Towards Formal Verification of Role-Based Access
Control Policies

Somesh Jha, Ninghui Li, Mahesh Tripunitara, Qihua Wang, William Winsborough

Abstract— Specifying and managing access control poli-
cies is a challenging problem. We propose to develop
formal verification techniques for access control policies to
improve the current state of the art of policy specification
and management. In this paper, we formalize classes of
security analysis problems in the context of Role-Based
Access Control. We show that in general these problems
are PSPACE-complete. We also study the factors that
contribute to the computational complexity by considering
a lattice of various subcases of the problem with differ-
ent restrictions. We show that several subcases remain
PSPACE-complete, several further restricted subcases
are NP-complete, and identify two subcases that are
solvable in polynomial time. We also discuss our experi-
ences and findings from experimentations that use existing
formal method tools, such as model checking and logic
programming, for addressing these problems.

Index Terms— Access control, RBAC, Formal methods,
Computational complexity

I. INTRODUCTION

Access control is one of the most fundamental
and pervasive security mechanisms in use today.
The specification and management of access con-
trol policies is a challenging problem, and today’s
administrators have little tools to assist them. As
a result, a large number of security breaches are
caused by policy misconfigurations. Administrators
are often reluctant to change policy settings, as
they do not have confidence in whether the result-
ing policy configurations indeed enforce the policy
objectives. The current state of the art of access
control policy specification and management is still
“what you specify is what you get, but not neces-
sarily what you want”. This can be compared to

Somesh Jha: Department of Computer Science, University of
Wisconsin at Madison, USA

Ninghui Li and Qihua Wang: Department of Computer Science
and CERIAS, Purdue University, Indiana, USA

Mahesh Tripunitara: Motorola Labs, Illinois, USA

William Winsborough: Department of Computer Science, Univer-
sity of Texas at San Antonio, USA

software/hardware development before formal ver-
ification techniques [7], [27], [28] were developed
and successfully deployed. We believe that formal
verification techniques for access control policies
can be developed to improve the current state of
the art.

In almost all access control systems, there is a
need to change the authorization state; for example,
users and objects are added and removed, users start
sharing resources at one moment and stop such shar-
ing later, and users’ job functionalities change. This
dynamic aspect makes access control particularly
challenging. A fundamental problem that deals with
the dynamic aspect of access control is safety analy-
sis, which was first formulated by Harrison, Ruzzo,
and Ullman [17] for the access matrix model. Safety
analysis decides whether undesirable right leakage
could occur in future states. Recently, the notion of
security analysis, which generalizes safety analysis,
was introduced [25], [26]. A Security Analysis Prob-
lem instance asks whether an access control system
preserves security policy invariants (which encode
desired security properties) across state changes.
Security analysis also allows the explicit specifi-
cation of trusted principals. This enables one to
ask questions such as: suppose that a set of trusted
principals will not initiate any potentially dangerous
actions; does a policy invariant hold in all future
states? A positive answer provides the assurance
that the security of the system depends only on the
cooperation of trusted principals.

In this paper (Section II) we study the Secu-
rity Analysis Problem (SAP) in Role-Based Access
Control (RBAC) with the URA97 administrative
scheme [37], [38] (we call this problem URA-
SAP). We also describe our experiences building
tools for URA-SAP using model checking and logic
programming. Our choice of RBAC as the problem
domain is motivated by the fact that RBAC [3], [13],
[39] is today’s most influential access control model.
The past decade has seen an explosion of research in

RBAC. Today, most major information technology
vendors are offering products that incorporate some
form of RBAC. For example, all major DBMS prod-
ucts support RBAC. Microsoft has brought RBAC to
the Windows operating systems by introducing Au-
thorization Manager in Windows Server 2003 [29].
RBAC has also been used in Enterprise Security
Management Systems, such as IBM Tivoli Policy
Manager [20] and SAM Jupiter [4], [21].

The goal of our work is to develop techniques
to help RBAC administrators precisely understand
whom they are trusting for maintaining the desirable
security properties, or in other words, who will be
able to compromise the security of their system.

The contributions of this paper are as follows:

o In Section III, we show that in general URA-
SAP is PSPACE-complete. We also study
the factors that contribute to the computational
complexity by considering a lattice of various
subcases of the problem with different restric-
tions. We show that several subcases remain
PSPACE-complete, several further restricted
subcases are NP-complete, and we identify
two subcases that are solvable in polyno-
mial time. We observe that the administrative
scheme implemented in Oracle’s RBAC system
falls into one of the two tractable subcases.

o In Section IV, we compare two approaches
to using existing tools to perform URA-
SAP and report our findings. One approach
is to use model checking (specifically, the
tool NuSMV [32]); the other is to use
logic programming (specifically, the language
XSB [15]).

We discuss related work in Section V and con-

clude in Section VI.

II. PROBLEM DEFINITIONS

In this section, we give precise problem defini-
tions for SAP. We also describe the URA97 RBAC
scheme and present the special cases of SAP for the
scheme.

A. Access Control Schemes

In existing work on security analysis in access
control systems [25], [26], an access control scheme
is defined as a state-transition system (I', Q, -, ¥),
in which I' is a set of states, () is a set of queries,
W is a set of state-transition rules, and : ' x) —

{true, false} determines whether a query in @ is
true or not in a given state in I'. Each ¢ € W is
viewed abstractly as a binary relation on I, ie.,
1 C I' x I'; it determines whether one state can
immediately reach another state. Such a definition
abstracts state transition as a binary relation, and
does not make explicit which principals initiate a
particular action to effect a state transition. As a
result, to consider multiple SAP instances with the
same state but different sets of trusted users, one
has to change the state-transition rule, which is
unnatural. We now give a definition that makes the
initiators explicit, avoiding such problems.

Definition 1 (Access Control Schemes): An ac-
cess control scheme is given by a 6-tuple (I', @, F
JA S, W), where T is a set of states, () is a set
of queries, : T' x Q@ — {true, false} determines
whether a query is true or not in a state, A is a set
of principals, X is a set of actions, and WV is a set
of state-transition rules.

A state, v € T, contains all the information
necessary to make access control decisions at a
given time. When a query, ¢ € (), arises from
an access request, ¥ - ¢ means that the access
corresponding to the request ¢ is granted in the state
7, and 7 I ¢ means that the access corresponding to
q is denied. One may also ask a query that does not
correspond to a specific request; for example, one
may ask whether every principal that has access to
a resource is an employee of an organization. Such
queries are useful for understanding the properties
of a complex access control system.

Each action o € X is a function mapping [’ to
['. We write o(v) to denote the state that results
from applying the action o on the state . Note that
o () could be ; for example, this would happen if
the application of the action o on the state v fails.
Each action o is associated with a set of principals,
denoted by init(o), i.e., init(c) C A. Principals in
init(c) are called the initiators of the action; these
are the principals that actively carry out the action
o. In most existing access control schemes, each
action is carried out by one initiator, in which case
init(o) is a singleton set. When init(c) includes
two principals u; and us, it means that the active
participation of u; and us is needed to carry out o.

Each state-transition rule ¢» € W is given by a
subset of 3, i.e., 1 C .. The state transition from
7 to 7, is allowed by ¢ (we write v —, v1) when
there exists an action o in ¢ such that o(y) = ;.

Given an access control scheme (I',Q,F
, A, 3, W), an access control system is specified by
a pair (,1), where v € T is the state of the system
and ¢ € VU is the state-transition rule that determines
which state transitions are allowed.

We say that a set A of principals can take an ac-
cess control system (y,) to a state 7, if principals
in A can initiate actions that change the state of the
access control system from 7y to 7, 1.e., there exists
a sequence of actions oy, 09, -+ ,0, such that the
following two conditions hold:

1) for each ¢ such that 1 < ¢ < n, we have

o; € ¢ and init(o;) C A.

2) on(---oa(o1() 1) =

Definition 2 (SAP): Given an access control
scheme (I',Q,FH, A, X, V), a security analysis
problem (SAP) instance 1is given by a 4-tuple
(A7, 7,1, q), where A C A is a finite set of trusted
principals, (v,1)) defines an access control system,
and ¢ € @) is a query.

The answer to the instance is true if principals
other than those in Ap can take the access control
system (7, 1) to a state in which ¢ evaluates to true.
That is, this instance asks whether there exists a
state 7, such that principals in the set A — Ar can
take (v,%) to the state v, and 7, I q.

In an instance of SAP, ¢ typically encodes an
unsafe situation that should never occur; that is, —q
would be a policy invariant that should always hold.

B. The URA97 RBAC Scheme

We now define the access control scheme that
we study in this paper, the URA97 RBAC scheme,
which is based on the ARBAC97 administrative
scheme for RBAC [37], [38]. To our knowledge,
ARBAC97 is the first comprehensive and the most
influential administrative model for RBAC.

