
Nonmonotonicity, User Interfaces, and Risk
Assessment in Certificate Revocation

(Position Paper)

Ninghui Li1 and Joan Feigenbaum2

1 Department of Computer Science, Stanford University, Gates 4B,
Stanford, CA 94305-9045, USA
ninghui.li@cs.stanford.edu

2 Department of Computer Science, Yale University, PO Box 208285,
New Haven, CT 06520-8285, USA

jf@cs.yale.edu

Abstract. We consider certificate revocation from three high-level per-
spectives: temporal nonmonotonicity, user interfaces, and risk manage-
ment. We argue that flawed understanding of these three aspects of revo-
cation schemes has caused these schemes to be unnecessarily costly, com-
plex, and confusing. We also comment briefly on some previous works,
including those of Rivest [16], Fox and LaMacchia [5], and McDaniel and
Rubin [11].

Keywords: Certificates, Revocation, PKI, CRL

1 Introduction

Public-Key Infrastructure (PKI) is an important enabling technology for e-
commerce. However, the use of PKI can be limited by the cost, complexity,
and sometimes confusion attributable to revocation. There has been a lot of
debate over the meaning of certification and revocation [5, 11, 13, 16], and dif-
ferent revocation mechanisms have been proposed [1, 4, 9, 10, 12, 15, 19, 8, 14]. In
this paper, we argue that revocation is complex and confusing for the following
reasons.

– Revocation makes certification nonmonotonic. More precisely, in a PKI that
has revocation, the validity of a certificate is nonmonotonic with respect to
time, i.e., a certificate may go from valid to invalid as time passes.

– A PKI has a user interface and internal entities and mechanisms that im-
plement this interface. In the literature, this distinction is not always drawn
clearly, and thus discussions of user-interface issues and internal-mechanism
issues are often intermingled.

– Traditionally, revocation schemes have been viewed as methods to provide
“security” instead of methods to control risk. This view limits the ways in
which revocation mechanisms are used and analyzed.



In this paper, we consider certification and revocation from the perspective of
these three issues. We separate the user interface (UI) of a PKI from the internal
mechanisms of a PKI and argue that the UI should be as simple as possible: It
should provide only the information needed by the users and hide the rest. In
particular, it is desirable for a PKI to have a monotonic user interface: Every
piece of information shown through the interface should have a meaning that is
monotonic with respect to time. In fact, the UI’s of most existing PKI’s can be
made monotonic by making time an explicit element.

We also argue that revocation is a risk-management tool. Risk associated
with a PKI cannot be completely removed, but it can be analyzed and controlled.
With revocation, users control risk by, for example, setting recency requirements
for certificate acceptance. Smaller recency requirements lead to lower risk but
require higher communication and/or computation cost. Setting the right re-
cency requirement requires risk analysis and balancing the risk and the cost. It
is clear that different applications have different risk requirements and that dif-
ferent users have different preferences in the risk-cost balance. Therefore, a PKI
aiming to support multiple applications should provide a revocation interface
that is tunable. Users should be able to set different recency requirements based
on their needs and resources.

The UI of a PKI should also be helpful in auditing, e.g., it should be easy
to obtain a proof that a certificate was valid at a particular time in the past.
This is useful for detecting fraudulent transactions after they occur. It is also
useful when a user’s risk is assumed by a third-party insurer, and the insurer
requires the user to provide a proof that she has followed the insurer’s policy in
a transaction.

2 Background

A public-key certificate (certificate for short) is a data record digitally signed by
a private key; the entity that possesses the private key and signs the certificate
is called the issuer, or the certification authority (CA), of this certificate. Data
in a certificate include a public key, which we call the subject key (of this cer-
tificate), and some information about the subject-key holder (holder for short),
i.e., the entity that holds the private key corresponding to the subject key. A
certificate binds the subject key and the information together. For example, a
certificate may bind the distinguished name (DN) of an entity and its public
key. A certificate may also express implicitly some trust the issuer has in the
holder. For example, a CA-to-CA certificate often implicitly suggests the trust-
worthiness of the holder, in addition to establishing a DN-to-public-key binding.
In the following, we use binding to mean both the binding of the subject key to
the other data in the certificate and the implicit trust semantics.

