Resiliency Policies in Access Control

Ninghui Li Mahesh V. Tripunitara Qihua Wang
Dept. of Computer Science Dept. of Computer Science
Purdue University Motorola Labs Purdue University

ninghui@cs.purdue.edu tripunit@motorola.com wangq@cs.purdue.edu

ABSTRACT properties which ensure that users who should not have access do
not get access. For example, safety analysis [9, 17, 22] studies
whether an access right can be leaked to unauthorized users. Sepa-
ration of duty (SoD) policies [2, 20] ensure that no single user (or

We introduce the notion of resiliency policies in the context of ac-
cess control systems. Such policies require an access control sys

tem to be resilient to the absence of users. An example resiliency ¢ tsize | h hreshold) is abl .
policy requires that, upon removal of asyusers, there should aset_c_J users of size less than some thres 0) is able to perform a
t sensitive task. Such focus on safety properties probably stems from

still exist d disjoint sets of users such that the users in each se he fact th Ihas b v viewed It
together possess certain permissions of interest. Such a policy enlhe fact that access control has been mostly viewed as a tool for re-

sures that even when emergency situations cause some users to b/cting access. However, an equally important aspect of access

absent, there still existindependent teams of users that have the percONtro! is to enable access (selectively). _
We introduce the notion of resiliency policies which state prop-

missions necessary for carrying out critical tasks. The Resiliency ; ; - i
Checking Problem determines whether an access control state sat'lieS about enabling access in access control. Resiliency policies
isfies a given resiliency policy. We show that the general case of the require that the access control state is resmen_t to_absent users. For
problem and several subcases are intracta¥IB-hard), and iden- example, the access control system of an institution has three sep-
arate permissions regarding release of funds: one permission is an

tify two subcases that are solvable in linear time. For the intractable . o
cases, we also identify the complexity class in the polynomial hi- endqrsement that the request for funds is Iegltlmgte, the §econd per-
mission is the issuance of a check, and the third one is for log-

erarchy to which these problems belong. We discuss the design’’. ; RN)) .
and evaluation of an algorithm that can efficiently solve instances ging the transe}ctlo_n. The institution’s flngnmal office, which takes
of nontrivial sizes that belong to the intractable cases of the prob- charge of funding, is composed of a senior treasurer and a number

lem. Finally, we study the consistency problem between resiliency ofjlunrl]or treasurers. In coerllallvce of the separation ?\f duty p])‘rlnlu-
policies and static separation of duty policies. pal, the senior treasurer has all permissions except the one for log-

ging, while each of the junior treasurers has only one of the three
permissions. Since issuing funds is a critical task, the institution

Categorles and SUbJeCt Descrlptors would like to ensure that even if a few (e.g., two) treasurers (that

D.4.6 [Operating System$: Security and Protection-Access con- may include the senior treasurer) are absent (e.g., due to sickness),

trols; K.6.5 [Management of Computing and Information Sys- the remaining personnel in the financial office still have enough

temg: Security and Protection; F.2.2Apalysis of Algorithms privileges to release funds.

and Problem Complexity]: Nonnumerical Algorithms and Prob- Another example resiliency policy requirement is as follows:

lems—Complexity of proof procedures There must exist three mutually disjoint sets of users such that each
set has no more than four users and the users in each set together

General Terms have all permissions to carry out a critical task. Such a policy would

be needed when one needs to be able to send up to three teams of
users to different sites to perform a certain task, perhaps in response
to some events. One needs to ensure that each team has enough

Security, Theory

Keywords permissions to perform the task, and each team consists of no more

Access Control, Fault-tolerant, Policy Design than four users (e.g., due to the limit of transportation means).
Such policies are particularly useful when evaluating whether the

1. INTRODUCTION access control configuration of a system is ready for emergency re-

While policy analysis has been a main research area in access PONse: These policies ensure that even wh(_an emergency situations
L cause some users to be absent, there still existindependent teams of

control for several decades, almost all existing work focuses on S ; i

users that have the necessary permissions for carrying out critical

tasks. In other words, these policies mandate that there is a certain

level of redundancy in assigning permissions to users so that the

Permission to make digital or hard copies of all or part of this work for System can tolerate some users being absent.

personal or classroom use is granted without fee provided that copies are Our contributions in this paper are as follows:

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to 1. We introduce the notion of Resiliency Policies which express

republish, to post on servers or to redistribute to lists, requires prior specific requirements about enabling access rather than restricting ac-
permission and/or a fee.

CCS'06,0ctober 30—November 3, 2006, Alexandria, Virginia, USA. cess. We give a concrete formulation for a resiliency policy
Copyright 2006 ACM 1-59593-226-7/05/001155.00. which captures the intuition discussed above.

2. We study computational complexities of the Resiliency user. If we setl = 2, this means that we require two sets of users
Checking Problem, which determines whether an access con-such that users in each set together possess all permissions. If we
trol state satisfies a given resiliency policy. We show that this sett = oo, this means that the set of users that together possess all
problem isNP-hard in the general case and iioNPNT permissions can be of any size.

a complexity class in the Polynomial Hierarchy. We show We observe that in our exampley(P, 1, 2, oo} is satisfied. For
that several subcases aNeP-complete. We identify two instance, after removingllice, the two usersCarl and Earl to-
subcases that are solvable in linear time. gether have all three permissions, asBuoé and Doris. The cases

in which another user is removed can be verified similarly. How-

ever,rp(P, 2,2, co0) is not satisfied because iflice and Bob are

o . . - absent, the only user that possesBadorse is Carl, and one user

trivial sizes may still be_gf‘flClentIy so_IvabIe. We present .onnot belong to two disjoint sets. Similarip(P, 2, 1, co) is sat-

an algorithm for the Resiliency Checking Problem. Our al- sieq butrp(P, 3,1, 00) is not satisfied becauseAflice, Bob and

gorithm uses a pruning technique that reduces the number ../ are absent, then no user possessegorse. And finally, we

of combinations that need to be considered. The experi- observe thatp(P, 1, 1, 2) is satisfied, but natp(P, 1, 1, 1) because

mental results show that this pruning technique can reduce ¢, ihe |atter case, there exists no single user that has all three per-
the search space by several orders of magnitude. Our algo- icsions.

rithm also takes advantage of the observation that the prob-

lem of checking whether the state can tolerate the removal Intuitively, a resiliency policyp(P, s, d, t) specifies a fault tol-

of a particular absent set can be naturally formulated as the erance requirement with respect to a certain critical task. The set

boolean satisfiability problem. This enables us to use ex- includes all permissions that are needed to carry out the task. The

isting SAT solvers in our implementation and benefit from faults that we would like to tolerate are absent users. The parame-

several decades of research in designing SAT solvers. Our ter s specifies the number of absent users that we want to be able

experimental results show that our algorithm can efficiently to tolerate. The parametdris motivated by the requirement that

solve instances of nontrivial sizes. several teams may be needed to carry out multiple instances of the
task. If only one team is needed, théican be set td. The para-

4. Resiliency policies may conflict with safety-oriented poli- metert specifies the size limit of each team. This is motivated by
cies such as static separation of duty (SSoD) policies [14]. |imitations on the maximal number of users that can be involved in
We study the policy consistency problem between resiliency any instance of task. If no such limitation exists, thezan be set
policies and SSoD policies. We demonstrate how to simplify g oc.
the problem and present criteria for determining consistency The two parametersandd are related. If an access control state
for a number of special cases. Finally, we show that deter- satisfiesrp(P, s, d, t), then it also satisfiesp(P,s + i,d — i,t)
mining Consistency is botzNP-hard anccoNP-hard, but is for anyi such that) < i < d. For examp|e‘ if, after remov-
in NPNP, ing any2 users, there exist mutually disjoint sets of users such

