RTML: A Role-based Trust-management Markup Language

Ninghui Li John C. Mitchell Yu Qiu William H. Winsborough
Department of Computer Science Network Associates Laboratories
Stanford University 15204 Omega Drive, Suite 300
Gates 4B, Stanford, CA 94305-9045 Rockville, MD 20850-4601
{ninghui, jcm, yuqiy @stanford.edu william _winsborough@nai.com

Kent E. Seamons Michael Halcrow Jared Jacobson
Computer Science Department, Brigham Young University, Provo, UT 84602
{seamons, mhalcrow, jmj3@&cs.byu.edu

Abstract and authorization in SPKI/SDSI [11], and attribute in at-
tribute certificates.
RT is a framework for Role-based Trust Manage- One distinguishing feature of th&T" framework is that it

ment [20]. In comparison with systems like SPKI/SDSI directly addresses the issue of vocabulary agreement. When
and KeyNote, the advantages®T’ include: a declarative, credential chains delegate access permissions of resources,
logic-based semantic foundation, support for vocabulary all the principals involved in the chain need to use consistent
agreement, strongly-typed credentials and policies, more terminology to specify resource permissions and delegation
flexible delegation structures, and more expressive supportconditions. When different credential issuers use incom-
for Separation-of-Duty policies. patible schemes, their credentials cannot be meaningfully
This paper describes advances in tRg" framework combined. Some intended permissions may not be granted,
that broaden its applicability and presents RTML, an XML- or, when schemes intended for different purposes acciden-
based data representation f&7 policies and credentials. ~ tally interact, unintended authorization may follow. Some
Improvements in RT include new data types to encode perSystems do not address this issue at all; others try to come
missions involving structured resources and ranges, restric- up with one vocabulary for all applications. Our philosophy
tive inheritance of roles for flexible refinement of permis- is that, although different applications often share common
sions, and notions of identity roles and identity-based roles policy concepts, they need to be able to use different vocab-
for enforcing separation-of-duty when a physical user holds ularies. InRT, we address this issue through a scheme in-
multiple keys. RTML establishes a precise formatRat spired by XML namespaces [7]. We introduagplication

credentials and policies, facilitating deployment of the RT domain specification documents (ADSDEpch ADSD is
framework. globally uniquely identified by a URI, and defines a suite

of related data types and role names, callesgheabulary
Credentials, when using a role name, refer to the ADSD in
. which the role name is declared. This enab®s to have
1 Introduction strongly typed credentials and policies. This feature helps
ensure interoperability and reduce the possibility of errors
RT is a framework for Role-based Trust Management. in writing policies and credentials and unintended interac-
The framework comprises several sub-languages, describetion of credentials.
in previous papers [20, 21].RT credentials define role In the process of turning the design of RT [20] into a
membership and may delegate authority to add additionalsystem that can be used by several projects, we extended
members to a roleRT"s notion of role is more general than the design in the following ways.
typically used in Role Based Access Control (RBAC) [23]. First, two new categories of data types are addese
Roles inRT are localized to each principal, can have pa- typesandrecord types Tree types can be used to represent
rameters, and can express concepts such as identity in sysstructured resources like file hierarchies, DNS names, etc.
tems like X.509 [14], role and permission in RBAC, name Record types can be used to group logically related fields

together, e.g., an address may be defined using a record typean think of ADSDs ash files in C programs and cre-

that contains fields such as street number, zip code, etc. Thelentials as.c files. Data types and role names are de-

credential safety requirements is also relaxed. These extenelared in ADSDs, and credentials must use these role names

sions enable one to represent permissions that involve strucin a type-consistent way. The RTML system includes an

tured resources and ranges, without sacrificing the tractabil-XML schema document that defines the syntax of ADSDs

ity property. and credential$. The RTML system also has a predefined
Second, we add the notion @éstrictive inheritance ~ ADSD which includes data types for representing com-

among roles to support flexible refinement of permissions. monly used basic types, distinguished names, email ad-

Consider the following example in SPKI. A firewall dele- dresses, DNS names, and file paths; this ADSD is provided

gates taK 4 the permission “(connect cs.stanford.edu)” and in Appendix B.1.

allows K 4 to further delegate K 4 in turn delegates these

rights to K. Now if K grants toK¢ the permission 1.1 Scenarios

“(connect cs.stanford.edu 80)”, which is augmented with

a port number, one can conclude that the firewall autho- In the following, we use three example scenarios to il-

rizes K¢ to connect to the host through the given port. It lustrate what can be expressedAfi’. In these scenarios,

is straightforward to achieve this iRT by encoding these we assume that public key certificates are used. None of

permissions using a role with the name “connect” and two the three scenarios can be fully captured using SPKI/SDSI,

parameters: host and port. However, suppose the firewallKeyNote, or attribute certificates. The latter two cannot be

administrator first declares the connect role to take the hostexpressed in the original design 8f" in [20] and require

parameter, alone, and later, afféy has delegated the con- the new extensions introduced in this paper. We will show

nect role toK g, realizes the need for adding the port param- how to express these scenarios in Section 3.

eter. In this case we want to avoid requirifg, to issue its . L . . .

delegation again, as is the case with the original design ofocenario 1 (Linking Delegation and Intersection)A fic-

RT. This is achieved by declaring another role, say, “con- titious Web publishing service, EPub, offers a discount to
nect2” to inherit “connect”. (This is a restrictive form of anYone whois both a graduate student and an ACM member

inheritance, in that membership in connect? implies autho- since 2001. EPub delegates the authority over the identifica-
rization to fewer resources than does membership in con-tion of students to entities that EPub believes are legitimate
nect.) This approach achieves the flexibility of untyped cre- universities. EPub additionally delegates the authority over

dentials without giving up the other advantages of strong identifying universities to a fictitious Accrediting Board for
typing Universities, ABU. Bob is an ACM member and a master

Third, we now explicitly address the relationships be- student of State, which is accredited by ABU.
R phicitly add P EPub knows the public key of ACM and ABU. The pub-
tween physical users and principals (key$)7" has man-

. : . lic key of StateU, which issues Bob’s student credential,
ifold roles and exclusive product, designed to support Sepa- e ; ” ;

: -) . - should be certified in StateU’s accrediting credential. Fur-
ration of Duty policies, which require that two or more dif-

. thermore, EPub requires that the same university name ap-

Iﬁ/f?atsie?rri:ies birreosssgzﬁljeggr dtf?e;t(()e rg?rlletﬂznozgziglens"pears in both its accreditation credential and the student’s
: burp credential. Similarly, EPub requires that the same student

Qe3|gn by_a USer possessing mult|ple_keys_. To address thISname appears in both the ACM member credential and the
issue, we introduce identity roles and identity-based roles. .
)) student credential.

In this paper, we also present RTML version 1, an XML-
based data representation of tR€" framework with the Scenario 2 (Controlled Delegation of Permissions)A
above described extensions. (We omit “version 1” in the rest firewall FW issues a credential to give a system admin, SA,
of this paper.) This work on RTML, fleshing out the design the authority to grant to anyone who has a Stanford ID per-
of RT, involves efforts from three research projects, with mission to connect to the host “cs.stanford.edu” and to any
focuses on trust management, attribute-based access corhost in the domain “cs.stanford.edu”. The permission is ex-
trol, and automated trust negotiation. Each of the projectspressed using a role with one parameter, “host”. Later, FW
found previous public-key certification systems such as wants to further parameterizes the permission by adding the
X.509, SPKI/SDSI, and KeyNote [3] too limited in one way port parameter. SA now grants to Alice, who has a Stan-
or another [20, 25, 27]. RTML's main purpose is to be used ford ID, the permission to connect to any host in the domain
as an alternative to these systems. “stanford.edu” at any port between 8000 and 8443. Then,

A major design decision in RTML is how ADSDs and when Alice requests to connect to the host “cs.stanford.edu”
credentials interact. We explored the possibility of mak- at port 8443, FW should allow this connection.
ing ADSDs themselves XML schemas [12], but settled on 11he schema is available at the following URL:
making both ADSDs and credentials XML documents. One http://crypto.stanford.edu/ ninghui/rtml/RTMLv1.0g.xsd

Note that SA can effectively delegate only to entities who the proof-of-compliancguestion: “Do the access rules and
have Stanford IDs. This is what we call a controlled dele- credentials authorize the request?”
gation. In fact, when SA does not have a Stanford ID, he A TM system has a TM language for specifying creden-
will not be able to get any connection permission by using tials and access rules. A TM system also needs a process of
the credential issued to him, although he can manage thecomputing which credentials to use in an authorization pro-
permission. cedure; this is often called credential (or certificate) chain
discovery [9]. When credentials are stored in a distributed
Scenario 3 (Identity-based Separation of Duty)A bank manner, the discovery process needs to consider how to lo-
FB has three roles: manager, cashier, and auditor. FB's pol-cate these credentials [21]. When credentials and/or access
icy requires that a certain transaction be approved by a manyyjes are considered sensitive, the discovery process may

ager, two cashiers, and an_auditor. The t_vvo cashiers must bge carried out by using a “automated trust negotiation” pro-
different. A manager who is also a cashier can serve as ongess [24, 27, 28, 29].

