
RTML: A Role-based Trust-management Markup Language

Ninghui Li John C. Mitchell Yu Qiu
Department of Computer Science

Stanford University
Gates 4B, Stanford, CA 94305-9045
{ninghui, jcm, yuqiu}@stanford.edu

William H. Winsborough
Network Associates Laboratories
15204 Omega Drive, Suite 300

Rockville, MD 20850-4601
william winsborough@nai.com

Kent E. Seamons Michael Halcrow Jared Jacobson
Computer Science Department, Brigham Young University, Provo, UT 84602

{seamons, mhalcrow, jmj52}@cs.byu.edu

Abstract

RT is a framework for Role-based Trust Manage-
ment [20]. In comparison with systems like SPKI/SDSI
and KeyNote, the advantages ofRT include: a declarative,
logic-based semantic foundation, support for vocabulary
agreement, strongly-typed credentials and policies, more
flexible delegation structures, and more expressive support
for Separation-of-Duty policies.

This paper describes advances in theRT framework
that broaden its applicability and presents RTML, an XML-
based data representation forRT policies and credentials.
Improvements in RT include new data types to encode per-
missions involving structured resources and ranges, restric-
tive inheritance of roles for flexible refinement of permis-
sions, and notions of identity roles and identity-based roles
for enforcing separation-of-duty when a physical user holds
multiple keys. RTML establishes a precise format forRT
credentials and policies, facilitating deployment of the RT
framework.

1 Introduction

RT is a framework for Role-based Trust Management.
The framework comprises several sub-languages, described
in previous papers [20, 21].RT credentials define role
membership and may delegate authority to add additional
members to a role.RT ’s notion of role is more general than
typically used in Role Based Access Control (RBAC) [23].
Roles inRT are localized to each principal, can have pa-
rameters, and can express concepts such as identity in sys-
tems like X.509 [14], role and permission in RBAC, name

and authorization in SPKI/SDSI [11], and attribute in at-
tribute certificates.

One distinguishing feature of theRT framework is that it
directly addresses the issue of vocabulary agreement. When
credential chains delegate access permissions of resources,
all the principals involved in the chain need to use consistent
terminology to specify resource permissions and delegation
conditions. When different credential issuers use incom-
patible schemes, their credentials cannot be meaningfully
combined. Some intended permissions may not be granted,
or, when schemes intended for different purposes acciden-
tally interact, unintended authorization may follow. Some
systems do not address this issue at all; others try to come
up with one vocabulary for all applications. Our philosophy
is that, although different applications often share common
policy concepts, they need to be able to use different vocab-
ularies. InRT , we address this issue through a scheme in-
spired by XML namespaces [7]. We introduceapplication
domain specification documents (ADSDs). Each ADSD is
globally uniquely identified by a URI, and defines a suite
of related data types and role names, called avocabulary.
Credentials, when using a role name, refer to the ADSD in
which the role name is declared. This enablesRT to have
strongly typed credentials and policies. This feature helps
ensure interoperability and reduce the possibility of errors
in writing policies and credentials and unintended interac-
tion of credentials.

In the process of turning the design of RT [20] into a
system that can be used by several projects, we extended
the design in the following ways.

First, two new categories of data types are added:tree
typesandrecord types. Tree types can be used to represent
structured resources like file hierarchies, DNS names, etc.
Record types can be used to group logically related fields

1

together, e.g., an address may be defined using a record type
that contains fields such as street number, zip code, etc. The
credential safety requirements is also relaxed. These exten-
sions enable one to represent permissions that involve struc-
tured resources and ranges, without sacrificing the tractabil-
ity property.

Second, we add the notion ofrestrictive inheritance
among roles to support flexible refinement of permissions.
Consider the following example in SPKI. A firewall dele-
gates toKA the permission “(connect cs.stanford.edu)” and
allowsKA to further delegate.KA in turn delegates these
rights to KB . Now if KB grants toKC the permission
“(connect cs.stanford.edu 80)”, which is augmented with
a port number, one can conclude that the firewall autho-
rizesKC to connect to the host through the given port. It
is straightforward to achieve this inRT by encoding these
permissions using a role with the name “connect” and two
parameters: host and port. However, suppose the firewall
administrator first declares the connect role to take the host
parameter, alone, and later, afterKA has delegated the con-
nect role toKB , realizes the need for adding the port param-
eter. In this case we want to avoid requiringKA to issue its
delegation again, as is the case with the original design of
RT . This is achieved by declaring another role, say, “con-
nect2” to inherit “connect”. (This is a restrictive form of
inheritance, in that membership in connect2 implies autho-
rization to fewer resources than does membership in con-
nect.) This approach achieves the flexibility of untyped cre-
dentials without giving up the other advantages of strong
typing.

Third, we now explicitly address the relationships be-
tween physical users and principals (keys).RT has man-
ifold roles and exclusive product, designed to support Sepa-
ration of Duty policies, which require that two or more dif-
ferent people be responsible for the completion of a sensi-
tive task. This purpose could be defeated in the originalRT
design by a user possessing multiple keys. To address this
issue, we introduce identity roles and identity-based roles.

In this paper, we also present RTML version 1, an XML-
based data representation of theRT framework with the
above described extensions. (We omit “version 1” in the rest
of this paper.) This work on RTML, fleshing out the design
of RT , involves efforts from three research projects, with
focuses on trust management, attribute-based access con-
trol, and automated trust negotiation. Each of the projects
found previous public-key certification systems such as
X.509, SPKI/SDSI, and KeyNote [3] too limited in one way
or another [20, 25, 27]. RTML’s main purpose is to be used
as an alternative to these systems.

A major design decision in RTML is how ADSDs and
credentials interact. We explored the possibility of mak-
ing ADSDs themselves XML schemas [12], but settled on
making both ADSDs and credentials XML documents. One

can think of ADSDs as.h files in C programs and cre-
dentials as.c files. Data types and role names are de-
clared in ADSDs, and credentials must use these role names
in a type-consistent way. The RTML system includes an
XML schema document that defines the syntax of ADSDs
and credentials.1 The RTML system also has a predefined
ADSD which includes data types for representing com-
monly used basic types, distinguished names, email ad-
dresses, DNS names, and file paths; this ADSD is provided
in Appendix B.1.

1.1 Scenarios

In the following, we use three example scenarios to il-
lustrate what can be expressed inRT . In these scenarios,
we assume that public key certificates are used. None of
the three scenarios can be fully captured using SPKI/SDSI,
KeyNote, or attribute certificates. The latter two cannot be
expressed in the original design ofRT in [20] and require
the new extensions introduced in this paper. We will show
how to express these scenarios in Section 3.

Scenario 1 (Linking Delegation and Intersection)A fic-
titious Web publishing service, EPub, offers a discount to
anyone who is both a graduate student and an ACM member
since 2001. EPub delegates the authority over the identifica-
tion of students to entities that EPub believes are legitimate
universities. EPub additionally delegates the authority over
identifying universities to a fictitious Accrediting Board for
Universities, ABU. Bob is an ACM member and a master
student of StateU, which is accredited by ABU.

EPub knows the public key of ACM and ABU. The pub-
lic key of StateU, which issues Bob’s student credential,
should be certified in StateU’s accrediting credential. Fur-
thermore, EPub requires that the same university name ap-
pears in both its accreditation credential and the student’s
credential. Similarly, EPub requires that the same student
name appears in both the ACM member credential and the
student credential.

Scenario 2 (Controlled Delegation of Permissions)A
firewall FW issues a credential to give a system admin, SA,
the authority to grant to anyone who has a Stanford ID per-
mission to connect to the host “cs.stanford.edu” and to any
host in the domain “cs.stanford.edu”. The permission is ex-
pressed using a role with one parameter, “host”. Later, FW
wants to further parameterizes the permission by adding the
port parameter. SA now grants to Alice, who has a Stan-
ford ID, the permission to connect to any host in the domain
“stanford.edu” at any port between 8000 and 8443. Then,
when Alice requests to connect to the host “cs.stanford.edu”
at port 8443, FW should allow this connection.

1The schema is available at the following URL:
http://crypto.stanford.edu/˜ninghui/rtml/RTMLv1.0q.xsd

2

Note that SA can effectively delegate only to entities who
have Stanford IDs. This is what we call a controlled dele-
gation. In fact, when SA does not have a Stanford ID, he
will not be able to get any connection permission by using
the credential issued to him, although he can manage the
permission.

Scenario 3 (Identity-based Separation of Duty)A bank
FB has three roles: manager, cashier, and auditor. FB’s pol-
icy requires that a certain transaction be approved by a man-
ager, two cashiers, and an auditor. The two cashiers must be
different. A manager who is also a cashier can serve as one
of the two cashiers. And the auditor must be different from
the other parties in the transaction.

The intention of the policy is to require different users,
who are members of appropriate roles, to be jointly respon-
sible for a transaction. A further complication arises when
a physical user may possess multiple public keys. We want
to ensure that the transaction is approved by distinct users,
rather than distinct keys. To make this possible, we assume
that FB assigns a unique employee number to each user, and
every key that a user possesses is certified to be associated
with the user’s employee number.