URA97 is one of the three components of
ARBAC97 [38]. The other components of AR-
BAC97 are PRA97 and RRA97, for administer-
ing permission-role assignment/revocation, and the
role hierarchy, respectively. In this paper, we study
the effect of decentralizing user-role assignment
and revocation, and assume that changes to the
permission-role assignment relation and the role
hierarchy are centralized, i.e, made only by trusted
users. In other words, whoever is allowed to make
changes to permission-role assignment and the role
hierarchy will use security analysis and only make

those changes that do not violate desirable security
properties.

We assume that there are three countable sets:
U (the set of all possible users), R (the set of
all possible roles), and P (the set of all possible
permissions). While the set of all users in any RBAC
state 1s finite, the set of all users that could be added
is potentially unbounded. One can think of I/ as the
set of all possible user-identifiers in a system.

States (I'): An RBAC state v is a 6-tuple
(UA, PA,RH, CA, CR, CO). We call UA, PA, and
RH parts of the basic state, and CA, CR, CO parts
of the administrative state. The basic state is de-
scribed below; the administrative state is described
when we discuss state transitions.

The user assignment relation UA C U X R
associates users with roles, the permission assign-
ment relation PA C R x P associates roles with
permissions, and the role hierarchy relation RH C
R xR is an irreflexive and acyclic relation over R.
We use >y to denote the partial order induced by
RH, i.e., the transitive and reflexive closure of RH.
r1 >~ gy T2 means that every user who is authorized
for ry 1s also authorized for 75 and every permission
that is associated with r is also associated with r;.

Given a state 7y, each user has a set of roles
for which the user is authorized. We formalize
this by defining for every state -~ a function
authorizedRoles : U — 2%

authorizedRoles(u) ={ r € R | Ir1 € R
[(U,T’l) € UA A (7"1 ERH ’f‘)} }

When r € authorizedRoles(u), we say that the user
u is authorized for the role r, or equivalently, w is
a member of 7. We also define down(r) to be the
set of all roles dominated by r and up(r) to be the
set all roles that dominate 7 as follows:

down(r)={r"€R |r>=pgur'}
up(r)={r"eR | " =gy r}

State Transition: A, >, and ¥: We now specify A,
>, and ¥, which determine how states may change
in the URA97 scheme. A is defined to be U, the
set of all possible users. Y consists of two kinds of
actions: assignment and revocation actions. Whether
these actions succeed or not when applied in a state
depends on the administrative state of -, namely
CA, CR, and CO, which we describe below.

« The relation CA C R x C x 2R determines
who can assign users to roles and the precon-
ditions these users must satisfy. C' is the set
of conditions, which are expressions formed
using roles, the binary operators N and U, the
unary operator —, and parentheses. A tuple
(rq,c,rset) in CA means that members of
the role 7, can assign any user whose role
memberships satisfy the condition ¢, to any role
r € rset. For example, (ro, 7 NroN—rg, {r4})
€ CA means that a user that is a member of
the role 7y is allowed to assign a user that is a
member of both r; and r», but is not a member
of r3, to be a member of 4.

The relation CR C R x 2" determines who can
remove users from roles. That (r,, rset) € CR
means that the members of role r, can remove
a user from a role r € rset. Unlike the relation
CA, there is no preconditions in the relation
CR defined in URA97 [38].

We assume that CA and CR satisfy the prop-
erty that the administrative roles are not af-
fected by CA and CR. The administrative roles
are those that appear in the first component of
each tuple in CA or CR. These roles should
not appear in the last component of any CA
or CR tuple. This condition is satisfied in
URA97, which assumes the existence of a set
of administrative roles that is disjoint from the
set of normal roles.

CO 1is a set of mutually exclusive role con-
straints. Each constraint in C'O has the form
smer({ry,...,rm},t) where each r; is a role,
and m and ¢ are integers such that 1 <t < m.
This constraint forbids a user from being a

member of ¢ or more roles in {ry,...,r,}.
We say that a set R of roles satisfies a con-
straint smer({ry,...,r,},t) if and only if

|[RNAry,...,rm}| < t, where || gives the
cardinality of a set.

For example, smer({ry,r2},2) means that no
user is allowed to be a member of both
r1 and 7. In an RBAC state v, if r; €
authorizedRoles(u) for a user u, then an assign-
ment action that assigns the user u to any role
in up(ry) would fail because of the constraint.

U consists of a single state-transition rule, ¢, which
1s a set of actions:

W ={assign(ug, s, 7¢) | Ug,us EU N1y € R}

U {revoke(uq, us, 7¢) | Ug,us €U N1y € R}

« An assignment action assign(u,, u;, ;) means

that the user u, assigns the user u; to the role
r:. When this action is applied to an RBAC
state -, it succeeds if and only if the following
three conditions hold:

- (ug,ry) & UA, ie., the user u, is not
already assigned the role 7.

— There exists a tuple (ry,c,rset) € CA
such that r, € authorizedRoles(u,),
authorizedRoles(u;) satisfies ¢, and r, €
rset.

— authorizedRoles(u;) U down(r;) satisfies
every constraint in CO, i.e., the new role
memberships of u; do not violate any
constraint.

The assignment action assign(ug, u;,r;) may
succeed even when u; is already authorized for
r; indirectly through other roles. For example,
even when (u;,rs) € UA and ry =gy 1,
assign(ug, ug, ¢) can succeed. The rationale is
that these memberships often represent inde-
pendent relationships. For example, (u,rs) €
UA may represent a shorter-term role assign-
ment for u; because of temporary staff short-
ages, and (uy, ;) € UA may represent a longer-
term role assignment; then we want to add
(ug,) to UA so that when (uy, 75) is removed
from UA, wu; is still authorized for 7;.
When the assignment action is successfully
applied to an RBAC state , the resulting state
~" differs from ~ only in the user-role relation.
The result of a successful application is UA’" =
UA U {(u¢,7¢)}. When the application is not
successful, the state does not change.
A revocation action is of the form
revoke(uq, us, 7¢), which means that the
user u, revokes the user u; from the role r;.
When this action is applied to an RBAC state
7, it succeeds if and only if the following two
conditions hold:
— (uy,) € UA, i.e., the user u; is assigned
to the role ry.
— There exists a tuple (r,, rset) € CR such
that r, € authorizedRoles(u,), and r; €
rset.

When the revocation action is successfully ap-
plied to an RBAC state ~, the resulting state
~" differs from - only in the user-role relation.
The result of a successful application is UA’" =
UA — {(ug,)}. When the application is not
successful, the state does not change.

C. SAP in URA97

Definition 3 (URA-SAP): A URA-SAP instance
is given by an RBAC state v = (UA, PA, RH,
CA, CR, CO), a set Ar C U of trusted users, and
a query.

We deliberately leave the syntax for queries un-
specified in the above definition. Different kinds of
queries may be needed for different policy analyses.
The simplest kind is to ask whether a user u is
a member of a role r. More sophisticated queries
may ask whether a user’s role membership satisfy
a condition (e.g., 1 U (rg N —r3)), or whether the
set of members of one role is a subset of the set of
members of another role.

An important observation is that the simplest
query which asks whether a user is a member of
a role can be used to handle several other kinds of
queries. For example, if one wants to know whether
the system can reach a state in which u’s role
membership includes a set {ry,72} and excludes
{r3}, one can add a new user u,, two new roles ,
and 7, a user assignment (u,,7,), and a new tuple
(ra, (ryNre N —r3),{r:}) to CA, and use u € r; as
the query. Similarly, if one wants to know whether
the system can go to a state in which u possesses
a certain set of permissions, one can compute the
role condition that is necessary and sufficient to have
the permissions and then translate that into a query
about a single role.

Definition 4 (URA-RC-SAP): A URA-RC-SAP
instance is a special case of URA-SAP in which a
query has the form u € r.

D. An Example

Figure 1 shows a simplified role-hierarchy in a
bank. This example is inspired by a case-study of a
commercial bank that appears in the literature [40].
The bank has two functional roles, Loan Officer and
Cashier, apart from the basic Employee role. The
bank requires that an employee be a member of
exactly one functional role. We quote from [40]:
“Ideally, each employee is assigned to one role.”.

This is easily achieved using the mutually exclusive
role constraint smer({Loan Officer, Cashier} , 2).

In our example, the bank allows employees to be
reassigned to a different functional role. However,
such a reassignment must involve at least two ad-
ministrators. This results in a separation of privilege
in that no single administrator can change a user’s
functional role by himself.

Consider the example query @, of the form
“Bob € Cashier” where (Bob,Loan Officer) €
UA,. With this query, we seek to verify that the
bank’s policy is indeed satisfied for a user Bob
that is a loan officer. If we consider a URA-RC-
SAP instance with the set of trusted principals
Ap = {Alice, Adam}, we observe that the instance
is false. The reason is that for Bob to be assigned to
Cashier, he must first be revoked from Loan Officer.
Otherwise, the entry in C'Oy,,,, would be violated.
The only administrator that can revoke Bob from
Loan Officer is Adam. However, as Adam is consid-
ered to be a trusted principal in the analysis instance,
he cannot initiate any administrative actions.