Normally, a certificate has a validity period that includes a beginning time
and an ending time; the issuer only vouches for the binding during this period.
However, even before the validity period of a certificate ends, things may happen
to make the information in the certificate invalid, e.g., the subject-key holder may



report that the private key has been stolen or lost, the issuer may suspect that
the private key has been stolen from the holder or has been given away by the
holder, or the binding may be shown to be no longer accurate. The traditional
approach to certificate revocation is certificate revocation lists (CRL’s) [8]. A
CRL, signed by a CA, contains an issuing time t and a list of entries, each of
which contains the serial number of a certificate that was issued by this CA, has
not expired,1 and has been revoked at t.

An architectural model of PKI is given in [8, 2]. In this model, a PKI has
end entities, PKI management entities, and repositories. PKI management enti-
ties include CA’s and, optionally, registration authorities (RA’s), to which CA’s
delegate certain management functions. Repositories are systems that store and
distribute certificates and revocation data such as CRL’s.

Here, we recommend a slightly different architecture. End entities are “users”
of a PKI; thus the interface between end entities and the rest of a PKI is the
user interface (UI) of the PKI. We further distinguish between two kinds of
end entities: subject-key holders and entities that use certificates in making
decisions, which we call acceptors or verifiers. In this paper, we focus on the
acceptors’s view of a UI, i.e., the interface for providing information to help
acceptors decide whether to accept a certificate, as opposed to the interface for
requesting certificates.

As a general design principle for UI, we have the following.

Recommendation 1 The UI of a PKI should be clear and simple. It should
provide only the information needed by end users, and it should hide everything
else.

We also stress that, to be clear, a UI should precisely specify, for each piece
of information it exposes to users, the meaning and the expected action.

We now review four kinds of user interfaces for PKI’s, focusing on the data
provided through the UI’s.

– The first kind of UI’s have certificates that cannot be revoked. This is the
simplest kind. Certificates are valid for their life times, which are typically
short.

– The second kind of UI’s have certificates and CRLs. The standard X.509 PKI
belongs to this kind. The characteristic of a CRL is that one piece of data
(i.e., the CRL) provides the current status of all the certificates issued by a
CA. This is good for acceptors who process lots of certificates. However, the
size of one typical CRL is quite large, and so the communication cost might
be too high for acceptors who process only a small number of certificates.

– The third kind of UI’s have certificates and validity proofs for individual
certificates. Such proofs are much shorter than typical CRL’s, but they can
only prove the validity of one or several certificates. Examples of these kind
include OCSP (Online Certificate Status Protocol) [14], CRS [12], etc. CRT

1 According to [8], a revoked certificate should appear in at least one CRL after it has
expired.



(Certificate Revocation Tree) [9] and 23CRT [15] provide both short proofs
for one certificate and CRL-like data at the same time.

– The fourth kind of UI’s have certificates and revocation notices. See, e.g.,
the work of Wright et al. [19]. In these UI’s, acceptors who are interested in
the status of a certificate register themselves with someone who distributes
revocation notices for the certificate, e.g., the CA. When a certificate is
revoked, the CA broadcasts this information to all interested parties.

3 A Monotonic Interface for PKI

Revocation leads to nonmonotonicity. When more certificates are revoked, fewer
are valid; the amount of validity information decreases when the amount of re-
vocation information increases. Normally, revocation information increases over
time, i.e., as time passes, more certificates are revoked. Therefore, when a PKI
allows revocation, the validity information is temporally nonmonotonic. More
specifically, a certificate valid at time t0 may become invalid at a later time t1.

