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Abstract SPKI/SDSI is a language for expressing distributed accasisa pol-
icy, derived from SPKI and SDSI. We provide a first-order to@ftOL) semantics
for SDSI, and show that it has several advantages over pre@emantics. For
example, the FOL semantics is easily extended to additipolédy concepts and
gives meaning to a larger class of access control and otliey pmalysis queries.
We prove that the FOL semantics is equivalent to the strimgitieg semantics
used by SDSI designers, for all queries associated withetveiting semantics.
We also provide a FOL semantics for SPKI/SDSI and use it tdyaaahe design
of SPKI/SDSI. This reveals some problems. For example, tdredard proof pro-
cedure in RFC 2693 is semantically incomplete. In additasnoted before by
other authors, authorization tags in SPKI/SDSI are algoritally problematic,
making a complete proof procedure unlikely. We compare $5BS$| with RTC,
which is a language in thBT Role-based Trust-management framework that can
be viewed as an extension of SDSI. The constraint featuf&lf, based on Con-
straint Datalog, provides an alternative mechanism thaxjsessively similar to
SPKI/SDSI tags, semantically natural, and algorithmjcatctable.

1 Introduction

In 1996, Rivest and Lampson [30] proposed a public-key stftecture, called the
Simple Distributed Security Infrastructure (SDSI), featg the use of linked lo-
cal names. Contemporaneously, Ellison et al. developedsitmple Public Key
Infrastructure (SPKI), which emphasizes delegation dfiatization. In 1997, the
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two efforts were merged, leading to a system called SPKIISD& standard ref-
erence on SPKI/SDSI is RFC 2693 [10], with a later paper [#jpse authors
include several designers of SPKI/SDSI, providing cedificchain reduction al-
gorithms for SPKI/SDSI, clearer descriptions of many feesgyand certain minor
design changes.

SPKI/SDSI can be viewed as a trust-management (TM) langdagst man-
agement [5,6,10,7,21,22,24,26,30] is a distributed accentrol concept with
access decisions based on policy statements made by muyftipicipals. In a
typical trust management system, principals are identifigld public keys, and
statements that are maintained in a distributed mannefe digitally signed to
ensure their authenticity and integrity. Such signed states are calledreden-
tials or certificates In general, a TM language has a syntax for specifyinticy
statementandqueries together with an entailment relation Given a staté® and
a queryQ, the relationP - Q means tha is true in’?. WhenQ arises from an
access requesk + Q means that accesgis allowed inP.

In SPKI/SDSI, policy statements take the form of name-diédinicertificates
(name certs), authorization certificates (auth certs) fAanegss Control List (ACL)
entries.Principals are identified with public keys, and each principal has its ow
name spaces for names.lécal name which is identified by a principal and an
identifier, is bound to a set of principals that we call the rhers of the local
name. Only the principall’ can issue name certs that determine members of the
local nameK A. Principal K can define/X’ A to include a principal, a local name,
or a linked local name (also called an extended name). We D& ® refer to
the sub-language of SPKI/SDSI that just has name certscaleal 4-tuples. Auth
certs and ACL entries, also called 5-tuples, originally edinom SPKI. In a 5-
tuple, the issuing principal grants certain authorizatma subject, which can be
a principal, a local name, an extended name, or a threshbjdctuThe issuing
principal also specifies whether the subject can furthexgége the authorization
it receives in a 5-tuple.

A set of SPKI/SDSI statements defines a policy, and many ptiegef a pol-
icy are of interest to its authors and users. The most basig/dsiwhether a policy
allows a principal to access a resource. However, it mayldsmportant to deter-
mine safety and availability properties of a policy [25]cBuas whether a resource
owner still has some guarantees about who can access theirces after dele-
gating limited authority to other principals. RFC 2693 does explicitly specify
a class of queries that can be made against a policy, butde®wiperational rules
for producing new 5-tuples from existing 5-tuples. The pleureductions implic-
itly define a class of access queries for SPKI/SDSI as well g®af procedure
for answering these queries.

The semantics of SPKI/SDSI has attracted a lot of intereghénsecurity
research community. Beginning with Abadi [1], significaffioe has gone into
finding a logic-based semantics for both SDSI naming alomkSPKI/SDSI. A
logic developed by Howell and Kotz [14] extends the ABLP {2, 19] with
a restricted form of delegation and provides a semanticSRIKI/SDSI autho-
rization. Halpern and van der Meyden subsequently devdltpeLogic of Local
Name Containment (LLNC) [11] and extended the logic to deigth ®-tuples in
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SPKI [12]. These studies all use specialized propositiomadlal logics. Li [20]
provides a logic programming based reading for SPKI/SD3lictv has several
drawbacks.

A formal semantics for SPKI/SDSI defines a class of queriasdan be asked
against a set of SPKI/SDSI statements, together with anlmetat relation that
determines whether a query follows from a set of SPKI/SD&kestents. A good
formal semantics should achieve the following four goailstRthe class of queries
supported by the semantics should be large and include thaséave security
significance. Second, the entailment relation should baraband faithful to the
intuition behind SPKI/SDSI. Third, the entailment shoutdyide a basis for com-
paring the deduction mechanisms associated with SPKI/@b&évaluating them.
Fourth, the entailment provided by the semantics should élewnderstood and
well-studied. A good semantics may also allow techniquesldped for other
purposes to be brought to bear on SPKI/SDSI deduction.

In the present paper, we show that standard first-order Iggt.) provides
a natural semantics for SPKI/SDSI and that the FOL semah#ssseveral ad-
vantages over previous approaches. In our study of the SBx8Ing portion of
SPKI/SDSI (Section 2 of this paper), we present a FOL semsmbtised on trans-
lating each name cert into a Datalog clause. Datalog is ddirfiorm of logic
programming that does not have function symbols (exceptdoo-ary functions).
Since Datalog is a subset of first-order logic, this leadskE®& semantics; since
Datalog has a computational interpretation, a set of namts reluces a Datalog
program. Since the semantics of a policy is defined by clakkigical implica-
tion, this approach allows FOL formulas to be understood eanimgful queries
against a policy. We prove that the FOL semantics is equivédethe string rewrit-
ing semantics used by SDSI designers, for all queries agsdoivith the rewriting
semantics. The advantages of out FOL-based approach asops logics are
the following. It captures the set-based semantic intmitbSDSI, which is used
in Clarke et al. [7] and Halpern and van der Meyden [11]. ltsuskassical first-
order logic rather than more complex modal logics. The FQhasgtics contains
more information in the sense that a larger class of quearde formulated and
understood in the semantics. The semantics is easily eadletudsupport useful
extensions to SDSI; and, finally, the relationship betwé&enROL semantics and
logic programming provides an efficient method to answerggelalass of queries.

The full SPKI/SDSI has 5-tuples, which use authorizatiayst@ describe per-
missions to access structured resources. In our study lcBRKI/SDSI, we use
Constraint Datalog to provide a FOL semantics for SPKI/SIBSt the purpose of
comparison, we first describe a trust management langB@ge[22], which uses
Constraint Datalog as its semantic foundation. The lang@" [22], which is
a member of the RT family of Role-based Trust-managemegulages [24,26],
may be viewed as an alternate extension of SDSI. One chestictef RT is
the use of various constraint domains to express policiestatructured resources
such as file hierarchies and standard concepts such as tiday afr days of the
week. We then give a FOL semantics for SPKI/SDSI by treatintha@rization
tags and validity specification as constraints, and exasgrneral design issues of
SPKI/SDSI, usingRT¢ for comparison. We observe that SPKI’'s 5-tuple reduction
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procedure is semantically incomplete. One reason is tdatte®n does not handle
union of tags. For example, i; grants toK> in two certificates with two autho-
rizationtagg * range nureric ge 1 le 5) and(* nuneric range
ge 4 |l e 10), it is not possible to derive thak’; grants toK, (* range
nuneric ge 2 |l e 7),whichis alogical implication of the two 5-tuples. An-
other problem, first pointed out by Howell [13], is that theeirsection of two
authorization tags may be a set that is not representablep¥irdte set of au-
thorization tags. This suggests that no rewriting algarithising SPKI/SDSI au-
thorization tags can be semantically complete. Among dbeeefits of a logical
point of view, the constraint feature &7°C is expressively similar to SPKI/SDSI
tags, but semantically natural and algorithmically tratga

We give FOL semantics and equivalence results for the SD&Intaportion
of SPKI/SDSI in Section 2, with trust management languBgg’ [22] and Con-
straint Datalog in Section 3, and FOL semantics and anabfs&PKI/SDSI in
Section 4. We conclude in Section 5.