It turns out in our example that the bank’s policy
is indeed satisfied for any user, even for one that is
not (yet) an employee of the bank. This can be veri-
fied by running analysis instances with appropriately
instantiated parameters. As an example to demon-
strate that a user can indeed be reassigned to a dif-
ferent functional role, if the user Carl is a member
of Cashier in UA,, then a URA-RC-SAP instance
with A7 = () and query “Carl € Loan Officer” is
true because Carl can first be revoked from Cashier
by Andy, then assigned to Employee by Alice and
finally assigned to Loan Officer by Adam. In this
case, the cooperation of all three administrators is
required.

III. COMPUTATIONAL COMPLEXITY

In this section we study the computational com-
plexity of URA-SAP. In particular, we show that
URA-RC-SAP is PSPACE-complete. The main
source of the complexity of SAP is that the state
space that needs to be explored is potentially large.
We would like to understand how different features
in URA97 affect this search space; therefore, we
consider special cases of URA-SAP that result from
restricting the URA scheme in various ways. An-
swers to the following questions affect the compu-
tational complexity of URA-SAP.

A Ac

Loan Officer Cashier
| [

Ac Employee

CApank = {(Ag, true, {Employee}), (AL, Employee, {Loan Officer}),
(Ac, Employee, {Cashier})}

CRpank = {(Ag,{Employee}), (A, {Loan Officer}), (Ac,{Cashier})}

COpani = {smer{{Loan Officer, Cashier},2)}

UA’Y) {(AZZ'CQ AE)) (Adam7 AL)) (Andya AC)}

Fig. 1. A simplified view of a bank in which there are two functional roles, Loan Officer and Cashier, both of which inherit
from the Employee role. The role hierarchy, RH pqnk, is shown in the figure. A different administrative role is associated with
each of the roles; A is for administering Loan Officer, Ac for Cashier and Ag for Employee. This is reflected in the assignment
and revocation rules, C'Apgni and CRyqny respectively, for the bank. COpgpy is the set of mutually exclusive role constraints;
there is only one constraint, that no user can be both a loan officer and a cashier. The UA,, in the figure shows that a different
administrative user is assigned to each of the administrative roles.

o What queries are considered? If queries are less insightful and of less practical interest. In

allowed to contain conjunctions and disjunc-
tions of roles, then URA-SAP is likely to be
intractable. For example, in [26], one can pose
a query that asks whether the set of users who
satisfy ((ry Urg) Nry) is always a subset of the
set of users that satisfy ((r1 Ur) N (12 UTs)).
The intractability results in [26] are conse-
quences of the fact that these sophisticated
queries can encode propositional formulas to
show NP-hardness. In other words, [26] deals
with sophisticated queries but very simple state
transition rules.

In this section, in contrast to the work in
[26], we focus on the simplest kind of queries,
i.e., whether a user u is a member of a role
r, to better understand the complexity caused
by state-transition features within URA97. In

practical systems, one would not expect the
precondition to be a very complicated logical
formula. In this paper we focus on the special
case in which each precondition is a conjunc-
tion of roles or their negations. We show below
that, for the general case, whether to allow
disjunctions in the preconditions or not does
not affect the computational complexity.

Is negation allowed in preconditions in CA?
When preconditions in CA may contain nega-
tion, one needs to consider the revocation of a
users’ role memberships in order to satisfy the
precondition and be assigned to a new role.

e Are SMER constraints allowed, i.e., is CO =

{ }? When constraints are allowed, one may
need to consider revocations in order to assign
a user to a new role.

other words, we consider URA-RC-SAP.

e Do the preconditions involve only conjunc-
tions? Each tuple in C'A has a precondition. It that role memberships cannot be revoked.
is conceivable that if the precondition involves We summarize the variations we consider in this
arbitrary conjunction, disjunction, and negation paper in Figure 2. The main results of this paper
of roles, then this could make the problem are stated in the following theorem. These results
intractable; however, such a result would be are also summarized in Figure 3.

o Are revocations allowed, i.e., whether CR =
{ }? One may want to consider the special case

Preconditions Revocation Constrai

General Case Yes

[CR]

Conjunctive

[CA(conjunctive)] No
1 [CR={}]

Negation—free
[CA(positive conjunctive)

Every precondition = TRU
[CA(no preconditions)]

Yes
[CO]

No
[CO={}

Fig. 2. The possible variations in the features we consider for the preconditions in CA, revocation and constraints. A dotted
line connects a case with a subcase. For example, negation-free preconditions ([CA (positive conjunctive)]) is a subcase of
conjunctive preconditions ([CA (conjunctive)]). Various combinations from the three columns are possible. For example, we
can consider the analysis problem with negation-free preconditions, with revocation, but without constraints, which corresponds

to URA-RC-SAP[CA (positive conjunctive), CR, CO = { }1.

URA-RC-SAP
PSPACE-complete

URA-RC-SAP[CA(conjunctive), CR, CO]
PSPACE-complete

Tl
- T -

URA-RC-SAP[CA(positive URA-RC-SAP[CA(conjunctive), URA-RC-SAP[CA(conjunctive),

conjunctive), CR, CO] CR,CO={}]
PSPACE-complete PSPACE—go_r’rpI ete

Fsz--o

CR={},CO]
NP—con‘q_J!ete

-l

URA-RC-SAP[CA(ho URA-RC-SAIs[CA(positive URA-RC-SAP[CA(positive URA-RC-SAP[CA(conjunctive),
preconditions), CR, CO] conjunctive), CR, CO ={}] conjunctive), CR ={}, COJ CR={},CO={}]
P

P

NP-complete NP-complete

Fig. 3. The summary of computational complexity results for various cases of URA-RC-SAP. A dotted line links a case to a
subcase. For example, URA-RC-SAP[CA (positive conjunctive), CR, CO] is a subcase of URA-RC-SAP[CA (conjunctive),

CR, CO 1.

Theorem 1: The computational complexity for
URA-RC-SAP and its various subcases are as
shown in Figure 3.

Some subcases of the problem are not listed in
Figure 3, because they are special cases of the .
two cases that are known to be in P; thus they
are solvable in polynomial time as well. We make
several observations from Theorem 1 and Figure 3.

o Whether we allow only conjunctive precon-
ditions or allow arbitrary preconditions does

not change the computational complexity of
URA-RC-SAP in general. The problem is
PSPACE-complete with or without the con-
junctive restriction.

There are three cases in which the problem’s
complexity changes from PSPA CE-complete
to NP-complete. All three result from mak-
ing CR empty. The reason is that if CR is
empty, then one needs to consider only role
assignments. Any role assignment sequence

can have length at most polynomial in the size
of the problem instance. This makes the prob-
lem in NP. On the other hand, there may be
exponentially many such possible assignment
sequences; thus the problem remains NP-
complete. However, when CR is not empty, the
sequence necessary for entering a user into a
role may be of exponential length.

« The effect of non-empty CO is identical to the
effect of negation in preconditions of C'A from
the standpoint of computational complexities.
The reason is that the effect of a constraint in
C'O can be “simulated” using negative precon-
ditions in CA, and vice versa. We use this fact,
for example, in the proofs for Lemmas 4 and 7.

The rest of this section proves the results in
Theorem 1.

URA-RC-SAP and three subcases are
PSPACE-complete: We first show that the
general case of URA-RC-SAP is in PSPACE.
We then show that two subcases URA-RC-
SAP[CA(positive conjunctive), CR, CO], and
URA-RC-SAP|CA(conjunctive), CR, CO = { }]
are PSPACE-hard. These results together
prove the four PSPACE-completeness result in
Theorem 1. In Appendix I, we present background
information related to Turing machines that we use
to establish these results.

Lemma 2: URA-RC-SAP is in PSPACE.
Proof: Given a URA-RC-SAP instance, let v =
(UA, PA,RH,CA, CR, CO), let Ur be a set of
trusted users, and let v € r be the query. Notice
that the only component of the state that changes is
UA. Furthermore, we only need to maintain u’s role
memberships (the number of roles does not change
from the start state). It takes polynomial space to
represent the u’s role memberships. Recall that in
URA97, administrative roles (i.e., roles that appear
in the first component of a tuple in CA and CR)
are not affected by C'A and CR. Therefore, we do
not need to consider memberships of users other
than u because these role memberships do not affect
whether u can be assigned to a role or not. Observe
that in order to determine whether u can be added
to a role, the precondition is only about u’s role
memberships.

Observe that if we relax the restriction that ad-
ministrative roles are not affected by CA and CR,
then we need to maintain role memberships of

all users, which can still be done in polynomial
space. Therefore, URA-RC-SAP is in PSPACE
even without this restriction.

We describe a Non-Deterministic Turing Machine
(NDTM) NM to solve this problem. Initially, NA
sets initial state 7, to be equal to . Given that that
NM is in state +;, it continues its computation as
follows:

o If v, Fq, NM stops and outputs yes.

o Assume that v; I ¢. NM guesses a next state
vi+1 that changes the user u’s role member-
ships. NM ensures that such a change con-
forms to CA and CR and satisfies the con-
straints in CO. NM ensures also that the only
users that effect an assign or revoke action are
the ones do not belong to Ur.

