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Abstract SPKI/SDSI is a language for expressing distributed access control pol-
icy, derived from SPKI and SDSI. We provide a first-order logic (FOL) semantics
for SDSI, and show that it has several advantages over previous semantics. For
example, the FOL semantics is easily extended to additionalpolicy concepts and
gives meaning to a larger class of access control and other policy analysis queries.
We prove that the FOL semantics is equivalent to the string rewriting semantics
used by SDSI designers, for all queries associated with the rewriting semantics.
We also provide a FOL semantics for SPKI/SDSI and use it to analyze the design
of SPKI/SDSI. This reveals some problems. For example, the standard proof pro-
cedure in RFC 2693 is semantically incomplete. In addition,as noted before by
other authors, authorization tags in SPKI/SDSI are algorithmically problematic,
making a complete proof procedure unlikely. We compare SPKI/SDSI withRTC

1 ,
which is a language in theRT Role-based Trust-management framework that can
be viewed as an extension of SDSI. The constraint feature ofRTC

1 , based on Con-
straint Datalog, provides an alternative mechanism that isexpressively similar to
SPKI/SDSI tags, semantically natural, and algorithmically tractable.

1 Introduction

In 1996, Rivest and Lampson [30] proposed a public-key infrastructure, called the
Simple Distributed Security Infrastructure (SDSI), featuring the use of linked lo-
cal names. Contemporaneously, Ellison et al. developed theSimple Public Key
Infrastructure (SPKI), which emphasizes delegation of authorization. In 1997, the
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two efforts were merged, leading to a system called SPKI/SDSI. The standard ref-
erence on SPKI/SDSI is RFC 2693 [10], with a later paper [7], whose authors
include several designers of SPKI/SDSI, providing certificate chain reduction al-
gorithms for SPKI/SDSI, clearer descriptions of many features, and certain minor
design changes.

SPKI/SDSI can be viewed as a trust-management (TM) language. Trust man-
agement [5,6,10,7,21,22,24,26,30] is a distributed access control concept with
access decisions based on policy statements made by multiple principals. In a
typical trust management system, principals are identifiedwith public keys, and
statements that are maintained in a distributed manner are often digitally signed to
ensure their authenticity and integrity. Such signed statements are calledcreden-
tials or certificates. In general, a TM language has a syntax for specifyingpolicy
statementsandqueries, together with an entailment relatioǹ. Given a stateP and
a queryQ, the relationP ` Q means thatQ is true inP. WhenQ arises from an
access request,P ` Qmeans that accessQ is allowed inP.

In SPKI/SDSI, policy statements take the form of name-definition certificates
(name certs), authorization certificates (auth certs), andAccess Control List (ACL)
entries.Principalsare identified with public keys, and each principal has its own
name spaces for names. Alocal name, which is identified by a principal and an
identifier, is bound to a set of principals that we call the members of the local
name. Only the principalK can issue name certs that determine members of the
local nameK A. PrincipalK can defineK A to include a principal, a local name,
or a linked local name (also called an extended name). We use SDSI to refer to
the sub-language of SPKI/SDSI that just has name certs, alsocalled 4-tuples. Auth
certs and ACL entries, also called 5-tuples, originally came from SPKI. In a 5-
tuple, the issuing principal grants certain authorizationto a subject, which can be
a principal, a local name, an extended name, or a threshold subject. The issuing
principal also specifies whether the subject can further delegate the authorization
it receives in a 5-tuple.

A set of SPKI/SDSI statements defines a policy, and many properties of a pol-
icy are of interest to its authors and users. The most basic query is whether a policy
allows a principal to access a resource. However, it may alsobe important to deter-
mine safety and availability properties of a policy [25], such as whether a resource
owner still has some guarantees about who can access their resources after dele-
gating limited authority to other principals. RFC 2693 doesnot explicitly specify
a class of queries that can be made against a policy, but provides operational rules
for producing new 5-tuples from existing 5-tuples. The 5-tuple reductions implic-
itly define a class of access queries for SPKI/SDSI as well as aproof procedure
for answering these queries.

The semantics of SPKI/SDSI has attracted a lot of interest inthe security
research community. Beginning with Abadi [1], significant effort has gone into
finding a logic-based semantics for both SDSI naming alone and SPKI/SDSI. A
logic developed by Howell and Kotz [14] extends the ABLP logic [2,19] with
a restricted form of delegation and provides a semantics forSPKI/SDSI autho-
rization. Halpern and van der Meyden subsequently developed the Logic of Local
Name Containment (LLNC) [11] and extended the logic to deal with 5-tuples in
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SPKI [12]. These studies all use specialized propositionalmodal logics. Li [20]
provides a logic programming based reading for SPKI/SDSI, which has several
drawbacks.

A formal semantics for SPKI/SDSI defines a class of queries that can be asked
against a set of SPKI/SDSI statements, together with an entailment relation that
determines whether a query follows from a set of SPKI/SDSI statements. A good
formal semantics should achieve the following four goals. First, the class of queries
supported by the semantics should be large and include thosethat have security
significance. Second, the entailment relation should be natural and faithful to the
intuition behind SPKI/SDSI. Third, the entailment should provide a basis for com-
paring the deduction mechanisms associated with SPKI/SDSIand evaluating them.
Fourth, the entailment provided by the semantics should be well-understood and
well-studied. A good semantics may also allow techniques developed for other
purposes to be brought to bear on SPKI/SDSI deduction.

In the present paper, we show that standard first-order logic(FOL) provides
a natural semantics for SPKI/SDSI and that the FOL semanticshas several ad-
vantages over previous approaches. In our study of the SDSI naming portion of
SPKI/SDSI (Section 2 of this paper), we present a FOL semantics based on trans-
lating each name cert into a Datalog clause. Datalog is a limited form of logic
programming that does not have function symbols (except forzero-ary functions).
Since Datalog is a subset of first-order logic, this leads to aFOL semantics; since
Datalog has a computational interpretation, a set of name certs induces a Datalog
program. Since the semantics of a policy is defined by classical logical implica-
tion, this approach allows FOL formulas to be understood as meaningful queries
against a policy. We prove that the FOL semantics is equivalent to the string rewrit-
ing semantics used by SDSI designers, for all queries associated with the rewriting
semantics. The advantages of out FOL-based approach over previous logics are
the following. It captures the set-based semantic intuition of SDSI, which is used
in Clarke et al. [7] and Halpern and van der Meyden [11]. It uses classical first-
order logic rather than more complex modal logics. The FOL semantics contains
more information in the sense that a larger class of queries can be formulated and
understood in the semantics. The semantics is easily extended to support useful
extensions to SDSI; and, finally, the relationship between the FOL semantics and
logic programming provides an efficient method to answer a large class of queries.

The full SPKI/SDSI has 5-tuples, which use authorization tags to describe per-
missions to access structured resources. In our study of full SPKI/SDSI, we use
Constraint Datalog to provide a FOL semantics for SPKI/SDSI. For the purpose of
comparison, we first describe a trust management languageRTC

1 [22], which uses
Constraint Datalog as its semantic foundation. The languageRTC

1 [22], which is
a member of the RT family of Role-based Trust-management languages [24,26],
may be viewed as an alternate extension of SDSI. One characteristic of RTC

1 is
the use of various constraint domains to express policies about structured resources
such as file hierarchies and standard concepts such as time ofday or days of the
week. We then give a FOL semantics for SPKI/SDSI by treating authorization
tags and validity specification as constraints, and examineseveral design issues of
SPKI/SDSI, usingRTC

1 for comparison. We observe that SPKI’s 5-tuple reduction
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procedure is semantically incomplete. One reason is that reduction does not handle
union of tags. For example, ifK1 grants toK2 in two certificates with two autho-
rization tags(* range numeric ge 1 le 5) and(* numeric range
ge 4 le 10), it is not possible to derive thatK1 grants toK2 (* range
numeric ge 2 le 7), which is a logical implication of the two 5-tuples. An-
other problem, first pointed out by Howell [13], is that the intersection of two
authorization tags may be a set that is not representable by any finite set of au-
thorization tags. This suggests that no rewriting algorithm using SPKI/SDSI au-
thorization tags can be semantically complete. Among otherbenefits of a logical
point of view, the constraint feature ofRTC

1 is expressively similar to SPKI/SDSI
tags, but semantically natural and algorithmically tractable.

We give FOL semantics and equivalence results for the SDSI naming portion
of SPKI/SDSI in Section 2, with trust management languageRTC

1 [22] and Con-
straint Datalog in Section 3, and FOL semantics and analysisof SPKI/SDSI in
Section 4. We conclude in Section 5.