of the two cashiers. And the auditor must be different from A TM system also needs a proof-of-compliance check-

the other parties in the transaction. ing program. A chain discovery program can also be used
The intention of the policy is to require different users, for proof-of-compliance, since if it can discover a chain, it
who are members of appropriate roles, to be jointly respon- certainly can verify that the chain is valid. However, a com-
sible for a transaction. A further complication arises when pliance checking program can often be simpler, since it is
a physical user may possess multiple public keys. We wantyften not difficult to have the discovery program produce a
to ensure that the transaction is approved by distinct userschain that is organized in a way such that checking the chain

rather than distinct keys. To make this possible, we assumeg easier. These programs can be used as services indepen-
that FB assigns a unique employee number to each user, anden of applications or embedded in applications.

every key that a user possesses is certified to be associated

with the user's employee number. 2.2 History of the RT framework

1.2 Organization
9 The design ofRT was influenced by systems like the

. . _logic for access control in [1, 16], SPKI/SDSI [11, 22], and
The rest of the paper is organized as follows. Back Delegation Logic [17, 18]. The most basic partf’, RTy,

ground information is given in Section 2 In Sec.'uon 3 we was presented in [21], together with algorithms that search
show how to express the three scenarios described in Sec;

tion 1.1 and explain the new extensions addedrf®. In for chains ofRT}, credentials, and a type system about cre-

Section 4, we describe RTML. We then discuss related work greenotlf:l tisatl(; riﬁ?o;:a;tgrnasuéﬁz (cj:ihs?:inbsu t(é?jn ?Ae t:ﬁ:tngear;?gg
in Section 5, and conclude in Section 6. 9) 9

tion protocol that support®7; credentials was introduced
in [27]. Four additional components of theT" frame-
2 Background work were introduced in [20]RT}, RT», RTT, andRTP.
RT; adds toRT, parameterized rolesRT, adds toRT}
In this section, we give background information on trust logical objects, which can group logically related objects

management and theT" framework. together so that permissions about them can be assigned
together. RT” provides manifold roles and role-product
2.1 Trust Management operators, which can express separation-of-duty policies.

RTP provides delegation of role activations, which can ex-

The term “trust management” was introduced in [5] to press selective use of capacities and delegation of these ca-
group together several principles in dealing with authoriza- pacities. In [19], Constraint BrALOG is used to extend
tion in decentralized distributed systems. Some of these RT; with the ability to express permissions regarding struc-
principles appeared in earlier work on distributed accesstured resources and ranges, while at the same time ensuring
control, e.g., [1, 16]. The concept of trust management tractability of evaluating implications of access rules and
is later used and extended in several systems [3, 4, 6, 9, 11¢redentials.
17, 20, 21]. In this paper, we describe RTML version 1, which imple-

In the “trust-management” approach, a requester submitsments constraint-enhanc&{’! in the RT framework[20];
a request to aauthorizer who specifiegccess rulegalso it does not yet hav®T5 or RT'P. On the other hand, RTML
calledpolicies, which govern access to protected resources; extends the original design to address several practical is-
then the authorizer and the requester jointly compute a setsues, as discussed in Section 1.
of credentials to be used in this request. Finally the autho- In RTML, access rules are similar to credentials and only
rizer decides whether to authorize this request by answeringinvolve properties of requesters. This suffices for some ap-

plications. In other applications, access rules may include principals who have the permission. Granting a permission
other conditions of access, such as current time, applicationto a principal amounts to making the principal a member of
state, auditing requirements, etc. RTML does not yet sup-the set corresponding to the permission. Granting a permis-
port these features. In those applications, RTML may still sion to a role amounts to asserting that the set corresponding

be used for expressing credentials. to the permission includes as a subset the set corresponding
to the role. A name in SDSI is also resolved to a set of

2.3 Background of RT principals. An attribute is a set of principals who have the
attribute.

A principal can issue credentials and make requests. The notion of manifold roles generalizes that of single-

RT assumes that it can be verified that a principal indeed &/ément roles to allow each member of the role to be a
issued a particular credential or request. The most typicalPrincipal set, instead of a principal. That the principal set
kind of principals are public keys, butT does not man- (K1, K>} is a member of the mam.fcl)ld ol R means

date so. In some environments, a principal could also be,thatK1 anng together have the pnwleges associated with
say, a symmetric key or a user account. In one web-based4-F but either one of them acting alone may not have

file sharing demonstration application we developed, userth@t privilege. The semantics of a manifold role is a set
ids are used as principals. of principal sets. Manifold roles are introduced to support

The most important concept iR is that ofroles. Roles Separation of Duty policies [8, 26] in a more expressive way

in RT are localized to principals. Each principal has its own than do threshold structures.
authority name space for roles; this is the same as localized

name spaces in SDSI. One needs to use a principal and 8 Extensions toRT
role term to refer to a role, e.gK 4.R, in which K4 is a
principal andR is a role term. In the simplest case, a role

term just contains the name of role. More generally, a role sions toRT by describing how to express the policies asso-

term may contain parameters. A ral€,.1 can be read jaieq with each of the three application scenarios given in
asK's R role. Only K4 has the authority to define the Section 1.1.

members of the rol& 4. R, andK 4 does so by issuing role-
definition credentials. A role may be defined by multiple
credentials; the effect is that of union.

RT hassingle-element roleandmanifold roles The se- L .] N
mantics of a single-element role is a set of principals. The ABU, the fictitious accrediting board for universities,

notion of single-element roles unifies several concepts in ¢réates an ADSD, in which two roles are declared: uni-
access control and trust management literature, including’€rsity (which has only one parameter: name) and student

groups in many systems, identity in identity certification (Which has five parameters: university, department, pro-
systems such as X.509, roles and permissions in RBAC,9ram. id, and name). ACM creates an ADSD and declares
names in SDSI, authorization tags in SPKI, and attributes ©N€ role: acmMember, which has four parameters: name,
in attribute certificates. It is possible to unify these concepts ¢lass, number, and since. EPub creates an ADSD for its
because the common mathematical underpinning of the seOWn Use, which declares a new role discount and includes
mantics of these concepts is sets of principals. A group ishe two ADSDs by ABU and ACM. _
clearly a set of principals. An identity is a set of principals The credentials, access rules, and conclusions drawn
corresponding to one physical user; some systems requird’®m them, are given in Figure 1 in an abstract syn-
the set to contain just one principal. (The notion of iden- t&x. Line (1) represents the accrediting credential of
tity and the relationship between users and principals will StateU. It means thaksi..cu is @ member of the role
be further explored in Section 3.3.) A role in RBAC can be K apu-university(name="StateU’)". Line (2) represents
viewed as a set of principals who are members of this role; Bob's student credential issued by StateU. Line (3) repre-
role hierarchy relationships can be viewed as ways to defineSents Bob’s ACM member credential.

role membership3. A permission corresponds to a set of Line (4) represents EPub’s discount policy: Anyone who
is both an ACM member since 2001 and a graduate student

2principals are called entities in earlier papersRifi [20, 21]; here we is entitled to the discount, and the name in the two creden-

use “principal” to avoid potential confusion with entities in XML. tials should be the same. Note that not all parameters appear
3This view of a role loses some of the meaning that can be associated.) p pp

with a role in RBAC, e.g., constraints. Constraints like mutually exclusive in the role term for acmMember; only those that need to be
roles are implemented in RTML by using manifold roles. Constraints constrained have to appear. The same is true for the role
like cardinality constraints can be associated with the set reading of roles,
but they do not exist in RTML. These constraints can be implemented by Other constraints, like mutually exclusive permission are lost from the set
applications that use RTML and checked when credentials are being issuedreading.