The construction given above proves that URA-
RC-SAP is in NSPACE(O(n)), where n is the
space needed to represent the input URA-RC-SAP
instance. Using Savitch’s theorem we can conclude
that URA-RC-SAP is in DSPACE(O(n?)). O

Lemma 3: URA-RC-SAP [CA (positive conjunc-

tive), CR, CO] is PSPACE-hard.
The proof is given in Appendix II. The proof is by a
reduction from the membership problem for linear
bounded automata (LBA), which is known to be
PSPACE-complete. A LBA is a restricted form of
a Turing machine. It differs from a Turing machine
in that while the tape is initially considered infinite,
only a finite contiguous portion whose length is a
linear function of the length of the initial input can
be accessed by the read/write head.

Lemma 4: URA-RC-SAP [CA (conjunctive),
CR, CO = (] is PSPACE-hard.

The proof for the above lemma is similar to the
proof for Lemma 3. The proof for Lemma 3 uses
2-2 SMER constraints. We simulate the use of such
constraints in the proof for Lemma 4 using negative
preconditions in CA. For example, if a 2-2 SMER
constraint smer({ry,r2},2) is used in the proof for
Lemma 3, we can add — r; to the precondition of
each rule that assigns to r, and add — r, to the
precondition of each rule that assigns to ;.

URA-RC-SAP [CA (conjunctive), CR = { }, CO
] and its two subcases are NP-complete: We first
demonstrate that disallowing revocations in URA-
RC-SAP causes the problem to be in NP. We then
demonstrate that two subcases are both NP-hard.
The first subcase is when we disallow negative pre-

conditions in C'A. The second subcase is when we
disallow constraints. These results together prove
the three NP-completeness results in Theorem 1.

Lemma 5: URA-RC-SAP [CA (conjunctive),
CR={1}, CO]isin NP.

Proof: We need to demonstrate that if an
instance of URA-RC-SAP [CA (conjunctive), CR =
{ }, CO 1] is true, then there exists an evidence
of size polynomial in the problem that can be
efficiently verified. Let the query ¢ in the problem
instance be about user u’s membership in the role
r. As the evidence, we use the shortest state-change
sequence from the initial state v, to a state v,, such
that v, F ¢. Each state-change in this sequence
is the assignment of u to a role of which he is
not already a member. There can be at most |R)
such assignments, where R is the set of roles in the
system. (See the proof of Lemma 2 about why we
only need to consider assignment of user u. Also
observe that even if considering assignment of all
users, the total number of such assignments is still
polynomial in the size of the instance.) Therefore,
the state-change sequence is of length at most |R|,
which is polynomial in the input and can certainly
be verified in polynomial time. []

Lemma 6: URA-RC-SAP [CA (conjunctive),
CR={1}, CO={1}]is NP-hard.

The proof is in Appendix III; it uses a reduction
from the 3SAT problem.

Lemma 7: URA-RC-SAP [CA (positive conjunc-
tive), CR = { }, CO] is NP-hard.

The proof is in Appendix IV. This result should
not be surprising given Lemma 6; as discussed
earlier, the effects of SMER constraints and negation
in preconditions in C'A are very similar.

Two subcases that are in P: As we show above,
either negation in preconditions or SMER con-
straints is sufficient to make URA-RC-SAP in-
tractable. However, URA-RC-SAP [CA (positive
conjunctive), CR, CO = { }], that is, when neither
negations in preconditions nor SMER constraints
are allowed, the problem can be solved in linear
time. The reason is that to determine whether u
can be a member of a role r in some future state,
there is no need to consider revocation as there is
no negation in preconditions in C'A and there are
no SMER constraints. A straightforward quadratic
algorithm is to try each tuple in C'A and see whether
u can be assigned to more roles. As the number

of roles that can be assigned according to CA is
bounded by the size of C'A, this algorithm takes at
most quadratic time. A linear time algorithm can be
obtained by reducing this to the Horn-SAT problem,
which can be solved in linear time [10]. Each rule
in C'A can be viewed as a Horn rule; for example,
if one such rule says r; N9 is the precondition for
rs, then this can be translated into a Horn clause
“rg «— r1,72”. Each initial role membership of
the user can be translated into a Horn clause. The
query can be translated into a Horn query clause.

Another tractable subcase is URA-RC-SAP [CA
(no preconditions), CR, CO], which can be
solved in quadratic time. In this subcase, every pre-
condition in CA4 is “true”, but we allow revocations
and SMER constraints. The algorithm is to first
check whether the user u is already a member of
the role r (where u and r comprise the query). If
not, we revoke v from as many roles as possible
using entries from C'R. We then check whether there
exists an entry in C'A that we can exercise to cause u
to become a member of r, while not violating any
entry in CO. If yes, the algorithm returns “true”
and otherwise, it returns “false.” This is linear in
the sizes of CA, CR and CO.

We observe that in some RBAC schemes in
practical systems, such as the RBAC scheme in the
Oracle database, there is no precondition in role
assignment. Security analysis there thus falls under
the above tractable case.

IV. TOOLS FOR SECURITY ANALYSIS

The fact that URA-RC-SAP and several of its
subcases are intractable (PSPACE-complete or
NP-complete) means that there exist difficult prob-
lem instances. In this section, we describe our expe-
riences using logic programming and model check-
ing tools for some realistic instances of URA-RC-
SAP. Our goals for performing these experiments
are two-fold. First, we would like to see whether
security analysis instances of nontrivial sizes can
be solved in reasonable amounts of time. Our ex-
perimental results show that the answer is positive.
Second, we would like to compare the effective-
ness of model checking and logic programming
in security analysis. Our results demonstrate that
logic programming outperforms model checking in
smaller instances; however, model checking appears
to scale better than logic programming.

The Logic Programming Approach: Logic pro-
gramming is a declarative, relational style of pro-
gramming based on first-order logic. A logic pro-
gram is composed of a set of facts and a number
of rules which specify how to derive new facts
from known ones. We use XSB [15], a Prolog-
variant logic-programming system developed at
SUNY, Stony Brook. XSB uses SLG resolution [6],
which can correctly evaluate many recursive logic
programs that would cause SLD-resolution-based
Prolog systems to fail to terminate.

Our implementation is a natural reduction from
instances of URA-RC-SAP to logic programs. Re-
call that an instance of URA-RC-SAP consists of
an RBAC state (UA, PA,RH,CA,CR,CO) and a
query of the form w € r, where u € U is a user
and » € R is a role. Our logic program defines a
predicate over states that is true when the state is
reachable. Each tuple in CA and CR is represented
as a rule, while RH and CO are incorporated in
the rules representing C'A entries. The initial role
memberships of the user u is given as a fact, and
the evaluation’s goal is to find a state in which the
answer to the query u € r is true.

The Model Checking Approach: Model checking
is a technique for determining whether a formal
model M of a system satisfies a temporal-logic
property p. A model M can be represented as a 4-
tuple (S, R, so, L), where S is a finite set of states,
R C (S x S) is a transition relation, sp € S is
an initial state, and L : S — 247 is a labeling of
states with propositional formulas from AP (given a
state s, L(s) denotes the atomic propositions in AP
that are true in s). We express safety property p in
Computation Tree Logic (CTL) with the form AG f
(i.e., p = AGf, where f is a formula in propo-
sitional logic). (AGf means that always globally
the atomic proposition f is true, or in other words
f is true in every state reachable from the initial
state sp.) If the model M satisfies the property p, a
model checker reports true. If M does not satisfy
p, a model-checker produces a counter-example that
shows an execution that leads to a violation of the
property. A thorough treatment of model checking
is provided in [7].

The model checker we used is NuSMV [32].
We implemented a program that reads an instance
of URA-RC-SAP and then generates a NuSMV
program for the instance. Encoding an instance of

URA-RC-SAP as a model in NuSMV is straightfor-
ward, e.g., states correspond to user assignments to
roles and transitions correspond to rules in C'A and

CR.