2 Understanding SDSI Using First-Order Logic (FOL)

In SDSI, principals are identified with public keys. We useK to denote the set of all
principals and useK, often with subscripts or superscripts, to denote a principal.
An identifier is a word over some given standard alphabet. The set of all identifiers
is denoted byA, and an identifier is denoted byA or B (often with subscripts).
We assume that bothK andA are countable. We do not consider SDSI 1.1 [30]
special roots, which are identifiers that are bound to the same principal inevery
name space. Although it would be straightforward to treat them, they do not seem
to add any special interest and they do not appear in SPKI/SDSI.

A name string, called a term in [7,16], is a principal followed by zero or more
identifiers. In addition to keys, the setS ⊆ (K ∪ A)∗ of name strings contains
two other kinds of strings overK ∪ A. A local namehas the formK A, where
K ∈ K andA ∈ A, and anextended nameis a principal followed by more than
one identifier. UsingNL for the set of all local names andNE for extended names,
we haveS = K ∪NL ∪ NE , i.e., a name string is either a principal, a local name,
or and extended names.

A name-definition certificate(name cert) C is a signed 4-tuple(K,A, S, V ),
where

– K ∈ K is a principal (public key) called theissuer; the certificate is signed by
K.

– A ∈ A is an identifier.
– S ∈ S is a name string, called the subject.
– The validity specificationV provides information regarding the validity of the

certificate.

We say the 4-tuple(K,A, S, V ) definesthe local nameK A andS is thedef-
inition. In this section, we ignore the validity specificationV . We assume that the
validity of name certs are checked, and only valid certificates are considered. We
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will discuss how to handle the validity specification in the logical semantics in
Section 4.2. When ignoring the validity specification, we maywrite (K,A, S, ·)
for a 4-tuple.

In the rest of this section, we describe three semantics for SDSI that have ap-
peared (sometimes implicitly) in the literature, then introduce the FOL semantics
and prove its equivalence to other semantics; finally, we compare the FOL seman-
tics with other semantics for SDSI.

2.1 A String Rewriting Semantics for SDSI

RFC 2693 defines a 4-tuple-reduction mechanism, which Clarke et al. [7] ex-
plicitly present as string rewriting. The main idea is to replace a local name in
a name string by its definition. Regarding a 4-tuple(K,A, S, ·) as a rewriting rule
K A 7→ S that rewritesK A into S, the two 4-tuple-reductions using(K,A, S, ·)
in Section 6.4 of RFC 2693 useK A 7→ S to operate on the left end of a name
string:

Given(K1, A1, K2, ·), the following rewriting is possible
K1 A1 A2 · · · A` � K2 A2 · · · A`

Given(K1, A1, K2 B1 · · · Bk, ·), the following rewriting is possible
K1 A1 A2 · · · A` � K2 B1 · · · Bk A2 · · · A`

In the rest of this paper, we often writeK A 7→ S instead of(K,A, S, ·) to repre-
sent a 4-tuple.

Definition 1 (Rewriting Semantics for SDSI: RS[P]) Give a setP of 4-tuples,
let RS[P] be the set the rewriting rules corresponding to 4-tuples inP. We write
RS[P] B S1 � S2 whenever it is possible to rewriteS1 into S2 in one step using

one rewriting rule inRS[P]. We writeRS[P]BS1
∗

� S2 if it is possible to rewrite
S1 into S2 using zero or more steps fromRS[P].

For every name stringS, a set of 4-tuples determines the set of principals that
S can rewrite into. Thus a set of 4-tuples determines a valuation for every name
string, leading to the set-theoretic semantics for SDSI.

2.2 A Set-theoretic Semantics

In the set-theoretic semantics for SDSI, every name string has a valuation that is
a set of principals. Clarke et al. [7] use an informal description of this semantics
as the semantic intuition for SDSI. Halpern and van der Meyden [11] provide
a semantics for their Logic of Local Name Containment (LLNC)along similar
lines. Li et al. [26] use the same idea to provide a semantics for RT0, which can
be viewed as SDSI enhanced with the intersection operator inthe subject.

The following presentation of the set-theoretic semanticsfollows [26], with
℘(K) the power set ofK. If f, g : NL → ℘(K) are two functions mapping local
names to sets of principals, we say thatf is less than or equal tog if f(K A) ⊆
g(K A) for every local nameK A ∈ NL.
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Definition 2 (Set-theoretic Semantics for SDSI:M[P]) Given any functionf :
NL → ℘(K) mapping local names to sets of principals, we extendf to a valuation
Vf : S → ℘(K) on all name strings as follows:

Vf (K) = {K}
Vf (K A) = f(K A)

Vf (K1 A1 · · · A`) =
⋃

K2∈f(K1 A1)
Vf (K2 A2 · · · A`) where` > 1

The semanticsM[P] of a setP of 4-tuples is the least functionf : NL →
℘(K) that satisfies the system of set containments:

SC[P] = { f(K A) ⊇ Vf (S) | K A 7→ S ∈ P }

We use a least-solution definition forM[P] because 4-tuples may define local
names recursively. Note thatV naturally extendsM[P] and gives a valuation for
each name string.

We now show that the functionM[P] : NL → ℘(K) is well defined and
present a straightforward way to construct it. For each natural numberi, let f i :
NL → ℘(K) be the function

f0(K A) = ∅

f i+1(K A) =
⋃

K A 7→S∈P

Vfi(S)

It is easy to show two properties by induction: (1) for any local nameK A not
defined inP, f i(KA) = ∅ for anyi ∈ N; and (2) for any local nameKA and any
i ∈ N, f i(KA) only contains principals occurring inP. It follows that the set of all
functions that could appear in the sequencef0, f1, f2, . . . forms a finite lattice. In
addition, the sequence is nondecreasing. Therefore, the least upper boundfω of the
sequence, given byfω(K A) =

⋃

i≥0 f
i(K A), exists; in addition,fω =M[P].

The functionfω clearly satisfiesSC[P], and one can show by induction that any
function that satisfiesSC[P] is greater than or equal tofω.

We will show that our set-theoretic semantics contains lessinformation than
the rewriting semantics, in the sense that ifRS[P] B S1

∗
� S2, thenVM [P ](S1) ⊇

VM [P ](S2). (This follows from Proposition 1 in Section 2.3 and Theorem3 in
Section 2.5.) However, the converse is only guaranteed to betrue whenS2 is a

principal,i.e., VM [P ](S) 3 K if and only if RS[P] B S
∗

� K. (This follows from
Proposition 1 in Section 2.3 and Theorem 3 in Section 2.5; seealso Proposition 2
in Section 2.5.) It may well be the case thatVM [P ](S1) ⊇ VM [P ](S2), but there is
no rewriting relationship betweenS1 andS2. For example, givenP that contains
the two four tuplesK A1 7→ K2 andK A2 7→ K2, the valuation ofK A1 clearly
contains the valuation ofK A2; however, usingP, one cannot rewriteK A1 into

KA2. In other words,RS[P]BS1
∗

� S2 is not equivalent to∀K((RS[P]BS1
∗

�

K)⇐ (RS[P] B S2
∗

� K)); the former is strictly stronger than the latter.
When making access control decisions, the valuations of namestrings are nec-

essary, but the rewriting relationship between two name strings are not directly
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useful. However, this relation is very helpful for understanding the effect of 4-
tuples. IfS1 rewrites intoS2 from P, thenS1 rewrites intoS2 from anyP ′ such
thatP ′ ⊇ P; therefore, the valuation ofS1 is always a superset of the valuation
of S2 no matter what new policy statements are added. This is especially useful
for studying the safety and availability properties of policies when policies may
change,e.g., statements may be added and/or removed [25].

2.3 A Logic Programming (LP) Semantics for SDSI

The set-theoretic semantics can be captured naturally using logic programs. This
observation was made by Halpern and van der Meyden [11]. It was also used im-
plicitly in the semantics of the RT framework [26,24]. The semantics ofRT0, the
basic component of the RT framework, was first defined using sets [26]. When
additional features, such as internal structures in role terms (correspond to identi-
fiers in SDSI) are added, a logic programming based semanticsis used [24]. The
advantage of the LP approach over the set approach is that it is easily extended to
additional forms of policy statements.