In the following subsections, we present the new exten-

3.1 Linking Delegation and Intersection

Credentials:

K apu.university(name="'StateU’y— KgiateU D)
Ksiateu-Student(university='StateU’, name="Bob Smith’, program='"M.S.",) «— Kpgop (2)
Kacm-acmMember(number='UJ12345’, name="Bob Smith’, since=2000, «— Kpg,} 3)

Access rules of EPub
discount — Kacnm.acmMember(name=?X, sinc@001)N student(name=?X, progras‘M.S., ‘Ph.D."}) (4)

university() <= Kapu (5)

student(university=?Xx—university(name=?X) (6)
From (1) and (5), EPub concludes that: university(hame="'State" K s¢atcu @)
From (6) and (7), EPub concludes that: student(university="Statet)K s;atcu (8)
From (2) and (8), EPub concludes that: student(university="StateU’, name='Bob Smitht— Ky}, 9)
From (3), (4), and (9), EPub concludes that: discountK g, (20)

Figure 1. Scenario 1: Linking Delegation and Intersection

term for student. The RTML encoding of this policy inin- FW to SA. The roleKgsgantora.StanfordID() is called the
cluded in Appendix B.2. scopeof this delegation. Line (2) represents the delegation
Line (5) encodes EPub’s delegation over the university from SA to Alice. Line (3) represent Alice’s Stanford ID
role to Kapuy; this is called asimple delegation The credential. RTML encoding of the two ADSDs declaring
role term “university()” has no parameter at all, because hostPerm and socketPerm and credentials (2) and (3) are
the name parameter is not constrained. This delegationincluded in Appendix B.3.
means that any principal that is a member of the role When socketPerm is the only role that restrictively in-
K apy.university(nameX) is also a member of EPub’s herits hostPerm, then credential (1) is equivalent to the two
university(nameX) role. In other words, it implies that the credentials (4) and (5). The request, as represented by (6),
simple containment “universityd— K agy.university()”. is true because ‘cs.stanford.edu’ is a descendant of ‘stan-
When no restrictive inheritance is involved, these two are ford.edu’, and443 € [8000..8443].
indeed equivalent. And the delegation syntax is simply a In general, when’ restrictively inherits-, then any def-
convenient syntactic sugar. In Section 3.3, we will illustrate inition “K 4.r(---) «— ¢” also implies ‘K 4.r'(---) «—
their differences. e”. Furthermore, any delegation"4.r(---) <= ¢" also
Line (6) encodes EPub’s delegation over the identifica- implies “K 4.7'(---) <= ¢". The rationale is that when
tion of students of a university to principals who are certi- 7’ restrictively inherits, thenr/(- - -) represents a more re-
fied to be that university. This is callediaking delegation stricted permission than(- - -), andr/(- - -) is weaker than
This implies that for any principall and university name r(---) in the sense that any member of thig .r(- - -) role

X, if K is a member of EPub’s “university(nam&3” is also a member of th& 4.7/ (- - -) role. This is achieved
role, then EPub delegates the authority over the role by having for each definition whose head usealso gen-
“student(universityX)" to K. erating a definition that has head usirig

Now we explain the difference between the delegation
3.2 Controlled Delegation of Permissions “Kar() <= Kp” and the containmentK.r() «—

Kp.r()". The delegation is stronger than the containment;

Assume that a role, stanfordID, is declared in some it implies the containment (abou) and another contain-
ADSD; the details of the parameters of the stanfordID role Ment aboutr”: “K,.r'() «— Kp.r'()". The contain-
are not important in this scenario. In another ADSD, a host- ment about- only implies “Ks.7'() «— Kp.r()", which
Perm role is declared and has one parameter: host. ThdS Weaker than the containment abettabove, since any
type of the “host” parameter is “dns”, which is pre-declared member of &'z.r()” would also be a member dt ."().
by the RTML system. (One can also use a type declared
in the current ADSD via the type declaration mechanism 3.3 ldentity-based Separation of Duty
provided by RTML.) In another ADSD, a socketPerm role

is declared taestrictively inherithostPerm, and a new pa- The bank creates one ADSD, which declares six roles:
rameter “port” is added, which has the pre-declared type manager, cashier, auditor, twoCashiers, managerAndT-
“unsigned short”. woCashiers, and approval. The latter three are declared to

Figure 2 gives the access rule, credentials, and some im-$e manifold roles. For simplicity, we assume that these roles
plications of them. Line (1) represents the delegation from do not contain parameters.

Credentials:

Kpw.hostPerm(host currentAndDescendants(‘cs.stanford.edud= Kga : Kstanford-StanfordID() 1)
Kga.socketPerm(host descendants(’stanford.edu’), perf8000..8443]) «— Kajice (2)
KStanford-StanfordlD(:) — KAlice (3)

Assuming socketPerm is the only role that restrictively inherits hostPerm, then (1) is equivalent to (4) and (5),
in which we usé as a shorthand for “currentAndDescendants(‘cs.stanford.edu’)”:

Kpw.hostPerm(host t) «— Kga.hostPerm(host ¢t) N Ksiantora-StanfordID() 4)

Krw.socketPerm(host t) «— Kga.sockerPerm(host t) N Ksianfora-StanfordID() (5)
From (2), (3), and (5), the request, represented by the following query, should be authorized:

Krw.socketPerm(host ‘cs.stanford.edu’, port 8443) «— Kajjce (6)

Figure 2. Scenario 2: Controlled Delegation of Permissions

Access rules of FB

twoCashiers«— cashierg cashier Q)
managerAndTwoCashiers— manager> twoCashiers (2)
approval «—— auditor® managerAndTwoCashiers 3)

Figure 3. Scenario 3: Identity-based Separation of Duty

Three definitions implementing the approval policy “FB.employeeNumber(id='1111}+— Kp", and no other
are given in Figure 3. Definition (1) means that FB's employeeNumber credential containiAg,.
twoCashiers role contains every principal geft’, K} FB may then declare the roles twoCashiers, man-
such that bothK; and K, are members of FB’s cashier agerAndTwoCashiers, and approval to be based on the iden-
role, andK; # K. Definition (2) means that FB's man- tity employeeNumber; we call these roldsntity-basedin
agerAndTwoCashiers role contains every principalset contrast, we call normal rolgsincipal-based Members of

{K} U p1 such thati is a member of FB's manager role identity-based roles are computed based on the identities of
andp; is a member of FB's twoCashiers role. Definition principals.

(3) means that the approval role contains every principal set
p = {K} U ps such thatK is a member of FB’s auditor
role, p, is a member of FB’s managerAndTwoCashiers, and

We say that a principakp has an identity with respect
to K 4.r if for some parameters, denoted by *”, Kp is a
member ofK 4.7 (- - -); and we say thak 4.r(---) is Kp's

K ¢ pa. identity wrt K 4.r. Two principalsK and K’ areequivalent
Identity roles and identity-based roles wrt K 4.r, denoted byK' = K'[K 4.r] (we omit “[K4.r]"

When an employee holds multiple keys, the definitions in wheniitis clear from .the c.ontext),K andK" are equal, or
Figure 3 may not achieve the goal of SoD, which requires they have the same identity w7
different users rather than keys be responsible for the trans- When using the rule “twoCashiers—cashier @
action. In decentralized and public-key based systems, onecashier”,{K1, K>} is a member of twvoCashiers only when
cannot assume that there is always an one-to-one relation/{1 and K, each have identities and are not equivalent (wrt
ships between keys and users. Such a relationship is ofFB’'s employeeNumber role), and each i and K> is
ten very difficult to enforce. In addition, there are often €quivalent to some member of FB’s cashier role, i.e., there
practical considerations that dictate one user having multi- €xists two members(;, K; of FB's cashier role such that
ple keys. For example, a user may be required to changef1 = K7 andK> = K.
keys regularly, and to assure smooth transition, two keys The notion we are using to ensure principals correspond
may overlap. A user may also wish to have multiple keys in to different users can be generalized to support applications
the interest of privacy and/or key security. of ® to manifold roles. Two principal sets, andp, are

To address this problem, FB can declare a new role, em-equivalentf every principal inp; is equivalent to one prin-
ployeeNumber, with one parameter, “number”, and declare cipal in po and vice versa. Two principal seis andp, are
this role to be aridentity role This means each physi- non-intersecting with respect to a given identity rdiell
cal user should correspond to one specific instance of theprincipals inp; andp, have identities and no principal in
identity role. For example, if Carl's employee ID with FB p; is equivalent to any principal ip,. Thus, when using
is ‘1111, for any keyKp held by Carl, FB only issues definition (3), the approval role contains every principal set

p = p1 U ps such thatp; andp, are non-intersecting, and the parameters of. Note thatr’ may contain additional
there exist®) andp, such thatp; = p}, p2 = ph, p} is a parameters, but that the containment holds no matter what
member of FB’s auditor role (in which cagé must contain values they take.
only one principal, since auditor is not a manifold role), and Another approach is to first declare the employeelD role
ph is a member of FB’s managerAndTwoCashiers role. and then declare the employeeNumber role pgogection

We have seen that identity can be used in determiningof the employeelD role to the number parameter. The effect
that two principals are not equivalent when a definition in- is essentially the same as extending inheritance. Projection
volves ®. ldentity also affects other kinds of definitions. is useful when one wants to extract an identity role from a
For example, wherR is based on identity role’, and we role that is already defined. Extending inheritance is use-
haveK 4.R «—— K .R1 N K 4.Ry, if auser holds two keys ful, for instance, if one wants to update an old student ID,
K, andK; so thatK; € K4.R; and Ky € K4.Rs, then adding more parameters, but the new student ID credential
the user can get the permission encoded’in R when he should still prove membership in the old student ID role,
can prove thaf; = K, wrt K 4.7". In this case, we have since some applications may still use the old student ID role.
K, € RandK> € R. Again, this approach can be general-
ized to support applications of to manifold roles. 3.4 Summary of the Extensions

Our notion of identity role is somewhat similar to the no-
tion of primary keys in databases. It is declared to uniquely ~ We now summarize the key new features adde@1q
identify something. This notion of identity is different from illustrated above by the scenarios. In Section 3.1, simple
the traditional ones, in that it is not global. Not every user delegation and linking delegation are new. As used there,
has to have an identity. Furthermore, different roles may bethey are convenient syntactic sugars, simplifying the ex-
based on different identity roles, just as different relations Pression of requirements that can be equivalently expressed
in a databases may have different primary keys. We do notby using simple containment and linking containment (See
think that it is practical to have a globally unique identity for Section 4.3). In Section 3.2, the tree types and the ability
users at a global scale; however, it is often possible insidet0 Use ranges in the head of a rule are new. Also new is the
one organization. notion of restrictive inheritance, which creates a context in

Our approach does not solve the difficult problem of cre- Which s_imple delegation and linking d_elegation are not mere
ating an infrastructure that uniquely identifies the holder of Syntactic sugars, but capture otherwise inexpressible mean-
each principal. Rather we provide a mechanism to take ad-Ngs- In Section 3.3, the notion of identity role, identity-
vantage of such an infrastructure in policies when it is in Pased role, extending inheritance, and projection are new.
place.