The nonmonotonicity introduced by revocation is similar to the notion of
“negation-as-failure” in the logic-programming and nonmonotonic-reasoning lit-
erature. Negation-as-failure means that, to conclude “not r,” one needs to try
every way to prove r; if they all fail, then “not r” is concluded. In a PKI with
revocation, one needs to prove “not revoked(cert)” at the time at which one
decides whether to accept a certificate. To prove “not revoked(cert),” conceptu-
ally, one needs complete information about revoked(). Because the information
about revoked() increases with time, one needs current information in order to
conclude safely “not revoked(cert).” In a distributed system, distributing abso-
lutely current information to all concerned parties is impossible. The best one
can do is to deliver recent information. Even this is quite expensive in large-scale
distributed systems. This is a major source of difficulty in revocation.

Recommendation 2 The difficulty of revocation is caused by temporal non-
monotonicity, and thus a PKI should provide an interface that is monotonic.

In fact, when viewed appropriately, existing PKI’s have such an interface.
In the following, we give a monotonic semantics of certificates and information
provided by revocation mechanisms.

Without revocation, the meaning of a certificate is monotonic. A certificate
means that the issuer vouches for the binding in the certificate for the validity
period. Anyone who sees the certificate can check whether it has expired and
decide whether to use it.

When revocation is possible, the meaning of a certificate becomes more com-
plicated. In [16], Rivest discussed the following guarantee for standard certifi-
cates: “This certificate is good until the expiration date. Unless, of course, you
hear that it has been revoked.” Rivest argued that this guarantee is not very
useful, because the acceptor is always required to check whether a certificate has
been revoked; he proposed a different general certificate guarantee: “This cer-
tificate is definitely good from T1 until T2. The issuer also expects this certificate



to be good until T3, but a careful acceptor might wish to demand a more recent
certificate. This certificate should never be considered valid after T3.”

The above guarantee is a combination of nonrevokable certificates and stan-
dard revokable certificates. It means that a certificate is nonrevokable from T1

to T2 and then is a standard certificate. We argue that this interpretation of cer-
tificate is still problematic. The meaning of this certificate is still nonmonotonic
from T2 and T3.

A certificate states what its CA believed when the certificate was issued. This
belief may change over time, and this change may be reflected by revocation.
This is the cause of nonmonotonicity. However, the fact that the CA believed
the content of the certificate at the time when it was issued doesn’t change over
time. Therefore, we can give a certificate a temporally monotonic meaning if we
take the issuing time as part of the meaning of a certificate.

We now introduce a simple logic for representing meaning of certificates. A
statement in this logic takes the following form:

– At time t0, X believes b to be true in [t1, t2], where t1 ≤ t2.

We call t0 the fresh time of this statement. This logic has the following two
inferencing rules:

1. If, at t0, X believes b to be true in [t1, t2], then, at t0, X believes b to be
true in any [t′, t′′] such that t1 ≤ t′ ≤ t′′ ≤ t2.

2. If, at t1, X believes b to be true in [t1, t2], then, at any time t0 such that
t0 < t1, X believes b to be true in [t1, t2].

Note that this logic doesn’t interpret the belief b. In particular, it doesn’t relate
beliefs b and ¬b. Also note that one cannot express “disbeliefs” in this logic.

The first inferencing rule is straightforward and quite standard [18]. The
second rule says that, if X believes something at time t1, then X has been
believing it at all times up to t1. This is certainly false for general beliefs; however,
it seems appropriate for our purpose, i.e., monotonic reasoning about certificates
and revocation. Next we show that certificates and revocation data such as CRL’s
can be represented by statements in this logic.

Recommendation 3 We propose the following interpretation of certificates:
At issuing time t0, the issuer believes the information in this certificate to be
true from t1 to t2.

This reading is temporally monotonic; it is always true at any time after t0.
Note that our interpretation makes issuing time an explicit part (the fresh time)
of the meaning of a certificate.

A certificate states the issuer’s belief at the issuing time t0, and one can
view revocation schemes as mechanisms to reconfirm the issuer’s belief at a later
time. If one only has a certificate issued at t0, the fresh time of the binding in
the certificate is t0. If one also obtains a proof that a certificate has not been
revoked at a later time t1, then one can update the fresh time to t1.