Definition 3 (LP Semantics for SDSI)We use one ternary predicatem; intu-
itively, m(K,A,K ′) means thatK ′ is in the valuation of the local nameK A.
We define a macrocontains, which takes a name string and a logical variable as
parameters, and defines a first-order logic formula.

contains[K][z] is (K = z)
contains[K A][z] is m(K,A, z)
contains[K A1 A2 · · · A`][z] (where` > 1) is

∃y1 (m(K,A1, y1) ∧ contains[y1 A2 · · · A`][z])

Given a setP of 4-tuples, we defineLP[P] to be the following set of logic-
programming clauses:

{ ∀z(contains[K A][z]⇐ contains[S][z]) | K A 7→ S ∈ P }

To see that∀z(contains[KA][z]⇐ contains[S][z]) is a logic-programming clause
(i.e., Horn clause), observe thatcontains[K A1 A2 · · · A`][z] is logically equiv-
alent to∃y1∃y2 · · · ∃y`−1 m(K,A1, y1) ∧m(y1, A2, y2) ∧ · · · ∧m(y`−1, A`, z).
Further observe that the above definition ofLP[P] is equivalent to definingLP[P]
to contain:

m(K,A,K1) for eachK A 7→ K1 ∈ P
m(K,A, z):− m(K1, A1, z) for eachK A 7→ K1 A1 ∈ P
m(K,A, z):− m(K1, A1, y1), · · · , m(y`−1, A`, z)

for eachK A 7→ K1 A1 · · · A` ∈ P, ` > 1

The semantics ofP is defined to be the minimal Herbrand model ofLP[P]. If
an atomm(K1, A,K2) is in the minimal Herbrand model ofLP[P], we write
LP[P] |= m(K1, A,K2).
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Proposition 1 (Equivalence of LP semantics and set-theoretic semantics)
Given a setP of 4-tuples, a name stringS and a principalK ′, LP[P] |=
contains[S][K ′] if and only ifVM [P ](S) 3 K ′. In particular, for any local name
K A, LP[P] |= m(K,A,K ′) if and only ifM[P](K A) 3 K ′.

Proof Sketch: Given a setP of 4-tuples, consider the setG of all functionsg :
NL → ℘(K) that satisfies the following two conditions: (1)g(K A) = ∅ if ei-
therK orA does not appear inP; (2) for any local nameK A, g(K A) contains
only principals inP. There exists a bijection betweenG and the set of all the
Herbrand interpretations ofLP[P]. Given a functiong ∈ G, the corresponding
interpretation is obtained by includingm(K,A,K ′) in the interpretation if and
only if g(K A) 3 K ′. Similarly, one obtains a function from each Herbrand in-
terpretation, by assigning toK A the smallest set that contains eachK ′ such that
m(K,A,K ′) is in the interpretation. Furthermore, the definition ofcontains ex-
tends the predicatem to determine members of name strings, in exactly the same
way in whichV extendsf in Definition 2. Therefore, a functiong satisfiesSC[P],
the systems of set inequalities induced byP, if and only if the interpretation cor-
responding tog is a model ofLP[P], and so the least solutionM[P] corresponds
to the least Herbrand model ofLP[P].

The LP semantics is an attractive logical semantics. It is natural in the sense
that it directly captures the set-based semantics intuition. It can also be used for
computation purposes. Observe thatLP[P] is a Datalog program, that is, it does
not have any function symbol other than constants. In addition,LP[P] can be trans-
formed to an equivalent logic program with at most two variables per rule. For ex-
ample, the clause “m(K,A, z) :− m(K1, A1, y1), m(y1, A2, y2), m(y2, A3, z)”
is equivalent to the two clauses “m(K,A, z) :− m(K1, A

′, y2), m(y2, A3, z)”
and “m(K1, A

′, y2) :− m(K1, A1, y1), m(y1, A2, y2)” whereA′ is an identifier
not appearing inP.

Given a setP of 4-tuples with total sizeN , letL be the length of the longest
extended name, one can first transformLP[P] to contain only clauses that have at
most two variables and then instantiate the clauses with principals inP, obtaining
a ground program with sizeO(N3L). It has been shown that the minimal Herbrand
model of a ground logic program can be computed in time linearin the size of the
program [8]. Therefore, any Horn query againstLP[P] can be answered in time
O(N3L). This complexity is the same as the complexity bound derivedin three
papers [7,26,16] using algorithms based on string rewriting, graph searching, and
pushdown systems.

2.4 A FOL Semantics

The LP semantics has the same limitation as the set-theoretic semantics, it cannot
be used to directly determine whetherS1 rewrites intoS2. Such a query cannot
be expressed using Horn queries. We now propose a first-orderlogic semantics to
address this issue. The idea is very simple. Each Horn clausecan be viewed as a
first-order sentence; thus the logic programLP[P] can be viewed as a first-order
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theory. The rewriting query can be viewed as a first-order formula, and logical
implication defines the semantics.

Definition 4 Given a setP of 4-tuples, we defineTh[P] to be the following first-
order theory:

{∀z(contains[K A][z]⇐ contains[S][z]) | K A 7→ S ∈ P)}

A query whetherRS[P] B S1
∗

� S2 can be answered by checking whether
Th[P] |= ∀z(contains[S1][z] ⇐ contains[S2][z]). Note thatTh[P] is the same
asLP[P], here we just view it as a FOL theory.

Other first-order logic formulas can also be used as meaningful queries. For
example, the formula∃z(m(K1, A1, z) ∧m(K1, A2, z)) ⇐ ∃z(m(K2, A1, z) ∧
m(K2, A2, z)) when used as a query means that ifK2 A1 andK2 A2 share a
common member, thenK1 A1 andK1 A2 also share a common member.

2.5 Equivalence Among SDSI’s Semantics

Proposition 1 says that the set-theoretic semantics is equivalent to the LP semantics
for membership queries. The LP semantics can be viewed as a special case of the
FOL semantics where only Horn queries are allowed. However,to the best of our
knowledge, the relationship between the rewriting semantics and the other three
semantics have not been established and proved in the literature before.

In this section, we prove the following equivalence betweenthe rewriting se-

mantics and the FOL semantics: given any setP of 4-tuples,RS[P] B S1
∗

� S2

if and only if Th[P] |= ∀z(contains[S1][z] ⇐ contains[S2][z]). In addition, we
establish a way to use logic programs to efficiently determine whetherTh[P] |=
∀z(contains[S1][z]⇐ contains[S2][z]), and prove that this approach is correct.

First, we prove a proposition that will be useful in proving the main theorem.

Proposition 2 Given a setP of policy statements, ifTh[P] |= m(K,A,K ′), then

RS(P) BK A
∗

� K ′.

See Appendix A for the proof.
We need the following definition, which helps in transforming a query

Th[P] |= ∀z(contains[S1][z] ⇐ contains[S2][z]) into a Horn query. This defi-
nition gives a canonical way for placing a principalK ′ in the valuation of a name
stringS.

Definition 5 Given a setP of 4-tuples, a name stringS = K1A1A2 · · · A` where
` ≥ 1, and a principalK ′, defineadd(P, S,K ′) to be

{

P ∪ {K1 A1 7→ K ′} whenl = 1
P ∪ {K1 A1 7→ K ′

1, K
′
1 A2 7→ K ′

2, · · · , K
′
`−1 A` 7→ K ′} whenl > 1

whereK ′
1, · · · ,K

′
`−1 are principals not appearing inP or in {K1,K

′}.
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It is easy to see thatRS[add(P,K1A1A2 · · · A`,K
′)]BK1A1A2 · · · A`

∗
�

K ′. We are now ready to state the main theorem of this section.

Theorem 3Given a setP of 4-tuples, and two name stringsS1 andS2, the fol-
lowing three statements are equivalent:

1. RS[P] B S1
∗

� S2.
2. Th[P] |= ∀z(contains[S1][z]⇐ contains[S2][z]).
3. Th[P ′] |= m(K,A,K ′), whereK A is any local name not defined inP, and
P ′ andK ′ depend on the form ofS2:

– whenS2 is a principal,K ′ = S2 andP ′ = P ∪ {K A 7→ S1}
– whenS2 = K1 A1 · · · A` where` ≥ 1, we setK ′ to be a principal not

appearing inP andP ′ = add(P, S2,K
′) ∪ {K A 7→ S1}.

See Appendix A for the proof. The equivalence of 2 and 3 in Theorem 3 says
that to determine whetherTh[P] |= ∀z(contains[S1][z] ⇐ contains[S2][z]), one
can do the following: create a new principalK ′, find a local nameKA not defined
in P, constructP ’ by adding toP the 4-tupleK A 7→ S1 and additional 4-tuples
to make sure thatS2 rewrites intoK ′, then check whetherm(K,A,K ′) follows
from LP[P ′].

The proof of the equivalence of 2 and 3 in Appendix A uses theirre-
lationships with the rewriting semantics. However, this equivalence also fol-
lows from general results in proof theory. Both Horn clausesand queries of
the form ∀z(contains[S1][z] ⇐ contains[S2][z]) are in a subclass of Harrop
Hereditary formulas for which classical provability, intuitionistic provability, and
uniform provability are equivalent (Nadathur [29]). Uniform proofs [28] are
a restricted form of intuitionistic proofs that embody a special form of goal-
directedness. Using uniform proofs, in order to determine whetherTh[P] |=
∀z∀y1∀y2(m(K,A, z) ⇐ m(K1, A1, y1) ∧ m(y1, A2, y2) ∧ m(y2, A3, z)), one
creates new constantsK ′,K ′

1,K
′
2 that do not appear inP, add toP three

factsm(K1, A1,K
′
1), m(K ′

1, A2,K
′
2), andm(K ′

2, A3,K
′), and then try to prove

m(K,A,K ′) from it. This is essentially what we are doing in Definition 5 and
Theorem 3. The equivalence of classical provability and uniform provability for
this class of queries implies that this proof method is soundand complete with
respect to classical first order logic. The equivalence of classical provability and
intuitionistic provability for this class of queries also implies that one can also view
the semantics as defined in intuitionistic logic rather thanclassical logic.