4 RTML

Extending inheritance and projection

One final issue bears on the Separation of Duty scenario. RTML is defined using XML Schema. The schema def-
In practice, it is unlikely that a credential contains only an inition of RTML defines three top level element€re-
employee number. To avoid having to use multiple roles to déntial , AccessRule , andApplicationDomain-
document information about one employee (these multiple SPecification . The schema for RTML uses data types
roles can still be included in one credential, as one creden-N the XML Schema standard [2]; it also depends on the
tial can contain multiple definitions), one can do two things. XML Signature standard [10], both for credential signatures
One approach is to first declare the employeeNumberand for representing public keys.
role, then declare an employeelD role gatendemploy- A Credentl_al_ _ element can be_ divided into three parts:
eeNumber and add additional parameters. We calleeis ~ Prologue, definitions, and verification data.
tending inheritanceby way of contrast with the notion of
restrictive inheritance discussed in Section 3.2. In this case,
membership in the employeelD role implies membership in
the employeeNumber role. The intuition here is that every-
one that has an employee ID has an employee number, plus <Preamble>

4.1 Prologue of a Credential

The prologue part of a credential has the following format.

some additional information carried in the new parameters. <DefaultDomain uri="..." />

Thus, extending inheritance enables additional information <ImportDomain uri="..." name="..."> *
to be added about role members, while restrictive inheri- <Principal> </Principal> *

tance enables additional requirements to be associated with </Preamble>

a permission. When' extendsr, then for each principal <Issuer> </Issuer>

K, Kr(fi =?X1,..., fe =7X,) contains each member of <Credentialldentifier>

K.o'(fi1 =?X1,..., fe =7Xy), inwhich f1,..., f, are all </Credentialldentifier>

ThePreamble element contains reference information for in Section 4.6), a principal value SpecialPrincipal ,

the rest of the credential: BefaultDomain element, aninterval , aSet, or anEquals element.

zero or mordmportDomain elements, and zero or more A constraint that is a value means that the parameter
Principal elements. The “uri” attribute of Befault- should be equal to this value. Currently,Special-
Domain element specifies the location of an ADSD that Principal element can take one of two values: ‘issuer’
acts as the default domain of the credential. Role names(which refers to the issuer of the current credential) and
used in the credential are assumed to be declared in the dethis’. The ‘this’ special principal can only be used when
fault domain unless a domain is explicitly specified. An defining a singleton role; it refers to the principal being
ImportDomain element has two attributes: a “uri” at- evaluated to be the member of the role. The following
tribute that specifies the location of the ADSD to be im- example from [20] illustrates the use of this: A company
ported, and a “name” attribute that is used to refer to the im- Alpha gives a pay raise to an employee if someone autho-
ported domain. Role names declared in imported domainsrized to evaluate the employee says that his performance

can also be used in the current credential. was good. This can be encoded using “payRaiseeval-

A Principal element gives the value of a principal, it uatorOf(this).goodPerformance”.
can be &KeyValue element as defined in the XML Signa- An Interval element contains an optionaiom ele-
ture standard, aimtegerValue element, or &tring- ment and an optionalo element, each of which contains

Value element. See Section 4.6 for more discussion of a value of an ordered data type. This represents an interval
this. To improve readability, principals, which could be set. TheFrom (To) element has an attribute “included”,
guite long, are included in the preamble so that they canindicating whether the bound in included in the interval.
be referred to in a compact way elsewhere in the credential. When theFrom (To) element is not present, that side of
Thelssuer element contains principal value which the interval is unbounded. 8et element includes one or

may be aPrincipal element or @rincipalRef ele- more values. ArEquals element has one attribute, which
ment (which refers to ®rincipal element appearing in refers to another parameter in the definition, meaning that
the preamble). this parameter should equal the other parameter.

The Credentialldentifier element contains a

string that is unique among all credentials issued by the4.3 Definitions
same issuer having the same default domain. It could be

a serial number. There are eight kinds of definitions, each containing a
HeadRoleTerm element and a body part. Before going
4.2 Rolesin a Credential into the definitions, we also need the notion of dimension.

Each role has dimension A single-element role (default)
After the prologue, a credential contains one or more has dim_e_nsion 1. Manifold roles_ re_quire that the dimension
definitions. Before introducing these definitions, we first P& explicitly declared. For a principal set to be a member
explain the building blocks used in these definitions. of the role, its size must be no more than the role’s di-
A role can take the form of RoleTerm element (which ~ Mension. For example, ik has dimensior2, then { X’}
is then assumed to be in the authority name space of the?"d{/1, K>} may be members of. R, but{ Ky, K, K}

issuer) or arExternalRole element (which contains a cannot be. The reason for requiring that the dimension be
principal value and &oleTerm). given is to ensure efficient evaluation. (See [20] for further

details.)
Different kinds of definitions contain different elements
@S the body part. While describing these definitions, we
use an abstract syntax, in whidh represents thélead-

A RoleTerm element has two attributes: name and do-
main (optional), which together identify a declared role.
When the domain attribute is not present, the name attribut
identifies a role declared in the default domain of this cre-
dential. When the domain attribute is present, it should be RoIeTerm I an_ng represents other role_terms, afd
equal to the name attribute of one of tileportDomain (often W|th subs_crlpts) represents roles, and in which we as-
elements, and the name attribute identifies a role declared irfUMeX 4 is the issuer.

the corresponding ADSD. Simple Member R «— D

A RloIeTerm elehme]:nt ﬁ_or;]tz?:ns zero or .rEdP«ar.ame— The body part consists of one principal value, dendfed
terl € emen:ts, each of which has two attri ute;. hame (re'This defines the principaD to be the member of the role
quwed) and id (opt.|onal). The id paramgter umque]y iden- K 4.R. More precisely, the rold{ 4.R contains any prin-
tify the parameter in the current credential, so that it can beCipal that is equivalent t®. If R is principal-based, then

referred to elsewhere. Rarameter element optionally equivalency is the same as equality. Afis based on an

contains a constrqnt. A constraint may_be a_value of on.e 0fidentityr’, then the equivalency may also be determined by
the seven categories of data types (which will be descnbedth e identity,

Simple Containment R «— @

The body part consists of one role, denofgdThe dimen-
sion of R should be no less than that Qf
This defines the rold(,.R to contain (every principal

set that is equivalent to some principal set that is a member

of) the roleQ.

Intersection Containment R«— Q1 N---NQx

The body part consists of aimtersection element,
which contains two or more roles. The dimension f
should be no less than the maximum dimensiorQefN

C N Q.

This definesk 4.R to contain the intersection of all the
roles@q, ..., Q. More preciselyK 4.R contains any prin-
cipal setp that is equivalent to a member ¢f;, for every
j=1.k.

Linking Containment R «— R;.Rs

The body part consists oflankedRole element, which
contains twoRoleTerm elements. The dimension dt
should be no less than that Bf.

WhenR; is a singleton role, this defines the rdlgs. R
to contain everyK g.R», in which K is a member of the
role K4.R;. When R; is a manifold role, this defines,
for any principal se{ Kp,, ..., kg, } that is a member of
K 4.Ry, K 4.R contains the intersection éf5, .Ro N -+ - N
Kp,.Rs.

Product Containment R+— Q1 ®---® Qy

The body part consists ofRroduct element, which con-
tains two or more roles. The dimension Bfshould be no
less than the sum of the dimensionggf, . . ., Q.

This defines the rol& 4. R to contain every principal set
psuch thap = p; U---Upy and for each < j < k, there
existsp’; such thap; = p} andp; € Q;.

Exclusive Product Containment R+— Q1 ® --- ® Qp
The body part consists of a@BxclusiveProduct ele-

ment, which contains two or more roles. The dimension
of R should be no less than the sum of the dimensions o

Qlw"?Qk-

This defines the rol& 4. R to contain every principal set
p that satisfies the following conditiop: = p, U- - -Upy, for
eachi # j, p; N= p; = 0 (p; andp; are non-intersecting),
and for eachl < j < k, there exist®’; such thap; = p
andp’; € Q;.

Simple Delegation R <= B[: Q]

The body part consists of@elegateTo element (which
contains a principal value) and $cope element (which
contains arole).