1.2 Organization

The rest of the paper is organized as follows. Back-
ground information is given in Section 2. In Section 3, we
show how to express the three scenarios described in Sec-
tion 1.1 and explain the new extensions added toRT . In
Section 4, we describe RTML. We then discuss related work
in Section 5, and conclude in Section 6.

2 Background

In this section, we give background information on trust
management and theRT framework.

2.1 Trust Management

The term “trust management” was introduced in [5] to
group together several principles in dealing with authoriza-
tion in decentralized distributed systems. Some of these
principles appeared in earlier work on distributed access
control, e.g., [1, 16]. The concept of trust management
is later used and extended in several systems [3, 4, 6, 9, 11,
17, 20, 21].

In the “trust-management” approach, a requester submits
a request to anauthorizer, who specifiesaccess rules(also
calledpolicies), which govern access to protected resources;
then the authorizer and the requester jointly compute a set
of credentials to be used in this request. Finally the autho-
rizer decides whether to authorize this request by answering

theproof-of-compliancequestion: “Do the access rules and
credentials authorize the request?”

A TM system has a TM language for specifying creden-
tials and access rules. A TM system also needs a process of
computing which credentials to use in an authorization pro-
cedure; this is often called credential (or certificate) chain
discovery [9]. When credentials are stored in a distributed
manner, the discovery process needs to consider how to lo-
cate these credentials [21]. When credentials and/or access
rules are considered sensitive, the discovery process may
be carried out by using a “automated trust negotiation” pro-
cess [24, 27, 28, 29].

A TM system also needs a proof-of-compliance check-
ing program. A chain discovery program can also be used
for proof-of-compliance, since if it can discover a chain, it
certainly can verify that the chain is valid. However, a com-
pliance checking program can often be simpler, since it is
often not difficult to have the discovery program produce a
chain that is organized in a way such that checking the chain
is easier. These programs can be used as services indepen-
dent of applications or embedded in applications.

2.2 History of the RT framework

The design ofRT was influenced by systems like the
logic for access control in [1, 16], SPKI/SDSI [11, 22], and
Delegation Logic [17, 18]. The most basic part ofRT , RT0,
was presented in [21], together with algorithms that search
for chains ofRT0 credentials, and a type system about cre-
dential storage that ensures chains can be found among
credentials whose storage is distributed. A trust negotia-
tion protocol that supportsRT0 credentials was introduced
in [27]. Four additional components of theRT frame-
work were introduced in [20]:RT1, RT2, RTT , andRTD.
RT1 adds toRT0 parameterized roles.RT2 adds toRT1

logical objects, which can group logically related objects
together so that permissions about them can be assigned
together. RTT provides manifold roles and role-product
operators, which can express separation-of-duty policies.
RTD provides delegation of role activations, which can ex-
press selective use of capacities and delegation of these ca-
pacities. In [19], Constraint DATALOG is used to extend
RT1 with the ability to express permissions regarding struc-
tured resources and ranges, while at the same time ensuring
tractability of evaluating implications of access rules and
credentials.

In this paper, we describe RTML version 1, which imple-
ments constraint-enhancedRTT

1 in theRT framework[20];
it does not yet haveRT2 orRTD. On the other hand, RTML
extends the original design to address several practical is-
sues, as discussed in Section 1.

In RTML, access rules are similar to credentials and only
involve properties of requesters. This suffices for some ap-

3

plications. In other applications, access rules may include
other conditions of access, such as current time, application
state, auditing requirements, etc. RTML does not yet sup-
port these features. In those applications, RTML may still
be used for expressing credentials.

2.3 Background ofRT

A principal2 can issue credentials and make requests.
RT assumes that it can be verified that a principal indeed
issued a particular credential or request. The most typical
kind of principals are public keys, butRT does not man-
date so. In some environments, a principal could also be,
say, a symmetric key or a user account. In one web-based
file sharing demonstration application we developed, user
ids are used as principals.

The most important concept inRT is that ofroles. Roles
in RT are localized to principals. Each principal has its own
authority name space for roles; this is the same as localized
name spaces in SDSI. One needs to use a principal and a
role term to refer to a role, e.g.,KA.R, in which KA is a
principal andR is a role term. In the simplest case, a role
term just contains the name of role. More generally, a role
term may contain parameters. A roleKA.R can be read
asKA’s R role. OnlyKA has the authority to define the
members of the roleKA.R, andKA does so by issuing role-
definition credentials. A role may be defined by multiple
credentials; the effect is that of union.

RT hassingle-element rolesandmanifold roles. The se-
mantics of a single-element role is a set of principals. The
notion of single-element roles unifies several concepts in
access control and trust management literature, including
groups in many systems, identity in identity certification
systems such as X.509, roles and permissions in RBAC,
names in SDSI, authorization tags in SPKI, and attributes
in attribute certificates. It is possible to unify these concepts
because the common mathematical underpinning of the se-
mantics of these concepts is sets of principals. A group is
clearly a set of principals. An identity is a set of principals
corresponding to one physical user; some systems require
the set to contain just one principal. (The notion of iden-
tity and the relationship between users and principals will
be further explored in Section 3.3.) A role in RBAC can be
viewed as a set of principals who are members of this role;
role hierarchy relationships can be viewed as ways to define
role memberships.3 A permission corresponds to a set of

2Principals are called entities in earlier papers onRT [20, 21]; here we
use “principal” to avoid potential confusion with entities in XML.

3This view of a role loses some of the meaning that can be associated
with a role in RBAC, e.g., constraints. Constraints like mutually exclusive
roles are implemented in RTML by using manifold roles. Constraints
like cardinality constraints can be associated with the set reading of roles,
but they do not exist in RTML. These constraints can be implemented by
applications that use RTML and checked when credentials are being issued.

principals who have the permission. Granting a permission
to a principal amounts to making the principal a member of
the set corresponding to the permission. Granting a permis-
sion to a role amounts to asserting that the set corresponding
to the permission includes as a subset the set corresponding
to the role. A name in SDSI is also resolved to a set of
principals. An attribute is a set of principals who have the
attribute.

The notion of manifold roles generalizes that of single-
element roles to allow each member of the role to be a
principal set, instead of a principal. That the principal set
{K1,K2} is a member of the manifold roleKA.R means
thatK1 andK2 together have the privileges associated with
KA.R, but either one of them acting alone may not have
that privilege. The semantics of a manifold role is a set
of principal sets. Manifold roles are introduced to support
Separation of Duty policies [8, 26] in a more expressive way
than do threshold structures.

3 Extensions toRT

In the following subsections, we present the new exten-
sions toRT by describing how to express the policies asso-
ciated with each of the three application scenarios given in
Section 1.1.

3.1 Linking Delegation and Intersection

ABU, the fictitious accrediting board for universities,
creates an ADSD, in which two roles are declared: uni-
versity (which has only one parameter: name) and student
(which has five parameters: university, department, pro-
gram, id, and name). ACM creates an ADSD and declares
one role: acmMember, which has four parameters: name,
class, number, and since. EPub creates an ADSD for its
own use, which declares a new role discount and includes
the two ADSDs by ABU and ACM.

The credentials, access rules, and conclusions drawn
from them, are given in Figure 1 in an abstract syn-
tax. Line (1) represents the accrediting credential of
StateU. It means thatKStateU is a member of the role
“KABU.university(name=‘StateU’)”. Line (2) represents
Bob’s student credential issued by StateU. Line (3) repre-
sents Bob’s ACM member credential.

Line (4) represents EPub’s discount policy: Anyone who
is both an ACM member since 2001 and a graduate student
is entitled to the discount, and the name in the two creden-
tials should be the same. Note that not all parameters appear
in the role term for acmMember; only those that need to be
constrained have to appear. The same is true for the role

Other constraints, like mutually exclusive permission are lost from the set
reading.

4

Credentials:
KABU.university(name=‘StateU’)←− KStateU (1)
KStateU.student(university=‘StateU’, name=‘Bob Smith’, program=‘M.S.’,· · ·) ←− KBob (2)
KACM.acmMember(number=‘UJ12345’, name=’Bob Smith’, since=2000,· · ·) ←− KBob (3)

Access rules of EPub
discount←− KACM.acmMember(name=?X, since≤2001)∩ student(name=?X, program∈{‘M.S.’, ‘Ph.D.’}) (4)
university() ⇐= KABU (5)
student(university=?X)⇐= university(name=?X) (6)

From (1) and (5), EPub concludes that: university(name=‘StateU’)←−KStateU (7)
From (6) and (7), EPub concludes that: student(university=‘StateU’)⇐= KStateU (8)
From (2) and (8), EPub concludes that: student(university=‘StateU’, name=‘Bob Smith’,· · ·)←−KBob (9)
From (3), (4), and (9), EPub concludes that: discount←−KBob (10)

Figure 1. Scenario 1: Linking Delegation and Intersection

term for student. The RTML encoding of this policy in in-
cluded in Appendix B.2.

Line (5) encodes EPub’s delegation over the university
role to KABU; this is called asimple delegation. The
role term “university()” has no parameter at all, because
the name parameter is not constrained. This delegation
means that any principal that is a member of the role
KABU.university(name=X) is also a member of EPub’s
university(name=X) role. In other words, it implies that the
simple containment “university()←−KABU.university()”.
When no restrictive inheritance is involved, these two are
indeed equivalent. And the delegation syntax is simply a
convenient syntactic sugar. In Section 3.3, we will illustrate
their differences.