. that each set covers all permissionsAnthen after removing any
The remainder of this paper is organized as follows. In Section 2, 5 users, there are at ledssets left. However, if a state satisfies

we define resiliency policies and the Resiliency Checking problem. p(P,s + 1,d — 1,1), it may not satisfyrp(P, s, d,). For our
We present computational complexities of the Resiliency Checking exarr71ple sHown in7 Fi;;ure 1. we observe t fI’P’l ’2 'oo> is sat-

problem in Section 3, and an algorithm for the problem and an jsgqq. Howeverp(P, 0, 3, co) is not satisfied because we need the

implementation of the .algorithm in Section 4 In Section 5, we 3 usersAlice, Bob and Carl that posses&ndorse to belong to
explc_)re the pollcy consistency problem. We discuss related work in distinct sets; this still leaves one permission that needs to covered
Section 6. Finally, we conclude and present open problems relatedby each set, and we have only two users that remain

to the concept of resiliency in Section 7. Resiliency policies can be defined in any access control system
in which there are users and permissions. This includes almost

2. RESILIENCY POLICIES AND THE all access control systems, including Discretionary Access Control
RESILIENCY CHECKING PROBLEM systems [13, 8] and Role Based Access Control systems [25]. We

assume that an access control state is given by a binary relation
Definition 1 (Resiliency Policies) A resiliency policy takes the UP C U x P, whereld represents the set of all users, dhdepre-

3. We show that, notwithstanding the intractability results,
many instances of the Resiliency Checking Problem of non-

form sents the set of all permissions. Note that by assuming that a state

rp(P, s,d,t) is given by a binary relatiod/P C U x P, we are not assuming
whererp is a keyword,P = {pi,...,p.} is a set of permissions, phermlssmns artla d:rectl%/ assllgned tfo user:s; rather, we aslsume only
s > 0andd > 1 are integers, andlis either a positive integer or that one can calculate the relatiéfP from the access control state.
the special symbaio. Definition 2 (Resiliency Checking ProblenRCP)). Given a re-

We say that an access control state satisfies such a resiliency polsiliency policy » and an access control statéP, determining
icy if and only if upon removal of any set efusers, there still exist ~ whether UP satisfies- is called the Resiliency Checking Problem
d mutually disjoint sets of users such that each set contains no more(RCP).
thant users and the users in each set together are authorized for all

permissions inP A resiliency policy has three parameters:d, and¢. In some

situations, one may need to consider only those policies with one
Example 1. Consider the access control state from Figure 1. or more of these parameters degenerated. The parametéich
It relates to the example we introduce in Section 1. To issue denotes the number of absent users that the system needs to toler-

funds, all three permission&ndorse, Issue and Log must be ate, may be degenerated to alwaysObeThe parameted, which
possessed by a set of users. In our resiliency policy, we setdenotes the number of sets of users required, may be degenerated to
P = {Endorse, Issue, Log}. If we sets = 1 in our policy, always bel. Finally, the parameter, which denotes the size bound

then we want the system to be resilient to the absence of any (one)on each set, may be degenerated to alwayscheThere are eight

Figure 1: An example of an access control state with 5 usergliice, Bob, Carl, Doris and Earl, and 3 permissions Endorse, Issue
and Log. A line segment connects a user (e.gdlice) to a permission (e.g.,Endorse) to indicate that the user has the permission.
This corresponds to the example from Section 1 on releasing funds; all three permissions must be possessed by a group of users that

together want to release funds.

cases where some of the three parameters are degenerated. Fdfiable requirements holdRCP has one alternation of followed

example, a resiliency policy in the subcaR€P(s = 0,d = 1)

has the formrp(P, 0, 1,¢), which asks whether there exists a set
of users of size at mostthat together have all permissions it
while the subcas&CP({t = co) asks whether there exist several
distinct sets of usersi(sets) each of whose users together have all
permissions inP, even after any set afusers is removed from the
state. In particulaiRCP() is the general case of the problem.

3. COMPUTATIONAL COMPLEXITIES
OF THE RESILIENCY CHECKING
PROBLEM

The following theorem summarizes the computational complex-
ity results forRCP and its various subcases. These results are also
shown in Figure 2.

Theorem 1. The computational complexities of the Resiliency Pol-
icy Checking problem are as follows.

e RCP(), the most general case, BP-hard and is in
coNPNF | as are the two subcaseRCP(d 1) and
RCP(t = o0).

e RCP(s =0,d =1),RCP(s = 0,t = co),andRCP(s = 0)
are NP-complete.

e RCP(d = 1,t = co0) andRCP(s = 0,d
be solved in linear time.

1,t = oo) can

Our complexity results show th&CP is in coNPNY. This
means that the complement RCP can be solved by a nondeter-

by 3, which makes it icoNPNF

We have shown thaRCP (and its two subcaseRCP(d = 1)
and RCP{t = oo)) areNP-hard and are ikoNPNF . It remains
open whether these three problems@s®PNF -complete or not.
Readers who are familiar with computational complexity theory
will recognize thatcoNPNY is a complexity class in the Poly-
nomial Hierarchy. (See Appendix A for a brief introduction to
the Polynomial Hierarchy.) Because the Polynomial Hierarchy col-
lapses whe = NP, showing that aiNP-hard decision prob-
lem is in the Polynomial Hierarchy, although is not equivalent to
showing that the problem iINP-complete, has the same conse-
guence: the problem can be solved in polynomial time if and only
if P =NP.

In the rest of this section, we prove the results in Theorem 1. The
following lemmas prove thaRCP(s = 0) is in NP, RCP(s =
0,d = 1) andRCP(s = 0,t = oo) areNP-hard,RCP() is in
coNP™? andRCP(d = 1,t = co) is in P. The complexities of
other subcases can be implied from these results.

Lemma 2. RCP(s = 0) is in NP.

PROOF An instance consists of an access control stakeand
apolicyrp(P,0,d,t). UP satisfiesp(P, 0, d, t) ifand only if there
existd mutually disjoint sets of users such that the users in each set
together cover all permissions inand each set has at mostsers.

If thesed sets are given, they can be verified in polynomial time.
ThereforeRCP(s = 0) is in NP.

Lemma 3. RCP(s = 0,d = 1) is NP-hard.

PrRoOOF We reduce thaNP-completeSET COVERING prob-

ministic Oracle Turing Machine that has oracle access to a machinelem [19] (also referred to adlINIMuM COVERING problem in [6])

that can answer anilNP queries. (See Appendix A for a brief
overview of Oracle Turing Machines.) Intuitively, given an access
control state and a resiliency poliey= rp(P, s, d,), to decide
nondeterministically that the state does not satisfyne can guess
a set ofs users to removed, and then query I§® oracle whether
the remaining users contathmutually disjoint sets of users such
that each set is of size at masand the users in each set together
have all permissions i#.

