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ABSTRACT
Delegation is often used in administrative models for Role-Based
Access Control (RBAC) systems to decentralize administration
tasks. While the use of delegation greatly enhances flexibility and
scalability, it may reduce the control that an organization has over
its resources, thereby diminishing a major advantage RBAC has
over Discretionary Access Control (DAC). We propose to use se-
curity analysis techniques to maintain desirable security properties
while delegating administrative privileges. We give a precise def-
inition of a family of security analysis problems in RBAC, which
is more general than safety analysis that is studied in the literature.
We also show that two classes of problems in the family can be re-
duced to similar analysis in theRT0 trust-management language,
thereby establishing an interesting relationship between RBAC and
theRT (Role-based Trust-management) framework. The reduc-
tion gives efficient algorithms for answering most kinds of queries
in these two classes and establishes the complexity bounds for the
intractable cases.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection; D.4.6 [Operating Systems]: Security and
Protection — Access Controls

General Terms
Security, Theory, Languages

Keywords
Role-based access control, role-based administration, delegation,
trust management

1. INTRODUCTION
The administration of large Role-Based Access Control (RBAC)

systems is a challenging problem. A case study carried out with
Dresdner Bank, a major European bank, resulted in an RBAC sys-
tem that has around 40,000 users and 1300 roles [22]. In systems of
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such size, it is impossible for a single system security officer (SSO)
to administer the entire system. Several administrative models for
RBAC have been proposed in recent years, e.g., ARBAC97 [18],
ARABC02 [17], and CL03 (Crampton and Loizou) [4]. In all these
models, delegation is used to decentralize the administration tasks.

A major advantage that RBAC has over discretionary access con-
trol (DAC) is that if an organization uses RBAC as its access control
model, then the organization (represented by the SSO in the sys-
tem) has central control over its resources. This is different from
DAC, in which the creator of a resource determines who can access
the resource. In most organizations, even when a resource is cre-
ated by an employee, the resource is still owned by the organization
and the organization wants some level of control over how the re-
source is to be shared. In most administrative models for RBAC,
the SSO delegates to other users the authority to assign users to
certain roles (thereby granting those users certain access permis-
sions), to remove users from certain roles (thereby revoking certain
permissions those users have), etc. While the use of delegation in
the administration of an RBAC system greatly enhances flexibility
and scalability, it may reduce the control that the organization has
over its resources, thereby diminishing a major advantage RBAC
has over DAC. As delegation gives a certain degree of control to a
user that may be only partially trusted, a natural security concern
is whether the organization nonetheless has some guarantees about
who can access its resources. To the best of our knowledge, the ef-
fect of delegation on the persistence of security properties in RBAC
has not been considered in the literature as such.

In this paper, we propose to use security analysis techniques [13]
to maintain desirable security properties while delegating adminis-
trative privileges. In security analysis, one views an access con-
trol system as a state-transition system. In an RBAC system, state
changes occur via administrative operations. Security analysis tech-
niques answer questions such as whether an undesirable state is
reachable, and whether every reachable state satisfies some safety
or availability properties. Examples of undesirable states are a state
in which an untrusted user gets access and a state in which a user
who is entitled to an access permission does not get it.

Our contributions in this paper are as follows.
• We give a precise definition of a family of security analysis

problems in RBAC. In this family, we consider queries that
are more general than queries that are considered in safety
analysis [8, 10, 15, 19].
• We show that two classes of the security analysis problems in

RBAC can be reduced to similar ones inRT0, a role-based
trust-management language for which security analysis has
been studied [13]. The reduction gives efficient algorithms
for answering most kinds of queries in these two classes and
establishes the complexity bounds for the intractable cases.



The rest of this paper is organized as follows. In Section 2, we
define a family of security analysis problems in RBAC and summa-
rize our main results. Related work is discussed in Section 3. We
gave an overview of the results for security analysis inRT0 in Sec-
tion 4 and present the reduction from security analysis in RBAC to
that inRT0 in Section 5. We conclude with Section 6. An appendix
contains proofs not included in the main body.