Line (6) encodes EPub’s delegation over the identifica-
tion of students of a university to principals who are certi-
fied to be that university. This is called alinking delegation.
This implies that for any principalK and university name
X, if K is a member of EPub’s “university(name=X)”
role, then EPub delegates the authority over the role
“student(university=X)” to K.

3.2 Controlled Delegation of Permissions

Assume that a role, stanfordID, is declared in some
ADSD; the details of the parameters of the stanfordID role
are not important in this scenario. In another ADSD, a host-
Perm role is declared and has one parameter: host. The
type of the “host” parameter is “dns”, which is pre-declared
by the RTML system. (One can also use a type declared
in the current ADSD via the type declaration mechanism
provided by RTML.) In another ADSD, a socketPerm role
is declared torestrictively inherithostPerm, and a new pa-
rameter “port” is added, which has the pre-declared type
“unsigned short”.

Figure 2 gives the access rule, credentials, and some im-
plications of them. Line (1) represents the delegation from

FW to SA. The roleKStanford.stanfordID() is called the
scopeof this delegation. Line (2) represents the delegation
from SA to Alice. Line (3) represent Alice’s Stanford ID
credential. RTML encoding of the two ADSDs declaring
hostPerm and socketPerm and credentials (2) and (3) are
included in Appendix B.3.

When socketPerm is the only role that restrictively in-
herits hostPerm, then credential (1) is equivalent to the two
credentials (4) and (5). The request, as represented by (6),
is true because ‘cs.stanford.edu’ is a descendant of ‘stan-
ford.edu’, and8443 ∈ [8000..8443].

In general, whenr′ restrictively inheritsr, then any def-
inition “KA.r(· · ·) ←− e” also implies “KA.r′(· · ·) ←−
e”. Furthermore, any delegation “KA.r(· · ·) ⇐= e” also
implies “KA.r′(· · ·) ⇐= e”. The rationale is that when
r′ restrictively inheritsr, thenr′(· · ·) represents a more re-
stricted permission thanr(· · ·), andr′(· · ·) is weaker than
r(· · ·) in the sense that any member of theKA.r(· · ·) role
is also a member of theKA.r′(· · ·) role. This is achieved
by having for each definition whose head usesr, also gen-
erating a definition that has head usingr′.

Now we explain the difference between the delegation
“KA.r() ⇐= KB” and the containment “KA.r() ←−
KB .r()”. The delegation is stronger than the containment;
it implies the containment (aboutr) and another contain-
ment aboutr′: “KA.r′() ←− KB .r′()”. The contain-
ment aboutr only implies “KA.r′() ←− KB .r()”, which
is weaker than the containment aboutr′ above, since any
member of “KB .r()” would also be a member ofKB .r′().

3.3 Identity-based Separation of Duty

The bank creates one ADSD, which declares six roles:
manager, cashier, auditor, twoCashiers, managerAndT-
woCashiers, and approval. The latter three are declared to
be manifold roles. For simplicity, we assume that these roles
do not contain parameters.

5

Credentials:
KFW.hostPerm(host∈ currentAndDescendants(‘cs.stanford.edu’))⇐= KSA : KStanford.stanfordID() (1)
KSA.socketPerm(host∈ descendants(’stanford.edu’), port∈ [8000..8443]) ←− KAlice (2)
KStanford.stanfordID(· · ·) ←− KAlice (3)

Assuming socketPerm is the only role that restrictively inherits hostPerm, then (1) is equivalent to (4) and (5),
in which we uset as a shorthand for “currentAndDescendants(‘cs.stanford.edu’)”:

KFW.hostPerm(host∈ t) ←− KSA.hostPerm(host∈ t) ∩KStanford.stanfordID() (4)
KFW.socketPerm(host∈ t) ←− KSA.sockerPerm(host∈ t) ∩KStanford.stanfordID() (5)

From (2), (3), and (5), the request, represented by the following query, should be authorized:
KFW.socketPerm(host= ‘cs.stanford.edu’, port= 8443) ←− KAlice (6)

Figure 2. Scenario 2: Controlled Delegation of Permissions

Access rules of FB
twoCashiers←− cashier⊗ cashier (1)
managerAndTwoCashiers←− manager� twoCashiers (2)
approval←− auditor⊗managerAndTwoCashiers (3)

Figure 3. Scenario 3: Identity-based Separation of Duty

Three definitions implementing the approval policy
are given in Figure 3. Definition (1) means that FB’s
twoCashiers role contains every principal set{K1,K2}
such that bothK1 and K2 are members of FB’s cashier
role, andK1 6= K2. Definition (2) means that FB’s man-
agerAndTwoCashiers role contains every principal setp =
{K} ∪ p1 such thatK is a member of FB’s manager role
andp1 is a member of FB’s twoCashiers role. Definition
(3) means that the approval role contains every principal set
p = {K} ∪ p2 such thatK is a member of FB’s auditor
role,p2 is a member of FB’s managerAndTwoCashiers, and
K 6∈ p2.

Identity roles and identity-based roles

When an employee holds multiple keys, the definitions in
Figure 3 may not achieve the goal of SoD, which requires
different users rather than keys be responsible for the trans-
action. In decentralized and public-key based systems, one
cannot assume that there is always an one-to-one relation-
ships between keys and users. Such a relationship is of-
ten very difficult to enforce. In addition, there are often
practical considerations that dictate one user having multi-
ple keys. For example, a user may be required to change
keys regularly, and to assure smooth transition, two keys
may overlap. A user may also wish to have multiple keys in
the interest of privacy and/or key security.

To address this problem, FB can declare a new role, em-
ployeeNumber, with one parameter, “number”, and declare
this role to be anidentity role. This means each physi-
cal user should correspond to one specific instance of the
identity role. For example, if Carl’s employee ID with FB
is ‘1111’, for any keyKD held by Carl, FB only issues

“FB.employeeNumber(id=‘1111’)←−KD”, and no other
employeeNumber credential containingKD.

FB may then declare the roles twoCashiers, man-
agerAndTwoCashiers, and approval to be based on the iden-
tity employeeNumber; we call these rolesidentity-based. In
contrast, we call normal rolesprincipal-based. Members of
identity-based roles are computed based on the identities of
principals.

We say that a principalKD has an identity with respect
to KA.r if for some parameters, denoted by “· · · ”, KD is a
member ofKA.r(· · ·); and we say thatKA.r(· · ·) is KD ’s
identity wrtKA.r. Two principalsK andK ′ areequivalent
wrt KA.r, denoted byK ≡ K ′[KA.r] (we omit “[KA.r]”
when it is clear from the context), ifK andK ′ are equal, or
they have the same identity wrtKA.r.

When using the rule “twoCashiers←−cashier ⊗
cashier”,{K1,K2} is a member of twoCashiers only when
K1 andK2 each have identities and are not equivalent (wrt
FB’s employeeNumber role), and each ofK1 and K2 is
equivalent to some member of FB’s cashier role, i.e., there
exists two membersK ′

1,K
′
2 of FB’s cashier role such that

K1 ≡ K ′
1 andK2 ≡ K ′

2.

The notion we are using to ensure principals correspond
to different users can be generalized to support applications
of ⊗ to manifold roles. Two principal setsp1 andp2 are
equivalentif every principal inp1 is equivalent to one prin-
cipal in p2 and vice versa. Two principal setsp1 andp2 are
non-intersecting with respect to a given identity roleif all
principals inp1 andp2 have identities and no principal in
p1 is equivalent to any principal inp2. Thus, when using
definition (3), the approval role contains every principal set

6

p = p1 ∪ p2 such that,p1 andp2 are non-intersecting, and
there existsp′1 andp′2 such thatp1 ≡ p′1, p2 ≡ p′2, p′1 is a
member of FB’s auditor role (in which casep′1 must contain
only one principal, since auditor is not a manifold role), and
p′2 is a member of FB’s managerAndTwoCashiers role.

We have seen that identity can be used in determining
that two principals are not equivalent when a definition in-
volves⊗. Identity also affects other kinds of definitions.
For example, whenR is based on identity roler′, and we
haveKA.R←− KA.R1 ∩KA.R2, if a user holds two keys
K1 andK2 so thatK1 ∈ KA.R1 andK2 ∈ KA.R2, then
the user can get the permission encoded inKA.R when he
can prove thatK1 ≡ K2 wrt KA.r′. In this case, we have
K1 ∈ R andK2 ∈ R. Again, this approach can be general-
ized to support applications of∩ to manifold roles.

Our notion of identity role is somewhat similar to the no-
tion of primary keys in databases. It is declared to uniquely
identify something. This notion of identity is different from
the traditional ones, in that it is not global. Not every user
has to have an identity. Furthermore, different roles may be
based on different identity roles, just as different relations
in a databases may have different primary keys. We do not
think that it is practical to have a globally unique identity for
users at a global scale; however, it is often possible inside
one organization.