Another way to understand the computational complexity of
RCP is to observe that aRCP instance has the forivi sizes sub-

toRCP(s = 0,d = 1). In SET COVERING, we are given a sef, n
subsets of5: Si,...,S,, and a budgek’, and need to determine
whether the union o subsets is the same &s An instance of
RCP(s = 0,d = 1) asks whether an access control st&e sat-

isfies a policyrp(P, 0, 1,¢). In our reduction, each element i

is mapped to a permission A and each subse; is mapped to a
useru;. In other words, if the subset; contains an element, then

u; is authorized for the permission corresponding to the element.
We now argue that the mapping ensures that there exists a set of
users of size at modt’ together have all the permissions iif

set,3d sets of users that satisfy some requirements that can be ef-and only if K subsets covef. Assume that a set of users of size

ficiently verified. Problems itlNP have the form off an evidence
that satisfies some polynomial-time verifiable requirements. Prob-
lems incoNP has the forn¥ choices, some polynomial-time ver-

at mostK exists such that those users together have all the per-
missions inP. Then, we pick the subsets that are mapped to those
users, and their union gives s For the other direction, assume

RCP()
NP-hard, incoNPNP

RCP(s = 0) RCP(d _ 1) RCP(t = o0)

NP-complete NP-hard; incoNPNP NP-hard; incoNPNP
RCP(s =0,d =1) RCP(s =0,t = o0) RCP(d =1,t = c0)

NP-complete NP-complete in P, linear time

RCP(s =0,d =1,t = co)
in P, linear time

Figure 2: Time complexity of the Resiliency Checking Problem RCP) and its various subcases.

that K subsets cove$. Then, theK users to which the subsets are after removing any set of users, each permission is still assigned
mapped together have all permissiongin to at least one user, which means that the set of all remaining users
together have all permissions in

Lemma4. RCP(s =0,t = is NP-hard. . .
(s o) Definition 3 (The Tolerance Bound) Given an access con-

PrROOF We reduce theNP-complete DOMATIC NUMBER trol state UP and a set{pi,---,pm} Of permissions, we de-
problem [6] toRCP(s = 0,t = oo). Given a graphG(V, E), fine thetolerance boundof UP and {pi,---,pm}, denoted by
the DomATIC NUMBER problem asks whetheV” can be parti- to(UP,{p1, - ,pm}), 10 bemini<;<., #(p;), where#(p;) de-
tioned intok disjoint setsVi, Va, - - -, Vi, such that eaclv; is a notes the number of users who are authorizedpfoin the state
dominating set foiG. V' is a dominating set fo& = (V, E) if UP.

for every nodeu in V — V', there is a node in V' such that
(u,v) € E. Aninstance oRCP(s = 0,t = oo) asks whether an
access control stat& P satisfies a policyp(P, 0, d, co). Given a
graphG = (V, E), we construct an access control state with n
usersui, ug, - - - , Uy andn permission1, pa, - - - , pn, Wheren
is the number of nodes ii. Each user corresponds to a nodéin
andv(u;) denotes the node corresponding to userin UP, user
u; is authorized for the permissiqyy if and only if eitheri = j
or (v(us),v(u;)) € E. Let P denote the sefpi1, p2, -+ ,pn}. A
dominating set irG corresponds to a set of users that together have
all permissions inP. UP satisfiesp(P, 0, k, co) if and only if V
containsk disjoint dominating sets.

Given anRCP(d = 1,t = oo) instance that asks whethé&tP
satisfiesp(P, s, 1, co), the answer is yes if and only if the tolerance
bound is at least + 1. More generally, given aRCP instance that
asks whethe/P satisfiesrp(P, s, d,t), if s + d > tb(UP, P),
then the answer is “no”. On the other hand, wheén> 2 and
s+ d < th(UP, P), we do not immediately know whethédrP
satisfiesp(P, s, d, t) or not.

We now give a linear-time algorithm for calculating the tolerance
bound. This, together with the above observations, suffices to prove
Lemma 6. The algorithm maintains a counter for each permission.
It first goes through all pairs iV P to count how many users each
permission is assigned to. It then returns the minimal value among

Lemma 5. RCP() is in coNPNP. the counters.

PROOF. We show that the complement BCP() is in NPNP. 4. AN ALGORITHM EOR RCP

Assume that we have an oracle that decides the Resiliency Check- .
y The fact thatRCP is intractable NP-hard) means that there

ing problem whers = 0, which, as we know, iNP-complete. We . e g > .
construct a nondeterministic oracle Turing machidighat accepts exist difficult problem instances that take exponential time in the
worst case. Many instances that will be encountered in practice

UP andrp(P, s,d,t) when UP does not satisfyp(P, s,d, t). M ; . s .

nondeterministically removesusers, and then queries the oracle. may stil b(_e eff|C|ent_Iy solvable. _We now describe an algorithm for

If the oracle machine returns “yesM rejects; otherwiseM ac- _RCP' We f_|rst desf:”be an algorithm for the gubch@(t = 00),
i.e., there is no limit on the number of users in any ofdtrautually

cepts, because it has found a set of users, the removal of Whichd, e We then d ibe h d the alaorith deal
violates the Resiliency policy. The construction/af shows that Isjoint sets. We then describe how to extend the algorithm to dea

the complement oRCP/() is in NPNP . Therefore RCP() is in with the parqmetetr When.it is not Qegengrated. In Section {1.2 we
coNPNP. discuss our implementation of this algorithm and its effectiveness
using experimental results.
Lemma 6. RCP(d = 1,¢ = oo) can be solved in linear time. 4.1 Description of the algorithm
An instance inRCP(d = 1,t = oo) asks whether an access To determine whethel/P satisfiesp (P, s, d, oo}, a straightfor-

control state satisfies a poliey(P, s, 1, c0). We observe that the ward algorithm is to enumerate all setssafsers, and for each such
answer is “no” if and only if some permission i is assigned to setA (which we call arabsent sgf remove the users iA from UP

no more thars users. In this case, removing theisers who have and check whether among the remaining users theré mwgually

that permission would result in no user having that permission. On disjoint sets of users such that each set covers the permissions. If
the other hand, if each permission is assigned to at leadtusers, the answer is “no” for any absent set, then we know &t does

not satisfyrp (P, s, d, o). If we have enumerated through all ab- dominates usex € A,. Without loss of generality, we assume that
sent sets, and the answer is “yes” for each of them, then we know f satisfies the property thatif € A; N A, thenf(u) = u. Ob-
that UP satisfiesp (P, s, d, o). Our algorithm adds the following serve that iff does not satisfy this property for some= A; N A,
improvements, which greatly reduces the running time. then there existi; € A: anduz € Az such thatf(u) = w1 and
f(u2) = w. It follows thatu; dominatesu andu dominatesus.
Because the domination relation is transitive, we hayedomi-
natesus. We can then assigfi(u) = w and f(u2) = ui. By
repeating this process, we can arrive at a bijectfosuch that if

u € A1 N Az, then f(u) = u. This property implies that if
u e A2\A1, thenf(u) c Al\AQ.