2. PROBLEM DEFINITION AND MAIN
RESULTS

In [13], an abstract version of security analysis is defined in the
context of trust management. In this section we restate the defini-
tion in the context of general access control schemes.

Definition 1. (Access Control Schemes) An access control
scheme is modelled as a state-transition system〈Γ, Q,`,Ψ〉, in
which Γ is a set of states,Q is a set of queries,Ψ is a set of state-
change rules, and̀: Γ × Q → {true, false} is called the entail-
ment relation, determining whether aqueryis true or not in a given
state. Astate, γ ∈ Γ, contains all the information necessary for
making access control decisions at a given time. When a query,
q ∈ Q, arises from an access request,γ ` q means that the ac-
cess corresponding to the requestq is granted in the stateγ, and
γ 6` q means that the access corresponding toq is not granted. One
may also ask queries other than those corresponding to a specific
request, e.g., whether every principal that has access to a resource
is an employee of the organization. Such queries are useful for
understanding the properties of a complex access control system.

A state-change rule,ψ ∈ Ψ, determines how the access control
system changes state. Given two statesγ andγ1 and a state-change
rule ψ, we writeγ 7→ψ γ1 if the change fromγ to γ1 is allowed
by ψ, andγ

∗

7→ψ γ1 if a sequence of zero or more allowed state
changes leads fromγ to γ1. If γ

∗

7→ψ γ1, we say thatγ1 is ψ-
reachablefrom γ, or simply γ1 is reachable, whenγ andψ are
clear from the context.

Definition 2. (Security Analysis in an Abstract Setting) Given
an access control scheme〈Γ, Q,`,Ψ〉, a security analysis instance
takes the form〈γ, q, ψ,Π〉, whereγ ∈ Γ is a state,q ∈ Q is a
query,ψ ∈ Ψ is a state-change rule, andΠ ∈ {∃,∀} is a quanti-
fier. An instance〈γ, q, ψ, ∃〉 asks whether there existsγ1 such that
γ

∗

7→ψ γ1 andγ1 ` q. When the answer is affirmative, we sayq is
possible(givenγ andψ). An instance〈γ, q, ψ, ∀〉 asks whether for
everyγ1 such thatγ

∗

7→ψ γ1, γ1 ` q. If so, we sayq is necessary
(givenγ andψ).

2.1 A family of security analysis problems in
Role-Based Access Control

We now define a family of security analysis problems in the con-
text of RBAC by specifyingΓ,Q, and`, while leavingΨ abstract.
By considering different possibilities forΨ, one obtains different
classes of RBAC security analysis problems in this family. We con-
sider two specific instances ofΨ in sections 2.3 and 2.4.

We assume a basic level of familiarity with RBAC; readers are
referred to [6, 21] for an introduction to RBAC. We assume that
there are three countable sets:U (the set of all possible users),R
(the set of all possible roles), andP (the set of all possible permis-
sions).

Definition 3. (A Family of RBAC Security Analysis Problems)
This family is given by specializing the analysis problem defined
in definition 2 to consider access control schemes that haveΓ, Q,
and` specified as follows.

States (Γ): An RBAC stateγ is a 3-tuple〈UA,PA,RH 〉, in which
the user assignment relationUA ⊆ U × R associates users with

roles, the permission assignment relationPA ⊆ P × R associates
permissions with roles, and the role hierarchy relationRH ⊆ R×
R is a partial order among roles inR. We denote the partial order
by�. r1 � r2 means that every user who is a member ofr1 is also
a member ofr2 and every permission that is associated withr2 is
also associated withr1.