Consider the case that, at time tu, an acceptor wants to use a certificate
that has validity period [t1, t2], issuing time t0, and fresh time tf . The acceptor
should check that, at a time in recent past, say, within a fresh requirement dt,
the issuer of this certificate still believed the binding to be true at current time
tu. In other words, the verifier needs to check that at time tu − dt, the issuer
still believed the binding to be true in [tu, tu]. Following the inferencing rules,
the verifier needs to check that tu ∈ [t1, t2] and that tf ≥ tu − dt. The choice
of dt is a policy that the acceptor needs to decide. If one doesn’t want to check
revocation, one can set dt to ∞, then tf ≥ tu − dt is always true.

Most existing certificate formats only have two time fields: not-before and
not-after, and it is often assumed that the not-before time is the same as the
issue time. If one is willing to make this assumption, one can interpret existing
standard certificates as in Recommendation 3. However, we think that a certifi-
cate should have a separate issue time in order to allow post-dated certificates to
be issued. A post-dated certificate can be revoked even before its validity period
begins.

A CRL issued at t1 is a claim that all certificates that are not listed should
have a fresh time t1 or later. Some argue that one can criticize CRL’s because
they make negative statements. We disagree. Although a notice that some cer-
tificates have been revoked is negative, a list of all revoked certificates provides
positive information, because all those certificates that are not listed are still
valid. In some cases, this is more efficient than listing all nonrevoked certificates.
There is also the argument that a CRL doesn’t provide positive information, be-
cause it doesn’t prove the existence of a certificate. We disagree with this, too.
The purpose of revocation is to complement certification, not to replace it. The
purpose of a CRL is not to prove that a binding is valid but rather to update
the fresh time of an existing proof (a certificate). One has to have a certificate
first before caring about revocation.

Similarly, responses of the Online Certificate Status Protocol (OCSP) [14]
and information from other revocation schemes can all be viewed as proofs that
something is still believed at a later time.

In section 2, we reviewed four kinds of UI’s for PKI. Among them, only the
last kind, i.e., the one that uses revocation notices, cannot be interpreted as in
Recommendation 3. A revocation notice is a piece of negative information. If it
fails to reach an acceptor, then the acceptor may accept a revoked certificate as
valid.

We want to stress the point that the difficulty of revocation is caused by
temporal nonmonotonicity. Because revocation information changes with time,
one needs sufficiently recent information about revocation. Some previous work
tries to make certification with revocation monotonic; however, this work does
not address the time issue. In [6], Gunter and Jim argued that revocation infor-
mation can and should be handled in the same way as certificates and that their
system Query Certificate Manager (QCM) with revocation is monotonic. QCM
has dual notions of positive sets and negative sets, e.g., a CRL is a negative
set. For a positive set, a QCM certificate states that an element is a member



of the set. For a negative set, a QCM certificate states that an element is not
a member of the set. An environment is a set of QCM certificates. In [6], the
claim that QCM with revocation is monotonic means that a larger environment
always leads to more conclusions. However, an environment itself is nonmono-
tonic with respect to time; more specifically, a QCM certificate for a negative set
itself may go from true to false as time passes. For a user to decide whether to
accept a certificate, she needs to forget an old environment and get a sufficiently
recent one. This doesn’t decrease the amount of information that needs to be
transmitted.

4 The Semantics of Revoking a Certificate is to Cancel It

A certificate may be revoked for several reasons. In [5], Fox and LaMacchia
argued that revocation for different reasons should have different semantics.
When a verifier knows that a certificate has been revoked, the verifier should
remove the revoked certificate from any certificate chain (or graph) that she is
using. In other words, revoking a certificate cancels it. A question that follows is
whether revoking a certificate should do more than that. Consider an example
given in [5].