Let Sy, ---,S4 be the disjoint sets of users after the removal of
Az, we now construcky, - - - , S/ such that (1) these sets consists
Reduction to SAT A key step to solveRCP is to determine of only users not iz, (2) they are mutually disjoint, and (3) users
whether, after removing a certain set of users, there still ekist in each set together have all permission#’in
mutually disjoint sets of users such that each set covers all permis- For eachk € [1,d], Sy, is constructed as follows: for every user
sions inP. We observe that such a problem can be translated into « in S, if u € Az, thenw is replaced withf(u). Observe that
a SAT instance. This enables us to benefit from the extensive re- because:, € S, thenu ¢ A;, and thusu € A>\A; and f(u) €
search onSAT and to use existing SAT solversSAT has been A1\ As. Therefore, eaclf}, includes only users not ial,. To
studied extensively for several decades (see, for example, [5]), andshow that they are mutually disjoint, we need to show, for each
many clever algorithms have been developed. Problems in manyw € Sj,, thatw does not appear if;, wherej # k. There are two
fields, including databases, planning, computer-aided design, ma-cases. Case 4w is the result of replacing € As, in which case
chine vision and automated reasoning, have been reduceATo w = f(x) is a member ofd;, implying w does not appear ifi;.
and solved using SAT solvers. Often times, this results in better per- Hence, ifw also appears ifs’;, it must also be from replacement of
formance than using existing domain-specific algorithms for those x. This is impossible, becausecannot appear both i, andsS;.
problems. Case 2w appears irby, in which casev ¢ S;. Furthermorew ¢

The translation works as follows. Lét be the set of users after ~ A;, and thereforev cannot be used as replacement for any other
removing users in an absent set. For each usén U and each user. Thereforew does not appear i;. Finally, by definition
integerj from 1 to d, we have a propositional variablg ;. This of dominance, usef(u)’s set of permissions is a supersetus.
variable is true if thé'th user is assigned to thh group. Then we Since Sy has all permissions i, Sj, also has all permissions in
have the following two kinds of clauses. The first kind of clauses P.
ensure that all permissions are covered in each of t@ups: For
each permissiop in P, let u;,,u;,,- - ,u;, be users iy who
are authorized fop. Then for eacly from 1 to d, we add the clause We would like to systematically generate only sizeser sets

Uiy j V Vig,j V oo+ V 0i, ;. There argP| - d of such clauses. The ¢ \ye need to consider. That is, we need to ensure that (1) any
second kind of clauses ensure that no user is selected in two groupgjze 5 yser set is dominated by at least one generated user set, and
at the same time: For each user and for each paik, ¢ such that (2) we do not generate two sets such that one of them dominates the
0 <k << d weadd the clausew; V ~wi,. There are yher The nive way of finding all such sets is to generate all size-
nd(d —1)/2 such clauses, where is the number of users. Itis se sets and, for each such set, check whether it is dominated by
clear that the total number of clauses added is polynomial to the any other sizes set. However, this would be very inefficient. We
size of theRCP instance. now describe an algorithm that directly generates only the user sets
Static Pruning The number of size-user sets among users that need to be considered.

Preprocessing Given the statd/P and the policyp(P, s, d, o),

we first removewu, p) from UP if p ¢ P, as we do not need to con-
sider permissions not in the policy. Also, we only consider those
users who are authorized for at least one permissidn.ifrinally,

we calculate the tolerance bount{ UP, P), using the methods
described in the end of Section 3.slft- d > tb(UP, P), then we
know the answer is “no”.

Enumerate all absent sets that need to be considered

is close ton® when s is small compared witm. For example, The algorithm works as follows. First of all, we sort all users
there are more than one billion such setsdoe 6 andn = 100. based on the number of permissions they have, in decreasing or-
We observe that not all these sets need to considered. There is gler, and assign each user an index, that is, users are listed as
partial order relation among these sets such that;ifdominates ug, - ,uUn—1. If 0 < i < j < n—1,thenu; has at least as

As, and theRCP instance can tolerate the removalf, then it many permissions ag;. By definition of dominance, if;; dom-

can also tolerate the removal df. This means that we only need inatesu;, then eitheri < j or u; andu; have exactly the same

to considerd;. We now explain this pruning technique. set of permissions. Secondly, we use an indeRat initially has

values — 1. We generate the first sizeset{uo, - - - , uc }, and then
increase the indexby one each time and generate all user sets that
includeu. and are not dominated by any other set generated be-
fore. A key observation is that we only need to generate user sets
that have thelosure property We now explain this observation.

Definition 4 (Absent Set Domination)Among all users in/P, we
say a usef; dominatesanother uset if u;’s set of permissions
is a superset (not necessarily strict supersety08. We say a
set of usersA;, dominatesanother setd, if there is a bijection
between users i, and A; such that for every user in A, the

corresponding user id; dominates the user. Definition 5 (Closure Property) Given a set of userd/ =
Lemma 7. Assuming thatd; dominatesds, if an RCP instance {0, ,un—1}, We say a setl C U has theclosure property
can tolerate removingl, then it can also tolerate removings. if and only if for anyu;, € A, and anyu; € U such that < k and

PROOF. We need to show that, if after removinty, there are u; dominatesu,, we havey; € A.

d mutually disjoint sets of users such that each set covers all per- |n other words, if a setl has the closure property, then any user
missions inP, then after removingl., there are alsa mutually that dominates a user i and comes before that user must also be
disjoint sets each of which covers all permission#’in in A. The relationships between the closure property and the set

By definition, if A; dominatesAz, then there exists a bijection dominance relation are established in the following two lemmas.
f betweenA, and A4, such thatf(u) = v implies user € A,

Lemma 8. Let A be a sizes user set that satisfies the closure prop-
erty and lete be the index of the user with largest indexAnthen
there is no sizersubset of uo, u1, - - - , uc—1} that dominatesA.

PROOF BecauseA satisfies the closure property, thep and
all users amonduo, u1, - - - , ue—1} that dominateu. are also in
A. Letk be the number of users fuo, u1, - - ,ue—1} that dom-
inate u., then A hask + 1 users that dominate. (including u.
itself). By the definition of set domination, any set that dominates
A must have at least + 1 users that dominate.. Whereas any
subset of uo, u1, - - - , ue—1} has at mosk users that dominate...
Therefore, no subset @fuo, u1,- - , ue—1} dominatesA.

Lemma 8 shows that ifi satisfies the closure property, then none
of the sets that have been considered so far domindteso A
needs to be considered.

Lemma 9. Let A be a sizes user set that does not satisfy the clo-
sure property and let be the index of the user with largest index in
A, then there exists a sizesubset of uo, u1, -, Ue—1, ue} that
dominatesA and satisfies the closure property.

PROOF Since A does not have the closure property, there is a
userui € A such that there exists such that < k, u; dominates
ug, andu; € A. We changed to A; by substitutinguy, with w;,
thatis,A; = A\{ur}U{u;}. Clearly,A; dominatesA. If A; still

For each permissiopin P, letu;, , ui,, - - - , u;, be the users who

are authorized for the permissign Then, for eacly from 1 to d,

we add the constraint;, ; + -+ + v;, ; > 1. There ardP| - d

of such constraints. The second kind ensures that each set con-
tains at most users: for eachi from 1 to d, we add the constraint

vo,; + v1,; + - -+ + vn—1,; < t. There arel such constraints. The
third kind ensures that no user is selected in two groups: For each
useri, add the constraint; 1 + - - - + v;,¢ < 1. There aren such
constraints, where is the number of users.

4.2 Implementation and Evaluation

We have implemented the algorithm described in Section 4.1,
and performed several experiments using randomly generated in-
stances. Our goals of implementing the algorithm and performing
these experiments are to understand the effectiveness of the prun-
ing techniques developed in Section 4 and to understand how well
the algorithm scales with different parameters.

The implementation of our algorithm was written in Java. We
use SAT4J [4], an open source satisfiability library in Java. Exper-
iments were carried out on a PC with an Intel Pentium 4 CPU run-
ning at 3.2 GHz with 1 GB of RAM running Microsoft Windows
XP Professional 2002. Our time units are milliseconds. In this sub-
section,n, s andd denote the number of total users, the number of

does not satisfy the closure property, we can repeat the substitutionusers that may be absent, and the number of disjoint sets of users

process until the resulting set has closure property.

Lemma 9 shows that ifA does not satisfy the closure property,
then there must exist a set that dominatesind either has been

we seek after the removal a set of users respectively. The method-
ology that we use in generating testing instances is explained in
Appendix B.