WhenqQ). is not present 4 delegates its authority over
R to Kg. In other words,K 4 trusts Kg’s judgement on
assigning members t8. WhenqQ).. is presentK 4, wants to

control its delegation such th@ g can only assign mem-
bers of(). to be members o 4. R, in other words K 4. R
containsKg.RN Q..

Linking Delegation R <= Ri[: Q.]
The body part consists ofldelegateTo element (which
contains a role name) andzontrol element (which con-
tains a role).

K 4 delegates its authority ovétto members of{ 4. R; .
The delegation is restricted to membergpf This implies
R+—— R1.RNQ..

4.4 \ferification Data

The verification data part contains\alidityTime
element, zero or mor€alidityRule elements, and one
optional signature part.

The ValidityTime contains anlssueTime ele-
ment, an optionaNotBefore element, an optionallo-
tAfter element, and an optiondlifeTime element.
The first three elements each contain a specific time (using
the dateTime type in XML Schema), which we denote by
t;, tp, andt,. ThelLifeTime element contains a duration
(using the duration type in XML Schema), we denotejby

A ValidityRule may specify a CRL location, an on-
line verification server, etc. The details of the format of
ValidityRule are still being worked out.

When a party receives a certificate, it must first check
whether the validity period of this certificate has begun, i.e.,
whether the current time,, is later thant,. This allows
post-dated credentials, such as a student ID that becomes
valid only when the next academic year begins. The party
next determines the fresh tindg of the credential. Unless
the authorizer checks the credential’'s validity, it assumes
t¢ = t;. Validity rules define how checks can be performed
to justify using a later fresh time. For example, when a CRL
is checked and the credential is not revoked, one can up-
datet to the issue time of the CRL (which is presumably

fIater thant;). The party then determines whether this cer-

tificate has expired. The expiration time is the earlier of
te andty + 6. Thus, by setting the life timé, the issuer
indicates that the credential should not be viewed as valid
unless the party has checked for revocation sufficiently re-
cently. Finally, the party determines whether the fresh time
is sufficiently recent for its own purposes.

The optional signature part isSignature element as
specified in the XML Signature standard [10].

4.5 Access Rule
An AccessRule elementis similar to &redential

element. The differences are as follows. AccessRule
does not have aissuer ; it has aRuleldentifier

instead of &Credentialldentifier , itdoes not have Principal Type Declaration
ValidityRule orSignature . The rationale isthatan By default, principals in RTML are public keys. However,
access rule is created and used locally; as such, the issuesne can override this by usingPaincipalType element
is ImplICIt, no Signature is needed; and a revoked rule is to declare the principa' type to be an integer type ora String
simply removed. type. This makes it possible to use RTML to encode policies
that involve principals other than public keys and to use the
4.6 Application Domain Specification Documents RT system to make authorization decisions.
(ADSD's) Whenever a role is declared, one needs to know which
type of principal it contains. Every ADSD has at most one
An ADSD is represented by an principal type. We say that an ADSD has a principal type if

“ApplicationDomainSpecification " element, itincludes a domain that already has a principal type, it con-
which has a “uri” attribute, uniquely identifying this ADSD. tains aPrincipalType element, or it contains any role
An ADSD has the following structure. declarations at all. If an ADSD gets its principal type from

declaring roles, the default public-key principal is assumed
to be used. Roles that use different principal types must not
be mixed in one credential.

The current RTML parser supports verification when
principals are public keys. Credentials that are issued by
principals of other types are not verified. Applications that
use these credentials are responsible to perform any verifi-
cation that is necessary.

<IncludeDomain uri="..."
includeAll="true"|"false">
<Type name=".."> *
<RoleDeclaration name="..."> *
</IncludeDomain> *
<ImportDomain uri="...
(type declaration) *
<PrincipalType>......</PrincipalType> ?

name="..."> *

<RoleDeclaration ...> ... Role Declarations
</RoleDeclaration> * A RoleDeclaration element has five attributes: name,
issuerTraces (default rule), subjectTraces (fact), dimension
Using Other ADSDs (1), and isldentity (false). The “name” attribute should be

In anIncludeDomain element, the “uri” attribute iden- unique among all role names in the current domain. The
tifies the ADSD being included. When the “includeAll” at- issuerTraces and subjectTraces attributes are related to dis-

tribute is true (default value), all the types and roles in the tributed credential chain discovery, see [21] for more de-
included domain are included in the current domain, i.e., tails. If the dimension is over 1, then the role is a manifold
they are considered to be as if declared in the current do-role. If the isldentity attribute is set to true, then this is an
main. When the “includeAll” attribute is false, one can se- identity role. When one issues credentials about the iden-
lect the types and roles being included by specifying them in tity role, one should assign each physical user at most one
the body of the element. One cannot include two types/rolesunique combination of parameter values. Of course, each

that have the same name. principal needs to determine which principal to trust about
In an ImportDomain element, the “name” attribute ~ an identity role, just like every otherrole.
serves as a short domain ID referring to the imported do- A RoleDeclaration element may optionally con-

main. One can use a type declared in an imported domaintain one of the following three elementRestriction

by using the domain ID together with the type name. Im- (for restrictive inheritancextension (for extending in-

porting is useful when one wants to use two types that areheritance), anddentity (for identity-based roles).

declared in two ADSDs and have the same name. Finally, a RoleDeclaration may contain zero or
RTML has a system domain, which declares some datamoreParameter elements; each one has a name attribute

types that are commonly used. Every ADSD automatically and contains dype element.

includes the system domain without usingludeDo-

main , and so one can use these types freely. 5 Related Work

Type Declarations]))
Every type declaration has a “name” attribute, which must In this section, we compare RTML with X.509, SAML,
yop ' SPKI/SDSI and KeyNote.

take a value that is uniqgue among all the data type names in

a domain. One cannot declare a type if a type with the same,
. L ; . 5.1 X.509

name is already declared (possibly in an included domain).

Types are organized into seven different categories; the de-

tails of type declarations are left to Appendix A because of

space limitation.

The basic authorization-related meaning of an X.509 cer-
tificate is easily mapped into RTML. In an X.509 certificate,

10

the issuer attests to the association of a subject distinguishedelegation Structures

name (DN) and the subject key. If an X509 role is declared, RTML has more expressive delegation structures than those
then an X.509 certificate issued using k&y, to subject jn SPKI/SDSI and KeyNote.

key K 5 and subject DNC='US’, O="StateL)", OU='CSD", SPKI has name certs and auth certs. Name certs can be
CN="Bob Smith’} can be represented as the simple represented in RTML using simple member, simple contain-
member definition K 4.X509(dn{C="US’, O="StateU’, ent, and linked containment. An auth cert represents a del-

OU='CSD’, CN="Bob Smith}) — K'z". If the certificate ggation of the authority from its issuer to its subject, which

also has CA capabilities, then it also represents the simplecan pe a principal, a SDSI name, and a threshold structure.

containment K 4.X509(dn=?X)-— K 5.X509(dn=7X)". We will talk about threshold when discussing Separation of
A X.509 certificate does not contain the issuer key; in- pyty later.

stead, it contains the DN of the issuer. A certificate is only Assume that we are given an auth cert with isskey,

useful when a certificate chain is obtained so that the issueryythority R, and subjec 5. If the delegation flag is false,

public key is determined. Given an ADSD encoding X.509 then this is essentiallyX 4.R «— K. If the delegation

distinguished names, a standard X.509 certificate chain carfjag s true, then this can be represented using two defini-

be interpreted as a chain of RTML definitions, enabling ex- tions: K,.R «— Ky andK4.R < Kp. If one wants

isting certificates to be meaningful within an RTML system. g yse a SDSI nameK's’s N1's ... NK” as a subject, one
The above approach cannot capture additional purposegan define a new names™s’s M” to have the same mem-

of an X.509 certificate beyond that of binding a DN to akey, perd as “Kp’s N1's ... Nk” and useK 4.R «— K4.M,

nor purposes encoded in organization’s non-standard extengnd i ,.R < M.

sions. However, an organization can enable others to trans- Note that since names in SDSI are only simple strings,

late implicit or explicit meanings of its X.509 certificates by one cannot represent “student(university=2- univer-

providing an ADSD that describes the role information con- sjty(name=?x)" or “discount— K »ci.acmMember(since

tained in them and a tool that extracts that role information < 2001)” in SPKI/SDSI. Furthermore, SPK1/SDSI does not

from certificates. have intersection, which is needed in Scenario 1, or con-
trolled delegation, which is needed in Scenario 2. When a
5.2 SAML principal allows a subject to further delegate a permission,

it cannot restrict to whom the subject delegates.