2 Understanding SDSI Using First-Order Logic (FOL)

In SDSI, principals are identified with public keys. We i denote the set of all
principals and usé, often with subscripts or superscripts, to denote a praicip
An identifieris a word over some given standard alphabet. The set of allifos
is denoted byA4, and an identifier is denoted by or B (often with subscripts).
We assume that botk and.4 are countable. We do not consider SDSI 1.1 [30]
special roots which are identifiers that are bound to the same principalviry
name space. Although it would be straightforward to treairththey do not seem
to add any special interest and they do not appear in SPKISDS

A name stringcalled a term in [7, 16], is a principal followed by zero ormo
identifiers. In addition to keys, the st C (K U .A)* of name strings contains
two other kinds of strings ovelC U A. A local namehas the formK A, where
K € KandA € A, and anextended namis a principal followed by more than
one identifier. UsingV; for the set of all local names aud; for extended names,
we haveS = K UN UNg, i.e, a name string is either a principal, a local name,
or and extended names.

A name-definition certificatéhame cert C' is a signed 4-tuplé i, A, S, V),
where

— K € Kis aprincipal (public key) called thissuer the certificate is signed by
K.

— A € Ais an identifier.

— S € §is a name string, called the subject.

— The validity specificatio’V provides information regarding the validity of the
certificate.

We say the 4-tuplé¢kK, A, S, V') defineghe local name&s< A andS is thedef-
inition. In this section, we ignore the validity specificatitn We assume that the
validity of name certs are checked, and only valid certiéisatre considered. We
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will discuss how to handle the validity specification in tlogical semantics in
Section 4.2. When ignoring the validity specification, we maijte (K, A, S, ")
for a 4-tuple.

In the rest of this section, we describe three semanticsB&1$hat have ap-
peared (sometimes implicitly) in the literature, thenadfuce the FOL semantics
and prove its equivalence to other semantics; finally, wepaomthe FOL seman-
tics with other semantics for SDSI.

2.1 A String Rewriting Semantics for SDSI

RFC 2693 defines a 4-tuple-reduction mechanism, which €Elatkal. [7] ex-
plicitly present as string rewriting. The main idea is tolage a local name in
a name string by its definition. Regarding a 4-tuglé A, S, -) as a rewriting rule
K A~ S that rewritesK' A into S, the two 4-tuple-reductions usird, A, S, -)

in Section 6.4 of RFC 2693 us€ A — S to operate on the left end of a name
string:

Given (K1, A, K», -),the following rewriting is possible
Ki A1 Ay - Ay — Ky As -+ Ay

Given(Ky, Ay, K2 By -+ By, -), the following rewriting is possible
Ky Ay Ay -+ Ap— Ky By -+ By Ay -+ Ay

In the rest of this paper, we often wrifé A — S instead of( K, A, S, -) to repre-
sent a 4-tuple.

Definition 1 (Rewriting Semantics for SDSI: RS[P]) Give a setP of 4-tuples,
let RS[P] be the set the rewriting rules corresponding to 4-tupleB.ifwWe write
RS[P] > S; — S whenever it is possible to rewritg into S, in one step using

one rewriting rule irRS[P]. We writeRS[P] > S} s S, if itis possible to rewrite
S; into Sy using zero or more steps froRG[P].

For every name string, a set of 4-tuples determines the set of principals that
S can rewrite into. Thus a set of 4-tuples determines a valndtr every name
string, leading to the set-theoretic semantics for SDSI.

2.2 A Set-theoretic Semantics

In the set-theoretic semantics for SDSI, every name stragyehvaluation that is
a set of principals. Clarke et al. [7] use an informal dedmipof this semantics
as the semantic intuition for SDSI. Halpern and van der Meydd] provide
a semantics for their Logic of Local Name Containment (LLN®)ng similar
lines. Li et al. [26] use the same idea to provide a semamic&f,, which can
be viewed as SDSI enhanced with the intersection operatbeisubject.

The following presentation of the set-theoretic semarfttlews [26], with
p(K) the power set ok. If f,g : Nz — p(K) are two functions mapping local
names to sets of principals, we say tifas less than or equal tgif f(K A) C
g(K A) for every local namé{ A € Ny.
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Definition 2 (Set-theoretic Semantics for SDSI:M[P]) Given any functionf :
N — o(K) mapping local names to sets of principals, we extgémala valuation
V¢ : S — p(K) on all name strings as follows:

Vi(K) ={K}
Vi(K A) = f(K A)
Vf(Kl A - Ag) = UKQef(Kl Al)Vf(K2 Ay - A(g) wheref > 1

The semantics\[P] of a setP of 4-tuples is the least functiofi : Nz —
p(K) that satisfies the system of set containments:

SCIP] = { f(KA)DVi(S) | KA—SeP}

We use a least-solution definition fav1[P] because 4-tuples may define local
names recursively. Note th&t naturally extends\[P] and gives a valuation for
each name string. |

We now show that the functioM[P] : N — p(K) is well defined and
present a straightforward way to construct it. For eachrahtwumbers, let {7 :
N — 9(K) be the function

UK A) =0
UK A= |J Ve

K A—SeP

It is easy to show two properties by induction: (1) for anydlogameK A not
defined inP, f*(K A) = 0 for anyi € N; and (2) for any local nam& A and any
i € N, fi(K A) only contains principals occurring . It follows that the set of all
functions that could appear in the sequeifitef!, f2, ... forms a finite lattice. In
addition, the sequence is nondecreasing. Therefore,dbedpper bound® of the
sequence, given by (K A) = J,~, f*(K A), exists; in additionf~ = M|[P].
The functionf“ clearly satisfieSC[P], and one can show by induction that any
function that satisfieSC[P] is greater than or equal tt".

We will show that our set-theoretic semantics cgkntains iiefesmation than
the rewriting semantics, in the sense th&${P] > S — S, thenVyp)(S1) 2
Varp)(S2). (This follows from Proposition 1 in Section 2.3 and Theor8nn
Section 2.5.) However, the converse is only guaranteed tiougewhens; is a
principal,i.e., Va1 (S) > K if and only if RS[P] > S - K. (This follows from
Proposition 1 in Section 2.3 and Theorem 3 in Section 2.5ateProposition 2
in Section 2.5.) It may well be the case thalp|(S1) 2 Varp)(S2), but there is
no rewriting relationship betwees$y and.S,;. For example, giverP that contains
the two four tupleds A; — K, andK A, — K, the valuation ofK” A; clearly
contains the valuation ak” A,; however, using®, one cannot rewritdd A; into

K As. In other wordsRS[P] > 51 > S, is not equivalent &K ((RS[P] > 54 -
K) < (RS[P] > S5 ~ K)); the former is strictly stronger than the latter.

When making access control decisions, the valuations of rsarings are nec-
essary, but the rewriting relationship between two namiagsdrare not directly
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useful. However, this relation is very helpful for understing the effect of 4-
tuples. If.S; rewrites intoS, from P, thenS; rewrites intoS; from anyP’ such
that P’ O P; therefore, the valuation of; is always a superset of the valuation
of S; no matter what new policy statements are added. This is ediyegseful
for studying the safety and availability properties of pms when policies may
changege.g, statements may be added and/or removed [25].

2.3 A Logic Programming (LP) Semantics for SDSI

The set-theoretic semantics can be captured naturallg Usgic programs. This
observation was made by Halpern and van der Meyden [11].dtals&b used im-
plicitly in the semantics of the RT framework [26,24]. Thersmtics ofRT}, the
basic component of the RT framework, was first defined usitg [26]. When
additional features, such as internal structures in rolaggcorrespond to identi-
fiers in SDSI) are added, a logic programming based semasticsed [24]. The
advantage of the LP approach over the set approach is tlsataisily extended to
additional forms of policy statements.

Definition 3 (LP Semantics for SDSI)We use one ternary predicate; intu-
itively, m(K, A, K’') means thatk’ is in the valuation of the local namg& A.