Our experimental results show that our algorithm is able to solve

considered or will be generated and considered, so there is no needontrivial size ofRCP instance in reasonable amount of time. For

to considerA. The above two lemmas together show that we need
to generate only the users sets that satisfy the closure property.

Dynamic Pruning When an absent set is generated, we invoke
a SAT solver to evaluate whether after usersdirare removed,
the remaining users still satisfy the requirements. If the answer
is “yes”, then we would get back a solution, which consistsl of
sets of users such that each set covers all permissionsE Ibet
the set of all users that appear in any of theets; we callE a
solution set forA. Let U be the set of all users ivP. Clearly,

E C U — A. If E contains fewer users thaii — A, then it is
possible that when another sétis generated we havén A’ = ().
When this happens, we know that we do not need to consider
asE is also a solution set fod’. Based on this observation, one

example, our implementation spent around 500ms on instances
with 60 to 100 users, 10 permissiosss= 3 andd = 6; and around

2 seconds on instances with 80 to 100 users, 10 permissiens,

andd = 4. We discuss our observations from the experiments in
the rest of this section.

The algorithm scales reasonably well withn when d is small;
however whend is over about 8, the algorithm stops scaling.

The running time of the algorithm depends on the total number of
absent sets that need to be examined and the time it takes for the
SAT solver to solve each SAT instance. The time spent in the SAT
solver is greatly influences hy, which is the number of distinct
sets of users we seek after an absent set of users is removed.
Figure 3, we plot the running time of the algorithm for cases in

In

can store the solution sets returned by the SAT solver, and use themwhich the instance is true, for increasingnumber of users) and
to check whether absent sets generated later need to be considered. We observe that up to a particular value &7 in this case), the

Handling the case thatt # oo The reduction to SAT described
above works only when = co. To handle the case that# oo,

we can use pseudo boolean constraints. In Pseudo-Boolean (PB

constraints, all variables take values of either O (false) or 1 (true).
Constraints are linear inequalities with integer coefficients, for ex-
ample,2x + y + z > 2 is a PB constraint. A disjunctive clause
encountered in SAT is a special case of PB constraints; for exam-
ple,x Vy V z is equivalent tar + y + z > 1. Many SAT solvers
also support PB constraints. In particular, the SAT solver we use,
SAT4J [4], supports PB constraints.

Whent # oo, we can translate the problem of determining
whetherd sets of size no more tharexist to the satisfiability prob-
lem with PB constraints. The translation works as follows. For
each usemw; and each integef from 1 to d, we have a proposi-
tional variablev; ;. This variable is true if thé'th user is assigned
to thej'th group. Then we have the following three kinds of con-
straints. The first kind ensures that all permissions are covered:

algorithm scales well as increases. For example, far= 100 and
d = 6, the algorithm takes only about 1.7 seconds. Howeved, as
ecomes larger, the algorithm stops scaling. A major reason is that,
sd increases beyond a certain threshold (8 in our case), each SAT
instance that is generated is time-consuming for the SAT solver to
solve. Consequently, lots of time is spent in the SAT solver, which
results in increase of running time of our algorithm. This threshold
of around8 seems to hold for many other experiments we have
performed.

Static pruning is very effective Table 1 shows the effect of static
pruning for increasing values of (number of users) and (size

of absent sets). While static pruning always reduces the number of
absent sets to be considered, its effect is especially pronounced for
large values ofi ands. For example, fon = 100 ands = 8, we

see a reduction of 7 orders of magnitude in the number of absent
sets that need to be considered. We point out also that the effect
of static pruning is increasingly pronounced for larger values of

4500
4000
3500
3000
2500
2000
1500
1000

500

0=l

< 100

Figure 3: This graph shows the effect on running time (in milliseconds) as the number of users and the number of disjoint setsd

increase. The size of absent sets is 3 and there are 10 permissions. The value iofcreases from 40 to 100 and the value af increases
from 2 to 7. For smaller values ofn (say,n = 40), increasingd has almost no effect on the running time so long ag is no larger than

7. The reason is that relatively few absent sets need to be considered. However, for larger valuesidbay,n = 90), increasingd has
a pronounced effect on the running time.

whens is constant. For example, fer= 6 and increasing from from possessing too many permissions. We adopt the concrete for-
40 to 100, the reduction in the number of absent sets that need to mulation of such policies from Li et al. [14]. An SSoD policy

be considered improves from a difference of 3 orders of magnitude is of the formssod(P, k), where P is a set of permissions and

to 6. For a fixed number of permissions (10 in this case), occur- 1 < k < |P| is an integer. An access control state satisfies the
rences of dominance may increaseramcreases (because there policy if there exists no set of fewer th@arusers that together pos-
are likely more users who have a lot of permissions that dominate sess all permissions iR. In the policyssod(P, k), P denotes the
other users). This explains why the number of absent sets afterset of permissions that are needed to perform a sensitive task, and
pruning is fewer, for example, far = 4,n = 100 (640 absent k denotes the minimal number of users that are allowed to perform
sets) than fos = 4, n = 40 (1042 absent sets). the task. If the policy is satisfied, then no setkof 1 users can
together perform the task, because they do not have all the permis-
sions; thus at least users need to be involved, achieving the goal
of separation of duty. For example, the poliepd({p1,p2},2)
means that no single user is allowed to have hgtandp-.

In many cases, it is desirable for an access control system to have
both resiliency and SSoD policies. If an access control system has
only resiliency policies, then they can be satisfied by giving all per-
missions to all users, resulting in each single user can perform any
task. Similarly, if an access control system has only SSoD policies,
then they can be satisfied by not giving any permission to any user,
6esulting in no task can be performed. Itis clear that neither kind of
policies by itself is sufficient to capture the security requirements.

Dynamic pruning is not effective The basic idea of dynamic
pruning is to store, for each absent setthe setE of users that

are used in the solution returned by the SAT solver. When encoun-
tering another absem’, we check whethed’ N E = 0; if so,

then we can skipl’. Somewhat unexpected for us, it turns out that
dynamic pruning is not effective. In fact, using dynamic pruning
is often slower than without dynamic pruning. After analyzing this
effect, the reason became clear. Dynamic pruning adds additional
processing time for each absent set. It is cost effective only when
invoking the SAT solver is expensive so that it is worthwhile to take
more effort to further decrease the number of absent sets needed t

be examined. However, when invoking the SAT solver is expen- . L : ! .
s s i ! e When both kinds of policies coexist, safety and functionality re-
sive, i.e., when it is difficult to findl mutually disjoint sets of users . "
quirements can all be specified.

such that each set has all permissions, the solution returned by the s - . . .
. - . Due to their opposite focus, resiliency policies and separation of
SAT solver likely includes all users that are notdnwhich means - .)
duty policies can conflict with each other. For example, a sepa-

that this solution set will not be able to prune any other absent set. ration of duty policyssod(P, 2) requires that no user possess all

permissions inP. A resiliency policyrp(P, s,d, 1) requires the

existence of a user that has all permission®inClearly, the two
5. ON THE CONSISTENCY OF policies cannot be satisfied simultaneously. We formally define our
RESILIENCY AND SEPARATION notion of consistency amongst such policies in the following defin-
OF DUTY POLICIES ition.

As we have discussed in the introduction, resiliency policies are pefinition 6. Given a set of resiliency and separation of duty
a natural complement to traditional safety policies in access con- ngjicies, the policies irF” areconsistenif and only if there exists
trol. Consequently, a question arises regarding the consistency ofgy access control staféP such thatUP satisfies every policy in

resiliency policies with other policies. In this section, we explore p Determining whethef is consistent is called theolicy Con-
the co-existence of resiliency policies with static separation of duty sjstency Checking Proble®CCP).

