAT to denote SAT with each clause containing either 3 positive literals
or 2 negative literals.

THEOREM 22. MONOTONE-3-2-SAT is NP-complete.

PROOF. MONOTONE-3-2-SAT is clearly in NP. We show that it is NP-hard by re-
ducing 3-SAT to MONOTONE-3-2-SAT.

Let (`1 ∨ `2 ∨ `3) be a clause. Case (1): all three literals are positive. No change needs
to be made. Case (2): one is negative. Wlog, assume that `3 is negative. This clause can
be equivalently represented using a positive clause (`1 ∨ `2 ∨ w) and a negative clause
(¬w ∨ `3), where w is a newly introduced propositional variable. This technique turns
one literal from negative to positive by introducing a new propositional variable and a new
length-2 negative clause. Case (3): two are negative. Apply the above technique twice.
Case (4): three are negative. Apply the above technique three times.
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