Our approach does not solve the difficult problem of cre-
ating an infrastructure that uniquely identifies the holder of
each principal. Rather we provide a mechanism to take ad-
vantage of such an infrastructure in policies when it is in
place.

Extending inheritance and projection

One final issue bears on the Separation of Duty scenario.
In practice, it is unlikely that a credential contains only an
employee number. To avoid having to use multiple roles to
document information about one employee (these multiple
roles can still be included in one credential, as one creden-
tial can contain multiple definitions), one can do two things.

One approach is to first declare the employeeNumber
role, then declare an employeeID role toextendemploy-
eeNumber and add additional parameters. We call thisex-
tending inheritance, by way of contrast with the notion of
restrictive inheritance discussed in Section 3.2. In this case,
membership in the employeeID role implies membership in
the employeeNumber role. The intuition here is that every-
one that has an employee ID has an employee number, plus
some additional information carried in the new parameters.
Thus, extending inheritance enables additional information
to be added about role members, while restrictive inheri-
tance enables additional requirements to be associated with
a permission. Whenr′ extendsr, then for each principal
K, K.r(f1 =?X1, . . . , f` =?X`) contains each member of
K.r′(f1 =?X1, . . . , f` =?X`), in which f1, . . . , f` are all

the parameters ofr. Note thatr′ may contain additional
parameters, but that the containment holds no matter what
values they take.

Another approach is to first declare the employeeID role
and then declare the employeeNumber role as aprojection
of the employeeID role to the number parameter. The effect
is essentially the same as extending inheritance. Projection
is useful when one wants to extract an identity role from a
role that is already defined. Extending inheritance is use-
ful, for instance, if one wants to update an old student ID,
adding more parameters, but the new student ID credential
should still prove membership in the old student ID role,
since some applications may still use the old student ID role.

3.4 Summary of the Extensions

We now summarize the key new features added toRT ,
illustrated above by the scenarios. In Section 3.1, simple
delegation and linking delegation are new. As used there,
they are convenient syntactic sugars, simplifying the ex-
pression of requirements that can be equivalently expressed
by using simple containment and linking containment (See
Section 4.3). In Section 3.2, the tree types and the ability
to use ranges in the head of a rule are new. Also new is the
notion of restrictive inheritance, which creates a context in
which simple delegation and linking delegation are not mere
syntactic sugars, but capture otherwise inexpressible mean-
ings. In Section 3.3, the notion of identity role, identity-
based role, extending inheritance, and projection are new.

4 RTML

RTML is defined using XML Schema. The schema def-
inition of RTML defines three top level elements:Cre-
dential , AccessRule , andApplicationDomain-
Specification . The schema for RTML uses data types
in the XML Schema standard [2]; it also depends on the
XML Signature standard [10], both for credential signatures
and for representing public keys.

A Credential element can be divided into three parts:
prologue, definitions, and verification data.

4.1 Prologue of a Credential

The prologue part of a credential has the following format.

<Preamble>
<DefaultDomain uri="..." />
<ImportDomain uri="..." name="..."> *
<Principal> </Principal> *

</Preamble>
<Issuer> </Issuer>
<CredentialIdentifier>
</CredentialIdentifier>

7

ThePreamble element contains reference information for
the rest of the credential: aDefaultDomain element,
zero or moreImportDomain elements, and zero or more
Principal elements. The “uri” attribute of aDefault-
Domain element specifies the location of an ADSD that
acts as the default domain of the credential. Role names
used in the credential are assumed to be declared in the de-
fault domain unless a domain is explicitly specified. An
ImportDomain element has two attributes: a “uri” at-
tribute that specifies the location of the ADSD to be im-
ported, and a “name” attribute that is used to refer to the im-
ported domain. Role names declared in imported domains
can also be used in the current credential.

A Principal element gives the value of a principal, it
can be aKeyValue element as defined in the XML Signa-
ture standard, anIntegerValue element, or aString-
Value element. See Section 4.6 for more discussion of
this. To improve readability, principals, which could be
quite long, are included in the preamble so that they can
be referred to in a compact way elsewhere in the credential.

The Issuer element contains aprincipal value, which
may be aPrincipal element or aPrincipalRef ele-
ment (which refers to aPrincipal element appearing in
the preamble).

The CredentialIdentifier element contains a
string that is unique among all credentials issued by the
same issuer having the same default domain. It could be
a serial number.

4.2 Roles in a Credential

After the prologue, a credential contains one or more
definitions. Before introducing these definitions, we first
explain the building blocks used in these definitions.

A role can take the form of aRoleTerm element (which
is then assumed to be in the authority name space of the
issuer) or anExternalRole element (which contains a
principal value and aRoleTerm).

A RoleTerm element has two attributes: name and do-
main (optional), which together identify a declared role.
When the domain attribute is not present, the name attribute
identifies a role declared in the default domain of this cre-
dential. When the domain attribute is present, it should be
equal to the name attribute of one of theImportDomain
elements, and the name attribute identifies a role declared in
the corresponding ADSD.

A RoleTerm element contains zero or moreParame-
ter elements, each of which has two attributes: name (re-
quired) and id (optional). The id parameter uniquely iden-
tify the parameter in the current credential, so that it can be
referred to elsewhere. AParameter element optionally
contains a constraint. A constraint may be a value of one of
the seven categories of data types (which will be described

in Section 4.6), a principal value, aSpecialPrincipal ,
anInterval , aSet , or anEquals element.

A constraint that is a value means that the parameter
should be equal to this value. Currently, aSpecial-
Principal element can take one of two values: ‘issuer’
(which refers to the issuer of the current credential) and
‘this’. The ‘this’ special principal can only be used when
defining a singleton role; it refers to the principal being
evaluated to be the member of the role. The following
example from [20] illustrates the use of this: A company
Alpha gives a pay raise to an employee if someone autho-
rized to evaluate the employee says that his performance
was good. This can be encoded using “payRaise←− eval-
uatorOf(this).goodPerformance”.

An Interval element contains an optionalFrom ele-
ment and an optionalTo element, each of which contains
a value of an ordered data type. This represents an interval
set. TheFrom (To) element has an attribute “included”,
indicating whether the bound in included in the interval.
When theFrom (To) element is not present, that side of
the interval is unbounded. ASet element includes one or
more values. AnEquals element has one attribute, which
refers to another parameter in the definition, meaning that
this parameter should equal the other parameter.

4.3 Definitions

There are eight kinds of definitions, each containing a
HeadRoleTerm element and a body part. Before going
into the definitions, we also need the notion of dimension.
Each role has adimension. A single-element role (default)
has dimension 1. Manifold roles require that the dimension
be explicitly declared. For a principal set to be a member
of the role, its size must be no more than the role’s di-
mension. For example, ifR has dimension2, then{K1}
and{K1,K2} may be members ofA.R, but{K1,K2,K3}
cannot be. The reason for requiring that the dimension be
given is to ensure efficient evaluation. (See [20] for further
details.)

Different kinds of definitions contain different elements
as the body part. While describing these definitions, we
use an abstract syntax, in whichR represents theHead-
RoleTerm , R1 andR2 represents other role terms, andQ
(often with subscripts) represents roles, and in which we as-
sumeKA is the issuer.

Simple Member R←− D

The body part consists of one principal value, denotedD.
This defines the principalD to be the member of the role
KA.R. More precisely, the roleKA.R contains any prin-
cipal that is equivalent toD. If R is principal-based, then
equivalency is the same as equality. IfR is based on an
identityr′, then the equivalency may also be determined by
the identity.

8

Simple Containment R←− Q

The body part consists of one role, denotedQ. The dimen-
sion ofR should be no less than that ofQ.

This defines the roleKA.R to contain (every principal
set that is equivalent to some principal set that is a member
of) the roleQ.

Intersection Containment R←− Q1 ∩ · · · ∩Qk

The body part consists of anIntersection element,
which contains two or more roles. The dimension ofR
should be no less than the maximum dimension ofQ1 ∩
· · · ∩Qk.

This definesKA.R to contain the intersection of all the
rolesQ1, . . . , Qk. More precisely,KA.R contains any prin-
cipal setp that is equivalent to a member ofQj , for every
j = 1..k.

Linking Containment R←− R1.R2

The body part consists of aLinkedRole element, which
contains twoRoleTerm elements. The dimension ofR
should be no less than that ofR2.

WhenR1 is a singleton role, this defines the roleKA.R
to contain everyKB .R2, in which KB is a member of the
role KA.R1. When R1 is a manifold role, this defines,
for any principal set{KB1 , . . . , kB`

} that is a member of
KA.R1, KA.R contains the intersection ofKB1 .R2 ∩ · · · ∩
KB`

.R2.

Product Containment R←− Q1 � · · · �Qk

The body part consists of aProduct element, which con-
tains two or more roles. The dimension ofR should be no
less than the sum of the dimensions ofQ1, . . . , Qk.

This defines the roleKA.R to contain every principal set
p such thatp = p1 ∪ · · · ∪ pk and for each1 ≤ j ≤ k, there
existsp′j such thatpj ≡ p′j andp′j ∈ Qj .

Exclusive Product Containment R←− Q1 ⊗ · · · ⊗Qk

The body part consists of anExclusiveProduct ele-
ment, which contains two or more roles. The dimension
of R should be no less than the sum of the dimensions of
Q1, . . . , Qk.