(SSoD) policies.
The intent of an SSoD policy is to preclude any group of users The following lemma asserts that the actual values aind d

s\ 40 60 80 100
45 28 40 36
2
780 1770 3160 4950
1042 694 684 640
4 e
9.1x10% | 4.9x105 | 1.6x10° | 3.9x10°
6 9713 9248 5310 6653
3.8x10% | 5.0x107 | 3.0x10% | 1.2x10°
8 7.7x105 | 6.1x10% | 1.2x105 | 8.7x10%
7.7x107 | 2.6x10° | 2.9x10%°| 1.9x10%

Table 1: A table that shows that static pruning is effective. The columns are values fat (number of users) and rows are values foi
(size of the absent set). The number of permissions is 10. For each cell in the table, the entry above the dotted line is the number of
absent sets that need to be considered with static pruning in effect, and the number below the dotted line is the number of absent sets
to be considered without pruning (i.e., 7). We observe that the effect of static pruning is pronounced, especially for large values of
n and s. There is always an improvement of at least 1 order of magnitude, and when = 100 and s = 8, there is an improvement of

7 orders of magnitude.

in a resiliency does not affect its compatibility with SSoD poli-
cies. This enables us to replace all resiliency policies in the form
of rp(P;, s:,d;, ;) in F with the special formp(P;,0, 1, ;) when
studyingPCCP(F). This greatly simplifies the problem.

Lemma 10. F is a set of policies an® = rp(P, s, d,t) € F. Let
R =rp(P,0,1,t) and F’ = (F — {R}) U{R'}. F is consistent
if and only if I’ is consistent.

PROOF. ltis clear thatifF' is consistent theft” is consistent. In
the following, we prove that i’ is consistent the® is consistent.
Assume that staté/P’ satisfies all policies i”’. UP’ satisfying
R’ implies that there is a séf of no more thant users together
have all permissions i®. We then construct a new staté’ by
addings + d — 1 copies of all users itV to UP’. Note that adding
copies of existing users iFP’ will not lead to violation of SSoD
policies inE”. In this case UP satisfiesR plus all policies inF"”.
In other words,UP satisfies all policies iF" and F' is consistent.

The following theorem gives the computational complexity re-
sults about general cases BECP. Observe that the case with
one SSoD policy and an arbitrary number of resiliency policies is
coNP-hard, and the case with one resiliency policy and an arbi-
trary number of SSoD policies ®P-hard. Therefore, it is un-
likely that the general case is INP or in coNP; however, we
show that the problem is iINPNF

Theorem 11. The computational complexities f®@CCP are as
follows:

1. PCCP (1,n) is coNP-hard, wherePCCP (1,n) denotes
the subcase that there is a single SSoD policy, and an arbi-
trary number of resiliency policies.

2. PCCP (m, 1) is NP-hard, wherePCCP (m, 1) denotes the
subcase that there is an arbitrary number of SSoD policies,
and a single resiliency policy.

3. PCCP (m,n), i.e., the most general case BCCP, is in
NPNFP,

The proof for Theorem 11 is in Appendix C. It is of course
possible that there are special case® QCP that are efficiently
solvable. Detailed analysis of the tractable subcasd3(diP is
beyond the scope of this paper.

6. RELATED WORK

To our knowledge, there is no prior work in resiliency policies in
the context of access control. Prior analysis work in access control
deals mostly with safety and security analysis, and separation of
duty.

Simple safety analysis, i.e., determining whether an access con-
trol system can reach a state in which an unsafe access is allowed,
was first formalized by Harrison et al. [9] in the context of the well-
known access matrix model [8, 13], and was shown to be undecid-
able in the HRU model [9]. Following that, there have been various
efforts in designing access control systems in which simple safety
analysis is decidable or efficiently decidable, e.g., the take-grant
model [17], the schematic protection model [22], and the typed ac-
cess matrix model [24]. Koch et al. [11] considered safety in RBAC
with the RBAC state and state-change rules posed as a graph for-
malism [12]. Li et al. [15] proposed the notion of security analysis
which generalizes safety analysis; it was considered in the context
of a trust management framework. Security analysis has since been
considered also in the context of RBAC [16].

Separation of duty (SoD) has long existed in the physical world,
sometimes under the name “the two-man rule”, for example, in the
banking industry and the military. To our knowledge, in the infor-
mation security literature the notion of SoD first appeared in Saltzer
and Schroeder [20] under the name “separation of privilege.” Clark
and Wilson’s commercial security policy for integrity [2] identified
SoD along with well-formed transactions as two major mechanisms
of fraud and error control. Separation of Duty policies were also
studied in [1, 3, 7, 10, 14, 18, 21, 23, 26].

Another related concept is availability policies in [15, 16], which
asks whether a user always possesses certain permissions across
state changes. In that work, checking whether an availability policy
is satisfied in a state is straightforward; the challenges arises from
the fact that the access control state may be changed by administra-

tive operations, and the possible state space may be infinite. Unlikecies, how do we alter the state to make it satisfy these policies?
availability policies, resiliency policies such as the ones we con- This problem seems to be particularly interesting in the context of
sider in this paper do not specify a permission requirement on any Role-Based Access Control systems, where one changes the role
individual user; rather, they specify requirements about tolerating assignments of users to satisfy existing policies. Another approach
absent users and the overall ability of groups of users to perform for achieving resiliency is to use delegation; that is, when a user
critical tasks. Consequently, resiliency policies are more powerful is absent, some of his permissions can be automatically and tem-
and checking whether a state satisfies a resiliency policy is a chal-porarily assigned to one or more other users. However, we may

lenging problem in itself. require such delegation to satisfy other coexisting policies such as
separation of duty.
7. CONCLUSION AND FUTURE WORK 8. REFERENCES
We have introduced the notion of resiliency policies in the con- 1] G.-J. Ahn and R. S. Sandhu. Role-based authorization
icy analysis in access control, resiliency policies are about enabling and System Securjt§(4):207—226, Nov. 2000.

access rather than restricting access. Resiliency policies are partic- 2]
ularly useful when evaluating whether the access control configu- and military computer security policies. Rroceedings of
ration of a system is ready for emergency response. To the best of the 1987 IEEE Symposium on Security and Privaages
our knowledge, such resiliency policies have not been previously 184-194. IEEE Computer Society Press, May 1987.
studied in access control. i, . o

We have shown that the problem of checking whether an ac- =1 \r]c.)lg-rt?;ns%tc(i) gcig:;: 'gggﬁngg,ggégﬁwgscgfrlfféaé?;{ﬂ ACM
cess control state satisfies a resiliency policy in the general case Symposium on Access Co'ntrol Models and Technologies
is intractable NP-hard), and is in the Polynomial Hierarchy (in (SACMAT 2003)pages 43-50, Como, Italy, June 2003
coNPNP). We have shown also that several subcases of the prob- Daniel Le Berre (project Ieadér). SAT,4J' A’satisfiability.