We define a macreoontains, which takes a name string and a logical variable as
parameters, and defines a first-order logic formula.

contains[K][z] is (K =z)
contains[K A][z] ism(K, A, z)
contains[K A; Az --- Ag][z] (wherel > 1)is

Jy1 (m(K, A1, y1) A containsly; Ag --- Ag][2])

Given a setP of 4-tuples, we defindP[P] to be the following set of logic-
programming clauses:

{ Vz(contains|K A][z] < contains[S][z]) | K A— SeP}

To see that/z(contains[ K A][z] < contains[S][z]) is a logic-programming clause
(i.e, Horn clause), observe thatntains[ K A; As --- Ay][2] is logically equiv-
alent tody,Jys - - Jye—1 m(K, A1, y1) Am(yr, A2, y2) Ao Am(ye—1, Ay, 2).
Further observe that the above definitiorL&{P] is equivalent to definingP[P]
to contain:

m(K, A, Ky) foreachK A— K, € P
m(K, A, z):— m(Ky, A1, 2) foreachK A— K1 A1 € P
m(Kasz):_ m(KlaAlayl)v Ty m(yf—lvAZaz)

foreach K A— K; Ay - Ay e P >1

The semantics oP is defined to be the minimal Herbrand modelldi[P]. If
an atomm(Ky, A, K») is in the minimal Herbrand model dfP[P], we write
LP[P] |= m(K1, A, K3).



8 Ninghui Li John C. Mitchell

Proposition 1 (Equivalence of LP semantics and set-theoret semantics)
Given a setP of 4-tuples, a name string and a principal K’, LP[P] E

contains[S][K'] if and only if V() (S) > K. In particular, for any local name
K A,LP[P] E m(K, A, K') ifand only if M[P](K A) > K'.

Proof Sketch: Given a seP of 4-tuples, consider the sét of all functionsg :
N — p(K) that satisfies the following two conditions: (#)K A) = 0 if ei-
ther K or A does not appear i?; (2) for any local name< A, g(K A) contains
only principals inP. There exists a bijection betweehn and the set of all the
Herbrand interpretations dfP[P]. Given a functiong € G, the corresponding
interpretation is obtained by including (K, A, K') in the interpretation if and
only if g(K A) > K'. Similarly, one obtains a function from each Herbrand in-
terpretation, by assigning t& A the smallest set that contains ed€hsuch that
m(K, A, K') is in the interpretation. Furthermore, the definitioncofitains ex-
tends the predicate: to determine members of name strings, in exactly the same
way in which) extendsf in Definition 2. Therefore, a function satisfiesSC[P],

the systems of set inequalities inducedMyif and only if the interpretation cor-
responding tg is a model ofLP[P], and so the least solutiol[P] corresponds
to the least Herbrand model bP[P].

The LP semantics is an attractive logical semantics. It tamahin the sense
that it directly captures the set-based semantics intuitiocan also be used for
computation purposes. Observe th&{P] is a Datalog program, that is, it does
not have any function symbol other than constants. In auiditiP[P] can be trans-
formed to an equivalent logic program with at most two vagaalper rule. For ex-
ample, the clauseit (K, A, z) : — m(K1, A1,y1), m(y1, Aa,y2), m(y2, As, 2)”
is equivalent to the two clausesi(K, A, z) : — m(Ky, A’ y2), m(y2, Az, 2)"
and ‘m(Ky, A", y2) : — m(Ky, A1, y1), m(y1, A2, y2)" where A’ is an identifier
not appearing irP.

Given a sefP of 4-tuples with total sizéV, let L be the length of the longest
extended name, one can first transfdrR{P] to contain only clauses that have at
most two variables and then instantiate the clauses witftipals inP, obtaining
a ground program with siz8 (N3L). It has been shown that the minimal Herbrand
model of a ground logic program can be computed in time liiregre size of the
program [8]. Therefore, any Horn query agaih®P] can be answered in time
O(N3L). This complexity is the same as the complexity bound derinetiree
papers [7,26, 16] using algorithms based on string revgijiimaph searching, and
pushdown systems.

2.4 A FOL Semantics

The LP semantics has the same limitation as the set-theeertiantics, it cannot
be used to directly determine wheth®r rewrites intoS,. Such a query cannot
be expressed using Horn queries. We now propose a first-Hogiersemantics to

address this issue. The idea is very simple. Each Horn clzarsde viewed as a
first-order sentence; thus the logic prograR{P] can be viewed as a first-order
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theory. The rewriting query can be viewed as a first-ordemfda, and logical
implication defines the semantics.

Definition 4 Given a sefP of 4-tuples, we defindh[P] to be the following first-
order theory:

{Vz(contains[K A][z] < contains[S][z]) | K A+— S € P)}

A query whetherRS[P] > S . S, can be answered by checking whether
Th[P] & Vz(contains[S1][z] < contains[S2][z]). Note thatTh[P] is the same
asLP[P], here we just view it as a FOL theory.

Other first-order logic formulas can also be used as meaulingferies. For
example, the formuldz(m (K7, A1, z) A m(K1, As,2)) < Jz(m(Ks, A1,2) A
m(Ks, As, z)) when used as a query means thaff A, and K, A, share a
common member, theR; A; andK; A, also share a common member.

2.5 Equivalence Among SDSI’'s Semantics

Proposition 1 says that the set-theoretic semantics is&lguit to the LP semantics
for membership queries. The LP semantics can be viewed asc@bpase of the
FOL semantics where only Horn queries are allowed. Howdwehe best of our
knowledge, the relationship between the rewriting seroarand the other three
semantics have not been established and proved in thauitedaefore.

In this section, we prove the following equivalence betwtenrewriting se-

mantics and the FOL semantics: given anyBeif 4-tuples,RS[P] > S 55 S,
if and only if Th[P] = Vz(contains[S1][z] < contains[S2][z]). In addition, we
establish a way to use logic programs to efficiently deteemithetherTh[P] |=
Vz(contains[S1][z] < contains[S2][#]), and prove that this approach is correct.
First, we prove a proposition that will be useful in provig tmain theorem.

Proposition 2 Given a sef of policy statements, Th[P] = m(K, A, K'), then
RS(P)>K A K.

See Appendix A for the proof.

We need the following definition, which helps in transforgia query
Th[P] | Vz(contains[S1][z] < contains[Ss2][z]) into a Horn query. This defi-
nition gives a canonical way for placing a princigal in the valuation of a name
string S.

Definition 5 Given a sef of 4-tuples, a name strin§f = K; A; As --- Ay, where
¢ > 1, and a principaK’, defineadd(P, S, K') to be

PU{K1 AlHK/} whenl =1
PU{Kl A1'—>K{, Ki AQ’_)Ké, s Ké—l AeHK/} when! > 1

whereK?,--- , K , are principals not appearingfhor in { K, K'}.
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*

Itis easy to see th&S[add(P, K1 A1 Ag -+ Ay, K')|> K1 Ay Ag -+ Ap —
K'. We are now ready to state the main theorem of this section.

Theorem 3 Given a setP of 4-tuples, and two name stringg and .S, the fol-
lowing three statements are equivalent:

1.RS[P] > S1 — Ss.
2. Th[P] & Vz(contains[S1][z] < contains[S5][z]).
3. Th[P'] E m(K, A, K'), whereK A is any local name not defined 7, and
P’ and K’ depend on the form dfs:
—whenS, is a principal, K’ = S, andP’ = PU{K A+~ S;}
—whenS, = K; Ay --- A, wherel > 1, we setK’ to be a principal not
appearing inP andP’ = add(P, S2, K') U{K A — S;}.

See Appendix A for the proof. The equivalence of 2 and 3 in Téo3 says
that to determine wheth@rh[P] = Vz(contains[S][z] < contains[Ss][z]), one
can do the following: create a new princigal, find a local namée< A not defined
in P, constructP’ by adding toP the 4-tupleK A — S; and additional 4-tuples
to make sure tha, rewrites intoK”’, then check whethen (K, A, K') follows
from LP[P’].

The proof of the equivalence of 2 and 3 in Appendix A uses their
lationships with the rewriting semantics. However, thidiigalence also fol-
lows from general results in proof theory. Both Horn clausesl queries of
the form Vz(contains[S1][z] <« contains[Sq][z]) are in a subclass of Harrop
Hereditary formulas for which classical provability, ifttanistic provability, and
uniform provability are equivalent (Nadathur [29]). Unifie proofs [28] are
a restricted form of intuitionistic proofs that embody a @pé form of goal-
directedness. Using uniform proofs, in order to determirfeetver Th[P] =
VaVy1 Yya (m(K, A, 2) <= m(Kq, A1, y1) A m(y1, Az, y2) A m(ysa, As, 2)), one
creates new constantg”, K1, K/ that do not appear P, add toP three
factsm(K1, Ay, K1), m(K1, Ay, K}), andm(K}, A3, K'), and then try to prove
m(K, A, K') from it. This is essentially what we are doing in Definition &da
Theorem 3. The equivalence of classical provability andauni provability for
this class of queries implies that this proof method is soand complete with
respect to classical first order logic. The equivalence a$sital provability and
intuitionistic provability for this class of queries alsuoplies that one can also view
the semantics as defined in intuitionistic logic rather tolassical logic.