Preprocessing: We observe that given a URA-RC-
SAP instance, many rules in CA and CR may be
irrelevant to the query. We use a preprocessing stage
to remove these rules. Our experimental data shows
that preprocessing can be very effective. Given a
query u € r and an RBAC state, our preprocessing
does the following two kinds of pruning:

o Forward pruning: We remove rules that will
never be successfully executed. We first com-
pute Ry, the set of roles in the initial state
that cannot be revoked by rules in CR. We
then compute R,,, the set of roles that may
be assigned to the user u, and A, the set
of assignment rules that may be successfully
applied. To do this, we initialize R, with I, the
initial set of roles that v is a member of, and A
with (). For each assignment rule « in CA, if the
target role of « (i.e. the last component of «)
is not in R, the positive precondition of « is
satisfied by R,,, and the negative precondition
of o does not contain any role in R;,, we add
the target role of a to R, and add o to A. We
repeat this process of iterating through C'A until
R, does not grow. Only assignment rules in
A and revocation rules that revoke roles in 12,
are kept after the pruning. Letting | C'A| be the
number of rules in C4, the computation of R,
and A requires O(|C'A|*) rule-consideration
steps, because each pass through CA adds at
least one v € C'A to A and each such a needs
not be considered thereafter.

e Backward pruning: Some roles may be irrel-
evant to assigning the role » in the query.
The backward pruning removes assignment and
revocation rules about those roles. We compute
two sets of roles: R, is the set of roles that
r positively depends on, and R, is the set of
roles that r negatively depends on. We remove
assignment rules that assign roles outside R,
and revocation rules that revoke roles outside
R,.. Ry, is the smallest set that satisfies the
following three conditions: (1) r € R,y (2)
if r, € R,,, then any role that dominates r,
is also in Ry, (3) if r, € R,,, then any role
that appears in the positive precondition of a

CA entry assigning to 7, is also in R,,. [,
is the smallest set that satisfies the following
conditions: (1) if r, € R,, then any role
that appears (or dominates a role that appears)
in the negative precondition of a CA entry
assigning to 7, is in R,.; (2) if 1, € R,,, then
any role that is (or dominates a role that is)
mutually exclusive with r,, is in R,,..

The preprocessing takes time at most cubic in the
size of the URA-RC-SAP instance.

Experimental results: We performed experiments
using two kinds of instances. Manually crafted in-
stances are designed to “hide” an unsafe state after a
long sequence of transitions. These instances forced
the analysis tools to search deep in the state space.
Randomly generated instances contain a relatively
large number of roles and transition rules.

Experiments were performed on a Windows
workstation with an Intel P4 3G CPU and 512M of
memory. We tested the performance of NuSMV and
XSB on several instances. Table 1 presents results
for seven instances, two of which were manually
generated and five of which were randomly gener-
ated.

Experimental results show that the number of
rules is a crucial factor in determining runtime.
Therefore, the preprocessing step plays an impor-
tant role in improving the efficiency of both logic
programming and model checking implementations.
Many instances, such as Rand2, that cannot be
solved within 30 minutes without preprocessing are
solved within a few seconds with preprocessing.

Both XSB and NuSMV are efficient in cases that
have a small number of transition rules. For the
example in Section II-D, XSB uses 0.016 seconds
and NuSMYV uses 0.125 seconds. When tested on a
manually crafted instance Man2 with 16 roles and
40 rules (29 left after preprocessing) that requires a
sequence of at least 22 transitions before reaching
an unsafe state, XSB uses 0.05 seconds and NuSMV
uses 0.13 seconds. When preprocessing is effective,
such as instance Rand2 with 100 roles and 250
rules (20 rules left after preprocessing), XSB uses
0.55 seconds and NuSMV executes in 0.94 seconds.

It appears that using XSB does not scale as well
as using NuSMV. For example, when it came to
the randomly generated instance Rand5, with 25
roles and 79 rules (57 left after preprocessing),
XSB ran out of memory after 17 minutes, while

NuSMV returned with an answer within 73 seconds.
An observation is that the runtime of the XSB
grows linearly with the number of reachable states.!
However, NuSMV uses binary decision diagrams
(BDDs) to represent its state space, so its runtime
depends on the regularity of the state space. A point
worth mentioning is that XSB consumes memory
quickly. For the instance Rand4 with 30 roles and
88 rules (27 left after preprocessing), XSB uses
more than 400MB of memory. The high demand
on memory impairs the scalability of our XSB pro-
gram. In contrast, the BDD-based NuSMV requires
less memory than XSB.

Both model checking and logic programming
have been used in network-vulnerability analy-
sis [18], [41]. Recently, Ou et al. [33] showed that,
in the context of network-vulnerability analysis,
logic programming is much more scalable than
model checking. Our experimentation data show
that for URA-RC-SAP scalability of logic program-
ming is worse than model checking. This is because
in network vulnerability analysis, one can make
the monotonicity assumption, i.e., if an attacker
gains a privilege, it never loses it. However, in
security analysis, because of negative preconditions
and mutual exclusion constraints, the monotonicity
assumption does not hold, and one has explore the
State space.

In real-word large-scale RBAC systems, even
though the number of roles in the whole system may
be large, we expect that the roles that are relevant
for any given query will be only a small portion of
all roles. Therefore, we conjecture that our approach
of combining preprocessing with existing tools such
as NuSMV will be able to handle many queries.

V. RELATED WORK

In their landmark paper [17], Harrison et al. for-
malized the safety analysis problem in the access
matrix model; the problem determines whether a
protection system can reach a state in which a
particular right is leaked. They show that safety
analysis is undecidable in their scheme [17]. Since
then, safety analysis has attracted considerable at-
tention in the research community. Safety analysis
in monotonic versions of the HRU scheme has
been studied in [16]. Jones et al. introduced the

I'The statistics on total states and reachable states in Table I are
actually for NuSMYV, but the statistics for XSB should be similar.

Man1 Man2 Rand1 Rand2 Rand3 Rand4 Rand5
Num. of Roles 12 16 15 100 40 30 25
Num. of Rules 31 40 45 250 92 88 79
Num. of Rules (AP) 22 29 34 20 27 37 57
Transition Length 15 22 1 2 3 2 6
Total States 1.70E+7 | 1.76E+9 | 6.60E+8 NA NA NA NA
Reachable States 1.31E+5 | 2.69E+6 | 7.54E+5 NA NA NA NA
XSB Runtime 0.55s 14.22s 109.64s NA NA NA NA
NuSMV Runtime 0.188s 1.78s 2.10s NA NA NA NA
Total States(AP) 1.22E+7 | 1.29E+9 | 5.02E+8 | 1.08E+49 | 3.40E+20 | 7.82E+15 | 4.90E+13
Reachable States (AP) 3456 6000 6720 75264 7.31E+5 3.11E+6 3.98E+7
XSB Runtime (AP) 0.02s 0.05s 0.06s 0.55s 5.70s 19.94s NA
NuSMV Runtime (AP) 0.11s 0.13s 0.13s 0.94s 1.27s 5.44s 72.94s
TABLE 1

EXPERIMENTAL DATA ON URA-RC-SAP INSTANCES USING XSB AND NUSMYV. INSTANCES WITH NAMES BEGINNING
WITH Man WERE MANUALLY CRAFTED, WHILE THOSE BEGINNING WITH Rand WERE RANDOMLY GENERATED.
STATISTICS ON TOTAL STATES AND REACHABLE STATES IS FOR NUSMYV ONLY. ROWS MARKED (AP) PRESENT RESULTS
AFTER PREPROCESSING. NA INDICATES THAT, FOR THE NUSMYV CASES, THE PROGRAM DID NOT FINISH RUNNING WITHIN
30 MINUTES, OR, FOR THE XSB CASE, RAN OUT OF THE MEMORY.

Take-Grant scheme [19], in which safety can be
decided in linear time. Sandhu et al. introduced
the Schematic Protection Model [35], the Extended
Schematic Protection Model [1], and the Typed
Access Matrix model [36]. Budd [5] and Motwani
et al. [30] studied grammatical protection systems.
Soshi et al. [43] studied safety analysis in the
Dynamic Typed Access Matrix model. These mod-
els all have subcases where safety is decidable.
Solworth and Sloan [42] introduced a discretionary
access control model in which safety is decidable.
This thread of research has produced many new
access control schemes but has had limited impact
on access control systems used in practice, prob-
ably because the proposed schemes are either too
simplistic to be useful or too arcane to be usable.
In this paper, we focus on policy analysis problems
in RBAC, which was invented not for the purpose
of safety analysis, but for meeting the access control
need of real-world applications.

Influential works on RBAC include the pioneer-
ing work by Ferraiolo et al. [11], [12] and the widely
cited RBAC96 family of formal RBAC models de-
veloped by Sandhu et al. [39]. Recently, a standard
for RBAC has been proposed and adopted as an
ANSI Standard [3], [13]. Administration of RBAC
is about controlling who can update the various
relations in an RBAC system. The most well-known
work on administration of RBAC is ARBAC97,
developed by Sandhu et al. [37], [38]. Recently,

Crampton and Loizou [9] introduced the notion of
administrative scope and an RBAC administration
scheme based on it.

An administrative scheme in conjunction with the
representation for an RBAC state naturally lends
itself to the safety question in RBAC. The work that
is closest to this paper is such work on safety and
security analysis in RBAC. Li and Tripunitara [26]
studied security analysis for two particular RBAC
schemes derived from ARBAC97 [38]: AATU (As-
signment And Trusted Users) and AAR (Assign
And Revocation), both of which are sub-schemes of
the URA97 scheme [38]. The main results in [26]
are that security analysis in AATU and AAR are
intractable (NP-hard) in general, but can be solved
in polynomial time for semi-static queries. The
intractability results there are consequences of the
fact that a query may be able to encode an arbitrary
boolean formula. The techniques used to establish
tractable results was to reduce the problem to secu-
rity analysis in the RT family of trust-management
languages [25]. We observe that neither AATU nor
AAR allows negative preconditions or constraints.
We have shown that URA-RC-SAP with these re-
strictions are solvable in quadratic time and given
direct algorithm for solving them. We point out,
even though the role-containment queries are special
cases of semi-static queries, our two tractable cases
do not follow from results in [26], because AATU
does not allow revocation and AAR does not allow

trusted users. In essence, the results in [26] deal with
very simple state transition rules but sophisticated
queries. In this paper, we consider simple queries,
but sophisticated state transitions. Since RT [24] is
monotonic, it is unclear how to extend the tech-
niques in [26] to deal with negative preconditions
or constraints. Li and Tripunitara [26] explicitly
mentioned dealing with negative preconditions and
constraints as an open problem.