Example 1. Let C = c0, c1, . . . , cn be a chain of certificates, where cn is the end-
entity certificate of interest, c0 is a self-signed, trusted-root certificate issued by
K0, and each ci, for all i = 1, . . . , n, is signed by the private key corresponding
to Ki−1, the subject key of ci−1. Let j be an integer in [1..n − 1], and let
C ′ = c′0, c

′
1, . . . , c

′
j be a second chain of certificates from K0 to Kj . Suppose

that the certificate c′j is revoked and that all other certificates in the two chains
are valid. If these are the only certificate chains that the user has that end in
cn, should the user accept the binding in cn, or (equivalently in this acceptance
decision) should cj be treated as valid?

In [5], Fox and LaMacchia argued that whether cj should be treated as valid
depends on the reason for revoking c′j . The certificate c′j may be revoked in each
of the following three cases:

(a) the key Kj has been compromised, in which case, cj should be treated as
revoked as well.

(b) the binding in c′j is no longer valid, in which case, cj should be treated
as invalid if it contains the same binding as c′j .

(c) the binding may still be valid, but the issuer doesn’t want to vouch for it
anymore, in which case, cj should still be valid.

Although it is desirable to revoke all certificates concerning a compromised
private key, we argue that this should be done internally, i.e., on the other side
of the PKI’s UI from the external one that is exposed to users.

Interpreting revocation of c′j as revoking cj as well enlarges the domain over
which an acceptor needs complete information. To use cj , one not only needs
to know that “not revoked(cj)” but also needs to know “not revoked(c′j),” for
all c′j ’s that are somehow related to cj . This has the effect of changing the trust



relationship. Under this interpretation, one certificate path is not enough. To
use a certificate, one needs to have all the CA’s agree that a private key has
not been compromised or that a binding is valid; any CA can veto a binding by
issuing a certificate and then revoking it for key-compromise reasons. This is not
just expensive — it may also be undesirable.

We believe that revocation schemes shouldn’t change the trust relationships
of a PKI. If a CA wants to revoke a certificate whenever another CA revokes a
related certificate, it should make this arrangement behind the user interface. If a
user needs more than one source to confirm a binding, e.g., a separate proof that
the private key has not been compromised, then this should be clearly specified
by the user’s policy; it shouldn’t be accomplished indirectly with revocation.

Recommendation 4 Revocation of a certificate should cancel the certificate
and do nothing else.

5 Revocation Provides Risk Management for PKI

Traditionally, computer-security mechanisms try to ensure that insecure things
do not happen. In [20], an alternative view is given. We summarize it as follows:
Complex systems can be secured only up to a point. Insecurity always exists
and cannot be destroyed. The question one should ask is not whether a system
is secure, but how secure that system is relative to some perceived threat (page
119 of [20]).

That insecurity always exists is precisely the situation in a global-scale public-
key infrastructure. Total security is unattainable, even under the unrealistic
assumption that revocation information can be delivered to everyone instan-
taneously. A private key may be compromised long before the compromise is
discovered and the certificates for the key revoked. This cannot be handled by
revocation schemes, but it should be taken into consideration when analyzing
the risk inherent in a PKI.

When we acknowledge that risk always exists, we can view revocation schemes
as a way to control risk. Traditionally, it is often implicitly assumed that everyone
should get the most recent CRL. One piece of evidence for this assumption is
that each CRL has a next-update field; a CRL is assumed to be expired after
that date, and a newer CRL is needed.

However, when taking the risk-management view of CRL’s, it is clear that
one doesn’t always need the most current CRL. Instead, one should set recency
requirements as a matter of policy. As long as a user has a CRL that is recent
enough, it should be okay. More strict recency requirements have lower risk, but
they have higher communication costs. Because risk is application-dependent,
different applications and users have different recency requirements. Therefore,
we have the following recommendation.

Recommendation 5 A PKI that serves diverse applications should provide
flexible revocation schemes that can be tuned to support different recency re-
quirements.