The Security Assertion Markup Language (SAML) [13] A KeyNote requestis characterized by a list of fields,
is an XML-based framework for exchanging security infor- Which are name/value pairs. In KeyNote, credentials and
mation, expressed in the form of assertions about subjectspolicies (access rules) are called assertions. An assertion
Assertions can convey information about authentication actshas conditionswritten in an expression language, which
performed by subjects, attributes of subjects, and authorizal€fers to fields in requests. The intuitive meaning of an as-
tion decisions about whether subjects are allowed to acces$ertion is that, if the licensees support a request, and the
certain resources. request satisfies the conditions, then the issuer supports the
RTML has different purposes from SAML. SAML is requestas well.
used to convey results of authentication and authorization, KeyNote’s delegation structures in assertions are more
but not credentials for doing so. RTML provides credential restricted than those in SPKI/SDSI. Delegation in KeyNote
formats for documenting properties (expressed in the formsis always transitive, one cannot grant a permission to a prin-
of roles) of subjects and documenting mechanisms to deriveCipal without enabling the principal to further grant the per-

these properties such as delegation. mission. Furthermore, KeyNote assertions have to explic-
itly list the principals involved in the delegation. There-
5.3 SPKI/SDSI and KeyNote fore, using KeyNote assertions, one cannot express a dele-

gation “student(x= university()” (which is expressible in
SPKI/SDSI). See [18, 20] for more discussion of this limi-

We compare RTML with SPKI/SDSI and KeyNote from ation

three aspects: delegation structures, encoding of permis-

sions, and support for separation of duty. The conclusionsgncoding of Permissions

we draw are that RTML subsumes most of the eXpreSSivePermissions are encoded in RTML by using role terms,
power of SPKI/SDSI and KeyNote and provides a lot of ad- whose parameters are typed and can be constrained.
ditional power. The places in which RTML is less expres- In SPKI, authorities are encoded in tags, which are un-

sive result from design trade-offs made in favor of guaran- tvped lists. e tto (fip.stanford.edu) (* prefix /oub/test/
teeing properties such as the tractability of analyzing autho- P - €9, (ftp (ftp. edu) *p P)

rizations implied by RTML credentials and the interoper- 4This can be achieved by introducing new intermediate roles and defi-
ability and predictability that accrue to strong typing. nitions. See [21] for details.

11

One cannot express the permission to connect all hosts in &ipal sets that are entitled to the permission and to delegate

domain, since the root of a domain goes at the end of theto each of them directly.

string, and SPKI does not have a (* suffix) operator. There ~ When a user may hold more than one keys, thresholds

are also other limitations. For example, one cannot encodeseem to be useless. For example, ifsers each hol2lkeys,

a permission that requires two parameters being equal. then a policy that requiresout of n users would requirg™
While it is not clear that everything that can be expressed different thresholds using the straightforward approach. It

in tags can be expressed using role terms, we do claim thds better to directly express all the pairs that are eligible to

following. First, all the examples we encountered in SPKI access, as there a&e(n — 1) such pairs.

literature can be expressed using role terms. Second, the

ability to flexibly refine permissions that is allowed by un- § Conclusion

typed lists in SPKI can be achieved by using restrictive

inheritance in RTML. Third, the untyped list approach in

SPKI has b found to h tai bl F This paper describes the following advances in B
! has been found fo have certain problems. For eXaM-r, e\ ork that broaden its applicability: new data types
ple, in [15], it has been shown that the intersection between

- i to encode permissions involving structured resources and
two tags may not be finitely representable using tags.

Y i i ranges; restrictive inheritance of roles for flexible refine-
In KeyNote, the permissions delegated in an assertion ar&nent of permissions; and notions of identity roles and
represented by conditions on fields. These conditions ar

T X HONS ar€qentity-based roles to address issues when a physical user
very expressive, including formula constructed using inte- 5 4¢ myltiple keys. In addition to these extensions moti-
gers with function symbolg+, —, , /’_%’ }and_predlcates vated by specific applications, this paper describes RTML,
{=,#,<,>,=,2}. KeyNote conditions also include reg- 5 x| hased data representation " policies and cre-

ular expressions. We believe that this is more expressiveyantials RTML establishes a precise formatRd creden-

than role terms in RTML. However,.t'his expressiveness of tials and policies, help enabling the deployment of the RT
KeyNote comes at the cost of the ability to analyze KeyNote framework.

assertions. In [19], it has been shown that it is undecidable Compared with previous TM systems such as
to compute the set of all requests that a set of KeyNote as-gpk|/SDSI and KeyNote, RTML has the following
sertions authorizes. Note that whether any specific requeshistinguishing features.

is authorized by a set of assertions can still be determined
efficiently. However, there does not exist an algorithm to
perform analysis of all the requests being authorized by a
set of assertions. In fact, it is undecidable even when there
is only one assertion delegating to a single entity, and the
question is just whether the assertion authorizes any request ® RTML addresses the issue of vocabulary agree-

e RTML supports more flexible delegation. In RTML,
one can delegate to principals who are members of cer-
tain roles, and can control the scope of a delegation.

at all. On the other hand, the constraints in RTML are de-
signed so that the implications of a set of RTML credentials
can be efficiently computed. We feel that the constraints
in RTML provides sufficient expressive power for most ap-

plications, as all the examples in [3] can be expressed in
RTML.

Support for Separation of Duty

Both SPKI and KeyNote allow delegation to k-out-of-n
threshold structures, in which one explicitly lists the n prin-
cipals. It has been argued before that such threshold struc-
tures are inconvenient [17]. For example, to express the
access rule “twoCashier—cashier® cashier”, one needs

to explicitly list all the cashiers in the access rule, and this
rule needs to be changed each time members in the cashier
role change.

A threshold structure requires agreement of multiple
principals drawn from a single list. When the policy is to
require different principals drawn from the membership of
different roles, it is not clear that threshold can help. It
seems that the policy writer needs to enumerate all the prin-

12

ment. Application Domain Specification Documents
in RTML ensure uniqueness of role names, and enable
credentials to be strongly-typed, further helping to en-
sure interoperability and to reduce the possibility of er-
rors in writing policies and credentials and unintended
interaction of credentials.

RTML supports Separation of Duty policies in a way
that is more expressive than previous TM systems.
Furthermore, RTML addresses the situation when one
user holds more than one keys.

References

[1]

2]

[3]

[4]

[5]

[6]

Martin Abadi, Michael Burrows, Butler Lampson, and
Gordon Plotkin. A calculus for access control in dis-
tributed systems. ACM Transactions on Program-
ming Languages and Systeni$(4):706—734, Octo-
ber 1993.

Paul V. Biron and Ashok Malhotra. XML Schema Part (14]

2: Datatypes. W3C Recommendation, May 2001.

Matt Blaze, Joan Feigenbaum, John loannidis,
and Angelos D. Keromytis. The KeyNote trust-
management system, version 2. |IETF RFC 2704,
September 1999.

Matt Blaze, Joan Feigenbaum, John loannidis, and
Angelos D. Keromytis. The role of trust management
in distributed systems. ISecure Internet Program-
ming, volume 1603 of_ecture Notes in Computer Sci-
ence pages 185-210. Springer, 1999.

Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decen-
tralized trust management. Rroceedings of the 1996
IEEE Symposium on Security and Privapgges 164—
173. IEEE Computer Society Press, May 1996.

Matt Blaze, Joan Feigenbaum, and Martin Strauss.
Compliance-checking in the PolicyMaker trust man-
agement system. IProceedings of Second In-
ternational Conference on Financial Cryptography
(FC'98), volume 1465 of_ecture Notes in Computer
Sciencepages 254-274. Springer, 1998.

[7] Tim Bray, Dave Hollander, and Andrew Layman.

[8]

[9]

[10]

[11]

Namespaces in XML. W3C Recommendation, Jan-
uary 1999.

David D. Clark and David R. Wilson. A comparision
of commercial and military computer security poli-
cies. InProceedings of the 1987 IEEE Symposium on
Security and Privacypages 184-194. IEEE Computer
Society Press, May 1987.

Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt
Fredette, Alexander Morcos, and Ronald L. Rivest.
Certificate chain discovery in SPKI/SDSJournal of
Computer Security9(4):285-322, 2001.

Donald Eastlake, Joseph Reagle, and David Solo.
XML-Signature Syntax and Processing. W3C Rec-
ommendation, February 2002.

Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest,
Brian Thomas, and Tatu Ylonen. SPKI certificate the-
ory. IETF RFC 2693, September 1999.

13

[12] David C. Fallside. XML Schema Part 0: Primer. W3C

(13]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

Recommendation, May 2001.

Phillip Hallam-Baker and Eve Maler. Assertions and
protocol for the oasis security assertion markup lan-
guage (saml). OASIS Committee Specification, May
2002.

Russell Housley, Warwick Ford, Tim Polk, and David
Solo. Internet X.509 Public Key Infrastructure Certifi-
cate and CRL Profile. IETF RFC 2459, January 1999.

Jonathan R. Howell.Naming and sharing resources
acroos administrative boundariesPhD thesis, Dart-
mouth College, May 2000.

B. Lampson, M. Abadi, M. Burrows, and E. Wob-
ber. Authentication in distributed systems: Theory
and practice. ACM Transactions on Computer Sys-
tems 10(4):265-310, November 1992.