Given a stateγ, every role has a set of users who are members
of that role and every permission is associated with a set of users
who have that permission. We formalize this by having every state
γ define a functionusersγ : R ∪ P → 2U , as follows. For any
r ∈ R andu ∈ U , u ∈ usersγ [r] if and only if either(u, r) ∈ UA

or there existsr1 such thatr1 � r and (u, r1) ∈ UA. For any
p ∈ P andu ∈ U , u ∈ usersγ [p] if and only if there existsr1
such that(p, r1) ∈ PA andu ∈ usersγ [r1]. Note that the effect of
permission propagation through the role hierarchy is already taken
into consideration by the definition ofusersγ [r1].

Queries (Q): A queryq has the forms1 w s2, wheres1, s2 ∈ S,
andS is the set of alluser sets, defined to be the least set satis-
fying the following conditions: (1)R ∪ P ⊆ S, i.e., every roler
and every permissionp is a user set; (2){u1, u2, · · · , uk} ∈ S,
where k ≥ 0 and ui ∈ U for 1 ≤ i ≤ k, i.e., a finite
set of users is a user set; and (3)s1 ∪ s2, s1 ∩ s2, (s1) ∈ S,
wheres1, s2 ∈ S, i.e., the set of all user sets is closed with re-
spect to union, intersection and paranthesization. We extend the
function usersγ in a straightforward way to give a valuation for
all user sets. The extended functionusersγ : S → 2U is de-
fined as follows:usersγ [{u1, u2, · · · , uk}] = {u1, u2, · · · , uk},
usersγ [(s)] = usersγ [s], usersγ [s1∪s2] = usersγ [s1]∪usersγ [s2],
andusersγ [s1 ∩ s2] = usersγ [s1] ∩ usersγ [s2].

We say a querys1 w s2 is semi-staticif one ofs1, s2 can be eval-
uated independent of the state, i.e., no role or permission appears
in it. We distinguish semi-static queries because they are easier to
answer.

Entailment (`): Given a stateγ and a querys1 w s2, γ ` s1 w s2
if and only if usersγ [s1] ⊇ usersγ [s2].

The state of an RBAC system changes when a modification is made
to a component of〈UA,PA,RH 〉. For example, a user may be as-
signed to a role, or a role hierarchy relationship may be added. In
existing RBAC models, both constraints and administrative models
affect state changes in an RBAC system. For example, a constraint
may declare that rolesr1 andr2 are mutually exclusive, meaning
that no user can be a member of both roles. If a useru is a member
of r1 in a state, then the state is not allowed to change to a state
in which u is a member ofr2 as well. Anadministrative model
includes administrative relations that dictates who has the author-
ity to change the various components of an RBAC state and what
are the requirements these changes have to satisfy. Thus, in RBAC
security analysis, a state-change rule may include constraints, ad-
ministrative relations, and possibly other information.

In Definition 3, we leave the state-change rule abstract for the
following reasons. First, there are several competing proposals
for constraint languages [1, 9, 3] and for administrative models
in RBAC [18, 17, 4, 5]; a consensus has not been reached within
the community. Furthermore, RBAC is used in diverse applica-
tions. It is conceivable that different applications would use differ-
ent classes of constraints and/or administrative models; therefore
different classes of problems in this family are of interest.

Given a stateγ and a state-change ruleψ, one can ask the fol-
lowing questions using security analysis.
• Simple SafetyE.g., isr1 w {u1} possible? This asks whether

there exists a reachable state in which the (presumably un-
trusted) useru1 becomes a member ofr1. A ‘no’ answer



means that the system is safe.

• Simple AvailabilityE.g., isp1 w {u1} necessary? This asks
whether in every reachable state, the (presumably trusted)
useru1 always has the permissionp1. A ‘yes’ answer means
that the permissionp1 is always available to the useru1.

• Bounded SafetyE.g., is{u1, u2, u3} w (p1∩p2) necessary?
This asks whether in every reachable state, only users in the
set {u1, u2, u3} have both the permissionsp1 and p2. A
‘yes’ answer means that the system is safe.