2.6 Related Work on Semantics for SDSI and Comparison

Abadi [1] initiated the study of logical semantics for SDSklpern and van der
Meyden [11] followed the same path and proposed the Logic aifal Name
Containment (LLNC), which refined Abadi’s logic. Both logiare propositional
modal logics, where a proposition has the form of one naniegstewriting into
another name string. The focus of their study is to get a sakioims character-
izing their logic. Halpern and van der Meyden uses the sstrttic semantics of
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SDSI as the semantics of their logic and came up with a setiofrexthat are
sound and complete with respect to the semantics.

SDSI 1.1 [30] (the version of SDSI before merging with SPKil)eg pseudo-
code of a nondeterministic algorithm for resolving a nammgtinto a principal
given a set of 4-tuples. Like the set-theoretic semantiis algorithmic semantics
defines a mapping from name strings to sets of principals Sémantics was used
as the reference semantic in the logics by Abadi [1] and byétal and van der
Meyden [11].

Li [20] showed that the algorithmic semantics in [30] is eqlént to the string
rewriting semantics for queries about the mapping from nstmiegs to principals.
Li [20] also gave another LP-based semantics for SDSI, wirafslates a set of
SDSI 4-tuples into a logic program. The logic program in [@8gs list constructs
used in Prolog. It answers only queries about the mapping frame strings to
principals. Furthermore, it is not as natural as the LP séicgim Definition 3,
and is not as easy to extend to FOL.

Clarke et al. [7] explicitly describe 4-tuple reduction d@sng rewriting and
devise string rewriting algorithms for determining whethés possible to rewrite
a name string into a principal. Their algorithm does not wfmk determining
whether one name string rewrites into another.

The class of string rewriting systems generated by setstapis have the
following characteristics: when rewriting a name strirfgg tewriting replaces the
first two symbols, which form a local name, with another nartnmg, and the
result is also a name string. Jha and Reps [16] pointed ouB&l string rewrit-
ing systems correspond exactly to the class of string rgridystems modelled
using push-down systems. This connection reduces cextaipuatation problems
in SDSI to reachability analysis and model checking in pdetvn systems, for
which efficient algorithms exist.

Comparing with these previous proposed semantics for SBEFOL seman-
tics proposed in this paper has the following advantages:

— The FOL semantics is very natural. It directly captures #tebmsed semantic
of SDSI, which is widely used as the underlying semanticiiitta for SDSI,
e.g, both by SDSI designers in [7] and by Halpern and van der Meyii#].
In addition, it uses classical first-order logic, insteadvadre complex logics
with modal operators.

— It contains more information in the sense that a larger ctdsmeaningful
gueries can be formulated and defined in this semantics.i€3uether than
those asking whether it is possible to rewrite one namegsinito another can
be formulated and answered in this semantics.

— The FOL semantics is easily extended to support useful sides of SDSI.
In this paper we will show how to naturally extend the FOL sgtita to deal
with SPKI. Other important ways of extending the SDSI 4-agre also han-
dled straightforwardly. One extension to SDSI is to add aergection oper-
ator,e.g, K A — K A; N K A,. The meaning of such a statement is im-
mediate given the set-based semantic intuition. Supmpititersection in the
FOL semantics is straightforwardly done using the logicadjanction opera-
tor. Another extension to SDSI is to allow identifiers to bgital termse.g,
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K student(univ="Stanford"}— Kjonn smitn- IN FOL semantics, this can be
supported either by making the predicatetake more parameters or by hav-
ing a predicate for each identifier function symbmlg, using “student” as a
predicate symbol. Extending logics such as LLNC to supp@s$é extensions
may be possible, but seems less obvious.

— The FOL semantics has computational significance. Theorgine3 an effi-

cient (in time polynomial in the size G%) way to check whetheRS[P]r> S -
S, for any name string$; and.S,. In LLNC, although a complete axiom sys-
tem was given, the complexity of using the axiom system terdeine whether

RS[P] > 54 . S is not clear and seems unlikely to be efficient.

Because of this, we believe that the FOL semantics shouldeveed as the
reference semantics. Any semantics for SDSI should be algnivto the FOL
semantics for the class of queries it handles. Some othearg@s are useful
for computational or understanding purposes, of courseekample, the string
rewriting semantics is both helpful for understanding SB&dl for computation,
because of its relationship with pushdown systems.

3 RTE: A Trust Management Language Extending SDSI

Since SDSI was originally designed for distributed namiS@®SI lacks some
features that are useful for trust-management language RlThfamily of Role-
based Trust-management languages [24,26] extends SD8&Vémas ways. Two
associated withRT'C [22], the RT language most relevant to our discussion of
SPKI/SDSI, are intersection and structured identifiershWitersection, we can
define a local name to contain the intersection of two or maraenstrings. Many
natural security policy statements have the form that acppél has a certain
permission (or an attribute) if it has two (or more) otheriltites. With struc-
tured identifiers, we can define a grodp student(dept="CS’, program="PhD’,
year='2002’, name="'John Smith’; - ), which contains students with the specified
department, program, year, and name. In addition to stifaigtard rules such as
“K student(dept='CS’, program='PhD’, year='2002’, namestidi Smith’,---)
— Kjonn.smitn» SPecific values can be replaced by variables, allowingcsel
tion of subsets of the group. For examplés ‘perm — K student(dept="CS’)”
grants permission “perm” to all principals that are CS stusleinternal struc-
ture in identifiers also enables us to represent relatipgshmong principals.
For example, using local names such &S thanagerOf(Alice)” and K; physi-
cianOf(Bob)”, a principal can issue statements suchfasatcessRecord(?X)-
K, physicianOf(?X)". This states that the physician of anyigrdtcan access the
record for that patient. (“?X” represents a logical var@apStructured identifiers
can also be used to represent access permissions with gararimet identify re-
sources and access modes.

SPKI/SDSI, which is intended to be a full-fledged TM languamm be viewed
as the result of adding SDSI features to SPKI, allowing natmegs to be used
in subjects of auth certs. In Section 4, we will analyze SBRIBI and argue that
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the design of SPKI/SDSI is problematic in several ways. Iriipalar, authoriza-
tion tags, which are used to qualify permissions in SPKI/E@% quirky and
algorithmically problematic. To make our analysis easiefollow, we first look
at RTC [22] in this section and later compare the two extensionsRBIS As
pointed out in [24,26], the design &&T is heavily influenced by SDSI and Dele-
gation Logic [21].RTy, the most basic language in ti" family, can be viewed
as adding intersections to SD®IT; adds toRT; parameters (i.e., structured iden-
tifiers). RTlC further extendskT; with constraints. The semantics of tRg" lan-
guages are based on translating statements into logidelses, in the same style
as SDSI's FOL-based semantics.

3.1 Syntax of Policy StatementsRT"

Before describing the syntax of policy statementsRifi, we first explain the
terminological differences between SDSI aRd'. Identifiers in SDSI are called
role terms inRT', and local names in SDSI are called roles. We Hseften with
subscripts, to denote role terms, and we add a dot betwednapad and a role
term. For examplek. R represents a role iRT'; it corresponds to the local name
K Rin SDSI. Policy statements iRTy, RT;, andRTE have the same structures.
They only differ in how role terms are formed. In the followistatements, the
directions of the arrows are the opposite of that used in 3B&titing rules. We
use this direction because it is the same as the directioogidadl implication in
the logic based semantics.

— Type-1 K.R+— K;

— Type-2 K.R+— Ki.R;

— Type-3 K.R+— K.R1.R,

- Type-4 KR+— Ki.RiNKyRyN---NKy.Ry

A type-3 statement requires the safieo be used in both the role being de-
fined, K.R, and the definitionk'.R,.R,. This design is motivated by the need
to handle deduction with policy statements that are staneal distributed man-
ner [26]. Observe that 4-tuples that use long extended naarestill be equiva-
lently represented i7", by introducing new role terms and statements. For more
details on this, see [26].