2.6 Related Work on Semantics for SDSI and Comparison

Abadi [1] initiated the study of logical semantics for SDSI.Halpern and van der
Meyden [11] followed the same path and proposed the Logic of Local Name
Containment (LLNC), which refined Abadi’s logic. Both logics are propositional
modal logics, where a proposition has the form of one name string rewriting into
another name string. The focus of their study is to get a set ofaxioms character-
izing their logic. Halpern and van der Meyden uses the set-theoretic semantics of
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SDSI as the semantics of their logic and came up with a set of axioms that are
sound and complete with respect to the semantics.

SDSI 1.1 [30] (the version of SDSI before merging with SPKI) gives pseudo-
code of a nondeterministic algorithm for resolving a name string into a principal
given a set of 4-tuples. Like the set-theoretic semantics, this algorithmic semantics
defines a mapping from name strings to sets of principals. This semantics was used
as the reference semantic in the logics by Abadi [1] and by Halpern and van der
Meyden [11].

Li [20] showed that the algorithmic semantics in [30] is equivalent to the string
rewriting semantics for queries about the mapping from namestrings to principals.
Li [20] also gave another LP-based semantics for SDSI, whichtranslates a set of
SDSI 4-tuples into a logic program. The logic program in [20]uses list constructs
used in Prolog. It answers only queries about the mapping from name strings to
principals. Furthermore, it is not as natural as the LP semantics in Definition 3,
and is not as easy to extend to FOL.

Clarke et al. [7] explicitly describe 4-tuple reduction as string rewriting and
devise string rewriting algorithms for determining whether it is possible to rewrite
a name string into a principal. Their algorithm does not workfor determining
whether one name string rewrites into another.

The class of string rewriting systems generated by sets of 4-tuples have the
following characteristics: when rewriting a name string, the rewriting replaces the
first two symbols, which form a local name, with another name string, and the
result is also a name string. Jha and Reps [16] pointed out that SDSI string rewrit-
ing systems correspond exactly to the class of string rewriting systems modelled
using push-down systems. This connection reduces certain computation problems
in SDSI to reachability analysis and model checking in push-down systems, for
which efficient algorithms exist.

Comparing with these previous proposed semantics for SDSI,the FOL seman-
tics proposed in this paper has the following advantages:

– The FOL semantics is very natural. It directly captures the set-based semantic
of SDSI, which is widely used as the underlying semantic intuition for SDSI,
e.g., both by SDSI designers in [7] and by Halpern and van der Meyden [11].
In addition, it uses classical first-order logic, instead ofmore complex logics
with modal operators.

– It contains more information in the sense that a larger classof meaningful
queries can be formulated and defined in this semantics. Queries other than
those asking whether it is possible to rewrite one name string into another can
be formulated and answered in this semantics.

– The FOL semantics is easily extended to support useful extensions of SDSI.
In this paper we will show how to naturally extend the FOL semantics to deal
with SPKI. Other important ways of extending the SDSI 4-tuples are also han-
dled straightforwardly. One extension to SDSI is to add an intersection oper-
ator, e.g., K A 7→ K A1 ∩ K A2. The meaning of such a statement is im-
mediate given the set-based semantic intuition. Supporting intersection in the
FOL semantics is straightforwardly done using the logical conjunction opera-
tor. Another extension to SDSI is to allow identifiers to be logical terms,e.g.,
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K student(univ=‘Stanford’)7→ KJohn Smith. In FOL semantics, this can be
supported either by making the predicatem take more parameters or by hav-
ing a predicate for each identifier function symbol,e.g., using “student” as a
predicate symbol. Extending logics such as LLNC to support these extensions
may be possible, but seems less obvious.

– The FOL semantics has computational significance. Theorem 3gives an effi-

cient (in time polynomial in the size ofP) way to check whetherRS[P]BS1
∗

�

S2 for any name stringsS1 andS2. In LLNC, although a complete axiom sys-
tem was given, the complexity of using the axiom system to determine whether

RS[P] B S1
∗

� S2 is not clear and seems unlikely to be efficient.

Because of this, we believe that the FOL semantics should be viewed as the
reference semantics. Any semantics for SDSI should be equivalent to the FOL
semantics for the class of queries it handles. Some other semantics are useful
for computational or understanding purposes, of course. For example, the string
rewriting semantics is both helpful for understanding SDSIand for computation,
because of its relationship with pushdown systems.

3 RT
C

1
: A Trust Management Language Extending SDSI

Since SDSI was originally designed for distributed naming,SDSI lacks some
features that are useful for trust-management language. The RT family of Role-
based Trust-management languages [24,26] extends SDSI in several ways. Two
associated withRTC

1 [22], the RT language most relevant to our discussion of
SPKI/SDSI, are intersection and structured identifiers. With intersection, we can
define a local name to contain the intersection of two or more name strings. Many
natural security policy statements have the form that a principal has a certain
permission (or an attribute) if it has two (or more) other attributes. With struc-
tured identifiers, we can define a groupK student(dept=‘CS’, program=‘PhD’,
year=‘2002’, name=‘John Smith’,· · · ), which contains students with the specified
department, program, year, and name. In addition to straightforward rules such as
“K student(dept=‘CS’, program=‘PhD’, year=‘2002’, name=‘John Smith’, · · · )
7→ KJohn Smith”, specific values can be replaced by variables, allowing selec-
tion of subsets of the group. For example, “K perm 7→ K student(dept=‘CS’)”
grants permission “perm” to all principals that are CS students. Internal struc-
ture in identifiers also enables us to represent relationships among principals.
For example, using local names such as “K managerOf(Alice)” and “K1 physi-
cianOf(Bob)”, a principal can issue statements such as “K accessRecord(?X)7→
K1 physicianOf(?X)”. This states that the physician of any patient can access the
record for that patient. (“?X” represents a logical variable.) Structured identifiers
can also be used to represent access permissions with parameters that identify re-
sources and access modes.

SPKI/SDSI, which is intended to be a full-fledged TM language, can be viewed
as the result of adding SDSI features to SPKI, allowing name strings to be used
in subjects of auth certs. In Section 4, we will analyze SPKI/SDSI and argue that
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the design of SPKI/SDSI is problematic in several ways. In particular, authoriza-
tion tags, which are used to qualify permissions in SPKI/SDSI, are quirky and
algorithmically problematic. To make our analysis easier to follow, we first look
at RTC

1 [22] in this section and later compare the two extensions of SDSI. As
pointed out in [24,26], the design ofRT is heavily influenced by SDSI and Dele-
gation Logic [21].RT0, the most basic language in theRT family, can be viewed
as adding intersections to SDSI.RT1 adds toRT0 parameters (i.e., structured iden-
tifiers).RTC

1 further extendsRT1 with constraints. The semantics of theRT lan-
guages are based on translating statements into logical sentences, in the same style
as SDSI’s FOL-based semantics.

3.1 Syntax of Policy Statements inRTC
1

Before describing the syntax of policy statements inRTC
1 , we first explain the

terminological differences between SDSI andRT . Identifiers in SDSI are called
role terms inRT , and local names in SDSI are called roles. We useR, often with
subscripts, to denote role terms, and we add a dot between a principal and a role
term. For example,K.R represents a role inRT ; it corresponds to the local name
K R in SDSI. Policy statements inRT0,RT1, andRTC

1 have the same structures.
They only differ in how role terms are formed. In the following statements, the
directions of the arrows are the opposite of that used in SDSIrewriting rules. We
use this direction because it is the same as the direction of logical implication in
the logic based semantics.

– Type-1: K.R←− K1

– Type-2: K.R←− K1.R1

– Type-3: K.R←− K.R1.R2

– Type-4: K.R←− K1.R1 ∩K2.R2 ∩ · · · ∩K`.R`

A type-3 statement requires the sameK to be used in both the role being de-
fined,K.R, and the definitionK.R1.R2. This design is motivated by the need
to handle deduction with policy statements that are stored in a distributed man-
ner [26]. Observe that 4-tuples that use long extended namescan still be equiva-
lently represented inRT , by introducing new role terms and statements. For more
details on this, see [26].