This defines the roleKA.R to contain every principal set
p that satisfies the following condition:p = p1∪· · ·∪pk, for
eachi 6= j, pi ∩≡ pj = ∅ (pi andpj are non-intersecting),
and for each1 ≤ j ≤ k, there existsp′j such thatpj ≡ p′j
andp′j ∈ Qj .

Simple Delegation R⇐= B[: Qc]
The body part consists of aDelegateTo element (which
contains a principal value) and aScope element (which
contains a role).

WhenQc is not present,KA delegates its authority over
R to KB . In other words,KA trustsKB ’s judgement on
assigning members toR. WhenQc is present,KA wants to

control its delegation such thatKB can only assign mem-
bers ofQc to be members ofKA.R, in other words,KA.R
containsKB .R ∩Qc.

Linking Delegation R⇐= R1[: Qc]
The body part consists of aDelegateTo element (which
contains a role name) and aControl element (which con-
tains a role).

KA delegates its authority overR to members ofKA.R1.
The delegation is restricted to members ofQc. This implies
R←− R1.R ∩Qc.

4.4 Verification Data

The verification data part contains aValidityTime
element, zero or moreValidityRule elements, and one
optional signature part.

The ValidityTime contains anIssueTime ele-
ment, an optionalNotBefore element, an optionalNo-
tAfter element, and an optionalLifeTime element.
The first three elements each contain a specific time (using
the dateTime type in XML Schema), which we denote by
ti, tb, andte. TheLifeTime element contains a duration
(using the duration type in XML Schema), we denote byδ.

A ValidityRule may specify a CRL location, an on-
line verification server, etc. The details of the format of
ValidityRule are still being worked out.

When a party receives a certificate, it must first check
whether the validity period of this certificate has begun, i.e.,
whether the current time,t, is later thantb. This allows
post-dated credentials, such as a student ID that becomes
valid only when the next academic year begins. The party
next determines the fresh timetf of the credential. Unless
the authorizer checks the credential’s validity, it assumes
tf = ti. Validity rules define how checks can be performed
to justify using a later fresh time. For example, when a CRL
is checked and the credential is not revoked, one can up-
datetf to the issue time of the CRL (which is presumably
later thanti). The party then determines whether this cer-
tificate has expired. The expiration time is the earlier of
te and tf + δ. Thus, by setting the life timeδ, the issuer
indicates that the credential should not be viewed as valid
unless the party has checked for revocation sufficiently re-
cently. Finally, the party determines whether the fresh time
is sufficiently recent for its own purposes.

The optional signature part is aSignature element as
specified in the XML Signature standard [10].

4.5 Access Rule

An AccessRule element is similar to aCredential
element. The differences are as follows. AnAccessRule
does not have anIssuer ; it has aRuleIdentifier

9

instead of aCredentialIdentifier , it does not have
ValidityRule or Signature . The rationale is that an
access rule is created and used locally; as such, the issuer
is implicit; no signature is needed; and a revoked rule is
simply removed.

4.6 Application Domain Specification Documents
(ADSD’s)

An ADSD is represented by an
“ApplicationDomainSpecification ” element,
which has a “uri” attribute, uniquely identifying this ADSD.
An ADSD has the following structure.

<IncludeDomain uri="..."
includeAll="true"|"false">

<Type name="..."> *
<RoleDeclaration name="..."> *

</IncludeDomain> *
<ImportDomain uri="..." name="..."> *
(type declaration) *
<PrincipalType>......</PrincipalType> ?
<RoleDeclaration ...> ...
</RoleDeclaration> *

Using Other ADSDs

In an IncludeDomain element, the “uri” attribute iden-
tifies the ADSD being included. When the “includeAll” at-
tribute is true (default value), all the types and roles in the
included domain are included in the current domain, i.e.,
they are considered to be as if declared in the current do-
main. When the “includeAll” attribute is false, one can se-
lect the types and roles being included by specifying them in
the body of the element. One cannot include two types/roles
that have the same name.

In an ImportDomain element, the “name” attribute
serves as a short domain ID referring to the imported do-
main. One can use a type declared in an imported domain
by using the domain ID together with the type name. Im-
porting is useful when one wants to use two types that are
declared in two ADSDs and have the same name.

RTML has a system domain, which declares some data
types that are commonly used. Every ADSD automatically
includes the system domain without usingIncludeDo-
main , and so one can use these types freely.

Type Declarations

Every type declaration has a “name” attribute, which must
take a value that is unique among all the data type names in
a domain. One cannot declare a type if a type with the same
name is already declared (possibly in an included domain).
Types are organized into seven different categories; the de-
tails of type declarations are left to Appendix A because of
space limitation.

Principal Type Declaration

By default, principals in RTML are public keys. However,
one can override this by using aPrincipalType element
to declare the principal type to be an integer type or a string
type. This makes it possible to use RTML to encode policies
that involve principals other than public keys and to use the
RT system to make authorization decisions.

Whenever a role is declared, one needs to know which
type of principal it contains. Every ADSD has at most one
principal type. We say that an ADSD has a principal type if
it includes a domain that already has a principal type, it con-
tains aPrincipalType element, or it contains any role
declarations at all. If an ADSD gets its principal type from
declaring roles, the default public-key principal is assumed
to be used. Roles that use different principal types must not
be mixed in one credential.

The current RTML parser supports verification when
principals are public keys. Credentials that are issued by
principals of other types are not verified. Applications that
use these credentials are responsible to perform any verifi-
cation that is necessary.

Role Declarations

A RoleDeclaration element has five attributes: name,
issuerTraces (default rule), subjectTraces (fact), dimension
(1), and isIdentity (false). The “name” attribute should be
unique among all role names in the current domain. The
issuerTraces and subjectTraces attributes are related to dis-
tributed credential chain discovery, see [21] for more de-
tails. If the dimension is over 1, then the role is a manifold
role. If the isIdentity attribute is set to true, then this is an
identity role. When one issues credentials about the iden-
tity role, one should assign each physical user at most one
unique combination of parameter values. Of course, each
principal needs to determine which principal to trust about
an identity role, just like every other role.

A RoleDeclaration element may optionally con-
tain one of the following three elements:Restriction
(for restrictive inheritance),Extension (for extending in-
heritance), andIdentity (for identity-based roles).

Finally, a RoleDeclaration may contain zero or
moreParameter elements; each one has a name attribute
and contains aType element.

5 Related Work

In this section, we compare RTML with X.509, SAML,
SPKI/SDSI and KeyNote.

5.1 X.509

The basic authorization-related meaning of an X.509 cer-
tificate is easily mapped into RTML. In an X.509 certificate,

10

the issuer attests to the association of a subject distinguished
name (DN) and the subject key. If an X509 role is declared,
then an X.509 certificate issued using keyKA to subject
keyKB and subject DN{C=’US’, O=’StateU’, OU=’CSD’,
CN=’Bob Smith’} can be represented as the simple
member definition “KA.X509(dn={C=’US’, O=’StateU’,
OU=’CSD’, CN=’Bob Smith’})←−KB”. If the certificate
also has CA capabilities, then it also represents the simple
containment “KA.X509(dn=?X)←−KB .X509(dn=?X)”.

A X.509 certificate does not contain the issuer key; in-
stead, it contains the DN of the issuer. A certificate is only
useful when a certificate chain is obtained so that the issuer
public key is determined. Given an ADSD encoding X.509
distinguished names, a standard X.509 certificate chain can
be interpreted as a chain of RTML definitions, enabling ex-
isting certificates to be meaningful within an RTML system.

The above approach cannot capture additional purposes
of an X.509 certificate beyond that of binding a DN to a key,
nor purposes encoded in organization’s non-standard exten-
sions. However, an organization can enable others to trans-
late implicit or explicit meanings of its X.509 certificates by
providing an ADSD that describes the role information con-
tained in them and a tool that extracts that role information
from certificates.

5.2 SAML

The Security Assertion Markup Language (SAML) [13]
is an XML-based framework for exchanging security infor-
mation, expressed in the form of assertions about subjects.
Assertions can convey information about authentication acts
performed by subjects, attributes of subjects, and authoriza-
tion decisions about whether subjects are allowed to access
certain resources.

RTML has different purposes from SAML. SAML is
used to convey results of authentication and authorization,
but not credentials for doing so. RTML provides credential
formats for documenting properties (expressed in the forms
of roles) of subjects and documenting mechanisms to derive
these properties such as delegation.

5.3 SPKI/SDSI and KeyNote

We compare RTML with SPKI/SDSI and KeyNote from
three aspects: delegation structures, encoding of permis-
sions, and support for separation of duty. The conclusions
we draw are that RTML subsumes most of the expressive
power of SPKI/SDSI and KeyNote and provides a lot of ad-
ditional power. The places in which RTML is less expres-
sive result from design trade-offs made in favor of guaran-
teeing properties such as the tractability of analyzing autho-
rizations implied by RTML credentials and the interoper-
ability and predictability that accrue to strong typing.

Delegation Structures

RTML has more expressive delegation structures than those
in SPKI/SDSI and KeyNote.