Ninghui Li, Benjamin N. Grosof, and Joan Feigen-
baum. A practically implementable and tractable Del-
egation Logic. InProceedings of the 2000 IEEE Sym-
posium on Security and Privacpages 27-42. |IEEE
Computer Society Press, May 2000.

Ninghui Li, Benjamin N. Grosof, and Joan Feigen-
baum. Delegation logic: A logic-based approach to
distributed authorizationACM Transaction on Infor-
mation and System Security (TISSH&bruary 2003.
To appear.

Ninghui Li and John C. Mitchell. BTrALOG with
constraints: A foundation for trust management lan-
guages, August 2002. Submitted manusctipt.

Ninghui Li, John C. Mitchell, and William H. Wins-
borough. Design of a role-based trust management
framework. InProceedings of the 2002 IEEE Sympo-
sium on Security and Privacyages 114-130. IEEE
Computer Society Press, May 2002.

Ninghui Li, William H. Winsborough, and John C.
Mitchell. Distributed credential chain discovery in
trust management. To appearJournal of Computer
Security Extended abstract appearedHroceedings

of the Eighth ACM Conference on Computer and Com-
munications Security (CCS-8)

Ronald L. Rivest and Bulter Lampson. SDSI— a sim-
ple distributed security infrastructure, October 1996.
http://theory.lcs.mit.edu/ rivest/sdsill.html.

5Available at http://crypto.stanford.edu/"ninghui/papers/constraint02.pdf
[17,18,20,21,27] are available from http://crypto.stanford.edu/ ninghui/

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein,
and Charles E. Youman. Role-based access con-
trol models. IEEE Computer29(2):38-47, February
1996.

Kent E. Seamons, Marianne Winslett, and Ting Yu.
Limiting the disclosure of access control policies dur-
ing automated trust negotiation. Rroceedings of the
Symposium on Network and Distributed System Secu-
rity (NDSS'01) February 2001.

Kent E. Seamons, Marianne Winslett, Ting Yu, Bryan
Smith, Evan Child, Jared Jacobsen, Hyrum Mills, and
Lina Yu. Requirements for policy languages for trust
negotiation. InProceedings of the Third International
Workshop on Policies for Distributed Systems and Net-
works (Policy 2002) pages 68-79. IEEE Computer
Society Press, June 2002.

Tichard T. Simon and Mary Ellen Zurko. Separation

of duty in role-based environments. Rroceedings

of The 10th Computer Security Foundations Workshop
(CSFW-10) pages 183-194. IEEE Computer Society

Press, June 1997.

William H. Winsborough and Ninghui Li. Towards
practical automated trust negotiation. Rroceed-
ings of the Third International Workshop on Policies
for Distributed Systems and Networks (Policy 2002)
pages 92-103. IEEE Computer Society Press, June
2002.

William H. Winsborough, Kent E. Seamons, and
Vicki E. Jones. Automated trust negotiation. In
DARPA Information Survivability Conference and Ex-
position volume |, pages 88—102. IEEE Press, January
2000.

Ting Yu, Marianne Winslett, and Kent E. Seamons. In-
teroperable strategies in automated trust negotiation.
In Proceedings of the 8th ACM Conference on Com-
puter and Communications Security (CCS$-Bages
146-155. ACM Press, November 2001.

14

A Type Declarations in ADSDs Tree types

A TreeType element has two additional required at-
In the following, we present type declarations in ADSDs. tributes: separator and order. These two values determine
Every type declaration has a “name” attribute, which we what a tree value looks like. For example, a type for DNS
omit in the presentation below. Under each category, we names has “.” as separator and the order is “rootLast”, while
also describe how a constant value of a type in that categorya type for Unix file paths has “/” as separator and the order

is represented. is “rootFirst”.
A TreeValue element contains a string such as
Integer types “lusr/home” and three optional attributes: includeCurrent

An IntegerType element has two additional required at- (default true), includeChildren (false), and includeDescen-
tributes: max and min. It also has four optional attributes: dants (false). The default value means that only the current
step (default 1), base (0), includeMin (true), and include- node is included. One can set these attributes to reflect other
Max (true). The legal values of this type include all integer choices. Note that children are considered to be a subset of
valuewv’s such thaty = base + k * step for some integek descendants, and so when includeDescendants is set to true,
and thatmin < v < max, where< (>) should be replaced all children are also included, no matter what the value of
by <(>) if includeMin (includeMax) is set to false. For ex- includeChildren is.
ample, one can declare a type to contain all the numbers The system declares two types of this category: dns and
such thab mod 3 =1 and0 < v < 100. path.

A constant of an integer type is represented usingpan
tegerValue element. The following integer types are Record types
declared in the system domain: long, int, short, byte, bit, A RecordType element contains one or moFéeld el-

unsigned int, unsigned short, and unsigned byte. ements; each has a name attribute and containga el-

_ ement. TheType element has two attributes: name (re-
Decimal types quired) and domain (optional); they refer to a type already
A DecimalType elementis similar to amtegerType declared, i.e., declared in an included domain or before the

element, in that it has the same attributes. However, thecurrent declaration. This guarantees that no recursion oc-

attributes min, max, base, and step now take decimal valuescurs with record types.

Valid values of this type are defined in the same way as are A Record element can be used to constrain a parameter

those of an integer type. A constant is represented using 20f a record type; it contains one or more fields, each having

DecimalValue element. No decimal type is declared in an optional constraint.

the system domain. Examples of record types include IP addresses, names,
and street addresses.

Enumeration Types

An EnumType element has three optional attributes: ig- Date/Time types

noreCase (false), which specifies whether to ignore caseDate/Time types are treated differently from other data

when comparing two enumeration values; ordered (false),types. RTML borrows the following standard date/time

which specifies whether this type is ordered; and size, whichtypes defined in XML Schema [2]: date, time, dateTime,

specifies how many values this type has. If this type is or- gYear, gYearMonth, gMonth, gMonthDay, and gDay. These

dered, then one can use intervals to constrain parameters diypes can be used as if they are declared in the system do-

this type. TheEnumType element contains a list &num- main. RTML does not support defining new data/time types.
Value elements, which enumerates the legal values of thisA TimeValue element can contain any value that is legal
type. for one of the above types .

A constant is represented using &mumValue ele-
ment. The system domain contains a boolean type, which
is declared as an EnumType. Other possible examples of
enumeration types include day of week, degree, etc.

String types

A StringType element has two optional attributes: ig-
noreCase (false) and ordered (false), which have the same
meanings as in the case of enumeration types. A constant
is represented using @tringValue element. The sys-
tem domain declares two types of this category: string and
case-insensitive string.

15

B Sample ADSDs and Credentials in XML
B.1 The System ADSD

The system ADSD consists of the data types declared as follows and date/times from XML Schema. It is automatically
included in every other ADSD.

<?xml version="1.0" encoding="UTF-8"?>
<ApplicationDomainSpecification uri=""
xmlns="http://crypto.stanford.edu/dc/RTMLv1.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal.ocation="http://crypto.stanford.edu/dc/RTMLv1.0
http://crypto.stanford.edu/ ninghui/rtml/RTMLv1.0q.xsd">
<IntegerType name="long" max="9223372036854775807" min="-9223372036854775808"/>
<IntegerType name="int" max="2147483647" min="-2147483648"/>
<IntegerType name="short" max="32767" min="-32768"/>
<IntegerType name="byte" max="127" min="-128"/>
<IntegerType name="bit" max="1" min="0"/>
<IntegerType name="unsigned int" max="4294967295" min="0"/>
<IntegerType name="unsigned short" max="65535" min="0"/>
<IntegerType name="unsigned byte" max="255" min="0"/>
<EnumType name="boolean">
<EnumValue>false</EnumValue>
<EnumValue>true</EnumValue>
</[EnumType>
<StringType name="string"/>
<StringType name="case-insensitive string" ignoreCase="true"/>
<TreeType name="dns" separator="." order="rootLast"/>
<TreeType name="path" separator="/" order="rootFirst"/>
<RecordType name="email address">
<Field name="user name"> <Type name="string"/> </Field>
<Field name="server"> <Type name="dns"/> </Field>
</RecordType>
<RecordType name="person name">
<Field name="first name"> <Type name="string"/> </Field>
<Field name="last name"> <Type name="string"/> </Field>
</RecordType>
<RecordType name="distinguished name">
<Field name="CN"> <Type name="string"/> </Field>
<Field name="OU"> <Type name="string"/> </Field>
<Field name="0"> <Type name="string"/> </Field>
<Field name="CN"> <Type name="string"/> </Field>
</RecordType>
</ApplicationDomainSpecification>

B.2 Sample XML Elements for Scenario 1

The following definition corresponding to EPub’s discount policy in Scenario 1.