Whoever is exposed to the risk of wrongfully accepting a certificate should set
recency requirements. However, which party has higher risk has been debated.
In [16], Rivest argued that recency requirements must be set by the acceptor of a
certificate, not by the certificate issuer, because the acceptor is the one who is at
risk if her decision is wrong. In [11], McDaniel and Rubin disagreed. They argued
that, in business-to-consumer e-commerce scenarios, in which consumers (or their
browsers) need to decide to whether to accept a merchant website’s certificate
as valid to establish a secure connection, consumers are usually transferring
credit-card numbers through the connection and thus only have limited liability.
Conversely, the merchant risks its reputation for unsafe operation; therefore,
the risk is actually higher for merchants than for acceptors. In [5], Fox and
LaMacchia said that “In theory, the certificate authority has the most to lose
with continued circulation of a bad certificate.”

In the above B2C credit-card transmission scenario, several parties are at
risk in one fraudulent transaction. Both the merchant and the certification au-
thorities risk some reputation damage, but their risk is limited and less tangible.
Note that we are talking about the damage caused by one fraudulent transac-
tion, i.e., one in which a consumer accepts a certificate that she shouldn’t and as
a result sends her credit card number to an intruder, not the damage caused by
revocation of a certificate. When a merchant’s certificate is revoked because of
key compromise, the merchant has already suffered great loss of reputation, even
before a single fraudulent transaction occurs. This means that a merchant has
high incentive to protect its private key, but it doesn’t necessarily have higher
risk than a customer in one fraudulent transaction. One can argue that more
fraudulent transactions will do more damage to the merchant’s reputation, but
it is hard to quantify how much damage each additional fraudulent transaction
does. More importantly, there is no way for merchants or CA’s to enforce the re-
quirements. They can make suggestions about the recency requirements suitable
for particular kinds of transactions; CA’s should also make revocation informa-
tion available. However, if customers don’t follow these suggestions, there isn’t
much that CA’s or merchants can do. Thus, they are mostly free of reputation
damage as long as they have made good suggestions.

The acceptor has the primary risk. In some cases, the acceptor is protected
by insurance, and her risk is limited to a small deductible. In that case, the
insurer has the highest risk. This is the case in the credit-card scenario. Note
that credit-card numbers aren’t the only kind of information transmitted through
secure connections. In online banking or trading, a customer may be transmitting
account numbers and PINs, which can be much more valuable than credit-card
numbers.

When an acceptor is insured by someone, all or part of the acceptor’s risk
is transferred to the insurer. Then the insurer has a strong incentive to set
and enforce recency requirements. However, at the point of decision, only the
acceptor can enforce the recency standard, because it is she who actually decides
whether to accept a certificate. Note that the granularity of the recency standard
is limited by the revocation mechanisms available to the acceptor. If a PKI has



CRL’s as the only revocation interface, and CRL’s are issued at time interval
δt, then no one can operate with a recency requirement that is smaller than δt.
Although an insurer cannot enforce a recency requirement when the transaction
occurs, the insurer can do so when something goes wrong and the acceptor makes
a claim. The insurer can set a recency requirement and require the acceptor to
provide proof that she has followed the requirement in the transaction.

Recommendation 6 The UI of a PKI should support auditing.

For example, a PKI that supports CRL’s could maintain a CRL that keeps
all the revoked certificates and the time at which they are revoked, whether they
are expired or not. The insurer or some other parties can use this CRL to check
whether a certificate is valid at a time in the past. Besides allowing a certificate
to be revoked, PKIX also allows a certificate to be put on hold (temporarily
disabled) and then activated again [8]. It is difficult for the above scheme to deal
with such certificates, because the notion of “certificates-on-hold” significantly
complicates revocation. When certificates can only be revoked, the revocation
status of a certificate is temporally monotonic (although the validity status is
not). Thus a certificate can only go from valid to revoked. Recording the time
of this change or the fact that such a change has not occurred determines the
status of the whole life of a certificate. When a certificate can be put on hold,
the revocation status of a certificate is not temporally monotonic. To know
the status history of a certificate, one needs to know all the changes that have
occurred in the past. It is even harder to figure out whether a particular acceptor
believes that a certificate is valid or not at a time in the past, especially when
acceptors have different recency requirements. Therefore, we argue that it is
better to disallow this notion of certificate-on-hold. As an alternative, the CA
can revoke the certificate and later issue a new certificate with the same binding
when needed.