SPKI has name certs and auth certs. Name certs can be
represented in RTML using simple member, simple contain-
ment, and linked containment. An auth cert represents a del-
egation of the authority from its issuer to its subject, which
can be a principal, a SDSI name, and a threshold structure.
We will talk about threshold when discussing Separation of
Duty later.

Assume that we are given an auth cert with issuerKA,
authorityR, and subjectKB . If the delegation flag is false,
then this is essentially “KA.R ←− KB”. If the delegation
flag is true, then this can be represented using two defini-
tions: KA.R ←− KB andKA.R ⇐= KB . If one wants
to use a SDSI name “KB ’s N1’s ... Nk” as a subject, one
can define a new name “KA’s M” to have the same mem-
bers4 as “KB ’s N1’s ... Nk” and useKA.R ←− KA.M ,
andKA.R⇐= M .

Note that since names in SDSI are only simple strings,
one cannot represent “student(university=?X)⇐= univer-
sity(name=?X)” or “discount←−KACM.acmMember(since
≤ 2001)” in SPKI/SDSI. Furthermore, SPKI/SDSI does not
have intersection, which is needed in Scenario 1, or con-
trolled delegation, which is needed in Scenario 2. When a
principal allows a subject to further delegate a permission,
it cannot restrict to whom the subject delegates.

A KeyNote requestis characterized by a list of fields,
which are name/value pairs. In KeyNote, credentials and
policies (access rules) are called assertions. An assertion
has conditionswritten in an expression language, which
refers to fields in requests. The intuitive meaning of an as-
sertion is that, if the licensees support a request, and the
request satisfies the conditions, then the issuer supports the
request as well.

KeyNote’s delegation structures in assertions are more
restricted than those in SPKI/SDSI. Delegation in KeyNote
is always transitive, one cannot grant a permission to a prin-
cipal without enabling the principal to further grant the per-
mission. Furthermore, KeyNote assertions have to explic-
itly list the principals involved in the delegation. There-
fore, using KeyNote assertions, one cannot express a dele-
gation “student()⇐= university()” (which is expressible in
SPKI/SDSI). See [18, 20] for more discussion of this limi-
tation.

Encoding of Permissions

Permissions are encoded in RTML by using role terms,
whose parameters are typed and can be constrained.

In SPKI, authorities are encoded in tags, which are un-
typed lists, e.g., (ftp (ftp.stanford.edu) (* prefix /pub/test/)).

4This can be achieved by introducing new intermediate roles and defi-
nitions. See [21] for details.

11

One cannot express the permission to connect all hosts in a
domain, since the root of a domain goes at the end of the
string, and SPKI does not have a (* suffix) operator. There
are also other limitations. For example, one cannot encode
a permission that requires two parameters being equal.

While it is not clear that everything that can be expressed
in tags can be expressed using role terms, we do claim the
following. First, all the examples we encountered in SPKI
literature can be expressed using role terms. Second, the
ability to flexibly refine permissions that is allowed by un-
typed lists in SPKI can be achieved by using restrictive
inheritance in RTML. Third, the untyped list approach in
SPKI has been found to have certain problems. For exam-
ple, in [15], it has been shown that the intersection between
two tags may not be finitely representable using tags.

In KeyNote, the permissions delegated in an assertion are
represented by conditions on fields. These conditions are
very expressive, including formula constructed using inte-
gers with function symbols{+,−, ∗, /, %, ˆ} and predicates
{=, 6=, <, >,≤,≥}. KeyNote conditions also include reg-
ular expressions. We believe that this is more expressive
than role terms in RTML. However, this expressiveness of
KeyNote comes at the cost of the ability to analyze KeyNote
assertions. In [19], it has been shown that it is undecidable
to compute the set of all requests that a set of KeyNote as-
sertions authorizes. Note that whether any specific request
is authorized by a set of assertions can still be determined
efficiently. However, there does not exist an algorithm to
perform analysis of all the requests being authorized by a
set of assertions. In fact, it is undecidable even when there
is only one assertion delegating to a single entity, and the
question is just whether the assertion authorizes any request
at all. On the other hand, the constraints in RTML are de-
signed so that the implications of a set of RTML credentials
can be efficiently computed. We feel that the constraints
in RTML provides sufficient expressive power for most ap-
plications, as all the examples in [3] can be expressed in
RTML.

Support for Separation of Duty

Both SPKI and KeyNote allow delegation to k-out-of-n
threshold structures, in which one explicitly lists the n prin-
cipals. It has been argued before that such threshold struc-
tures are inconvenient [17]. For example, to express the
access rule “twoCashier←−cashier⊗ cashier”, one needs
to explicitly list all the cashiers in the access rule, and this
rule needs to be changed each time members in the cashier
role change.

A threshold structure requires agreement of multiple
principals drawn from a single list. When the policy is to
require different principals drawn from the membership of
different roles, it is not clear that threshold can help. It
seems that the policy writer needs to enumerate all the prin-

cipal sets that are entitled to the permission and to delegate
to each of them directly.

When a user may hold more than one keys, thresholds
seem to be useless. For example, ifn users each hold2 keys,
then a policy that requires2 out ofn users would require2n

different thresholds using the straightforward approach. It
is better to directly express all the pairs that are eligible to
access, as there are2n(n− 1) such pairs.

6 Conclusion

This paper describes the following advances in theRT
framework that broaden its applicability: new data types
to encode permissions involving structured resources and
ranges; restrictive inheritance of roles for flexible refine-
ment of permissions; and notions of identity roles and
identity-based roles to address issues when a physical user
holds multiple keys. In addition to these extensions moti-
vated by specific applications, this paper describes RTML,
an XML-based data representation forRT policies and cre-
dentials. RTML establishes a precise format forRT creden-
tials and policies, help enabling the deployment of the RT
framework.

Compared with previous TM systems such as
SPKI/SDSI and KeyNote, RTML has the following
distinguishing features.

• RTML supports more flexible delegation. In RTML,
one can delegate to principals who are members of cer-
tain roles, and can control the scope of a delegation.

• RTML addresses the issue of vocabulary agree-
ment. Application Domain Specification Documents
in RTML ensure uniqueness of role names, and enable
credentials to be strongly-typed, further helping to en-
sure interoperability and to reduce the possibility of er-
rors in writing policies and credentials and unintended
interaction of credentials.

• RTML supports Separation of Duty policies in a way
that is more expressive than previous TM systems.
Furthermore, RTML addresses the situation when one
user holds more than one keys.

12

References

[1] Martı́n Abadi, Michael Burrows, Butler Lampson, and
Gordon Plotkin. A calculus for access control in dis-
tributed systems. ACM Transactions on Program-
ming Languages and Systems, 15(4):706–734, Octo-
ber 1993.

[2] Paul V. Biron and Ashok Malhotra. XML Schema Part
2: Datatypes. W3C Recommendation, May 2001.

[3] Matt Blaze, Joan Feigenbaum, John Ioannidis,
and Angelos D. Keromytis. The KeyNote trust-
management system, version 2. IETF RFC 2704,
September 1999.

[4] Matt Blaze, Joan Feigenbaum, John Ioannidis, and
Angelos D. Keromytis. The role of trust management
in distributed systems. InSecure Internet Program-
ming, volume 1603 ofLecture Notes in Computer Sci-
ence, pages 185–210. Springer, 1999.

[5] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decen-
tralized trust management. InProceedings of the 1996
IEEE Symposium on Security and Privacy, pages 164–
173. IEEE Computer Society Press, May 1996.

[6] Matt Blaze, Joan Feigenbaum, and Martin Strauss.
Compliance-checking in the PolicyMaker trust man-
agement system. InProceedings of Second In-
ternational Conference on Financial Cryptography
(FC’98), volume 1465 ofLecture Notes in Computer
Science, pages 254–274. Springer, 1998.

[7] Tim Bray, Dave Hollander, and Andrew Layman.
Namespaces in XML. W3C Recommendation, Jan-
uary 1999.

[8] David D. Clark and David R. Wilson. A comparision
of commercial and military computer security poli-
cies. InProceedings of the 1987 IEEE Symposium on
Security and Privacy, pages 184–194. IEEE Computer
Society Press, May 1987.

[9] Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt
Fredette, Alexander Morcos, and Ronald L. Rivest.
Certificate chain discovery in SPKI/SDSI.Journal of
Computer Security, 9(4):285–322, 2001.

[10] Donald Eastlake, Joseph Reagle, and David Solo.
XML-Signature Syntax and Processing. W3C Rec-
ommendation, February 2002.

[11] Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest,
Brian Thomas, and Tatu Ylonen. SPKI certificate the-
ory. IETF RFC 2693, September 1999.

[12] David C. Fallside. XML Schema Part 0: Primer. W3C
Recommendation, May 2001.

[13] Phillip Hallam-Baker and Eve Maler. Assertions and
protocol for the oasis security assertion markup lan-
guage (saml). OASIS Committee Specification, May
2002.

[14] Russell Housley, Warwick Ford, Tim Polk, and David
Solo. Internet X.509 Public Key Infrastructure Certifi-
cate and CRL Profile. IETF RFC 2459, January 1999.