In RT0, a role term is simply a role name, which is just like an identifier in
SDSI. ThusRT0 is essentially SDSI extended with the intersection operation (in
type-4 statements). InRT1, a role term may also contain parameters. These pa-
rameters may be constants or variables, and may use constraints in some limited
ways.RTC

1 allows more general forms of role terms, which we now describe. In
RTC

1 , each role term takes the form ofr(h1, . . . , hn), in which r is a role name,
and for eachi such that1 ≤ i ≤ n, hi takes one of the following three forms:
p = c, p ∈ S, andp = ref , in whichp is the name of one ofr’s parameters that
has typeτ , c is a constant of typeτ , S is a value set of typeτ , andref is a ref-
erence to another parameter in the same statement, also of typeτ . RTC

1 does not
have explicit appearance of logical variables; instead, different parameters may be
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specified to be equal. Intuitively, a value set is a constraint-based representation of
a set of values,e.g., [10..800] may be a value set of an integer type. Parameters
in role terms are specified by name, rather than by position; and they are strongly
typed. For example, the followingRTC

1 statement “KSA.socketPerm(host∈ de-
scendants(‘stanford.edu’), port∈ [8000..8443])←−KAlice” means thatKSA grants
toKAlice the permission to connect to any host in the domain ‘stanford.edu’ at any
port between 8000 and 8443.

3.2 Semantics ofRTC
1

Without constraints, policy statements inRTC
1 are translated into Datalog clauses

(which can be viewed as first-order sentences), in ways very similar to SDSI.RTC
1

statements with constraints are translated into clauses inmulti-sorted Constraint
Datalog; these clauses can also be viewed as first-order sentences. In the follow-
ing, we give an brief overview of Constraint Datalog. See [22] for more details
of Constraint Datalog and for the translation fromRTC

1 statements to clauses in
Constraint Datalog.

Constraint Datalog (denoted by DATALOGC) is a restricted form of Constraint
Logic Programming (CLP) [15], and is also a class of query languages for Con-
straint Databases (CDB) [17,18]. The notion of constraint databases, which was
introduced by Kanellakis, Kuper, and Revesz [17], grew out of the research on
Datalog and CLP and generalizes the relational model of databy allowing infi-
nite relations that are finitely representable using constraints. DATALOGC allows
first-order formulas in one or more constraint domains, which may describe file hi-
erarchies, time intervals, and so on, to be used in the body ofa clause. Intuitively,
a constraint domain is a domain of objects, such as numbers, points in a plane, or
files in a file hierarchy, together with a language for speaking about these objects.
A constraint domain has a first-order language defined by a setof constants, func-
tion symbols, and relation symbols, and a class of quantifier-free formulas in the
langauge, called primitive constraints. The following aresome example constraint
domains that are used when translatingRTC

1 into DATALOGC.

Tree domains Each constant of a tree domain takes the form〈a1, . . . , ak〉. Imagine
a tree in which every node is labelled with a string value and nodes that have
a common parent are labelled with distinct strings. The constant 〈a1, . . . , ak〉
represents the node for whicha1, . . . , ak are the strings on the path from root
to this node. A primitive constraint is of the formx = y or xθ〈a1, . . . , ak〉,
in which θ ∈ {=, <,≤,≺,�}. The constraintx < 〈a1, . . . , ak〉 means that
x is a child of the node〈a1, . . . , ak〉, andx ≺ 〈a1, . . . , ak〉 means thatx is a
descendant of〈a1, . . . , ak〉.

Range domains The set of all constants in a range domain is linearly ordered. A
primitive constraint has the formx = y, x = c or x ∈ (c1, c2), in which c
is a constant, each ofc1 andc2 is either a constant or a special symbol “∗”,
meaning unbounded. The constraintx ∈ (c1, c2), when bothc1 and c2 are
constants, means thatc1 < x ∧ x < c2. Whenc1 is not∗, “(” can also be “[”;
similarly, “)” can be “]” when c2 is not∗.
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Discrete domains with sets A primitive constraint has the form x ∈ {c1, . . . , c`},
in which c1, . . . , c` are constants.

We say that these constraint domains areunary, because each primitive con-
straint either has the formx = y, wherex andy are variables, or contains only
one variable. We call a primitive constraint that contains just one variable abasic
constraint. The three classes of unary constraint domains described above support
the following three operations.

Conjunction Given two basic constraintsφ1(x) and φ2(x), determine whether
φ1(x)∧φ2(x) is satisfiable, and if it is, computeψ1(x)∨ψ2(x)∨ · · · ∨ψk(x)
such thatk ≥ 1, eachψi(x) is a basic constraint, for1 ≤ i ≤ k, and the
disjunction is logically equivalent toφ1(x) ∧ φ2(x).

Constraint Projection Given any basic constraint, determine whether it is satisfi-
able.

Constraint Subsumption Given the disjunction of a set of basic constraints, de-
termine whether another basic constraint is implied by the disjunction,e.g.,
determine whetherx ∈ [2, 8] is implied by the disjunction ofx ∈ [1, 5] and
x ∈ [3, 10].

These operations make it possible to evaluate DATALOGC programs using con-
straints in these domains. Li and Mitchell [22] have shown that tree domains, range
domains, and discrete domains with sets have additional properties that make such
evaluation efficient.

3.3 Types

Role terms inRTC
1 are strongly typed. One declares what parameters a role takes

and the names and data types of these parameters. One also declares new data
types using the mechanisms provided by theRT framework [24]. Role param-
eters and data types are declared inapplication domain specification documents
(ADSDs). Each ADSD is globally uniquely identified. One way to uniquely iden-
tify an ADSD is to use a collision-free hash of the document asthe identifier; one
may also include in the identifier an URI pointing to the document so that it can be
easily retrieved. An ADSD declares a suite of related data types and role names,
called avocabulary. Policy statements, when using a role name, refer to the ADSD
in which the role name is declared. This enablesRT to have strongly typed policy
statements. ADSDs also provide solutions to the following vocabulary agreement
problem. For a statementK.student←−K.university.student to make sense; every
principalK ′ that is a member of the roleK.university must agree withK on what
“student” means,e.g., whether it is a student registered in any class, or a student
enrolled in a degree program. The use of ADSDs ensure that everyone is talking
about the student role declared in one specific ADSD. The use of ADSDs and
strongly typed statements helps reduce the possibility of errors in writing policy
statements and unintended interaction among policy statements.

The notion of vocabularies is complementary to the notion oflocalized name
spaces for roles. Each addresses a distinct name space issue. For example, an ac-
crediting board might issue an ADSD that declares the role name “student”. This
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defines the names and data types of the role’s parameters. Such parameters may
include university name, student name, program enrolled in, and so on. The ADSD
may also contain description of the conditions under which aprincipal should be
made a member of the student role,e.g., it may require a principal be registered
in a degree program. Then a university StateU that has the public keyKStateU can
use this ADSD to issue credentials definingKStateU.student. Although using a vo-
cabulary created by another principal, StateU is still the authority over who is a
member of the roleKStateU.student.

RTC
1 has several categories of types: integer types, float types,enumeration

types, string types, tree types. Some system-defined data types of these categories
exist, and one can declare new data types of these categories. Each type category
has a syntax for definingvalue sets. Unordered enumeration types and string types
correspond to discrete domains with sets; a value set takes the form of a set of
constants. Integer types, float types, and ordered enumeration types correspond to
range domains; a value set takes the form of a range,e.g., [10, 200], or (10, ∗). Tree
types correspond to tree domains; and are used to represent hierarchical structured
resources such as file hierarchies and DNS names; a value set takes the form of a
predefined function symbol applied to a node,e.g., descendants(〈edu, stanford〉)
andcurrentAndChildren(〈edu, stanford, cs〉).

4 Analyzing SPKI/SDSI using First-Order-Logic (FOL)

In this section, we extend the FOL semantics for SDSI to SPKI/SDSI, which has
authorization certificates (or auth certs) and ACL entries,in addition to name certs.
Both auth certs and ACL entries are 5-tuples. An auth cert is asigned five tuple
(K,H,D, T, V ), where

– K ∈ K is the issuer principal, which signs the cert. The issuer grants a specific
authorization through this 5-tuple.

– H ∈ H is called the subject, whereH is defined to be the least set satisfying
the following two conditions: (1)S ⊆ H, whereS is the set of all name strings,
and (2)θk(H1,H2, · · · ,Hn) ∈ H, whereH1,H2, · · · ,Hn ∈ H. The subject
specifies principals that receive authorization from this 5-tuple.

– D ∈ {0, 1} is called the delegation bit. WhenD = 1, the subject may further
delegate the authorization it receives from this 5-tuple.

– T is the authorization tag, each tag represents a (potentially infinite set of) byte
strings.T specifies the authorization that is granted by this 5-tuple.

– V is the validity specification, which is the same as in the caseof a name cert.

An ACL entry is a locally stored 5-tuple(Self,H,D, T, V ). It is very similar
to an auth cert, except that the issuer is a special symbolSelf instead of a key
and that the ACL entry is not signed. We will treatSelf as a special principal in
K.