)- ¥ . : : i [4]

lem remain intractable. Notwithstanding these intractability re- ; . .

sults, many instances that will be encountered in practice may be library for Java. URL http.//www.satdij.orglz Jgn.”2006.
efficiently solvable. In an effort to seek an efficient solution for (2] D- DU, J. Gu, and P. M. Pardalos, editdBatisfiability
practical instances of the problem and to understand what the hard Probler_n: T_heory and Appllcgtlonsolume 35 .OfDIMACS
instances are, we have designed and implemented an algorithm for ~ Se€ries in Discrete Mathematics and Theoretical Computer
RCP. Our algorithm takes advantages of an effective static pruning ScienceAMS Press, 1997.
approach and the existence of fast SAT solvers. Our experimental [6] M. R. Garey and D. J. Johnso@omputers And

results have shown that the algorithm is capable to sRIZE in- Intractability: A Guide to the Theory of NP-Completeness
stances of nontrivial sizes in a reasonable amount of time. We have W.H. Freeman and Company, 1979.

also explored the co-existence of resiliency policies with static sep- [7] V. D. Gligor, S. I. Gavrila, and D. F. Ferraiolo. On the formal

D. D. Clark and D. R. Wilson. A comparision of commercial

aration of duty (SSoD) policies. In particular, we have presented definition of separation-of-duty policies and their
several computational complexity results on checking whether a composition. InProceedings of IEEE Symposium on
set of resiliency policies and SSoD policies are consistent. Research in Security and Privagyages 172-183, May

1998.

G. S. Graham and P. J. Denning. Protection — principles and
practice. InProceedings of the AFIPS Spring Joint Computer
Conferencevolume 40, pages 417-429. AFIPS Press, May
16-18 1972.

M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in
operating system&€ommunications of the ACM
19(8):461-471, Aug. 1976.

T. Jaeger and J. E. Tidswell. Practical safety in flexible

Open problems To our knowledge, this is the first work in access (8]
control research to clearly formulate properties on enabling access,
rather than restricting access. Because this work opens up a new
area, even though we have presented a number of results in this
paper, many more interesting problems remain open. One fruit- [9]
ful area of future research lies in the interaction between resiliency
policies and other policies. In the study of the consistency prob-

lem with SSoD policies and resiliency policies, we do not consider

the total number of available users as a limiting factor. In practice, [10] : .
the number of users in any organization is bounded. This makes access control mO(_:ieIACM Transactions on Information

it harder to satisfy both resiliency policies (which require users to and System Securit(2):158-190, May 2001. S
possess more permissions) and SSoD policies (which require userd11] M. Koch, L. V. Mancini, and F. Parisi-Presicce. Decidability

to possess fewer permissions). Hence, it would be interesting to of safety in graph-based models for access control. In

consider the consistency problem with an upper bound on the num- Proceedings of the Seventh European Symposium on

ber of users in the access control state. Research in Computer Security (ESORICS 20pages
In addition to resiliency and separation of duty policies, other 229-243. Springer, Oct. 2002.

kinds policies may exist. For example, assignment range policy ~ [12] M. Koch, L. V. Mancini, and F. Parisi-Presicce. A
states that a set of permissions can be possessed only by a certain ~ 9raph-based formalism for RBA@CM Transactions on

set of users. This may be motivated by the fact that not all users Information and System Securi(3):332-365, Aug. 2002.
are qualified to receive these permissions. For example, the per-[13] B. W. Lampson. Protection. IRroceedings of the 5th
mission to install software on campus-wide network servers may Princeton Conference on Information Sciences and Systems

be assigned only to qualified and authorized staff, and should not 1971. Reprinted in ACM Operating Systems Review,

be given to others. The interaction among resiliency policies, SSoD 8(1):18-24, Jan 1974.

policies, and assignment range policies is an interesting and chal-[14] N. Li, Z. Bizri, and M. V. Tripunitara. On mutually-exclusive

lenging problem for future work. roles and separation of duty. Rroceedings of the 11th ACM
Another open area lies in designing techniques for enforcing re- Conference on Computer and Communications Security

siliency policies: if a state does not satisfy an existing set of poli- (CCS-11) pages 42-51. ACM Press, Oct. 2004.

[15] N. Li, J. C. Mitchell, and W. H. Winsborough. Beyond
proof-of-compliance: Security analysis in trust management.
Journal of the ACM52(3):474-514, May 2005. Preliminary
version appeared iRroceedings of 2003 IEEE Symposium
on Security and Privacy

N. Li and M. V. Tripunitara. Security analysis in role-based

access control. IRroceedings of the Ninth ACM Symposium

on Access Control Models and Technologies (SACMAT

2004) pages 126-135, June 2004.

R. J. Lipton and L. Snyder. A linear time algorithm for

deciding subject securityournal of the ACM

24(3):455-464, 1977.

M. J. Nash and K. R. Poland. Some conundrums concerning

separation of duty. IProceedings of IEEE Symposium on

Research in Security and Privagyages 201-209, May

1990.

[19] C. H. PapadimitriouComputational ComplexityAddison
Wesley Longman, 1994.

[20] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systemBroceedings of the IEEE
63(9):1278-1308, September 1975.

[21] R. Sandhu. Separation of duties in computerized information
systems. IrProceedings of the IFIP WG11.3 Workshop on
Database SecurifySept. 1990.

[22] R. S. Sandhu. The schematic protection model: Its definition
and analysis for acyclic attenuating systedmirnal of the
ACM, 35(2):404-432, 1988.

[23] R. S. Sandhu. Transaction control expressions for separation

of duties. InProceedings of the Fourth Annual Computer

Security Applications Conference (ACSAC'88gc. 1988.

R. S. Sandhu. The typed access matrix model. In

Proceedings of the 1992 IEEE Symposium on Security and

Privacy, pages 122-136. IEEE Computer Society Press, May

1992.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.

Youman. Role-based access control mod&EE Computer

29(2):38-47, February 1996.

T. T. Simon and M. E. Zurko. Separation of duty in

role-based environments. Rroceedings of The 10th

Computer Security Foundations Workshppges 183—-194.

IEEE Computer Society Press, June 1997.

[16]

(17]

(18]

(24]

(25]

(26]

APPENDIX

A. BACKGROUND ON ORACLE TURING
MACHINES AND POLYNOMIAL HIER-
ARCHY

Oracle Turing Machines An oracle Turing machine, with oracle
L, is denoted ad/”. L is a language M~ can use the oracle to
determine whether a string is ih or not in one step. More pre-
cisely, M* is a two-tape deterministic Turing machine. The extra
tape is called the oracle tap@/” has three additional states;
(the query state), ang,., andg,. (the answer states). The compu-
tation of M'X proceeds like in any ordinary Turing machine, except
for transitions fromg,. WhenM* entersg-, it checks whether the
contents of the oracle tape arelin If so, M* moves togyes. Oth-
erwise,M” moves tog,,. In other words M is given the ability

to “instantaneously” determine whether a particular string i% in
or not.