<IntersectionContainment>
<HeadRoleTerm name="Discount"/>
<Intersection>
<ExternalRole>
<PrincipalRef ref="K_ACM"/>
<RoleTerm name="ACM Member">
<Parameter name="name" id="memberName"/>
<Parameter name="since">

16

<Interval>
<To><TimeValue>2001</TimeValue></To>
</Interval>
</Parameter>
</RoleTerm>
</ExternalRole>
<RoleTerm name="student">
<Parameter name="name"> <Equals ref="memberName"/> </Parameter>
<Parameter name="program">
<Set>
<EnumValue>M.S.</EnumValue>
<EnumValue>Ph.D.</EnumValue>
</Set>
</Parameter>
</RoleTerm>
</Intersection>
</IntersectionContainment>

B.3 Sample XML Elements for Scenario 2

The following is the ADSD that declares the “hostPerm” role.

<ApplicationDomainSpecification
uri="http://crypto.stanford.edu/ninghui/rtml/examples/FWADSD1.xml"
xmins="http://crypto.stanford.edu/dc/RTMLv1.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://crypto.stanford.edu/dc/RTMLv1.0
http://crypto.stanford.edu/ ninghui/rtml/RTMLv1.0g.xsd">
<RoleDeclaration name="hostPerm">
<Parameter name="host"> <Type name="dns"/> </Parameter>
</RoleDeclaration>
</ApplicationDomainSpecification>

The following is the ADSD that declares the “socketPerm” role, which restrictively inherits “hostPerm”.

<ApplicationDomainSpecification
uri="http://crypto.stanford.edu/ ninghui/rtml/examples/FWADSD2.xml"
xmlins="http://crypto.stanford.edu/dc/RTMLv1.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://crypto.stanford.edu/dc/RTMLv1.0
http://crypto.stanford.edu/ ninghui/rtml/RTMLv1.0q.xsd">
<IncludeDomain uri="http://crypto.stanford.edu/ ninghui/rtml/examples/FWADSD1.xml"/>
<RoleDeclaration name="socketPerm">
<Restriction> <BaseRole name="hostPerm"/> </Restriction>
<Parameter name="port"> <Type name="unsigned short"/> </Parameter>
</RoleDeclaration>
</ApplicationDomainSpecification>

The following is the definition element dfrw's delegation takga .

<SimpleDelegation>
<HeadRoleTerm name="hostPerm">
<Parameter name="host">
<TreeValue includeCurrent="true" includeDescendents="true">
cs.stanford.edu
</TreeValue>
</Parameter>
</HeadRoleTerm>

17

<DelegateTo>
<PrincipalRef ref="K_SA"/>
</DelegateTo>
<Control>
<ExternalRole>
<PrincipalRef ref="K_Stanford"/>
<RoleTerm name="StudentID" domain="Stanford"/>
</ExternalRole>
</Control>
</SimpleDelegation>

The following is the definition element dfsa’s delegation tai ajice-

<SimpleMember>
<HeadRoleTerm name="socketPerm">
<Parameter name="host">
<TreeValue includeDescendents="true" includeCurrent="false">stanford.edu</TreeValue>
</Parameter>
<Parameter name="port">
<Interval>
<From><IntegerValue>8000</IntegerValue></From>
<To><IntegerValue>8443</IntegerValue></To>
</Interval>
</Parameter>
</HeadRoleTerm>
<PrincipalRef ref="K_Alice"/>
</SimpleMember>

B.4 A Complete, Signed Credential

We now give a complete credential. The signature is generated using the Apache XML Security tool.

<Credential
xmIns="http://crypto.stanford.edu/dc/RTMLv1.0"
xmlins:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal.ocation="http://crypto.stanford.edu/dc/RTMLv1.0
http://crypto.stanford.edu/ ninghui/rtml/RTMLv1.0q.xsd
http://www.w3.0rg/2000/09/xmldsig#
http://www.w3.0rg/TR/xmldsig-core/xmldsig-core-schema.xsd">
<Preamble>
<DefaultDomain uri="http://crypto.stanford.edu/dc/rtml/x509adsd.xml|">
</Defaultbomain>
<Principal id="IssuerKey">
<ds:KeyValue>
<ds:DSAKeyValue>
<p>
/X9TgR11EilS30qcLuzk5/YRt11870QAwWx4/gLZRIMIFXUAIUtZPY 1Y +r/F9bow9subVWzXgTuA
HTRv8mZgt2uZUKWkn5/0BHsQIsJPunX/rfGG/g7V+GgKYVDwT7g/bTxR7DAjVUE1oWKTL2dfOu
K2HXKu/lylgMZndFIAcc=
</P>
<Q>12BQjxUjC8yykrmCouuEC/BYHPU=</Q>
<G>
9+GghdabPd7LvKtcNrhXuXmUr7v60uqC+VdMCzOHgmdRWVeOutRZT+ZxBxCBgLRJIFNEj6EwWoFhO3
zwkyjMim4TwWeotUfl0o4KOuHiuzpnWRbgN/C/ohNWLx+2J6ASQ7zKTxvghRkimog9/hWuWfBpKL
ZI6Ae1UIZAFMO/7PSSo=
</G>
<Y>

18

vLpQw30YKp/iAL8drwllteVtuSTGt8+1Z7YyUul/ztvdOittFVw/udC7HEYLF1A34saK GOES3X3V
wsrilpx6e 1tHFSHHV087GsDXdNIIKUKkJhtysttrlOStBG7hcKcdVISdaw/Pvyfod50AhTAOTw1
9sAeigAelUO4qgsyr/20=
</Y>
</ds:DSAKeyValue>
</ds:KeyValue>
</Principal>
<Principal id="SubjectKey">
<ds:KeyValue>
<ds:RSAKeyValue>
<ds:Modulus>
UiN6AFAP1GhzwiXIP2DwJod5ivWw7bnQA903bTQMMhN1kkPxcSEmMPW1f+yof3cza0Xz9WgeBc9+
XwM150t/J4KGYHoDrLIlyr1A2uKnRtixJphpJGCbw09CoCAHEWC25+93c7aG1j3kWoKBQqn9fCH3s
QO5dt1DxNog3ah0jg0c=
</ds:Modulus>
<ds:Exponent>AQAB</ds:Exponent>
</ds:RSAKeyValue>
</ds:KeyValue>
</Principal>
</Preamble>
<lIssuer><PrincipalRef ref="IssuerKey"></PrincipalRef></Issuer>
<SimpleMember>
<HeadRoleTerm name="DistinguishedName">
<Parameter name="subjectDN">
<Record>
<Field name="CN"><StringValue>Bob Smith</StringValue></Field>
<Field name="OU"><StringValue>CSD</StringValue></Field>
<Field name="0"><StringValue>StateU</StringValue></Field>
<Field name="C"><StringValue>US</StringValue></Field>
</Record>
</Parameter>
</HeadRoleTerm>
<PrincipalRef ref="SubjectKey"></PrincipalRef>
</SimpleMember>
<ValidityTime>
<IssueTime>2002-08-20T13:20:00Z</IssueTime>
<NotAfter>2003-08-20T13:20:00Z</NotAfter>
</ValidityTime>
<Signature xmins="http://www.w3.0rg/2000/09/xmldsig#">
<Signedinfo>
<CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315">
</CanonicalizationMethod>
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#dsa-shal">
</SignatureMethod>
<Reference URI="">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/2000/09/xmldsig#enveloped-signature">
</Transform>
<Transform Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-
20010315#WithComments">
</Transform>
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"></DigestMethod>
<DigestValue>vgeAJujgY/eHjj0ReTKAywqSPk8=</DigestValue>
</Reference>
</SignedIinfo>
<SignatureValue>cCH3MJMCY 1Bb1MGn5HY{S4mHrApVhguBNFjAHjV+5MuCLdemhyC61Q==</SignatureValue>
<Keylnfo>

19

<KeyValue>
<DSAKeyValue>

<p>
/X9TgR11EilIS30gcLuzk5/YRt11870QAwWXx4/gLZRIMIFXUAIUftZPY 1Y +r/F9bow9subVWzXgTuA
HTRv8mZgt2uZUKWkn5/0BHsQIsJPuénX/rfGG/g7V+fGgKYVDwT7g/bTxR7DAjVUE1oWKTL2dfOu
K2HXKu/ylgMZndFIAcc=

</P>

<Q>12BQjxUjC8yykrmCouuEC/BYHPU=</Q>

<G>
9+GghdabPd7LvKtcNrhXuXmUr7v60uqC+VdMCzOHgmdRWVeOutRZT+ZxBxCBgLRJFNEj6EwWoFhO3
zwkyjMim4TwWeotUfl0o4KOuHiuzpnWRbgN/C/ohNWLx+2J6ASQ7zKTxvghRkimog9/hWuWfBpKL
ZI6AelUIZAFMO/7PSSo=

</G>

<Y>
EIn5/htZP51p7Y/Y1+2Z0SSmoi2fQS0deniScan3990xy33RrPfF50dqEVmMVYfTzFfKEz94aUXEY
qY2VGVRCKrAZThk1SwoOB+UyfNSVjoqadfpplQpTalK/JeR7uxQUr0Aeop68nr2u49GijYiLyvL3
x041Gaz8juYZL3gZTNI=

</Y>

</DSAKeyValue>
</KeyValue>
</KeylInfo>
</Signature>
</Credential>

20