The 5-tuple reduction rule in Section 6.3 of RFC 2693 is as follows: the
two 5-tuples (K1, S1,D1, T1, V1) and (K2, S2,D2, T2, V2) yield the 5-tuple
(K1, S2,D2,AIntersect(T1, T2),VIntersect(V1, V2)), provided thatS1 = K2,
D1 = 1, andAIntersect(T1, T2) succeeds.
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Observe that the 5-tuple reduction rule only applies when the subject is a prin-
cipal. When the subject is a name string, the way to use the 5-tuple reduction rule
is to first replace a 5-tuple that has a name stringS as the subject with a set of
5-tuples, each of which has one principal in the valuation oftheS as the subject.
The procedure for handling threshold is much more complicated; it is described in
details in Clarke et al. [7].

4.1 Handling Basic Delegation Relationships in 5-tuples

To understand 5-tuples, we first make some simplifying assumptions. These as-
sumptions will be removed later one by one.

1. We assume that the authority tagT does not have any internal structure, and
can be viewed as an identifier. As a result,AIntersect(T1, T2) either fails (when
T1 6= T2) or equalsT1 = T2.

2. We ignore the validity specificationV , and write(K,S, T,D, ·) for a 5-tuple.
We assume that only currently valid certificates are considered.

3. We assume that the subject does not contain thresholds; inother words, the
subject is a name stringS.

WhenD = 0, a 5-tuple(K,S, 0, T, ·) simply means thatK grants the autho-
rizationT to any principal who is in the valuation ofS. If we allow identifiers that
correspond to authorization tags to be used in 4-tuples, we can useK T to denote
the set of all principals thatK grants the authorizationT to, and view this 5-tuple
as a 4-tupleK T 7→ S.

WhenD = 1, a 5-tuple(K,S, 1, T, ·) means thatK grants the authorization
to any principal that is in the valuation ofS and to any principal such a principal
further grantsT to. In other words,(K,S, 1, T, ·) can be represented using two 4-
tuplesK T 7→ S andK T 7→ S T . For example, a 5-tuple(K,K1 A1 A2, 1, T, ·)
is represented usingK T 7→ K1 A1 A2 andK T 7→ K1 A1 A2 T .

Using 5-tuple reduction, one can use(K1,K2, 1, T, ·) and(K2,K3, 1, T, ·) to
derive(K1,K3, 1, T, ·). This can be viewed as deriving new rewriting rules from
existing ones:

– rewriteK1 T 7→ K2 T usingK2 T 7→ K3 and deriveK1 T 7→ K3

– rewriteK1 T 7→ K2 T usingK2 T 7→ K3 T and deriveK1 T 7→ K3 T

These observations show that, under these simplifying assumptions, 5-tuples
can be viewed as 4-tuples, and we can use the FOL semantics forSDSI to provide
a semantics for the simplified version of SPKI.

In the version of SPKI that existed before merging with SDSI,the subject of a
5-tuple cannot contain names. In this case a 5-tuple(K,K1, 1, T, V ) can be rep-
resented using two 4-tuplesK T 7→ K1 andK T 7→ K1 T . This represents very
limited delegation relationships. One cannot expressK T1 7→ K T2, which means
thatK grants the authorizationT1 to any principal that has the authorizationT2.
Neither can one express the tupleK T 7→ K T1 T , which represents a delegation
aboutT fromK to members ofK T1.
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4.2 Using Constraints to Handle Authorization Tags and Validity Specifications

Having understood the delegation semantics of SPKI, we remove the first simplify-
ing assumption and deal with authorization tags. Howell ([13] Chapter 6) provided
a detailed analysis of authorization tags in his PhD thesis.In this analysis, an au-
thorization tagT is viewed as representing an (often infinite) set of strings.Here,
we take the same view and use constraints to specify the authorization represented
as a tag. We use a unary constraint domain in which a basic constraint has the form
t ∈ T , wheret is a logical variable andT is an authorization tag. The mapping
from tags to sets of strings then determines the truthfulness of formulas in this
constraint domain. We will look at details of tags and this constraint domain in
Section 4.3.

Definition 6 Given a setP of 4-tuples and 5-tuples, we defineTh[P] to be the fol-
lowing Constraint Datalog program (which is also a first-order theory). In addition
to the predicatem used for 4-tuples, we also use another ternary predicateg; intu-
itively, g(K,T,K ′) says thatK grants the authorizationT toK ′. Th[P] contains

∀z(contains[K A][z]⇐ contains[S][z])
for each 4-tuple(K,A, S, V ) ∈ P

∀z∀t(g(K, t, z)⇐ contains[S][z] ∧ t ∈ T )
for each 5-tuple(K,S, 0, T, V ) ∈ P

∀z∀t(g(K, t, z)⇐ contains[S][z] ∧ t ∈ T )
for each 5-tuple(K,S, 1, T, V ) ∈ P

∀z∀y∀t(g(K, t, z)⇐ contains[S][y] ∧ g(y, t, z) ∧ t ∈ T )
for each 5-tuple(K,S, 1, T, V ) ∈ P

RFC 2693 does not explicitly specify the class of queries in SPKI. However,
because the 5-tuple reduction rule deduces new 5-tuples from existing ones, SPKI
determines whether a 5-tuple follows from a set of statements. This is a reasonable
class of queries to consider because authorization requests are also represented as
5-tuples. Because 5-tuples are represented using first-order formulas in our seman-
tics, first-order logic naturally defines a semantic relation. Given a setP of 5-tuples
and 4-tuples, if one wants to know whether a 5-tuple(K,S, 0, T, V ) follows from
P, one can ask whetherTh[P] |= ∀z∀t(g(K, t, z) ⇐ contains[S][z] ∧ t ∈ T ). If
one wants to know whether a 5-tuple(K,S, 1, T, V ) follows fromP, one should
also check whetherTh[P] |= ∀z∀y∀t(g(K, t, z)⇐ contains[S][y]∧g(y, t, z)∧t ∈
T ).

When AIntersect(T1, T2) is sound, i.e., when the formula “t ∈
AIntersect(T1, T2) ⇒ t ∈ T1 ∧ t ∈ T2” is a tautology for any pair of tags
T1 and T2, the 5-tuple reduction rule is sound with respect to the logical se-
mantic relation. For example, the 5-tuple reduction that uses (K1,K2, 1, T1, ·)
and (K2,K3, 0, T2, ·) to derive (K1,K3, 0,AIntersect(T1, T2), ·) is essentially
the following sound logical deduction: from∀z∀t(g(K1, t, z) ⇐ g(K2, t, z) ∧
t ∈ T1) and ∀t(g(K2, t,K3) ⇐ t ∈ T2), deduce∀t(g(K1, t,K3) ⇐ t ∈
AIntersect(T1, T2)).

Validity specifications can be handled by extending the two ternary predicates
m andg to take an additional parameterv, which denotes the time during which
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this tuple is valid and viewing validity specifications as constraints onv. For ex-
ample, validity specifications that are validity periods are straightforwardly repre-
sented using range constraints.

4.3 Structure of Tags

In this section, we look at the internal structure of tags. The main point of this sec-
tion is that SPKI’s 5-tuple reduction is an incomplete proofprocedure with respect
to the FOL semantics of SPKI. In addition, as pointed out before by Howell [13],
authorization tags are not well behaved. Specifically, the constraint domain for tags
does not support operations that we need to compute the meaning ofTh[P].

The following descriptions of authorization tags follow RFC 2693. An au-
thorization tag is a list of byte-strings or sub-lists. Two tags intersect by match-
ing, element for element. If one list is longer than the otherbut matches at
all elements where both lists have elements, then the longerlist is the re-
sult of the intersection. This means that additional elements of a list must re-
strict the permission granted. For example,(ftp (host ftp.clark.net))
may represent the permission of ftp access to every file and every directory
on the hostftp.clarke.net. This is more general than(ftp (host
ftp.clark.net) (dir /pub/cme)), and the intersection of the two tags
results in the latter. SPKI also has a small number of specialexpressions.

(*) stands for the set of all tags and byte-strings. In other words, it will match
anything. When intersected with another tag, the result is that other tag.

(* set <tag-expr>*) stands for the set of elements listed in the *-form.
(* prefix <byte-string>) stands for the set of all byte strings that start

with the one given in the *-form.
(* range <ordering> <lower-limit>? <upper-limit>?) stands

for the set of all byte strings lexically (or numerically) between the two limits.
The ordering parameter (alpha, numeric, time, binary, date) specifies ordering.

We now show that 5-tuple reduction is incomplete with respect to the
logical semantics, when interpreting tags as representinga set of strings.
For example, given two 5-tuples(K,K1, 0,(* set read write), V )
and (K,K1, 0,(* set delete), V ), then the query
(K,K1, 0,(* set read delete), V ) should be true; but it cannot be
inferred from the two 5-tuples by reduction. Intuitively, one should be able to
combine authorizations received from multiple 5-tuples. However, the reduction
rule uses only tag intersection and does not consider tag union. From this
observation and the discussion in Section 4.2, we have the following theorem.

Theorem 4The 5-tuple reduction rule is a sound but incomplete procedure with
respect to the first-order logic semantics, when tags are viewed as representation
of sets of strings andAIntersect(T1, T2) is sound.