Polynomial Hierarchy The polynomial hierarchy provides

a more detailed way of classifying NP-hard decision prob-
lems. The complexity classes in this hierarchy are denoted by
Y P, 1P, AP, wherek is a nonnegative integer. They are
defined as follows:

TP =TIxP = A¢P = P,
and for allk > 0,
Ap P = PZRP,
S P = NPEP,
i 1P = co-Spp 1P = coNPEFP,

Some classes in the hierarchy are
AP =P, P=NP,I;P = coNP,
AP = PNP 5,P = NPYF,
[IoP = coNPNP,

B. METHODOLOGY FOR GENERATING

TESTING INSTANCES

Our goals of implementing the algorithm and performing experi-
ments are to understand the effectiveness of the pruning techniques
developed in Section 4 and to understand how well the algorithm
scales with different parameters. To achieve such goals, We try to
generate instances to approximate realistic instances. We gener-
ate instances for testing using combinations of the following ap-
proaches.

e Purely RandomFor each permissiop; and usen;, we as-
signp; to u; with a certain probability. The probability is an
adjustable parameter which is called tensityparameter.

e With Constraints Often times, an access control system may
include (explicit or implicit) constraints that restrict user-
permission assignment. For example, there may be require-
ment that no user is authorized for permissippsindp; at
the same time. To model this aspect, mutual exclusion con-
straints among permissions are randomly generated. Two per-
missions are mutually exclusive if no user can be authorized
for both permissions. The total number of pairs of permis-
sions isp(p — 1)/2. The number of constraints to be gener-
ated is determined by an adjustable parameter that specifies
the ratio of the the constraints tgp — 1) /2. After the gener-
ation of constraints and user-permission assignment, if a user
is assigned to two permissions that are mutually exclusive, we
randomly remove one permission from the assignment.

e Density Variation In situations where resiliency is an issue,
it is likely that some permissions are assigned only to a small
number of people. To model these situations, we assign dif-
ferent permissions with different densities. We have two pa-
rameters that specify the lower bound and the upper bound
for the permission assignment densities respectively. The se-
quence of all permissions , - - - , p,, Will be assigned with
nondecreasing density, with being assigned with the lower
bound density angd,,, with the upper bound density.

Finally, if a user is not assigned any permission, we randomly
assign one permission to the user, so that we do not have a useless
user in the generated instance.

C. PROOFS FOR THEOREM 11

Without loss of generality, we assume that for any static separa-
tion of duty policyssod(P, k), we havek < |P|. We also assume
that in any resiliency policyp(P, s, d, t), we have eithet = co or
t <[Pl

Lemma 12. PCCP (1, n) is coNP-hard, wherePCCP (1, n) de-

notes the subcase that there is a single SSoD policy, and an arbi-

trary number of resiliency policies.

PROOF We reduce theNP-completeSET COVERING prob-
lem [19] (also referred to agliINiIMuM COVERING problem in [6])
to the complement oPCCP. In SET COVERING, we are given a
setX = {e1, -+ ,em}, n subsets ofX: X;,...,X,, and a bud-
getb, and need to determine whether the unior stibsets is the
same asX. Given an instance of th8ET COVERING problem, we
construct one SSoD polic§ = ssod(P,b + 1) andb rp policies
R; = rp(P;,0,1,1) (1 <14 <b), whereP = {p1,--- ,pm} COI-
responds toX andP; = {p, | e; € X;} corresponds to¥;. Let
F = {S,R1,---,Rn}. In the following, we prove thaf" is in-
consistent if and only if the answer to t8e T COVERING problem
is “yes”.

On the one hand, if’ is inconsistent, there does not exist any
state that satisfies all polices m. In other words, if a state satis-
fies all resiliency policies irF’, there exists no more thanusers
in the state who together have all permissior¥in Let UP be a
state withn usersuq, - - - , u,, such thafu;,p;) € UP if and only
if p; € P;. Itis clear thatUP satisfies all resiliency policies iR,
and hence there exist no more thiansers together have all per-
missions inP. In other words, there exist no more thiaslements
in {P1,---, Py} whose union isP. Thus, the answer to the set
covering problem is “yes”.

On the other hand, if the answer to the set covering problem is
“yes”, then there exist no more tharelements in{Pi,---, P,}
whose union isP. For any stateUP that satisfies all resiliency
policies inF, let U be the set of users that satisfy at least one re-
siliency policy.w € U if and only if there exist®; such that: has
all permissions inP;. In this case, there exist no more thauasers
in U who together have all permissionsfh Hence,UP does not
satisfy S, which implies that no state satisfies all policiegFin

Lemma 13. PCCP (m, 1) is NP-hard, wherePCCP (m, 1) de-
notes the subcase that there is an arbitrary number of SSoD poli-
cies, and a single resiliency policy.

PrROOF We reduce th&NP-completeSET SPLITTING problem
to PCCP(F’). In the SET SPLITTING problem, we are given a set
X = {e1, - ,en}, m subsets ofX: Xi,..., X, and need to
determine whether there exigt andY> such that; UY> = X and
there does not exist; (1 < ¢ < m) such thatX; C Y; or X; C
Y>. Given an instance of th8ET SPLITTING problem, construct
a resiliency policyR = rp(P, 0, 1,2) andm SSoD policiesS; =
ssod(P;,2) (1 < ¢ < m), whereP = {p1,---,pn} corresponds
to X andP; = {p; | e, € X;} corresponds toX;. Let FF =
{R, 51, - ,Sm}. Inthe following, we prove thafF is consistent
if and only if the answer to th8ET SPLITTING problem is “yes”.

On the one hand, if" is consistent, then there exists a st&ie
that satisfies all policies if'. UP satisfying R implies that there
exist two usersu; anduz in UP such thatu; and us together
have all permissions i#?. Furthermore UP satisfyingS; implies
that neitheru; nor uz has all permissions i®;. LetY: = {e; |
(u1,pi) € UP} andYz2 = {e; | (u2,pi) € UP}. We have
Y1 UY2 = X and neithefY; norY; is a superset of anx;. The
answer to the set splitting problem is “yes”.

On the other hand, if the answer to the set splitting problem is
“yes”, then suclt; andY> exist. We construct a staléP contain-
ing only two users:; anduz such thafu;,p;) € UP (1 <1 < 2)
if and only if p; € Y;. SinceY; UY> = X, ui andus together
have all permissions i#®. Furthermore, since there does not exist
X, such thatX; is a subset of; or Yz, neitheru; norus has all
permissions inP;, which implies thatUP satisfiesS;. Therefore,
UP satisfies all policies irF'.

Lemma 14. Let F = {51, 52, Sm, R1, -+, Rn}, whereS;
ssod(P;, k;) (1 <i<m)andR; = rp(Qj,s;j,d;,t;) (1 <j
n). PCCP(F) isin NPNP,

IAI

PROOFR We construct a set of policieB” by replacing every
R; (1 <i < n)in F with rp(P;,0,1,t;). From Lemma 10F is
consistent if and only i’ is consistent.

We construct a nondeterministic Oracle Turing machifehat
makes use of alNP oracle machine to determine whethéf is
consistent. M first nondeterministically selects an integesuch
that maz(ki, - ,km) < a < X7,|Q;:| and then generates
users. Note that at leastax(k1, - - - , k»,) users are needed to sat-
isfy all SSoD policies inF”, and at mosE}-, |Q;| users are needed
to satisfy all resiliency policies ift”’. (The state can have more than
3it1|Q;| users, but in order to show that all resiliency policies in
F’ are satisfied, at mo&t}__, |Q;| users need to be involved.) Then
M constructs a statg &by nondeterministically assigning a subset
of Q tou, whereQ = 7_, Q; is the set of all permissions appear
in the resiliency policies. Next)/ nondeterministically construct
n setsUs, - -- , U, of users inUP, and then, for every € [1,n],
checks whether users I together have all permissions Ity and
|U;| < t;. If the answer is “no”, therd returnsFalse . Finally,

M invokes theNP oracle to to check whethel/P violates any
SSoD policy. (In order to prove that a state violates a static separa-
tion of duty policyssod(P, k), we just need to present a set of no
more thark users in the state who together have all permissions in
P. Therefore, checking whether a state violates an SSoD policy is
in NP.) If the oracle machine answers “yedl/ returnsFalse .
Otherwise, M returnsTrue , which means thaUP satisfies all
policies inF’ and hencd™ is consistent. It is clear that/ termi-
nates in polynomial time if the oracle machine returns an answer
instantaneously. ThereforBCCP is in NPNF in general.