In RTy, a role term is simply a role name, which is just like an id@éetiin
SDSI. ThusRTj is essentially SDSI extended with the intersection opemnain
type-4 statements). IRT}, a role term may also contain parameters. These pa-
rameters may be constants or variables, and may use cotstrasome limited
ways. RTE allows more general forms of role terms, which we now describ
RTE, each role term takes the form ofhy, . .., h,,), in whichr is a role name,
and for each such thatl < i < n, h; takes one of the following three forms:
p=c¢p € S,andp = ref, in which p is the name of one af's parameters that
has typer, c is a constant of type, S is a value set of type, andref is a ref-
erence to another parameter in the same statement, alspeaf.tR7C does not
have explicit appearance of logical variables; instedtk@int parameters may be
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specified to be equal. Intuitively, a value set is a constila@ised representation of

a set of valuese.g, [10..800] may be a value set of an integer type. Parameters
in role terms are specified by name, rather than by positiod tlaey are strongly
typed. For example, the following 7" statement K55 .socketPerm(host de-
scendants(‘'stanford.edu’), parf8000..8443])«— K aji..” Mmeans thaf(s, grants

to K ajice the permission to connect to any host in the domain ‘starddid at any
port between 8000 and 8443.

3.2 Semantics aRTE

Without constraints, policy statementsRTC are translated into Datalog clauses
(which can be viewed as first-order sentences), in ways veiles to SDSI.RTE
statements with constraints are translated into clausesuiti-sorted Constraint
Datalog; these clauses can also be viewed as first-ordesremst In the follow-
ing, we give an brief overview of Constraint Datalog. See] [2 more details
of Constraint Datalog and for the translation frael’" statements to clauses in
Constraint Datalog.

Constraint Datalog (denoted byaBALOGC) is a restricted form of Constraint
Logic Programming (CLP) [15], and is also a class of quergleages for Con-
straint Databases (CDB) [17,18]. The notion of constraatatases, which was
introduced by Kanellakis, Kuper, and Revesz [17], grew duthe research on
Datalog and CLP and generalizes the relational model of katallowing infi-
nite relations that are finitely representable using caings. DA\TALOGC allows
first-order formulas in one or more constraint domains, Wity describe file hi-
erarchies, time intervals, and so on, to be used in the bodyctzHuse. Intuitively,
a constraint domain is a domain of objects, such as numbeirgspn a plane, or
files in a file hierarchy, together with a language for spegibout these objects.
A constraint domain has a first-order language defined by af emnstants, func-
tion symbols, and relation symbols, and a class of quanfiféer formulas in the
langauge, called primitive constraints. The following soene example constraint
domains that are used when translatRig" into DATALOGC.

Tree domains Each constant of a tree domain takes the(form. . ; a;). Imagine
a tree in which every node is labelled with a string value aodes that have
a common parent are labelled with distinct strings. The @onisga4, . . ., ax)
represents the node for whieh, . .. , aj, are the strings on the path from root
to this node. A primitive constraint is of the form = y or 26(aq, ..., ax),
in whichd € {=, <, <,<,=<}. The constraint: < (ay,...,a;) means that
x is a child of the nodéay, ..., a;), andx < (ay,...,a;) means that is a
descendant ofay, ..., ay).

Range domains The set of all constants in a range domaineiarlinordered. A
primitive constraint has the form = y, x = corz € (¢1,¢2), In whiche
is a constant, each ef andc, is either a constant or a special symbet,”
meaning unbounded. The constrainte (ci,c2), when bothe; and ¢, are
constants, means that < z A z < co. Whene; is notx, “(” can also be [7;
similarly, “)” can be 1" when ¢z is notx.
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Discrete domains with sets A primitive constraint has thenfe € {c1,..., ¢},
in whichcq, ..., ¢, are constants.

We say that these constraint domains @nary, because each primitive con-
straint either has the form = y, wherez andy are variables, or contains only
one variable. We call a primitive constraint that contairgt pne variable basic
constraint The three classes of unary constraint domains describmeaupport
the following three operations.

Conjunction Given two basic constrainig (x) and ¢o(z), determine whether
o1(x) A p2(x) is satisfiable, and if it is, computg (x) V ¢ (z) V- - - V ()
such thatt > 1, eachy;(z) is a basic constraint, fotr < ¢ < k, and the
disjunction is logically equivalent tg, (x) A ¢2(x).

Constraint Projection Given any basic constraint, deteemvhether it is satisfi-
able.

Constraint Subsumption Given the disjunction of a set ofdbasnstraints, de-
termine whether another basic constraint is implied by tispudction, e.g,
determine whethet € [2,8] is implied by the disjunction of € [1,5] and
x € [3,10].

These operations make it possible to evaluat&ADoGC programs using con-
straints in these domains. Li and Mitchell [22] have shovat thee domains, range
domains, and discrete domains with sets have additionpbpties that make such
evaluation efficient.

3.3 Types

Role terms inRT'C are strongly typed. One declares what parameters a rols take
and the names and data types of these parameters. One alaeslew data
types using the mechanisms provided by i€ framework [24]. Role param-
eters and data types are declarecpplication domain specification documents
(ADSDs) Each ADSD is globally uniquely identified. One way to unityliden-
tify an ADSD is to use a collision-free hash of the documerthaddentifier; one
may also include in the identifier an URI pointing to the doemtrso that it can be
easily retrieved. An ADSD declares a suite of related dgt@gyand role names,
called avocabulary Policy statements, when using a role name, refer to the ADSD
in which the role name is declared. This enalii&sto have strongly typed policy
statements. ADSDs also provide solutions to the followingabulary agreement
problem. For a stateme#f.student— K .university.student to make sense; every
principal K’ that is a member of the rol&.university must agree withk on what
“student” meanse.g, whether it is a student registered in any class, or a student
enrolled in a degree program. The use of ADSDs ensure thagawe is talking
about the student role declared in one specific ADSD. The 6gD&Ds and
strongly typed statements helps reduce the possibilityrroir in writing policy
statements and unintended interaction among policy stattmn

The notion of vocabularies is complementary to the notiolocélized name
spaces for roles. Each addresses a distinct name spaceHes@xample, an ac-
crediting board might issue an ADSD that declares the rofeenstudent”. This
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defines the names and data types of the role’s parametets.p@remeters may
include university name, student name, program enrolleghid so on. The ADSD
may also contain description of the conditions under whighiacipal should be
made a member of the student radeg, it may require a principal be registered
in a degree program. Then a university StateU that has thicp@y Ks;atey Can
use this ADSD to issue credentials definig;.:.y.Student. Although using a vo-
cabulary created by another principal, StateU is still ththarity over who is a
member of the rolé(s;,ty.Student.

RTE has several categories of types: integer types, float tygresneration
types, string types, tree types. Some system-defined data tf these categories
exist, and one can declare new data types of these catedéaiels type category
has a syntax for definingalue setsUnordered enumeration types and string types
correspond to discrete domains with sets; a value set thlkefotm of a set of
constants. Integer types, float types, and ordered enuoretgpes correspond to
range domains; a value set takes the form of a ramge[10, 200], or (10, x). Tree
types correspond to tree domains; and are used to represearchical structured
resources such as file hierarchies and DNS names; a valueksstthe form of a
predefined function symbol applied to a nodey, descendants({(edu, stanford))
andcurrentAndChildren({edu, stanford, cs)).

4 Analyzing SPKI/SDSI using First-Order-Logic (FOL)

In this section, we extend the FOL semantics for SDSI to SBPBS8I, which has
authorization certificates (or auth certs) and ACL entiieaddition to name certs.
Both auth certs and ACL entries are 5-tuples. An auth certsigraed five tuple
(K,H,D,T,V), where

— K € Kisthe issuer principal, which signs the cert. The issuentgra specific
authorization through this 5-tuple.

— H € H is called the subject, whef¥ is defined to be the least set satisfying
the following two conditions: (1§ C H, whereS is the set of all name strings,
and (2)0y(Hy, Ho,--- ,Hy,) € H, whereH,, Ho,--- , H,, € H. The subject
specifies principals that receive authorization from thise.

— D € {0,1} is called the delegation bit. Whdn = 1, the subject may further
delegate the authorization it receives from this 5-tuple.

— T is the authorization tag, each tag represents a (potgntidithite set of) byte
strings. T specifies the authorization that is granted by this 5-tuple.

— Vis the validity specification, which is the same as in the cdsename cert.

An ACL entry is a locally stored 5-tuplgSel f, H, D, T, V). Itis very similar
to an auth cert, except that the issuer is a special sy®bbf instead of a key
and that the ACL entry is not signed. We will tréze|l f as a special principal in
K.