Koch et al. have proposed an RBAC scheme
based on a graph-based formalism [23] and have
demonstrated that safety is decidable in a sub-
scheme [22]. However, the decidable fragment of
the graph-based formalism [22] does not allow neg-
ative application conditions, which are used to spec-
ify negative preconditions in assignment rules in the
graph-based formalism for RBAC [23]. Therefore,
the decidability result applies only to the subcase
without negative preconditions or mutual exclusion
constraints. Furthermore, in [22], it has only been
shown that safety is decidable in this case; no
concrete computational complexity result is given
in [22]. The proof shows that the search space
is finite; however, searching the space likely takes
exponential time. We show that for the case that
can be modeled in the decidable fragment, namely,
without negative precondition or constraints, URA-
RC-SAP is decidable in quadratic time. For cases
with negative preconditions and/or constraints, we
have given precise computational complexities for
them.

Some work related to safety in access control
(e.g., [42]) refers to the work by Crampton [8] and
Munawer and Sandhu [31] to claim that safety is
undecidable in the ARBAC97 scheme. We point out
that the undecidability results in Crampton [8] and
Munawer and Sandhu [31] are not about the AR-
BACO97 scheme. The scheme considered by Cramp-
ton [8] adds two new features to ARBAC97. One
is to allow changes to the C'’A and CR relations.
(Sandhu et al. [38] state specifically that it is as-
sumed that in an ARBAC97 system, these relations
are static and may be changed only by (a trusted)
chief security officer.) The other is to allow a
state-change rule to include an arbitrary command
specified using a construct similar to that proposed
by Harrison et al. [17]. Such constructs do not exist
in ARBAC97. Munawer and Sandhu [31] present a
simulation of the Augmented Typed Access Matrix
(ATAM) scheme [2] in a particular RBAC scheme

that has similar features as those in Crampton [8].

Sasturkar et al. [44] also studied policy analysis
problems in ARBAC97-based systems. They estab-
lished a connection between the analysis problem
and planning in artificial intelligence. Our work has
a number of differences. First, they showed only that
the analysis problem is PSPACE-complete when
revocation rules also have preconditions, which are
not in the ARBACY97 model. As the PSPACE-
hardness result is by a reduction from a planning
problem, and the reduction requires revocation rules
to have preconditions, the results in [44] cannot
entail that URA97-RC-SAP is PSPACE-hard. Our
proof uses a direct reduction from the member-
ship problem for linear bounded automata (LBA),
and our result that URA-RC-SAP is PSPACE-
complete is stronger because it implies the PSPACE-
completeness result in [44] (proving the in PSPACE
part is straightforward). Second, in addition to com-
plexity results, we have also developed tools for
such analysis using model checking tools and logic
programming and have experimentally evaluated the
two approaches. Third, the usage of planning in [44]
enables the authors to obtain results on a wider class
of problems than those studied in this paper. For
example, they also consider special cases where the
number of literals in a precondition is limited to a
small number.

VI. CONCLUSION AND FUTURE WORK

We have formalized classes of security analysis
in the context of RBAC. We have shown that URA-
SAP is PSPACE-complete in the general case
and that a number of special cases of the prob-
lems are NP-complete. We have also shown that
model checking is a promising approach to solve
these problems. In the future we plan to look at
more sophisticated queries and other administration
schemes.

REFERENCES

[1] P. Ammann and R. S. Sandhu. Safety analysis for the extended
schematic protection model. In Proceedings of the 1991 IEEE
Symposium on Security and Privacy, pages 87-97, May 1991.

[2] P. Ammann and R. S. Sandhu. Implementing transaction control
expressions by checking for absence of access rights. In Pro-
ceedings of the Eighth Annual Computer Security Applications
Conference (ACSAC), Dec. 1992.

[3] ANSI. American national standard for information technology
— role based access control. ANSI INCITS 359-2004, Feb.
2004.

(4]

(3]

(6]

(7]
(8]
(9]

[10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

R. Awischus. Role based access control with the security
administration manager (SAM). In Proceedings of the second
ACM workshop on Role-based access control table of contents
(RBAC ’97), pages 61-68, 1997.

T. Budd. Safety in grammatical protection systems. In-
ternational Journal of Computer and Information Sciences,
12(6):413-430, 1983.

W. Chen and D. S. Warren. Tabled evaluation with delaying
for general logic programs. Journal of the ACM, 43(1):20-74,
Jan. 1996.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking.
MIT Press, 2000.

J. Crampton. Authorizations and Antichains. PhD thesis,
Birbeck College, University of London, UK, 2002.

J. Crampton and G. Loizou. Administrative scope: A foundation
for role-based administrative models. ACM Transactions on
Information and System Security, 6(2):201-231, May 2003.
W. F. Dowling and J. H. Gallier. Linear-time algorithms for
testing the satisfiability of propositional horn formulae. Journal
of Logic Programming, 1(3):267-284, 1984.

D. F. Ferraiolo, J. A. Cuigini, and D. R. Kuhn. Role-based ac-
cess control (RBAC): Features and motivations. In Proceedings
of the 11th Annual Computer Security Applications Conference
(ACSAC’95), Dec. 1995.

D. F. Ferraiolo and D. R. Kuhn. Role-based access control. In
Proceedings of the 15th National Information Systems Security
Conference, 1992.

D. E Ferraiolo, R. S. Sandhu, S. Gavrila, D. R. Kuhn, and
R. Chandramouli. Proposed NIST standard for role-based
access control. ACM Transactions on Information and Systems
Security, 4(3):224-274, Aug. 2001.

M. R. Garey and D. J. Johnson. Computers And Intractability:
A Guide to the Theory of NP-Completeness. W.H. Freeman and
Company, 1979.

T. X. R. Group. The
http://xsb.sourceforge.net/.
M. A. Harrison and W. L. Ruzzo. Monotonic protection
systems. In R. A. DeMillo, D. P. Dobkin, A. K. Jones, and
R. J. Lipton, editors, Foundations of Secure Computation, pages
461-471. Academic Press, Inc., 1978.

M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in
operating systems. Communications of the ACM, 19(8):461—
471, Aug. 1976.

S. Jha, O. Sheyner, and J. M. Wing. Two formal analysis of
attack graphs. In /5th IEEE Computer Security Foundations
Workshop (CSFW-15 2002), June 2002.

A. K. Jones, R. J. Lipton, and L. Snyder. A linear time algo-
rithm for deciding security. In /7th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 33-41,
October 1976.

G. Karjoth. The authorization model of Tivoli Policy Director.
In Proceedings of the 17th Annual Computer Security Applica-
tions Conference, pages 319-328, Dec. 2001.

A. Kern. Advanced features for enterprise-wide role-based
access control. In Proceedings of the 18th Annual Computer
Security Applications Conference, pages 333-343, Dec. 2002.
M. Koch, L. V. Mancini, and F. Parisi-Presicce. Decidability of
safety in graph-based models for access control. In Proceedings
of the Seventh European Symposium on Research in Computer
Security (ESORICS 2002), pages 229-243. Springer, Oct. 2002.
M. Koch, L. V. Mancini, and F. Parisi-Presicce. A graph-based
formalism for RBAC. ACM Transactions on Information and
System Security, 5(3):332-365, Aug. 2002.

N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a
role-based trust management framework. In Proceedings of the

XSB programming system.

[25]

[26]

(27]
(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

(42]

[43]

2002 IEEE Symposium on Security and Privacy, pages 114—
130. IEEE Computer Society Press, May 2002.

N. Li, J. C. Mitchell, and W. H. Winsborough. Beyond proof-
of-compliance: Security analysis in trust management. Journal
of the ACM, 52(3):474-514, May 2005. Preliminary version
appeared in Proceedings of 2003 IEEE Symposium on Security
and Privacy.

N. Li and M. V. Tripunitara. Security analysis in role-based
access control. In Proceedings of the Ninth ACM Symposium
on Access Control Models and Technologies (SACMAT 2004),
pages 126-135, June 2004.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems. Springer, 1992.

Z. Manna and A. Pnueli. Temporal Verification of Reactive
Systems: Safety. Springer, 1995.

D. McPherson. Role-based access control for
multi-tier applications using authorization = manager.
http://www.microsoft.com/technet/prodtechnol/windowsserver
2003/technologies/management/athmanwp.mspx.