A natural question to ask is whether there exists a sound and complete proof
procedure for determining whether one 5-tuple follows froma set of 5-tuples.
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To do this, we have to look at the internal structures of tags and the operations
on them. The short answer is that the constraint domain for representing tags
is ill-behaved, and normal Constraint Datalog evaluation procedure does not ap-
ply. Howell [13] pointed out that intersections between some tags result in sets
that may not be finitely represented using tags. This happenswhen intersecting
a (* prefix) expression and a(* range) expression, or intersecting two
two (* range) expressions that use different ordering. The example Howell
gave is intersecting(tag (* range numeric ge 0.5 le 0.5)) with
(tag (* prefix 000)). Howell suggested artificially defining intersections
in these potentially problematic cases to be empty, for lackof better solutions.
This suggests that the constraint domain for authorizationtags does not support
the conjunction operation. It is also unclear how it can support the subsumption
operation.

4.4 Authorization Tags in SPKI vs. Named and Typed Parameters inRTC
1

We have seen that, by viewing tags as representing sets of strings and viewing
4-tuples and 5-tuples as logical sentences, 5-tuple reduction is incomplete, and it
seems unlikely that a complete proof procedure exists. Thisis clearly unsatisfac-
tory. We now look for ways to remedy this problem.

SPKI/SDSI defines tags and their intersection in a syntactical way. Howell [13]
provided a semantics for tags by viewing them as representations of sets of strings
and found that “special tags cause havoc” (6.5.3 of [13]). Wefeel that the string
semantics for tags is still syntactical in that it does not consider what the strings
intend to represent. The(* prefix) tag, for example, is used for representing
tree-like file hierarchies. If we consider the motivation and application for this
construct, it seems more natural to represent statements about file hierarchies using
multi-sorted first-order logic with a special sort devoted to files and directories.
This approach leads to a constraint domain for tree-like hierarchies, namely, a
tree domain, which we discussed in Section 3.2. The move to constraints over
tree domains not only gives us a natural semantics, but leadsto more expressive
policy options. For example,(* prefix) is not helpful for referring to the DNS
hierarchy in an access policy; we need a(* postfix) tag instead. Nor can one
use(* prefix) to represent the set of all files and directories that are direct
children of a directory, where as tree domains support theseconstraints. Similarly,
(* range) tags are more naturally viewed as a form of constraints over range
domains than sets of strings.

We believe that instead of viewing tags as defining sets of strings, and allowing
combinations of string operations that do not meaningfullyrefer to any controlled
resources, it is more informative and semantically appealing to use one special
purpose constraint domain for each concept. The languageRTC

1 does exactly this,
allowing many choices of constraint domains. For example, inRTC

1 , one can de-
clare one tree domain for file hierarchies, another tree domain for DNS names,
one range domain for time of the day, and another range domainfor port num-
bers, and so on. Each constraint domain has its standard semantic meaning, given
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by a first-order structure, and is easy to understand and handle algorithmically. In
RTC

1 , a role term may have multiple named and typed parameters, each parameter
from one constraint domain. This syntactic requirement allows different constraint
domains to be combined in a single policy, without introducing meaningless state-
ments that, for example, apply range predicates to tree expressions. A statement in
RTC

1 can be translated into a Constraint Datalog clause with constraints from tree
domains, range domains, or discrete domains with sets. In [22], we have proved
that these domains are tractable and that evaluating the minimal models of Dat-
alog programs with any multi-sorted combination of tractable domains remains
tractable.

While we believe the multi-sorted language with multiple constraint domains
is more appealing, there are combinations of SPKI/SDSI tagsthat cannot be trans-
lated intoRTC

1 in any straightforward way. While many of these combinations
do not seem meaningful or desirable, there are some aspects of SPKI/SDSI tag
intersection that do seem useful and are not easily expressed inRTC

1 without spe-
cial provision. The SPKI/SDSIAIntersect operator treats a longer tag as a more
specialized tag. The design rationale for this to enable oneto further specialize an
authorization tag by appending new fields at the end. This flexibility seems to be
missing in the strongly typed approach. The designers of theinitial tags may not
be able to foresee all necessary parameters; therefore, theinitial type specification
may not have all the parameters one wants. InRTC

1 , this flexibility is brought back
by a feature that we call restrictive inheritance. A role name can be declared to re-
strictively inherit another role name and adds more parameters. Statements about
the original role also implies statements about the extended role. For more details
on this, see [23].

4.5 Threshold Subjects in SPKI vs. the Intersection Operator in RTC
1

SPKI/SDSI lacks support for conjunction. As a result, it is not possible to directly
grant a permission to any principal who has two or more attributes at the same
time. Another use of conjunction is to allow a principal to manage a permission
(by further delegating to other principals) without being able to use the permis-
sion. InRTC

1 , which has an intersection operator providing logical conjunction,
K.perm←− K1.perm∩ K.student can be read as saying thatK allowsK1 to
delegate the authorization perm, but only to members ofK.student. IfK1 is not a
member ofK.student, thenK1 cannot make itself a member ofK.perm, even if it
issuesK1.perm←−K1.

Threshold subjects are part of SPKI/SDSI. If threshold subjects, which
SPKI/SDSI only allows in 5-tuples, are also allowed in 4-tuples, they can be
used to implement conjunction. For example,θ2(K1 A1, K2 A2) can represent
K1 A1 ∩ K2 A2. Threshold subjects in 4-tuples are allowed in [10] and earlier
versions of [9], but are not allowed in [7,9], because they are viewed as “too con-
voluted to be useful in practice” [7]. As observed by Li [20],the meaning of thresh-
old subjects in 5-tuples is different from that in 4-tuples.In a 4-tuple, k of the n
subjects in a threshold subject must be resolved to a single principal. In a 5-tuple,
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k subjects can be resolved to different principals, which can further delegate to a
single principal.

Coming up with a declarative semantics for threshold subjects in 5-tuples is not
an easy task. Clarke et al. ([7], Section 10) uses a highly operational approach to
handle thresholds. Halpern and van der Meyden [12] avoids threshold subjects in
their logical reconstruction of SPKI. Intuitively, with threshold subjects, it is not
a single principal that has some attributes (e.g., being granted an authorization);
instead, a set of principals together have some attributes.This set of principals can
all delegate to one principal; they can also submit a joint access request.

In order to provide a logical approach to threshold subjects, theRT framework
has theRTT component, which handles threshold using manifold roles.Manifold
rolesgeneralize normal roles to allow each member to be a set of principals rather
than a single principal.RTT supports more expressive threshold structures and
separation-of-duties policies, and has a logical semantics. See [24] for details on
RTT . An example policy that one can easily express inRTT is requiring two
different cashiers together to complete a transaction. To express this in SPKI, one
has to explicitly list all the cashier principals in the threshold subject, and so the
policy statement needs to be changed each time a new cashier is added or removed.
Note that delegating toθ2(K cashier, K cashier) is incorrect, since one single
cashier principal satisfies the threshold in SPKI’s semantics.

4.6 Related Work And Comparison

Several authors have attempted to provide a formal semantics for SPKI. Aura [3]
introduced a graphical representation for 5-tuples, called delegation networks;
however, it does not handle SDSI names. Howell and Kotz [14] developed a logic
that extends the ABLP logic [2,19] with a restricted form of delegation and pro-
vides a semantics for SPKI/SDSI authorization. In [12] Halpern and van der Mey-
den extended their Logic of Local Name Containment (LLNC) [11] to deal with
5-tuples in SPKI. These logics use specialized propositional modal logics, which
are more complicated than the standard first-order logic used here.

Howell [13] provided a detailed study of authorization tagsin SPKI and pointed
out that special tags in SPKI cause semantical problems. Bandmann and Dam [4]
pointed out another problem with authorization tags: computing AIntersect of two
tags that use(* set) may take time exponential in the size of the two tags.

The incompleteness problem of the SPKI 5-tuple-reduction rule we identified
here was not discussed in literature.

5 Conclusion

SPKI/SDSI is a language for expressing distributed access control policy, derived
from SPKI and SDSI. Significant effort has gone into finding a logic-based seman-
tics for both SDSI naming alone and SPKI/SDSI. We presented aFOL semantics
for SDSI based on translating each name cert into a Datalog clause, viewed as a
first-order logic sentence. We also proved that the FOL semantics is equivalent to
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the string rewriting semantics used by SDSI designers, for all queries associated
with the rewriting semantics. The advantages of our approach over previous log-
ics are the following. First-order logic captures the set-based semantic intuition of
SDSI, and requires only classical first-order logic rather than more complex modal
logics. The FOL semantics contains more information than rewriting semantics in
the sense that a larger class of queries can be formulated andunderstood. This
opens the door to more possibilities of safety and availability analysis, along the
lines developed in [25]. The FOL semantics is easily extended to support useful
extensions to SDSI and, finally, the relationship between the FOL semantics and
logic programming provides an efficient method to answer a large class of queries.