The 5-tuple reduction rule in Section 6.3 of RFC 2693 is ato¥: the
two 5-tuples (K4, S1,D1,T1, V1) and (Ks, S2, Do, To,V,) yield the 5-tuple
(K1,S2, Do, Alntersect(Ty, T»), Vintersect(V, V2)), provided thatS; = Ko,
D,y =1, andAlntersect(7y, T») succeeds.
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Observe that the 5-tuple reduction rule only applies whersttbject is a prin-
cipal. When the subject is a name string, the way to use thelg-taduction rule
is to first replace a 5-tuple that has a name stishgs the subject with a set of
5-tuples, each of which has one principal in the valuatiothefS as the subject.
The procedure for handling threshold is much more comg@tat is described in
details in Clarke et al. [7].

4.1 Handling Basic Delegation Relationships in 5-tuples

To understand 5-tuples, we first make some simplifying apsioms. These as-
sumptions will be removed later one by one.

1. We assume that the authority tAgdoes not have any internal structure, and
can be viewed as an identifier. As a res@iliptersect(77, T») either fails (when
Ty # Ty) or equalsly = Ts.

2. We ignore the validity specificatior, and write(K, S, T, D, -) for a 5-tuple.
We assume that only currently valid certificates are comsitle

3. We assume that the subject does not contain thresholdshén words, the
subject is a name stringj.

WhenD = 0, a 5-tuple(K, S,0, T, -) simply means thak grants the autho-
rization’I" to any principal who is in the valuation 6f. If we allow identifiers that
correspond to authorization tags to be used in 4-tuples anaise’ T' to denote
the set of all principals thak™ grants the authorizatidfi to, and view this 5-tuple
asa4-tupleK T +— S.

WhenD = 1, a 5-tuple(K, S,1,T,-) means thafl grants the authorization
to any principal that is in the valuation 6fand to any principal such a principal
further grantsl" to. In other words( K, S, 1, T, -) can be represented using two 4-
tuplesK T'+— S andK T — S T. For example, a 5-tuplei, K; Ay A2, 1,T, )
is represented usinf T'+— K, A1 AsandK T — Ky Ay As T.

Using 5-tuple reduction, one can ugd€;, Ko, 1,7, ) and(K,, K3,1,T,-) to
derive(K,, K3,1,T,-). This can be viewed as deriving new rewriting rules from
existing ones:

— rewrite K1 T +— Ky T usingK, T — K3 and deriveK; T — K3
—rewrite Ky T — Ky T usingK, T — K3 T and deriveK; T — K3 T

These observations show that, under these simplifyingnagsons, 5-tuples
can be viewed as 4-tuples, and we can use the FOL semantigBfirto provide
a semantics for the simplified version of SPKI.

In the version of SPKI that existed before merging with SDI$, subject of a
5-tuple cannot contain names. In this case a 5-tQfleK;, 1,7, V) can be rep-
resented using two 4-tuplds T'— K; and K T +— K; T. This represents very
limited delegation relationships. One cannot expi€ss, — K T, which means
that K grants the authorizatiofi; to any principal that has the authorizatid.
Neither can one express the tugleT — K Ty T, which represents a delegation
aboutT from K to members of< T3 .
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4.2 Using Constraints to Handle Authorization Tags andditiSpecifications

Having understood the delegation semantics of SPKI, we vertie first simplify-
ing assumption and deal with authorization tags. HoweBJ[@hapter 6) provided
a detailed analysis of authorization tags in his PhD thésithis analysis, an au-
thorization tagrl” is viewed as representing an (often infinite) set of strihtgze,
we take the same view and use constraints to specify ther@ation represented
as atag. We use a unary constraint domain in which a basitraoridas the form

t € T, wheret is a logical variable and’ is an authorization tag. The mapping
from tags to sets of strings then determines the truthfslméformulas in this
constraint domain. We will look at details of tags and thissteaint domain in
Section 4.3.

Definition 6 Given a sefP of 4-tuples and 5-tuples, we defifi&[P] to be the fol-
lowing Constraint Datalog program (which is also a firstesrtheory). In addition
to the predicaten used for 4-tuples, we also use another ternary predigaiéu-

itively, (K, T, K') says that’ grants the authorizatiofi to K'. Th[P] contains

Vz(contains[K A][z] < contains[S][z])

for each 4-tupld K, A, S, V) € P
V2Vt (g(K,t, z) < contains[S][z] At € T)

for each 5-tupld K, S,0,T,V) € P
V2Vt(g(K,t, z) < contains[S][z] At € T)

for each 5-tupl€ K, 5, 1,7, V) € P
V2Vyvt(g(K,t, z) < contains[S][y] A g(y,t,z) At € T)

for each 5-tupl€ K, S,1,7,V) € P

RFC 2693 does not explicitly specify the class of queriesRiKIS However,
because the 5-tuple reduction rule deduces new 5-tuplesdristing ones, SPKI
determines whether a 5-tuple follows from a set of stateméitiis is a reasonable
class of queries to consider because authorization regjaestlso represented as
5-tuples. Because 5-tuples are represented using first-fmemulas in our seman-
tics, first-order logic naturally defines a semantic retat®iven a seP of 5-tuples
and 4-tuples, if one wants to know whether a 5-tuiie S, 0, 7, V') follows from
P, one can ask whethd@th[P] |= VzVt(g(K, t, z) < contains[S][z] At € T). If
one wants to know whether a 5-tufl&’, S, 1, T, V') follows from P, one should
also check whethéfh[P] = VzVyVi(g(K,t, z) < contains[S][y]Ag(y, t, z) At €
7).

When Alntersect(77,7>) is sound, i.e, when the formula ¢ €
Alntersect(T1,T2) = t € T3 At € Ty" is a tautology for any pair of tags
T, and Ty, the 5-tuple reduction rule is sound with respect to thedalgse-
mantic relation. For example, the 5-tuple reduction thasyd(,, K»,1,71,-)
and (K», K3,0,T5,-) to derive (K1, K3,0, Alntersect(T7,T3), ) is essentially
the following sound logical deduction: fromzVt(g(K1,t,2) < g(Ka,t,z) A

t € Th) andVt(g(Ko,t,K3) < t € Ty), deducevi(g(Kq,t,K3) <= t €
Alntersect(T1,T5)).

Validity specifications can be handled by extending the ®vadry predicates
m andg to take an additional parameterwhich denotes the time during which
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this tuple is valid and viewing validity specifications asstraints orv. For ex-
ample, validity specifications that are validity periods atraightforwardly repre-
sented using range constraints.

4.3 Structure of Tags

In this section, we look at the internal structure of tagse Whain point of this sec-
tion is that SPKI's 5-tuple reduction is an incomplete prpafcedure with respect
to the FOL semantics of SPKI. In addition, as pointed out kefiy Howell [13],
authorization tags are not well behaved. Specifically, tnstraint domain for tags
does not support operations that we need to compute the ngeadiTh[P].

The following descriptions of authorization tags follow ®R2693. An au-
thorization tag is a list of byte-strings or sub-lists. Tvem$ intersect by match-
ing, element for element. If one list is longer than the othat matches at
all elements where both lists have elements, then the lofigieis the re-
sult of the intersection. This means that additional eleémef a list must re-
strict the permission granted. For examylet p (host ftp.clark. net))
may represent the permission of ftp access to every file aedy edirectory
on the hostftp. cl arke. net. This is more general thafftp (host
ftp.clark.net) (dir /pub/cne)), and the intersection of the two tags
results in the latter. SPKI also has a small number of spegfatessions.

(*) stands for the set of all tags and byte-strings. In otherdspit will match
anything. When intersected with another tag, the resultasdther tag.

(* set <tag-expr>*) stands for the set of elements listed in the *-form.

(* prefix <byte-string>) stands for the set of all byte strings that start
with the one given in the *-form.

(* range <ordering> <lower-Ilimt>?<upper-limt>?) stands
for the set of all byte strings lexically (or numerically)tiveen the two limits.
The ordering parameter (alpha, numeric, time, binary,)datecifies ordering.

We now show that 5-tuple reduction is incomplete with respec the
logical semantics, when interpreting tags as represenginget of strings.
For example, given two 5-tuplesK, K;,0,(* set read wite),V)
and (K,K;,0,(* set delete),V), then the query
(K,K1,0,(* set read del ete),V) should be true; but it cannot be
inferred from the two 5-tuples by reduction. Intuitivelyne should be able to
combine authorizations received from multiple 5-tupleswdver, the reduction
rule uses only tag intersection and does not consider tagnurtrom this
observation and the discussion in Section 4.2, we have tlosving theorem.