• Liveness E.g., is∅ w p1 possible? This asks whether the
permissionp1 is always accessible to at least one user. A ‘no’
answer means that the liveness of the permissionp1 holds in
the system.

• Mutual Exclusion E.g., is∅ w (r1 ∩ r2) necessary? This
asks whether in every reachable state, no user is a member of
bothr1 andr2. A ‘yes’ answer means that the two roles are
mutually exclusive.

• ContainmentE.g., isr1 w p1 necessary? This asks whether
in every reachable state, every user who has the permission
p1 (e.g., has access to an internal document) is a member of
the roler1 (e.g., is an employee). This example expresses a
safety property. A ‘yes’ answer means that the safety prop-
erty holds.

Containment can also express availability properties, e.g., “is
p1 w r1 necessary?” asks whether the permissionp1 is al-
ways available to members of the roler1. A ‘yes’ answer
means that the availability property holds.

Observe that all the above examples (except for containment) use
semi-static queries. We distinguish semi-static queries from other
queries as they are easier to answer.

2.2 Usage of RBAC security analysis
In an RBAC security analysis instance〈γ, q, ψ,Π〉, the stateγ

fully determines who can access which resources. In addition to
administrative policy information, the state-change ruleψ also con-
tains information about which users are trusted. In any access con-
trol system there aretrusted users; these are users who have the
authority to take the system to a state that violates security require-
ments but are trusted not to do so. An SSO is an example of a
trusted user.

Security analysis provides a means to ensure that security re-
quirements (such as safety and availability) are always met, as long
as users identified as trusted behave according to the usage patterns
discussed in this section. In other words, security analysis helps en-
sure that the security of the system does not depend on users other
than those that are trusted.

Each security requirement is formalized as a security analysis
instance, together with an answer that is acceptable for secure op-
eration. For example, a security requirement may be that only
employees may access a sensitive document. This can be formal-
ized as an instance〈γ, q, ψ, ∀〉, whereγ is the current state,q is
Employees w p wherep is the permission to access the sensitive
document,Employees is the role that contains all employees of
an organization, andψ specifies administrative policy information.
The ruleψ should precisely capture the capabilities of users that
are not trusted. In other words, any change that could be made by
such users should be allowed byψ. The ruleψ could restrict the
changes that trusted users can make, because these are trusted not
to make a change without verifying that desirable security proper-
ties are maintained subsequent to the change. For the example dis-
cussed above, the acceptable answer is “yes”, as we want to ensure

that everyone who has the permissionp is an employee. The goal
is to ensure that such a security requirement is always satisfied.

Suppose that the system starts in a stateγ such that the answer
to 〈γ, q, ψ, ∀〉 is “yes”. Further, suppose a trusted user (such as
the SSO) attempts to make a change that is not allowed byψ,
e.g., the SSO decides to grant certain administrative privileges to
a useru. Before making the change, SSO performs security anal-
ysis 〈γ′, q, ψ′, ∀〉, whereγ′ andψ′ are resulted from the prospec-
tive change. Only if the answer is “yes”, does the SSO actually
make the change. The fact thatψ limits the SSO from making
changes does not mean that we require that the SSO never make
such changes. It reflects the requirement that the SSO perform se-
curity analysis and make only those changes that do not violate
security properties.

This way, as long as trusted users are cooperating, the security
of an access control system is preserved. One can delegate admin-
istrative privileges to partially trusted users with the assurance that
desirable security properties always hold. By using differentψ’s,
one can evaluate which sets of users are trusted for a given secu-
rity property. In general, it is impossible to completely eliminate
the need to trust people. However, security analysis enables one to
ensure that the extent of this trust is well understood.

2.3 Assignment and trusted users (AATU)
In this paper, we solve two classes of security analysis problems

in RBAC. Both classes use variants of the URA97 component of the
ARBAC97 administrative model for RBAC [18]. URA97 specifies
how theUA relation may change.