[15] Jonathan R. Howell.Naming and sharing resources
acroos administrative boundaries. PhD thesis, Dart-
mouth College, May 2000.

[16] B. Lampson, M. Abadi, M. Burrows, and E. Wob-
ber. Authentication in distributed systems: Theory
and practice. ACM Transactions on Computer Sys-
tems, 10(4):265–310, November 1992.

[17] Ninghui Li, Benjamin N. Grosof, and Joan Feigen-
baum. A practically implementable and tractable Del-
egation Logic. InProceedings of the 2000 IEEE Sym-
posium on Security and Privacy, pages 27–42. IEEE
Computer Society Press, May 2000.

[18] Ninghui Li, Benjamin N. Grosof, and Joan Feigen-
baum. Delegation logic: A logic-based approach to
distributed authorization.ACM Transaction on Infor-
mation and System Security (TISSEC), February 2003.
To appear.

[19] Ninghui Li and John C. Mitchell. DATALOG with
constraints: A foundation for trust management lan-
guages, August 2002. Submitted manuscript.5

[20] Ninghui Li, John C. Mitchell, and William H. Wins-
borough. Design of a role-based trust management
framework. InProceedings of the 2002 IEEE Sympo-
sium on Security and Privacy, pages 114–130. IEEE
Computer Society Press, May 2002.

[21] Ninghui Li, William H. Winsborough, and John C.
Mitchell. Distributed credential chain discovery in
trust management. To appear inJournal of Computer
Security. Extended abstract appeared inProceedings
of the Eighth ACM Conference on Computer and Com-
munications Security (CCS-8).

[22] Ronald L. Rivest and Bulter Lampson. SDSI — a sim-
ple distributed security infrastructure, October 1996.
http://theory.lcs.mit.edu/˜rivest/sdsi11.html.

5Available at http://crypto.stanford.edu/˜ninghui/papers/constraint02.pdf
[17,18,20,21,27] are available from http://crypto.stanford.edu/˜ninghui/

13

[23] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein,
and Charles E. Youman. Role-based access con-
trol models. IEEE Computer, 29(2):38–47, February
1996.

[24] Kent E. Seamons, Marianne Winslett, and Ting Yu.
Limiting the disclosure of access control policies dur-
ing automated trust negotiation. InProceedings of the
Symposium on Network and Distributed System Secu-
rity (NDSS’01), February 2001.

[25] Kent E. Seamons, Marianne Winslett, Ting Yu, Bryan
Smith, Evan Child, Jared Jacobsen, Hyrum Mills, and
Lina Yu. Requirements for policy languages for trust
negotiation. InProceedings of the Third International
Workshop on Policies for Distributed Systems and Net-
works (Policy 2002), pages 68–79. IEEE Computer
Society Press, June 2002.

[26] Tichard T. Simon and Mary Ellen Zurko. Separation
of duty in role-based environments. InProceedings
of The 10th Computer Security Foundations Workshop
(CSFW-10), pages 183–194. IEEE Computer Society
Press, June 1997.

[27] William H. Winsborough and Ninghui Li. Towards
practical automated trust negotiation. InProceed-
ings of the Third International Workshop on Policies
for Distributed Systems and Networks (Policy 2002),
pages 92–103. IEEE Computer Society Press, June
2002.

[28] William H. Winsborough, Kent E. Seamons, and
Vicki E. Jones. Automated trust negotiation. In
DARPA Information Survivability Conference and Ex-
position, volume I, pages 88–102. IEEE Press, January
2000.

[29] Ting Yu, Marianne Winslett, and Kent E. Seamons. In-
teroperable strategies in automated trust negotiation.
In Proceedings of the 8th ACM Conference on Com-
puter and Communications Security (CCS-8), pages
146–155. ACM Press, November 2001.

14

A Type Declarations in ADSDs

In the following, we present type declarations in ADSDs.
Every type declaration has a “name” attribute, which we
omit in the presentation below. Under each category, we
also describe how a constant value of a type in that category
is represented.

Integer types

An IntegerType element has two additional required at-
tributes: max and min. It also has four optional attributes:
step (default 1), base (0), includeMin (true), and include-
Max (true). The legal values of this type include all integer
valuev’s such thatv = base + k ∗ step for some integerk
and thatmin ≤ v ≤ max, where≤ (≥) should be replaced
by <(>) if includeMin (includeMax) is set to false. For ex-
ample, one can declare a type to contain all the numbersv
such thatv mod 3 = 1 and0 ≤ v ≤ 100.

A constant of an integer type is represented using anIn-
tegerValue element. The following integer types are
declared in the system domain: long, int, short, byte, bit,
unsigned int, unsigned short, and unsigned byte.

Decimal types

A DecimalType element is similar to anIntegerType
element, in that it has the same attributes. However, the
attributes min, max, base, and step now take decimal values.
Valid values of this type are defined in the same way as are
those of an integer type. A constant is represented using a
DecimalValue element. No decimal type is declared in
the system domain.

Enumeration Types

An EnumType element has three optional attributes: ig-
noreCase (false), which specifies whether to ignore case
when comparing two enumeration values; ordered (false),
which specifies whether this type is ordered; and size, which
specifies how many values this type has. If this type is or-
dered, then one can use intervals to constrain parameters of
this type. TheEnumType element contains a list ofEnum-
Value elements, which enumerates the legal values of this
type.

A constant is represented using anEnumValue ele-
ment. The system domain contains a boolean type, which
is declared as an EnumType. Other possible examples of
enumeration types include day of week, degree, etc.

String types

A StringType element has two optional attributes: ig-
noreCase (false) and ordered (false), which have the same
meanings as in the case of enumeration types. A constant
is represented using aStringValue element. The sys-
tem domain declares two types of this category: string and
case-insensitive string.

Tree types

A TreeType element has two additional required at-
tributes: separator and order. These two values determine
what a tree value looks like. For example, a type for DNS
names has “.” as separator and the order is “rootLast”, while
a type for Unix file paths has “/” as separator and the order
is “rootFirst”.

A TreeValue element contains a string such as
“/usr/home” and three optional attributes: includeCurrent
(default true), includeChildren (false), and includeDescen-
dants (false). The default value means that only the current
node is included. One can set these attributes to reflect other
choices. Note that children are considered to be a subset of
descendants, and so when includeDescendants is set to true,
all children are also included, no matter what the value of
includeChildren is.

The system declares two types of this category: dns and
path.

Record types

A RecordType element contains one or moreField el-
ements; each has a name attribute and contains aType el-
ement. TheType element has two attributes: name (re-
quired) and domain (optional); they refer to a type already
declared, i.e., declared in an included domain or before the
current declaration. This guarantees that no recursion oc-
curs with record types.

A Record element can be used to constrain a parameter
of a record type; it contains one or more fields, each having
an optional constraint.

Examples of record types include IP addresses, names,
and street addresses.

Date/Time types

Date/Time types are treated differently from other data
types. RTML borrows the following standard date/time
types defined in XML Schema [2]: date, time, dateTime,
gYear, gYearMonth, gMonth, gMonthDay, and gDay. These
types can be used as if they are declared in the system do-
main. RTML does not support defining new data/time types.
A TimeValue element can contain any value that is legal
for one of the above types .

15

B Sample ADSDs and Credentials in XML

B.1 The System ADSD

The system ADSD consists of the data types declared as follows and date/times from XML Schema. It is automatically
included in every other ADSD.

<?xml version="1.0" encoding="UTF-8"?>
<ApplicationDomainSpecification uri=""

xmlns="http://crypto.stanford.edu/dc/RTMLv1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://crypto.stanford.edu/dc/RTMLv1.0

http://crypto.stanford.edu/˜ninghui/rtml/RTMLv1.0q.xsd">
<IntegerType name="long" max="9223372036854775807" min="-9223372036854775808"/>
<IntegerType name="int" max="2147483647" min="-2147483648"/>
<IntegerType name="short" max="32767" min="-32768"/>
<IntegerType name="byte" max="127" min="-128"/>
<IntegerType name="bit" max="1" min="0"/>
<IntegerType name="unsigned int" max="4294967295" min="0"/>
<IntegerType name="unsigned short" max="65535" min="0"/>
<IntegerType name="unsigned byte" max="255" min="0"/>
<EnumType name="boolean">

<EnumValue>false</EnumValue>
<EnumValue>true</EnumValue>

</EnumType>
<StringType name="string"/>
<StringType name="case-insensitive string" ignoreCase="true"/>
<TreeType name="dns" separator="." order="rootLast"/>
<TreeType name="path" separator="/" order="rootFirst"/>
<RecordType name="email address">

<Field name="user name"> <Type name="string"/> </Field>
<Field name="server"> <Type name="dns"/> </Field>

</RecordType>
<RecordType name="person name">

<Field name="first name"> <Type name="string"/> </Field>
<Field name="last name"> <Type name="string"/> </Field>

</RecordType>
<RecordType name="distinguished name">

<Field name="CN"> <Type name="string"/> </Field>
<Field name="OU"> <Type name="string"/> </Field>
<Field name="O"> <Type name="string"/> </Field>
<Field name="CN"> <Type name="string"/> </Field>

</RecordType>
</ApplicationDomainSpecification>

B.2 Sample XML Elements for Scenario 1

The following definition corresponding to EPub’s discount policy in Scenario 1.