Theorem 4 The 5-tuple reduction rule is a sound but incomplete procedtith
respect to the first-order logic semantics, when tags are/etkas representation
of sets of strings andIntersect(T3,T») is sound.

A natural question to ask is whether there exists a sound amghlete proof
procedure for determining whether one 5-tuple follows franset of 5-tuples.
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To do this, we have to look at the internal structures of taygs the operations
on them. The short answer is that the constraint domain foresenting tags
is ill-behaved, and normal Constraint Datalog evaluatioocpdure does not ap-
ply. Howell [13] pointed out that intersections between sai@gs result in sets
that may not be finitely represented using tags. This happties intersecting
a(* prefix) expression and &* range) expression, or intersecting two
two (* range) expressions that use different ordering. The example Howel
gave is intersectingt ag (* range numeric ge 0.5 le 0.5)) with
(tag (* prefix 000)).Howell suggested artificially defining intersections
in these potentially problematic cases to be empty, for lafcketter solutions.
This suggests that the constraint domain for authorizatigs does not support
the conjunction operation. It is also unclear how it can supghe subsumption
operation.

4.4 Authorization Tags in SPKI vs. Named and Typed Parasiétet 7"

We have seen that, by viewing tags as representing setsimgsgind viewing
4-tuples and 5-tuples as logical sentences, 5-tuple redfuistincomplete, and it
seems unlikely that a complete proof procedure exists. iEhitearly unsatisfac-
tory. We now look for ways to remedy this problem.

SPKI/SDSI defines tags and their intersection in a syntalotray. Howell [13]
provided a semantics for tags by viewing them as represensadf sets of strings
and found that “special tags cause havoc” (6.5.3 of [13]).fg¢d that the string
semantics for tags is still syntactical in that it does naisider what the strings
intend to represent. The* pr ef i x) tag, for example, is used for representing
tree-like file hierarchies. If we consider the motivatiordaapplication for this
construct, it seems more natural to represent statememts file hierarchies using
multi-sorted first-order logic with a special sort devotedites and directories.
This approach leads to a constraint domain for tree-likeahdhies, namely, a
tree domain, which we discussed in Section 3.2. The move metrints over
tree domains not only gives us a natural semantics, but kead®re expressive
policy options. For examplé,* prefi x) is not helpful for referring to the DNS
hierarchy in an access policy; we nee¢i*a post fi x) tag instead. Nor can one
use(* prefix) to represent the set of all files and directories that arecire
children of a directory, where as tree domains support tbesstraints. Similarly,
(* range) tags are more naturally viewed as a form of constraints cuege
domains than sets of strings.

We believe that instead of viewing tags as defining sets ioigsty and allowing
combinations of string operations that do not meaningfrgfgr to any controlled
resources, it is more informative and semantically appgatid use one special
purpose constraint domain for each concept. The langRdgedoes exactly this,
allowing many choices of constraint domains. For exampl&1, one can de-
clare one tree domain for file hierarchies, another tree dofea DNS names,
one range domain for time of the day, and another range dofomimort num-
bers, and so on. Each constraint domain has its standardiemmeeaning, given
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by a first-order structure, and is easy to understand andéafgbrithmically. In
RTE, arole term may have multiple named and typed parametexis pemameter
from one constraint domain. This syntactic requiremeikasldifferent constraint
domains to be combined in a single policy, without introthganeaningless state-
ments that, for example, apply range predicates to treesgums. A statement in
RTE can be translated into a Constraint Datalog clause withtcaings from tree
domains, range domains, or discrete domains with sets.2) {& have proved
that these domains are tractable and that evaluating thienadimodels of Dat-
alog programs with any multi-sorted combination of tratgatiomains remains
tractable.

While we believe the multi-sorted language with multiple stwaint domains
is more appealing, there are combinations of SPKI/SDSlttzascannot be trans-
lated into RT'C in any straightforward way. While many of these combinations
do not seem meaningful or desirable, there are some aspeSRKI/SDSI tag
intersection that do seem useful and are not easily exprésgel’" without spe-
cial provision. The SPKI/SDSAIntersect operator treats a longer tag as a more
specialized tag. The design rationale for this to enabletofigrther specialize an
authorization tag by appending new fields at the end. Thigiléx seems to be
missing in the strongly typed approach. The designers oinitial tags may not
be able to foresee all necessary parameters; thereforiajtibktype specification
may not have all the parameters one wants2Tef, this flexibility is brought back
by a feature that we call restrictive inheritance. A role Bazan be declared to re-
strictively inherit another role name and adds more pararaeStatements about
the original role also implies statements about the ext@mdie. For more details
on this, see [23].

4.5 Threshold Subjects in SPKI vs. the Intersection Operat& 7"

SPKI/SDSI lacks support for conjunction. As a result, ité possible to directly
grant a permission to any principal who has two or more aitei at the same
time. Another use of conjunction is to allow a principal tomage a permission
(by further delegating to other principals) without beirgeato use the permis-
sion. InRTE, which has an intersection operator providing logical cogjion,
K.perm—— K;j.permn K.student can be read as saying thatallows K; to
delegate the authorization perm, but only to membel& student. IfK; is not a
member ofK.student, ther<; cannot make itself a member &f.perm, even if it
issuesK;.perm—— K.

Threshold subjects are part of SPKI/SDSI. If threshold acisj which
SPKI/SDSI only allows in 5-tuples, are also allowed in 4kagp they can be
used to implement conjunction. For example(K; A1, Ko As) can represent
K; A; N Ky As. Threshold subjects in 4-tuples are allowed in [10] andiesarl
versions of [9], but are not allowed in [7,9], because theypaewed as “too con-
voluted to be useful in practice” [7]. As observed by Li [2(hle meaning of thresh-
old subjects in 5-tuples is different from that in 4-tuplesa 4-tuple, k of the n
subjects in a threshold subject must be resolved to a simigleipal. In a 5-tuple,
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k subjects can be resolved to different principals, whiah feether delegate to a
single principal.

Coming up with a declarative semantics for threshold subjedcs-tuples is not
an easy task. Clarke et al. ([7], Section 10) uses a highlyadio@al approach to
handle thresholds. Halpern and van der Meyden [12] avoidsttiold subjects in
their logical reconstruction of SPKI. Intuitively, with tashold subjects, it is not
a single principal that has some attributesg( being granted an authorization);
instead, a set of principals together have some attriblités.set of principals can
all delegate to one principal; they can also submit a joioeas request.

In order to provide a logical approach to threshold subjeltsRT framework
has theRT” component, which handles threshold using manifold rd#emifold
rolesgeneralize normal roles to allow each member to be a setdipsls rather
than a single principalRT? supports more expressive threshold structures and
separation-of-duties policies, and has a logical semarBiee [24] for details on
RTT. An example policy that one can easily expressRifi” is requiring two
different cashiers together to complete a transactionxpoess this in SPKI, one
has to explicitly list all the cashier principals in the thineld subject, and so the
policy statement needs to be changed each time a new cashdsgtdéd or removed.
Note that delegating t6,(K cashier K cashier) is incorrect, since one single
cashier principal satisfies the threshold in SPKI's senaanti

4.6 Related Work And Comparison

Several authors have attempted to provide a formal sensdiotiSPKI. Aura [3]
introduced a graphical representation for 5-tuples, datlelegation networks;
however, it does not handle SDSI hames. Howell and Kotz [#dgbbped a logic
that extends the ABLP logic [2,19] with a restricted form elebation and pro-
vides a semantics for SPKI/SDSI authorization. In [12] Kalpand van der Mey-
den extended their Logic of Local Name Containment (LLNC)][tb deal with
5-tuples in SPKI. These logics use specialized propositiovodal logics, which
are more complicated than the standard first-order logid heee.

Howell [13] provided a detailed study of authorization tagSPKI and pointed
out that special tags in SPKI cause semantical problemsdrBann and Dam [4]
pointed out another problem with authorization tags: cotmguAIntersect of two
tags that us¢* set) may take time exponential in the size of the two tags.

The incompleteness problem of the SPKI 5-tuple-reductide we identified
here was not discussed in literature.