The first class is called Assignment And Trusted Users (AATU),
in which a state-change ruleψ has the form〈can assign, T 〉. The
relationcan assign ⊆ R × C × 2R determines who can assign
users to roles and the preconditions these users have to satisfy.
C is the set of conditions, which are expressions formed using
roles, the two operators∩ and∪, and parentheses.〈ra, c, rset〉 ∈
can assign means that members of the rolera can assign any
user whose role memberships satisfy the conditionc to any role
r ∈ rset . For example,〈r0, (r1∪r2)∩r3, {r4, r5}〉 ∈ can assign
means that a user that is a member of the roler0 is allowed to as-
sign a user that is a member of at least one ofr1 andr2, and is
also a member ofr3, to be a member ofr4 or r5. T ⊆ U is a
set of trusted users; these users are assumed not to initiate any role
assignment operation for the purpose of security analysis. The set
T is allowed to be empty.

Definition 4. (Assignment And Trusted Users – AATU) The class
AATU is given by parameterizing the family of RBAC analysis
problems in Definition 3 with the following set of state-change
rules. Each state-change ruleψ has the form〈can assign, T 〉
such that a state change fromγ = 〈UA,PA,RH 〉 to γ1 =
〈UA1,PA1,RH 1〉 is allowed byψ = 〈can assign, T 〉 if PA =
PA1, RH = RH 1, UA1 = UA ∪ {(u, r)}, where(u, r) 6∈ UA

and there exists(ra, c, rset) ∈ can assign such thatr ∈ rset , u
satisfiesc, andusersγ [ra] 6⊆ T (i.e., there exists at least one user
who is a member of the rolera and is not inT , so that such a user
can perform the assignment operation).

Main results for AATU

• If q is semi-static (see Definition 3), then an AATU instance
〈γ, q, ψ,Π〉 can be answered efficiently, i.e., in time polyno-
mial in the size of the instance.

• Answering general AATU instances〈γ, q, ψ,∀〉 is decidable
but intractable (coNP-hard).



2.4 Assignment and revocation (AAR)
In this class, a state-change ruleψ has the form
〈can assign, can revoke〉, where can assign is the same as
in AATU, andcan revoke ⊆ R× 2R determines who can remove
users from roles. That〈ra, rset〉 ∈ can revoke means that the
members of rolera can remove a user from a roler ∈ rset. No
explicit set of trusted users is specified in AAR, unlike AATU. In
AATU and AAR, the relationscan assign and can revoke are
fixed inψ. This means that we are assuming that changes to these
two relations are made only by trusted users.

Definition 5. (Assignment And Revocation – AAR) The class
AAR is given by parameterizing the family of RBAC analysis prob-
lems in Definition 3 with the following set of state-change rules.
Each state-change ruleψ has the form〈can assign, can revoke〉
such that a state change fromγ = 〈UA,PA,RH 〉 to γ1 =
〈UA1,PA1,RH 1〉 is allowed byψ = 〈can assign, can revoke〉
if PA = PA1, RH = RH 1, and either (1)UA1 = UA ∪ {(u, r)}
where(u, r) 6∈ UA and there exists(ra, c, rset) ∈ can assign

such thatr ∈ rset , u satisfiesc, andusersγ [ra] 6= ∅, i.e., the
useru being assigned tor is not already a member ofr and sat-
isfies the pre-conditionc, and there is at least one user that is a
member of the rolera that can perform the assignment operation;
or (2) UA1 ∪ (u, r) = UA where(u, r) 6∈ UA1, and there exists
(ra, c, rset) ∈ can revoke such thatr ∈ rset andusersγ [ra] 6= ∅,
i.e., there exists at least one user in the rolera that can revoke the
useru’s membership in the roler.