In our study of full SPKI/SDSI, we use as comparison a trust management lan-
guageRTC

1 [22], which has Constraint Datalog as its semantic foundation.RTC
1 is

a language in the RT family of Role-based Trust-management languages [24,26],
and can be viewed as extending SDSI by adding several features. By adopting spe-
cific constraint domains tailored to SPKI/SDSI, we provideda FOL semantics for
SPKI/SDSI in which authorization tags and validity specification are interpreted
as logical constraints. This interpretation of SPKI/SDSI helped us examine several
design issues, usingRTC

1 for comparison. Our analysis shows that SPKI’s 5-tuple
reduction procedure is semantically incomplete. One reason is that reduction does
not handle union of tags. In addition, authorization tags inSPKI/SDSI are algorith-
mically problematic, making a complete proof procedure unlikely. The constraint
feature ofRTC

1 provides an alternative mechanism that is often more expres-
sive than SPKI/SDSI tags, semantically natural, and algorithmically tractable. The
translation of SPKI/SDSI into logic with constraints, and experience withRTC

1 ,
suggests that Constraint Datalog is an appropriate foundation for trust manage-
ment languages, subsuming SPKI/SDSI and possessing several algorithmic and
expressiveness advantages.
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A Proofs

Proposition 2 Given a setP of policy statements, ifTh[P] |= m(K,A,K1), then

RS(P) BK A
∗

� K1.

Proof ¿From standard result in logic programming,Th[P] |= m(K,A,K1) if
and only ifm(K,A,K1) is in the minimal Herbrand model ofTh[P]. We now
summarize a standard fixpoint characterization of the minimal Herbrand model,
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which we will use in this proof. For a Datalog programDP, let DPinst be the
ground instantiation ofDP using constants inDP, the immediate consequence
operator, TDP , is defined as follows. Given a set of ground logical atomsK,
TDP(K) consists of all logical atoms,a, such thata:− b1, . . . , bn ∈ DP

inst and
bj ∈ K for 1 ≤ j ≤ n. The least fixpoint ofTDP can be constructed as fol-
lows. DefineTDP ↑

0= ∅ andTDP ↑
i+1= TDP(TDP ↑

i) for i ≥ 0. This defines
an increasing sequence of subsets of a finite set. Thus there exists anN such that
TDP(TDP↑

N ) = TDP↑
N. TDP↑

N is easily shown to be the least fixpoint ofTDP ,
which we denote byTDP↑

ω. TDP↑
ω is identical to the minimal Herbrand model of

DP [27]; therefore,LP[P] |= m(X,u, Z) if and only ifm(X,u, Z) ∈ TLP[P]↑
ω.

We prove this proposition by using induction oni to show that ifm(K,A,K ′) ∈

TLP[P] ↑
i, thenRS(P) B K A

∗
� K ′. The basis is trivially satisfied because

TLP[P]↑
0= ∅. In the step,m(K,A,K ′) ∈ TLP[P]↑

i+1, one of the following three
cases apply.

Case one:m(K,A,K ′) ∈ LP[P], this means thatK A 7→ K ′ ∈ P. Clearly,

RS[P] BK A
∗

� K ′.
Case two:m(K,A, z):− m(K1, A1, z) ∈ LP[P], andm(K1, A1,K

′) ∈ TLP[P]↑
i.

In this case,KA 7→ K1A1 ∈ P, and by induction hypothesis,RS[P]BK1A1
∗

�

K ′. Using rewriting rules inRS[P], one can rewriteK A first toK1 A1, and then

toK ′; soRS[P] BK A
∗

� K ′.
Case three: m(K,A, z) :− m(K1, A1, y1),

m(y1, A2, y2), · · · , m(y`−1, A`, z) ∈ LP[P], ` > 1, and
m(K1, A1,K

′
1), m(K ′

1, A2,K
′
2), · · · , m(K ′

`−1, A`,K
′) ∈ TLP[P] ↑

i.
In this case,K A 7→ K1 A1 · · · A` ∈ P and by induction hypothesis,

RS[P] BK1 A1
∗

� K ′
1, K

′
1 A2

∗
� K ′

2, · · · , K
′
`−1 A`

∗
� K ′. Using rewriting

rules inRS[P], one can rewriteKA first toK1A1 · · · A`, then intoK ′
1A2 · · · A`,

and so on, and finally intoK ′.

Theorem 3Given a setP of 4-tuples, and two name stringsS1 andS2, the fol-
lowing three statements are equivalent.

1. RS[P] B S1
∗

� S2.
2. Th[P] |= ∀z(contains[S1][z]⇐ contains[S2][z]).
3. Th[P ′] |= m(K,A,K ′), whereK A is any local name not defined inP, and
P ′ andK ′ depend on the form ofS2:

– whenS2 is a principal,K ′ = S2 andP ′ = P ∪ {K A 7→ S1}
– whenS2 = K1 A1 · · · A` where` ≥ 1, we setK ′ to be a principal not

appearing inP andP ′ = add(P, S2,K
′) ∪ {K A 7→ S1}.

Proof 1 implies 2: We use induction on the number of rewriting steps. Base
case,S1 = S2, the formula∀z(contains[S1][z] ⇐ contains[S2][z]) is a tautol-

ogy. Consider the step, suppose thatRS[P] B S1 � S′
∗

� S2. We will prove
thatTh[P] |= ∀z(contains[S1][z] ⇐ contains[S′][z]). Induction hypothesis gives
us Th[P] |= ∀z(contains[S′][z] ⇐ contains[S2][z]). Combining them, we have
Th[P] |= ∀z(contains[S1][z]⇐ contains[S2][z]).
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We now prove thatTh[P] |= ∀z(contains[S1][z] ⇐ contains[S′][z])

when RS[P] B S1
∗

� S′. S1 is either a principal, a local name, or an ex-
tended name.S1 cannot be a principal, since then the rewriting fromS1

to S′ is impossible. IfS1 is a local name, thenS1 7→ S′ ∈ P, and so
∀z(contains[S1][z] ⇐ contains[S′][z]) ∈ Th[P]. If S1 is an extended name
K A1 · · · A` for some` ≥ 2, we assume that the 4-tuple used to rewriteS1 into
S′ isKA1 7→ K1B1 · · · Bk for somek ≥ 0, thenS′ = K1B1 · · · BkA2 · · · A`.
Consider any model ofTh[P] and any principalz in the model, ifcontains[S′][z]
is true in the model, then there exists principalsy′1, · · · , y

′
k and y2, . . . , y`

such thatm(K1, B1, y
′
1), m(y′1, B2, y

′
2), m(y′k−1, Bk, y

′
k), m(y′k, A2, y2), · · · ,

m(y`−1, A`, z) are true in the model. SinceK A1 7→ K1 B1 · · · Bk, then
Th[P] |= ∀z(contains[K A1][z] ⇐ contains[K1 B1 · · · Bk][z]), therefore
m(K,A1, y

′
k) is true in the model. It then follows thatcontains[K A1 · · · A`][z]

is true in the model. Therefore,Th[P] |= ∀z(contains[S1][z]⇐ contains[S′][z]).

2 implies 3: Assume, without loss of generality, thatS1 is K A1 · · · A` for
some` ≥ 0 andS2 is K1 B1 · · · Bk from somek ≥ 0. Observe that by def-
inition of P ′, Th[P ′] |= contains[S2][K

′]. WhenS2 is a principal,S2 = K ′.
WhenS2 is a local name or an extended name,Th[P ′] contains the following
k atomsm(K1, B1,K

′
1), m(K ′

1, B2,K
′
2), · · · , m(K ′

k−1, Bk,K
′). If Th[P] |=

∀z(contains[S1][z] ⇐ contains[S2][z]), thenTh[P ′] |= contains[S1][K
′]. Also

observe thatTh[P ′] |= ∀z(contains[KA][z]⇐ contains[S1][z]); therefore,Th[P ′] |=
m(K,A,K ′).

3 implies 1 From Proposition 2, we know that ifTh[P ′] |= m(K,A,K ′), then

RS[P ′] B K A
∗

� K ′. Consider the rewriting sequence, the first rule applied
has to beK A 7→ S1, since it is the only rule that can apply. (Recall that by
definitionK A is not defined inP.) Consider the last step, the rule applied has to
beK ′

`−1 A` 7→ K ′, since that is the only rule having aK ′ on its right hand side.
The rule applied in the second to last step has to beK ′

`−2 A`−1 7→ K ′
`−1, since

that is the only rule havingK ′
`−1 on its right-hand side, and so on. Therefore, the

rewriting sequence must contains in its middle a sequence rewriting fromS1 toS2.
Further observe that the rules inP ′ but not inP cannot be applied in this middle

sequence. Therefore,RS[P] B S1
∗

� S2.
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