5 Conclusion

SPKI/SDSI is a language for expressing distributed acomssd policy, derived
from SPKI and SDSI. Significant effort has gone into findinggit-based seman-
tics for both SDSI naming alone and SPKI/SDSI. We presenteédla semantics
for SDSI based on translating each name cert into a Datakgse| viewed as a
first-order logic sentence. We also proved that the FOL séinis equivalent to
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the string rewriting semantics used by SDSI designers, Ifajugries associated
with the rewriting semantics. The advantages of our apraaer previous log-
ics are the following. First-order logic captures the satdal semantic intuition of
SDSI, and requires only classical first-order logic rathantmore complex modal
logics. The FOL semantics contains more information thamitiag semantics in
the sense that a larger class of queries can be formulatedratetstood. This
opens the door to more possibilities of safety and avaitgtdahalysis, along the
lines developed in [25]. The FOL semantics is easily extdridesupport useful
extensions to SDSI and, finally, the relationship betweenRGL semantics and
logic programming provides an efficient method to answerggelalass of queries.
In our study of full SPKI/SDSI, we use as comparison a trustagament lan-
guageRTC [22], which has Constraint Datalog as its semantic foundaR 7" is
a language in the RT family of Role-based Trust-managenaggiiages [24, 26],
and can be viewed as extending SDSI by adding several feayedopting spe-
cific constraint domains tailored to SPKI/SDSI, we providedOL semantics for
SPKI/SDSI in which authorization tags and validity speeifion are interpreted
as logical constraints. This interpretation of SPKI/SD&pled us examine several
design issues, usingT’C for comparison. Our analysis shows that SPKI’s 5-tuple
reduction procedure is semantically incomplete. One re&sthat reduction does
not handle union of tags. In addition, authorization tagSRKI/SDSI are algorith-
mically problematic, making a complete proof procedurdkety. The constraint
feature of RTC provides an alternative mechanism that is often more expres
sive than SPKI/SDSI tags, semantically natural, and algmically tractable. The
translation of SPKI/SDSI into logic with constraints, angerience withRTC,
suggests that Constraint Datalog is an appropriate foiord&r trust manage-
ment languages, subsuming SPKI/SDSI and possessing kalgwdathmic and
expressiveness advantages.
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A Proofs

Proposition 2 Given a sefP of policy statements, Th[P] = m(K, A, K1), then
RS(P)> K A+ K.

Proof ¢From standard result in logic programmifith[P] E m(K, A, K;) if
and only if m(K, A, K1) is in the minimal Herbrand model ofh[P]. We now
summarize a standard fixpoint characterization of the mahiderbrand model,
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which we will use in this proof. For a Datalog prograé®y, let DP™*! be the
ground instantiation oDP using constants iDP, theimmediate consequence
operator, Tpp, is defined as follows. Given a set of ground logical atalns
Tpp(K) consists of all logical atoms, such thau: — by,...,b, € DP"st and
b; € Kforl < j < n. The least fixpoint ofl’p» can be constructed as fol-
lows. DefineTpp 1= 0 andTpp 1° 1= Tpp(Tpp 1%) for i > 0. This defines
an increasing sequence of subsets of a finite set. Thus tkistse anh/N such that
Tpp(Tpp1N) = Tpp™N. Tpp1? is easily shown to be the least fixpointBhp,
which we denote b¥pp1%. TppT? is identical to the minimal Herbrand model of
DP [27]; thereforeLP[P] = m(X,u, Z) if and only if m(X,u, Z) € Tipip1¢.

We prove this proposition by using induction ot show that ifin (K, A, K') €
Tipip) 1%, thenRS(P) > K A =, K’. The basis is trivially satisfied because
Tipip) 1= 0. In the stepyn(K, A, K') € Tipip)1*t, one of the following three
cases apply.

Case onem(K, A, K') € LP[P], this means thal{ A — K’ € P. Clearly,
RS[P] > K A K.

Casetwomn(K, A, z): — m(Ky, Ay, z) € LP[P],andm(K1, A1, K') € Tippp 1"

In this case K A — K; A; € P, and by induction hypothesiBS[P] > K1 A .
K’. Using rewriting rules irRS[P], one can rewrité( A firstto K; A;, and then

to K’; soRS[P]> K A - K

Case three: m(K, A, z) i— m(K1, A1, 1),
m(y1, Az, y2), <oy m(ye—1,A0,2) € LP[P, ¢ > 1, and
m(Kl,Al,Ki), m(Ki,Ag,Ké), RN m(KLl,Ag,K’) S TLP[P] T7
In this case, K A — K; A; --- A, € P and by induction hypothesis,
RS[P] > Ky Ay — K|, K| Ay > K}, -+, K,_, Ay — K’. Using rewriting

rules inRS[P], one can rewritd( A firstto K; A, --- Ay, thenintoK| As --- Ay,
and so on, and finally inté”.

Theorem 3 Given a setP of 4-tuples, and two name stringg and S,, the fol-
lowing three statements are equivalent.

1.RS[P] > S1 — Ss.
2. Th[P] & Vz(contains[S1][z] < contains[S3][z]).
3. Th[P'] E m(K, A, K'), whereK A is any local name not defined 7, and
P’ and K’ depend on the form dfs:
—whenS, is a principal, K’ = S, andP’ = PU{K A+~ S;}
—whenS; = K; Ay --- A, wherel > 1, we setK’ to be a principal not
appearing inP andP’ = add(P, S2, K') U{K A — S;}.

Proof 1 implies 2 We use induction on the number of rewriting steps. Base
case,S; = 52, the formulavz(contains[S1][z] < contains[S2][z]) is a tautol-

ogy. Consider the step, suppose tR&{P] > S; — S’ s So. We will prove
that Th[P] |= Vz(contains[S;][z] < contains[S’][z]). Induction hypothesis gives
us Th[P] k& Vz(contains[S’][z] < contains[Ss][z]). Combining them, we have
Th[P] = Vz(contains[S1][z] < contains[Sa][z]).
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We now prove thatTh[P] & Vz(contains[S1][z] < contains[S’][z])

when RS[P] > Sy =8 S is either a principal, a local name, or an ex-
tended name.S; cannot be a principal, since then the rewriting frash
to S’ is impossible. IfS; is a local name, thers; — S’ € P, and so
Vz(contains[S1][z] < contains[S’][z]) € Th[P]. If S; is an extended name
K Ay --- A, for somel > 2, we assume that the 4-tuple used to rewsfitanto
S’ isK A, — KB, ~--kaorsomekZO,thenS’:KlBl - Bp Ay - Ay
Consider any model ofh[P] and any principakt in the model, ifcontains[.S’][z]

is true in the model, then there exists principals--- ,y, and ya,. ..,y
such thatm (K1, B1,y1), m(y1, B2,y5), m(Yi_1, B, yg), m(yy,, A2, y2), -,
m(ye—1,Ag, z) are true in the model. Sinc& A; — K; By --- By, then
Th[P] E Vz(contains[K A;][z] <« contains[Ky; B; --- Byl[#]), therefore
m(K, A1, y;,) is true in the model. It then follows thabntains[K A; --- Af][z]

is true in the model. Therefor@h[P] |= Vz(contains[S1][z] < contains[S’][z]).

2 implies 3 Assume, without loss of generality, th&t is K A; --- A, for
somel > 0 andS; is K1 By --- By from somek > 0. Observe that by def-
inition of P’, Th[P’] = contains[S2|[K']. When S, is a principal,S; = K'.
When S, is a local name or an extended narfiéy[P’] contains the following
k atomsm (K1, By, K}), m(K}, By, Kb), ---, m(K},_,, Bx, K'). If Th[P] |=
Vz(contains[S1][z] < contains[Ss][z]), then Th[P’] = contains[S;][K’]. Also
observe thalh[P’] = Vz(contains[ K A][z] < contains[S;][z]); therefore Th[P'] =
m(K, A, K').

3 implies 1 From Proposition 2, we know that Ifh[P’] = m(K, A, K'), then

RSP > K A ~ K'. Consider the rewriting sequence, the first rule applied
has to beK A — Sy, since it is the only rule that can apply. (Recall that by
definition K A is not defined irP.) Consider the last step, the rule applied has to
beK, , A, — K, since that is the only rule havingf&’ on its right hand side.
The rule applied in the second to last step has tdhe, A, — K, ,, since
that is the only rule having,_, on its right-hand side, and so on. Therefore, the
rewriting sequence must contains in its middle a sequenadtireg from S; to Ss.
Further observe that the rules®f but not in? cannot be applied in this middle

sequence. ThereforBS[P] > Sy s So.
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