We assume that an AAR instance satisfies the following three
properties. (1) The administrative roles are not affected by
can assign andcan revoke. The administrative roles are given
by those that appear in the first component of anycan assign or
can revoke tuple. These roles should not appear in the last com-
ponent of anycan assign or can revoke tuple. This condition is
easily satisfied in URA97, as it assumes the existence of a set of
administrative roles that is disjoint from the set of normal roles. (2)
None of the administrative roles is empty. (3) If acan assign tuple
exists for a role, then acan revoke tuple also exists for that role.

Main results for AAR

• If q is semi-static (see Definition 3), then an AAR instance
〈γ, q, ψ,Π〉 can be answered efficiently, i.e., in time polyno-
mial in the size of the instance.

• Answering general AAR instances〈γ, q, ψ,∀〉 is coNP-
complete.

2.5 Discussion of the definitions
Our usage ofcan assign andcan revoke is inspired by URA97,

which is one of the three components of ARBAC97 [18]. The state-
change rules considered in AAR are similar to those in URA97, but
they differ in the following two ways. One, URA97 allows nega-
tion of roles to be used in a precondition; AAR does not allow this.
Two, URA97 has separate administrative roles; AAR does not re-
quire the complete separation of administrative roles from ordinary
roles. AATU differs from URA97 in two additional ways. One,
AATU does not have revocation rules. Two, AATU has a set of
trusted users, which does not exist in URA97.

The other components of ARBAC97 are PRA97 and RRA97, for
administering permission-role assignment/revocation, and the role
hierarchy, respectively. In this paper, we study the effect of de-
centralizing user-role assignment and revocation, and assume that
changes to the permission-role assignment relation and the role hi-
erarchy are centralized, i.e, made only by trusted users. In other
words, whoever is allowed to make changes to permission-role as-
signment and the role hierarchy will run the security analysis and

only make changes that do not violate the security properties. It has
been observed that permission-role assignment and the role hierar-
chy are changed less often than user-role assignment. Being the
most dynamic, user-role assignment is the most likely to be decen-
tralized.

AATU and AAR represent two basic cases of security analysis
in RBAC. Although we believe that they are useful cases, they are
only the starting point. Many other more sophisticated cases of
security analysis in RBAC remain open. For example, it is not
clear how to deal with negative preconditions in role assignment,
and how to deal with constraints such as mutually exclusive roles.

3. RELATED WORK
Simple safety analysis, i.e., determining whether an access con-

trol system can reach a state in which an unsafe access is allowed,
was first formalized by Harrison et al. [8] in the context of the well-
known access matrix model [11, 7], and was shown to be undecid-
able in the HRU model [8]. There are special cases for which safety
is decidable for the HRU model; safety is decidable if (1) no sub-
jects or objects are allowed to be created, (2) at most one condition
is used in a command but subjects or objects cannot be destroyed,
or (3) only one operation is allowed in a command.

Following that, there have been various efforts in designing ac-
cess control systems in which simple safety analysis is decidable or
efficiently decidable, e.g., the take-grant model [15], the schematic
protection model [19], and the typed access matrix model [20].

One may be tempted to reduce the security analysis problem de-
fined in this paper to a problem in one of the other models such
as HRU and use existing results. However, this approach has sev-
eral difficulties. First, we consider different kinds of queries, while
only safety is considered in other models. It is not clear, for in-
stance, how one would reduce containment in RBAC to safety in
HRU. Second, even when we restrict our attention to simple safety,
the reduction of either AATU or AAR into HRU results in a set
of command schemas that does not fall into any known decidable
special case of HRU. (1) New users are implicitly created when be-
ing assigned to roles. (2) Because of pre-conditions in AATU and
AAR, an assignment operation requires checking both the com-
mand initiator’s privileges and the user’s role memberships. The
resulting HRU command schema would not be mono-conditional.
(3) Adding a user to a role results in the user attaining several per-
missions simultaneously. The resulting command in HRU is un-
likely to be mono-operational. Last but not least, even if some
further restricted subcases of RBAC security analysis can be re-
duced to decidable subcases of HRU, no efficient algorithm exists
for those cases. For example, even in the subcase where no sub-
jects or objects are allowed to be created, safety analysis in HRU
remainsPSPACE-complete (which implies that it isNP-hard).