Recommendation 7 We recommend not allowing certificates to be put on hold,
in order to simplify auditing and the semantics of revocation.

In addition to being useful in scenarios that involve insurers, auditing can
also be used for earlier detection of potentially fraudulent transactions. Consider
an acceptor that has a CRL issued at time t0 and is scheduled to obtain a new
CRL at a later time t1. Suppose that the CRL at time t0 doesn’t contain the
certificate c. Then, at any time between t0 and t1, the acceptor would accept
c as valid. However, if the certificate c is revoked during this time, then this
is potentially problematic. It would be useful to detect this when the acceptor
obtains a new CRL at t1. To use CRL to support this kind of auditing and to
support variable recency requirements at the same time, a CRL should keep an
revoked certificate longer than required by [8]. In [8], a revoked certificate is
required to appear in at least one CRL after it has expired. If the certificate c
is revoked then expired after t0, and several CRL’s are issued after c expired
and before t1, then the acceptor won’t know that the transaction involving c is
potentially problematic. One solution to this is to have a CA set two parameters



for issuing CRL, δt and ∆t, where a new CRL is issued every δt and a revoked
certificate will be kept on CRL for ∆t after it has expired. Anyone who uses
CRL’s should set a recency requirement that is between δt and ∆t.

Different revocation mechanisms have been proposed, and there has been ex-
tensive debate over which revocation mechanisms are the best and who should
provide recency proofs. We think that the answers depend on the specific appli-
cation and scenarios. No one scheme fits all scenarios. For example, CRL’s work
well when there are a small number of acceptors who have high communication
capacity and who process lots of requests from a large number of certificate
holders. This is often the case in an intranet setting, e.g., an internal web server
authenticating employees using certificates. In this case, it is more efficient for
the web server to obtain and check a CRL than for certificate holders to be
required to obtain and present proofs.

On the other hand, CRL’s are not suitable in B2C e-commerce scenarios, in
which customers’ browsers are acceptors. There are a large number of acceptors,
each of which processes only a small number of requests. Furthermore, acceptors
often have limited network bandwidth. It is not efficient to have every browser
deal with CRL’s. It is better to have the server obtain a recency proof and reuse
it with different browsers. In this case, revocation mechanisms that can generate
short validity proofs for certificates are needed. The fact that existing PKI’s lack
the ability to provide short validity proofs is one reason that revocation is not
used in B2C e-commerce scenarios.

6 Conclusions

In summary, a PKI should have a clear and simple user interface that is tempo-
rally monotonic and supports functionality needed for applications. Depending
on the application, it may be necessary for a PKI to support tunable revocation
services and auditing.

7 Acknowledgements

The first author is supported by DARPA contract N66001-00-C-8015. The second
author is supported in part by DARPA grant AF F39502-99-1-0512.

References

1. Carlisle Adams and Robert Zuccherato, “A General, Flexible Approach to Certifi-
cate Revocation,” June 1998.
http://www.entrust.com/resourcecenter/pdf/certrev.pdf

2. Carlisle Adams and Stephen Farrell, “Internet X.509 Public Key Infras-
tructure Certificate Management Protocols,” IETF RFC 2510, March 1999.
http://www.ietf.org/rfc/rfc2510.txt



3. David A. Cooper, “A Closer Look at Revocation and Key Compro-
mise in Public Key Infrastructures,” in Proceedings of the 21st Na-
tional Information Systems Security Conference, pp. 555–565, October 1998.
http://csrc.nist.gov/nissc/1998/proceedings/paperG2.pdf

4. David A. Cooper, “A More Efficient Use of Delta-CRLs,” in Proceedings of the 2000
IEEE Symposium on Security and Privacy, pp. 190–202, May 2000.
http://csrc.nist.gov/pki/documents/sliding window.pdf