R. Motwani, R. Panigrahy, V. A. Saraswat, and S. Ventkata-
subramanian. On the decidability of accessibility problems
(extended abstract). In Proceedings of the Thirty-Second Annual
ACM Symposium on Theory of Computing, pages 306-315.
ACM Press, May 2000.

Q. Munawer and R. S. Sandhu. Simulation of the augmented
typed access matrix model (ATAM) using roles. In Proceedings
of INFOSECU99 International Conference on Information and
Security, 1999.

NuSMV: a new symbolic
http://afrodite.itc.it: 1024/ nusmv/.

X. Ou, S. Govindavajhala, and A. W. Appel. MulVAL: A logic-
based network security analyzer. In Proceedings of the 14th
USENIX Security Symposium, Aug 2005.

C. H. Papadimitriou. Computational Complexity. Addison
Wesley Longman, 1994.

R. S. Sandhu. The schematic protection model: Its definition
and analysis for acyclic attenuating systems. Journal of the
ACM, 35(2):404-432, 1988.

R. S. Sandhu. The typed access matrix model. In Proceedings
of the 1992 IEEE Symposium on Security and Privacy, pages
122-136. IEEE Computer Society Press, May 1992.

R. S. Sandhu and V. Bhamidipati. Role-based administration
of user-role assignment: The URA97 model and its Oracle
implementation. Journal of Computer Security, 7, 1999.

R. S. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97
model for role-based aministration of roles. ACM Transactions
on Information and Systems Security, 2(1):105-135, Feb. 1999.
R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman.
Role-based access control models. IEEE Computer, 29(2):38—
47, February 1996.

A. Schaad, J. Moffett, and J. Jacob. The role-based access con-
trol system of a European bank: A case study and discussion.
In Proceedings of the Sixth ACM Symposium on Access Control
Models and Technologies, pages 3-9. ACM Press, 2001.

O. Sheyner, J. W. Haines, S. Jha, R. Lippmann, and J. M. Wing.
Automated generation and analysis of attack graphs. In IEEE
Symposium on Security and Privacy, 2002.

J. A. Solworth and R. H. Sloan. A layered design of dis-
cretionary access controls with decidable safety properties. In
Proceedings of IEEE Symposium on Research in Security and
Privacy, May 2004.

M. Soshi. Safety analysis of the dynamic-typed access matrix
model. In Proceedings of the Sixth European Symposium on
Research in Computer Security (ESORICS 2000), pages 106—
121. Springer, Oct. 2000.

model checker.

[44] A. Sasturkar, P. Yang, S. Stoller, and C. Ramakrishnan. Policy
Analysis for Administrative Role Based Access Control. In Pro-
ceedings of the 19th Computer Security Foundations Workshop
(CSFW), July 2006.

APPENDIX |
TURING MACHINES

A Turing Machine is denoted as M =
(@Q,%,T,0,q0, B, F), where () is the finite set of
states, I is the finite set of allowable tape symbols,
B e T is the blank symbol, ¥ C I" — { B} is the set
of input symbols, 0 is the next move function and is
a partial function from @ x I" to @ x I x {L, R},
qo € @ 1is the start state, and F' C () is the set
of final states. A nondeterministic Turing machine
(NDTM) allows a finite number of choices for its
next move, i.e., 0 is a function from () x I to the
power set of @) x I' x {L, R}. The first definition
describes a deterministic Turing machine (DTM).

The language accepted by M (denoted by L(M))
is the set of words in >* that cause M to enter a final
state when placed justified at the left on the tape of
M, with M 1in state qg, and the tape head of M at the
leftmost cell. A language L is accepted by a DTM
if and only if it is accepted by a NDTM. A language
L is said to be in DSPACE(S(n)) if there exists a
DTM M accepting L that takes at most S(n) space,
where n is the size of the input. Similarly, L is said
to be in NSPACE(S(n)) if there exists a NDTM
M accepting L that takes at most S(n) space. A
language L is said to be in PSPACE if and only
if it is in DSPACE (p(n)) for some polynomial p (L
is accepted by a DTM that takes space polynomial
in the size of the input). We refer the reader to [34]
for more details on these and related concepts.

APPENDIX II
PROOF OF LEMMA 3

We show that URA-RC-SAP is PSPACE-hard
by a reduction from the membership problem for
linear bounded automata (LBA), which is known
to be PSPACE-complete. A LBA is a restricted
form of a Turing machine. It differs from a Turing
machine in that while the tape is initially considered
infinite, only a finite contiguous portion whose
length is a linear function of the length of the initial
input can be accessed by the read/write head.

Let M = (Q,%,1,0,q0, B, F) be any LBA
that uses at most p(n) space, where n is the
size of the input and p is a degree-1 polynomial.

(We assume that the polynomial p(n) is know.
However, it suffices that there exists a polynomial
time algorithm to compute p(n) given n.) We con-
struct an RBAC system whose start state is v =
(UA,PA,RH, CA, CR, CO) and a query u € r
corresponding to the DTM M so that there is an
accepting computation in M on an input x if and
only if in the RBAC system there is a sequence of
RBAC states from v (which corresponds to input x)
to 4/ in which u € r is true.

In our construction there are two users uo and
u. There is a special role ra (the reader can think
of this as the administrative role) and (ug, ra) €
UA. All the assigning and revoking of roles will be
performed by wg. The special user uy can remove
users from all roles, i.e. CR is equal to {(ra, R)},
where R consists of all the roles introduced in the
construction except for ra.

Encoding 7'M configurations. For each state ¢ €
@ and 1 < i < p(n) we introduce a role r;,. For
each state ¢ €), 1 < i < p(n), and symbol a in
> we introduce a role 7, .. These roles are used to
represent the configuration of the TM machine M.
Additional roles will be introduced later to simulate
transitions in M. If w is assigned to the role r;,
then the ¢-th cell contains a, and the tape head is
not on cell i. For 1 < i < p(n), u assigned to role
T4, indicates that the tape head is on cell ¢, M
is in state ¢, and the ¢-th cell contains a. We add
the following mutual-exclusion constraints to C'O to
maintain the integrity of the encoding. We only add
a polynomial number of constraints. We use (71, 72)
as a shorthand for the mutual-exclusion constraint
that a user cannot be members of of both r; and rs
(this is equivalent to smer({ry,2}), 2) in our earlier
notation).

e M can only be in one state at a time. We
add mutual exclusion constraints of the form
(rgia» Tq,ia) for all ¢ # ¢, ¢ in the range
[1,--- ,p(n)] and a € 3.

o The tape head can only point to one location.
We add mutual-exclusion constraints of the
form (ry;q, 74) for all i # j, and for all
q, a, a'.

« One location cannot both have the head and
not have the head at the same time. We also
add mutual-exclusion constraints of the form
(Ti,av Tq,i,a)-

« Each tape cell can only contain one symbol.

Therefore, we add constraints of the form
(TiasTiw) and (rqia, Tqiqa) for all i, a # d/,
and ¢ € Q).

Encoding the initial configuration. Assume that
M starts in initial state gy, the first n cells of the
tape contain aq,--- ,a, (Where a; € I'), the rest of
tape cells consist of blank symbols B, and the tape
head points to the first cell. The initial state of the
RBAC system has user u in role 74, 1.4,, 7iq, for
2<i<mn,and r;pforn+1<j<p(n).

Encoding the halting states. We use one role 74,

to be used in the query, and add the following tuples
to CA:

« For each i in the range [1,--- ,p(n)], a € %,
and accepting state ¢, add (ra, ry;q, {Ttarget})

This ensures that the TM M enters an accepting
state if and only u can be assigned to 7igget-
The query in the URA-RC-SAP instance we are
constructing 1S u € T'ygrget-

Encoding the next-move function: During each
transition in M, two revocations and two assign-
ments need to be done to ensure that the next
configuration is correctly represented by the role
memberships. We need to make these changes trans-
actional. Therefore, we need to introduce some
control roles. We will first present the construction
and then explain how a state transition occurs.

We first introduce two roles 7, and r.. Initially,
u 1s assigned to 7, but not r.. The following tuple
is added to CA:

o (ra, e, {ry})

Suppose d(q,a) is equal to (¢',a’, L) (the case
when 0(q,a) = (¢, a, R) is similar). The transition
d(q,a) = (¢,d,L) is modeled by doing the
following.

o For each 2 < i < p(n), add two roles 7", ,
and rlc, ‘.« Initially, u is not assigned to any
of these roles. We add the following mutual
exclusion constraints:

— For each 2 < i < p(n), add constraints of
the form (7, rlq o)

— For each 2 <17 < p(n) add constraints of
the form (%%, ., r.).

z,q al
« For each 2 < i < p(n), and each ay € %,
add a role r!?, . We add the following mutual

1,9’ ,ap
exclusion constraints:

— For each a < i < p(n)—1, add constraints
1d
of the form (r;% ./ 7).

« We then add the following tuples to the relation
CA:

1) For all 2 <i < p(n) we add (ra, 74;,N

Ty, {Té§7i7a/ }> .