Recently, Li et al. [13] proposed the notion of security analy-
sis, in which they study queries other than simple safety. They
study security analysis in the context of Trust Management (TM).
AlthoughRT0, the TM language studied in [13], supports delega-
tion and is more expressive than the access matrix model in certain
ways, and the kinds of analysis include problems other than sim-
ple safety analysis, somewhat surprisingly, all the security analysis
problems considered there are decidable; furthermore, most prob-
lems are efficiently decidable.

Munawer and Sandhu [16] presented a simulation of the Aug-
mented Typed Access Matrix Model (ATAM) in an RBAC model.
In the simulation, they use an administrative model that is far more
powerful than ARBAC97 or any other administrative model con-
sidered in the literature. In particular, they assume the existence of
administrative permissions each of which can simulate the effect of



an ATAM command. An ATAM command is more general than an
HRU command. It checks the existence and nonexistence of rights
in the cells corresponding to subjects and objects specified by the
parameters, and if all conditions are satisfied, executes a sequence
of operations, such as entering a new right in a cell.

Crampton and Loizou [4] claim that “if administrative (or con-
trol) permissions are assigned to subjects, then the safety problem is
undecidable. Indeed, Munawer and Sandhu [16] and Crampton [2]
have shown independently that the safety problem for RBAC96 is
undecidable.” We disagree with this claim, as we show in this paper
that simple safety (and even more sophisticated analysis) can be de-
cidable when administrative permissions are given to subjects. The
simulation by Munawer and Sandhu [16] suggests only that when
an overly complicated administrative model is added to RBAC96,
safety analysis may be undecidable.

The work by Koch et al [10] considers safety in RBAC with
the RBAC state and state change rules posed as a graph formal-
ism. They show that safety in RBAC is decidable provided that
a state change rule does not both remove and add components to
the graph that represents the protection state. The administrative
model (set of state change rules) considered in that work is limited
in that it is expressed in terms of the types of nodes and edges in the
graph. Consequently, it is not powerful enough to allow constructs
such as pre-conditions involving user-role memberships. Such pre-
conditions are part of ARBAC97 [18] and the administrative mod-
els we consider in this paper. Also, our work differs from that work
in that we consider a more general class of queries than safety, and
we provide specific algorithms and complexity bounds.

Previous work on ensuring security properties in RBAC takes
the approach of using constraints [1, 3, 9]. In this approach, a set
of desirable properties are explicitly specified as constraints on the
relations in an RBAC state. Each time the state of an access con-
trol system is about to change, these constraints are checked. A
change is allowed only when these constraints are satisfied. We
believe that security analysis and constraints are complementary.
Constraints directly specify desirable properties on the state of an
RBAC system. Security analysis uses conditions specified on what
kinds of state changes are allowed and infer security properties on
all reachable states. An advantage of using constraints is that so-
phisticated conditions can be specified and enforced efficiently. In
the security analysis approach, fewer security properties can be an-
alyzed efficiently, because of the need to analyze potentially in-
finitely many reachable states. On the other hand, the constraint
approach requires that the system controls all changes to the RBAC
state, because of the need to perform constraint checking. Secu-
rity analysis can handle decentralized control by allowing the parts
of a state that are not controlled by the system to change freely.
It can be used to help enforce security properties even when the
RBAC system itself is maintained in a decentralized manner and
one cannot ensure that constraints are checked when some part of
the RBAC state changes. Another advantage of security analysis is
that it can be performed less often than checking constraints. Anal-
ysis only needs to be performed when changes not allowed by the
state-transition rule are made, while constraints need to evaluated
each time a state changes.