<IntersectionContainment>
<HeadRoleTerm name="Discount"/>
<Intersection>

<ExternalRole>
<PrincipalRef ref="K_ACM"/>
<RoleTerm name="ACM Member">

<Parameter name="name" id="memberName"/>
<Parameter name="since">

16

<Interval>
<To><TimeValue>2001</TimeValue></To>

</Interval>
</Parameter>

</RoleTerm>
</ExternalRole>
<RoleTerm name="student">

<Parameter name="name"> <Equals ref="memberName"/> </Parameter>
<Parameter name="program">

<Set>
<EnumValue>M.S.</EnumValue>
<EnumValue>Ph.D.</EnumValue>

</Set>
</Parameter>

</RoleTerm>
</Intersection>

</IntersectionContainment>

B.3 Sample XML Elements for Scenario 2

The following is the ADSD that declares the “hostPerm” role.

<ApplicationDomainSpecification
uri="http://crypto.stanford.edu/˜ninghui/rtml/examples/FWADSD1.xml"
xmlns="http://crypto.stanford.edu/dc/RTMLv1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://crypto.stanford.edu/dc/RTMLv1.0

http://crypto.stanford.edu/˜ninghui/rtml/RTMLv1.0q.xsd">
<RoleDeclaration name="hostPerm">

<Parameter name="host"> <Type name="dns"/> </Parameter>
</RoleDeclaration>

</ApplicationDomainSpecification>

The following is the ADSD that declares the “socketPerm” role, which restrictively inherits “hostPerm”.

<ApplicationDomainSpecification
uri="http://crypto.stanford.edu/˜ninghui/rtml/examples/FWADSD2.xml"
xmlns="http://crypto.stanford.edu/dc/RTMLv1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://crypto.stanford.edu/dc/RTMLv1.0

http://crypto.stanford.edu/˜ninghui/rtml/RTMLv1.0q.xsd">
<IncludeDomain uri="http://crypto.stanford.edu/˜ninghui/rtml/examples/FWADSD1.xml"/>
<RoleDeclaration name="socketPerm">

<Restriction> <BaseRole name="hostPerm"/> </Restriction>
<Parameter name="port"> <Type name="unsigned short"/> </Parameter>

</RoleDeclaration>
</ApplicationDomainSpecification>

The following is the definition element ofKFW’s delegation toKSA.

<SimpleDelegation>
<HeadRoleTerm name="hostPerm">

<Parameter name="host">
<TreeValue includeCurrent="true" includeDescendents="true">

cs.stanford.edu
</TreeValue>

</Parameter>
</HeadRoleTerm>

17

<DelegateTo>
<PrincipalRef ref="K_SA"/>

</DelegateTo>
<Control>

<ExternalRole>
<PrincipalRef ref="K_Stanford"/>
<RoleTerm name="StudentID" domain="Stanford"/>

</ExternalRole>
</Control>

</SimpleDelegation>

The following is the definition element ofKSA’s delegation toKAlice.

<SimpleMember>
<HeadRoleTerm name="socketPerm">

<Parameter name="host">
<TreeValue includeDescendents="true" includeCurrent="false">stanford.edu</TreeValue>

</Parameter>
<Parameter name="port">

<Interval>
<From><IntegerValue>8000</IntegerValue></From>
<To><IntegerValue>8443</IntegerValue></To>

</Interval>
</Parameter>

</HeadRoleTerm>
<PrincipalRef ref="K_Alice"/>

</SimpleMember>

B.4 A Complete, Signed Credential

We now give a complete credential. The signature is generated using the Apache XML Security tool.

<Credential
xmlns="http://crypto.stanford.edu/dc/RTMLv1.0"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://crypto.stanford.edu/dc/RTMLv1.0

http://crypto.stanford.edu/˜ninghui/rtml/RTMLv1.0q.xsd
http://www.w3.org/2000/09/xmldsig#
http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd">

<Preamble>
<DefaultDomain uri="http://crypto.stanford.edu/dc/rtml/x509adsd.xml">
</DefaultDomain>
<Principal id="IssuerKey">

<ds:KeyValue>
<ds:DSAKeyValue>

<P>
/X9TgR11EilS30qcLuzk5/YRt1I870QAwx4/gLZRJmlFXUAiUftZPY1Y+r/F9bow9subVWzXgTuA
HTRv8mZgt2uZUKWkn5/oBHsQIsJPu6nX/rfGG/g7V+fGqKYVDwT7g/bTxR7DAjVUE1oWkTL2dfOu
K2HXKu/yIgMZndFIAcc=

</P>
<Q>l2BQjxUjC8yykrmCouuEC/BYHPU=</Q>
<G>

9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC+VdMCz0HgmdRWVeOutRZT+ZxBxCBgLRJFnEj6EwoFhO3
zwkyjMim4TwWeotUfI0o4KOuHiuzpnWRbqN/C/ohNWLx+2J6ASQ7zKTxvqhRkImog9/hWuWfBpKL
Zl6Ae1UlZAFMO/7PSSo=

</G>
<Y>

18

vLpQw3oYKp/iAL8drwI1teVtu5TGt8+1Z7YyUuI/ztvd0ittFVw/udC7HEyLF1A34saKGoES3X3V
wsr9ilpx6e1tHFSHHVo87GsDXdNlIKUKkJhtysttrlOStBG7hcKcdVISdaw/Pvyfod5oAhTA0Tw1
9sAeigAelUO4qsyr/20=

</Y>
</ds:DSAKeyValue>

</ds:KeyValue>
</Principal>
<Principal id="SubjectKey">

<ds:KeyValue>
<ds:RSAKeyValue>

<ds:Modulus>
ujN6AfAP1GhzwiXlP2DwJod5ivWw7bnQA903bTQmMhN1kkPxcSEmMPW1f+yof3cza0Xz9WgeBc9+
XwM15Ot/J4KGYHoDrLlyr1A2uKnRtixJphpJGCbw09CoCAHEwC25+93c7aG1j3kWoKBQqn9fCH3s
QO5dt1DxNoq3ah0jq0c=

</ds:Modulus>
<ds:Exponent>AQAB</ds:Exponent>

</ds:RSAKeyValue>
</ds:KeyValue>

</Principal>
</Preamble>
<Issuer><PrincipalRef ref="IssuerKey"></PrincipalRef></Issuer>
<SimpleMember>

<HeadRoleTerm name="DistinguishedName">
<Parameter name="subjectDN">

<Record>
<Field name="CN"><StringValue>Bob Smith</StringValue></Field>
<Field name="OU"><StringValue>CSD</StringValue></Field>
<Field name="O"><StringValue>StateU</StringValue></Field>
<Field name="C"><StringValue>US</StringValue></Field>

</Record>
</Parameter>

</HeadRoleTerm>
<PrincipalRef ref="SubjectKey"></PrincipalRef>

</SimpleMember>
<ValidityTime>

<IssueTime>2002-08-20T13:20:00Z</IssueTime>
<NotAfter>2003-08-20T13:20:00Z</NotAfter>

</ValidityTime>
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>
<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315">
</CanonicalizationMethod>
<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1">
</SignatureMethod>
<Reference URI="">

<Transforms>
<Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature">
</Transform>
<Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-

20010315#WithComments">
</Transform>

</Transforms>
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"></DigestMethod>
<DigestValue>vgeAJujgY/eHjj0ReTKAywqSPk8=</DigestValue>

</Reference>
</SignedInfo>
<SignatureValue>cCH3MJMCY1Bb1MGn5HYfS4mHrApVhguBNFjAHjV+5MuCLdemhyC61Q==</SignatureValue>
<KeyInfo>

19

<KeyValue>
<DSAKeyValue>

<P>
/X9TgR11EilS30qcLuzk5/YRt1I870QAwx4/gLZRJmlFXUAiUftZPY1Y+r/F9bow9subVWzXgTuA
HTRv8mZgt2uZUKWkn5/oBHsQIsJPu6nX/rfGG/g7V+fGqKYVDwT7g/bTxR7DAjVUE1oWkTL2dfOu
K2HXKu/yIgMZndFIAcc=

</P>
<Q>l2BQjxUjC8yykrmCouuEC/BYHPU=</Q>
<G>

9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC+VdMCz0HgmdRWVeOutRZT+ZxBxCBgLRJFnEj6EwoFhO3
zwkyjMim4TwWeotUfI0o4KOuHiuzpnWRbqN/C/ohNWLx+2J6ASQ7zKTxvqhRkImog9/hWuWfBpKL
Zl6Ae1UlZAFMO/7PSSo=

</G>
<Y>

Eln5/htZP51p7Y/Y1+zZOSSmoi2fQS0deniScan3990xy33RrPfF5odqEVmVYfTzFfKEz94aUXEY
qY2VGVRCKrAZThk1SwoOB+UyfNSVjoqa4fppIQpTalK/JeR7uxQUr0Aeop68nr2u49GijYiLyvL3
x04lGaZ8jUYZL3gZTNI=

</Y>
</DSAKeyValue>

</KeyValue>
</KeyInfo>

</Signature>
</Credential>

20