2) For all 2 < i < p(n) we add
<7”CL, rq i,a") {Tq za}>
3) For all 2 < i < p(n) we add

<TCL rq i,a? {Tla}>
4) Forall2<z<p() for each a, € ¥ we

add (ra, Tq i NTia NTi 1y, {rq wé})
5) For3112<2<p() for each a, € & we
add <Ta7 Tq Ji,ag? {rq i— 1ag}>
6) Fora112§z§p() for each a, € X we
add (ra, rf;,{m, NTqimta {Te})-

Transitions in the RBAC system: Suppose that
at one point of computation of M, the tape head
is at position ¢, the ¢’th cell contains a, and the
current state is ¢. Then wu is in the role r,;,. The
only way to proceed in the RBAC system is to use
CA tuples added in step 1 to assign u to rq i ar- This
can succeed only when w is in ;. Imtlally, is in
rp; and we will show that u can be assigned to 7
after a transition in M has been simulated.

Once u is assigned to 7, and then to rq iars the
only way to make progress in the RBAC system is
to use CA tuples added in step 2 to assign u to
fr’ff it however, because of the constraints, one has
to revoke u from 7y, first.

Once u is assigned to r, and then to rl‘fia,, u
can be assigned (using tuples added in step 3) to
i (after revoking v from from r,;, first, due to
the constraints added for tape integrity). To update
roles corresponding to the 7 — 1’th cell, let a, be the
symbol on the 7 —1’th cell, u can be assigned (using
tuples added in step 4) to rq i, USINg tuples in step
5, u can be assigned to 7y ;1 4. 4. Finally, after the
tape representation roles have been updated, v can
be assigned to r.. Before doing this u has to be
revoked from all roles of the form 7*, , because of
the constraints.

To make the next state transition, v must be
assigned to 7, which requires u to be revoked from
all roles of the form rlc ' o and rid, ‘g0 Clearing all
the intermediate roles used in the simulation.

i,q’',a’

Summary: An instantaneous description (ID) of a
TM M is given by the contents of the tape, the

position of the head, and the state of M. Given
two IDs ID; and ID,, we say that 1Dy —,; I D5
if 1D, follows from /D; by one move of the M.
Given an input x, let IDy,--- ,ID, be a sequence
of IDs such that /D, corresponds to the input =,
ID; —p ID;yq, and ID, has an accepting state
(the sequence is an accepting computation to the
string). Let 7, be the RBAC-state that corresponds
to I Dy. Each move of the Turing machine can be
emulated by the RBAC scheme in a number of
steps; let this constant be c. Therefore, there exists a
sequence of RBAC-states 7o, - - - , Ve, such that .,
encodes ID;, 7; — 741, and in 7, u is in a role
T4, Such that ¢ € F. And then u can be assigned
tO 7'4qrger. Hence an accepting computation in M has
a corresponding sequence in the RBAC system.

Our discussion of state transitions in the RBAC
system above show that state changes in the RBAC
systems correspond to computations. If a user u
is assigned role r4;, in some state in the RBAC
system, there is a corresponding computation in the
TM M that reaches state ¢ and has the head on the
1’th position with the symbol « in the ¢’th position.

Therefore, there is an accepting computation in
TM on an input z if and only if in there is a se-
quence of RBAC-states from + (which corresponds
to input x) to 7,,, where u is in role 74y This
proves the result. [

APPENDIX III
PROOF FOR LEMMA 6

Proof: We reduce 3SAT to the URA-RC-SAP,
which proves that URA-RC-SAP is NP-hard. Let
f =c N---ANc¢, be an instance of 3SAT, and
let p1,...,p, be the propositional variables in f.
We associate a role, 7y, with the formula f. We
now construct an instance of URA-RC-SAP [CA
(conjunctive), CR = { }, CO = { }] so that a
user becomes a member of ry if and only if f is
satisfiable.

In addition to f, R contains roles ci,...,c¢p,
corresponding to the clauses and roles pi,...,p,
corresponding to the propositional variables, plus a
role ¢ that will be used for signaling, as will be
explained shortly. We construct C'A so as to allow
u to be assigned to any combination of the p;’s.
Once this is done, C'A will permit u to be assigned
to role ¢, signaling that a second phase has begun
in which u can be added to role c; just in case

u’s assignment to the p;’s represents a truth as-
signment that makes clause c¢; true. More precisely,
CA = {{a,~t,{p1,...,pn}), {a, true, {t}), {a,c; N

c N e)} U (et 0op{gll <G <

m A p; appears positively in ¢;})|1 < 4 ;
nt U {{a,t N —pi.{c;|]1 < 7 < m A
p; appears negatively in ¢;})|1 < i < n} and

CR = 0.

We now consider an instance of URA-RC-SAP
in which Ay, UA, PA and RH are empty, and show
that it is true if and only if f is satisfiable. If the
formula f is satisfiable, it is easy to see that a can
add u to role f by first adding u to the role p; if
the propositional variable p; is true in the solution
to f, then adding u to ¢, and then adding u to each
c; and finally to f.

Conversely, if the problem instance is true, then
at some point u must be added to role ¢. Since u
cannot be removed from ¢, u’s assignment to the p;
roles at that time enables u to be added to each role
c;. By defining the propositional variables p; to be
true if and only if the role p; contains w at that time,
we get an assignment that makes at least one literal
true in each clause c;. []

APPENDIX IV
PROOF FOR LEMMA 7

Proof: ~We reduce monotone 3SAT to the
problem. Monotone 3SAT is a special case of 3SAT
where all literals in a clause are either all positive or
all negative; monotone 3SAT is known to be NP-
complete [14].

Lete=c A...AcgA¢ 1 /...\¢C, be an instance
of monotone 3SAT, where ¢y, ..., ¢ are the clauses
with only positive literals, and ¢, .1, ...,¢, are the
clauses with only negative literals. Let py, ..., px be
all the propositional variables that appear in e, and
each ¢; = p;, Vpi, Vi, and each ¢; = —p;, V —p;, V
—pj,- We produce a corresponding URA-RC-SAP
instance for RBACissign, nonegation as follows.

Corresponding to each propositional variable, p;,
we have a role, r,, We also have a role, r.,,
corresponding to each positive clause ¢; in e. In
addition, we have the roles r» and a. We assign a
user ug to a, that is, (ug,a) € UA. The role a
is an administrative role, and appears as the first
component of every entry in C'A. We first add the
tuple (a, 7., A ... A1, 1) to CA. Corresponding to
each positive clause ¢; = p;, V pi, V pi,, we add

the three entries (a,r,,7¢,), (@, Tiy, Te,)s @y Tigy Te;)
to CA. If ¢; has fewer than 3 literals, then we
only add such entries to C'A that correspond to the
literals in ¢;. Clearly, the C'A so constructed has no
negation in the preconditions of its entries, and each
precondition is a conjunction of roles. We capture
the negative clauses in e using entries in C'O. For
each negative clause ¢; = —p;, V —pj, V —pj,
we add the constraint smer({r,r;,7;,,7j},4). If
¢j = —pj, V —pj, (that is, has only 2 literals), then
we add the constraint smer({r,r;,7;,},3) to CO,
and if ¢c; = —p;, (has only one literal), then we add
the constraint smer({r,r;,},2) to CO.

We ensure that the user w that is specified in
the query ¢ is not a member of r or any r., in
the start-state . We now assert that there exists
a reachable state in which v is a member of r if
and only if e is satisfiable. The reason is that the
only way u can become a member of 7 is by ug
successfully exercising the only entry in C'A that
has r as the target role (last component of the tuple
in C'A). This is possible if and only if u already
satisfies the role-memberships as specified in the
precondition, and assigning u to r does not violate
any of the entries in C'O. More formally, for the
“if” part, assume that e is satisfiable. Then there is
some truth-assignment that makes e true. We use
the truth-assignment as the user-role assignment in
~ for u. That is, if the propositional variable p; is
true in the truth-assignment that makes e true, then
(u,r;) € UA. Now, u, will be able to assign u to a
role r., if and only if (u,r;,) € UA, (u,r;,) € UA
or (u,r;,) € UA, where ¢; = p;, Vi, Vpi,, and none
of the entries in C'O is violated. An entry in CO is
violated if and only if u is a member of all roles
other than r in the set of the roles in a constraint.
This is the case if and only if the corresponding
negative clause is false, which is impossible given
the assumption that e is satisfiable.

For the “only if” part, assume that there exists a
reachable state in which u is a member of r. We use
the role-memberships of u in the roles 7y, ..., 7 in
the start-state v as our truth-assignment for e. That
is, if (u,r;) € UA, then we set the corresponding
propositional variable, p;, to be true. Given that
u can eventually be assigned to r, we know that
u can be assigned to every r. in 7. Therefore,
each positive clause is true. Furthermore, given
that in the final action, we can assign u to r, we
know that no entry in CO is violated. Consider the

constraint smer({r,r; ., 7:,,7:,},4). This constraint
would disallow 1, from assigning u to r if and only
if u 1s already a member of all of r;,r;, and 7;,.
As this 1s not the case, we know that every negative
clause evaluates to is true. []