5. Barbara Fox and Brian LaMacchia, “Certificate Revocation: Mechanics and Mean-
ing,” in FC’98 [7], pp. 158–164, 1998.
http://www.farcaster.com/papers/fc98/fc98.ps

6. Carl A. Gunter and Trevor Jim, “Generalized Certificate Revocation,” in
Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL’00), pp. 316–329, January 2000.
http://www.cis.upenn.edu/˜qcm/papers/popl00.pdf

7. Rafael Hirschfeld, editor, Financial Cryptography: Second International Conference
(FC’98), Lecture Notes in Computer Science, vol. 1465, Springer, February 1998.

8. Russell Housley, Warwick Ford, Tim Polk, and David Solo, “Internet X.509 Public
Key Infrastructure Certificate and CRL Profile,” IETF RFC 2459, Janurary 1999.
http://www.ietf.org/rfc/rfc2459.txt

9. Paul Kocher, “On Certificate Revocation and Validation,” in FC’98 [7], pp. 172–
177, 1998.

10. Patrick McDaniel and Sugih Jamin, “Windowed Certificate Revocation,” in Pro-
ceedings of IEEE Infocom 2000, pp. 1406–1414, March 2000.
http://www.eecs.umich.edu/˜pdmcdan/docs/info2000.pdf

11. Patrick McDaniel and Aviel Rubin, “A Response to ‘Can We Eliminate Certificate
Revocation Lists?’,” in Proceedings of Financial Cryptography 2000, February 2000.
http://www.eecs.umich.edu/˜pdmcdan/docs/finc00.pdf

12. Silvio Micali, “Efficient Certificate Revocation,” Technical Report TM-542b, MIT
Laboratory for Computer Science, March, 1996.
ftp://ftp.lcs.mit.edu/pub/lcs-pubs/tm.outbox/MIT-LCS-TM-542b.ps.gz

13. Michael Myers, “Revocation: Options and Challenges,” in FC’98 [7], pp. 165–171,
1998.

14. Michael Myers, Rich Ankney, Ambarish Malpani, Slava Galperin, and Carlisle
Adams, “X.509 Internet Public Key Infrastructure Online Certificate Status Pro-
tocol – OCSP,” IETF RFC 2560, June 1999. http://www.ietf.org/rfc/rfc2560.txt

15. Moni Naor and Kobbi Nissim, “Certificate Revocation and Certificate Update,” in
Proceedings of the 7th USENIX Security Symposium, pp. 217–228, January 1998.
http://www.wisdom.weizmann.ac.il/˜kobbi/papers/revoke usenix.ps

16. Ronald L. Rivest, “Can We Eliminate Certificate Revocation Lists?” in FC’98 [7],
pp. 178–183, 1998. http://theory.lcs.mit.edu/˜rivest/revocation.ps

17. Stuart G. Stubblebine, “Recent-Secure Authentication: Enforcing Revoca-
tion in Distributed Systems,” in Proceedings of the 1995 IEEE Sym-
posium on Research in Security and Privacy, pp. 224–234, May 1995.
http://www.stubblebine.com/95oak.pdf

18. Stuart G. Stubblebine and Rebbeca N. Wright, “An Authentication Logic Sup-
porting Synchronization, Revocation, and Recency,” in Proceedings of the Third
ACM Conference on Computer and Communications Security, pp. 95–105, March
1996. http://www.stubblebine.com/96ccs.pdf

19. Rebecca N. Wright, Patrick D. Lincoln, and Jonathan K. Millen, “Efficient
Fault-Tolerant Certificate Revocation,” in Proceedings of the 7th ACM Confer-



ence on Computer and Communications Security (CCS’2000), November 2000.
http://www.research.att.com/˜rwright/ccs00.ps

20. Committee on Information Systems Trustworthiness, National Re-
search Council, Trust in Cyberspace, National Academy Press, 1999.
http://www.nap.edu/html/trust/