4. OVERVIEW OF SECURITY ANALYSIS
IN RT[�,∩]

In [13], Li et al. study security analysis in the context of the
RT family of Role-based Trust-management languages [12, 14]. In
particular, security analysis inRT[�,∩] and its sub-languages is
studied.RT[�,∩] is a slightly simplified (yet expressively equiv-

alent) version of theRT0 language introduced in [14]. In this sec-
tion we summarize the results for security analysis inRT[�,∩].
In Section 5 we reduce security analysis in AATU and AAR to that
in RT[�,∩].

Syntax ofRT[�,∩] The most important concept in theRT lan-
guages is also that ofroles. A role in RT[�,∩] is denoted by a
principal (corresponding to a user in RBAC) followed by a role
name, separated by a dot. For example, whenK is a principal and
r is a role name,K.r is a role. Each principal has its own name
space for roles. For example, the ‘employee’ role of one company
is different from the ‘employee’ role of another company. Arole
has a value which is a set of principals that are members of the role.

Each principalK has the authority to designate the members
of each role of the formK.r. Roles are defined bystatements.
Figure 1 shows the four types of statements inRT[�,∩]; each
corresponds to a way of defining role membership. A simple-
member statementK.r ←− K1 means thatK1 is a member of
K ’s r role. This is similar to a user assignment in RBAC. A sim-
ple inclusion statementK.r ←− K1.r1 means thatK ’s r role in-
cludes (all members of)K1’s r1 role. This is similar to a role-role
dominance relationshipK1.r1 � K.r. A linking inclusion state-
mentK.r ←− K.r1.r2 means thatK.r includesK1.r2 for every
K1 that is a member ofK.r1. An intersection inclusion statement
K.r ←− K1.r1 ∩K2.r2 means thatK.r includes every principal
who is a member of bothK1.r1 andK2.r2.

States An RT[�,∩] stateγT consists of a set ofRT[�,∩] state-
ments. The semantics ofRT[�,∩] is given by translating each
statement into a datalog clause. (Datalog is a restricted form of
logic programming (LP) with variables, predicates, and constants,
but without function symbols.) See Figure 1 for the datalog clauses
corresponding toRT[�,∩] statements. We call the datalog pro-
gram resulting from translating each statement inγT into a clause
that is thesemantic programof γT , denoted bySP(γT ).

Given a datalog program,DP, its semantics can be defined
through several equivalent approaches. The model-theoretic ap-
proach viewsDP as a set of first-order sentences and uses the
minimal Herbrand model as the semantics. We writeSP(γT ) |=
m(K, r,K′) whenm(K, r,K′) is in the minimal Herbrand model
of SP(γT ).

State-change RulesA state-change rule has of the formψT =
(G,S), whereG andS are finite sets of roles.

• Roles inG are calledgrowth-restricted(or g-restricted); no
statements defining these roles can be added. (A statement
defines a role if it has the role to the left of ‘←−’.) Roles not
in G are calledgrowth-unrestricted(or g-unrestricted).

• Roles inS are calledshrink-restricted(or s-restricted); state-
ments defining these roles cannot be removed. Roles not in
S are calledshrink-unrestricted(or s-unrestricted).

Queries In [13] the following three forms of queries are consid-
ered:

• Membership: A.r w {D1, . . . , Dn}

Intuitively, this means that all the principalsD1, . . . , Dn are
members ofA.r. Formally,γT ` A.r w {D1, . . . , Dn} if
and only if{Z | SP(γT ) |= m(A, r, Z)} ⊇ {D1, . . . , Dn}.

• Boundedness: {D1, . . . , Dn} w A.r

Intuitively, this means that the member set ofA.r is bounded
by the given set of principals. Formally,γT ` A.r w
{D1, . . . , Dn} if and only if {D1, . . . , Dn} ⊇ {Z |
SP(γT ) |= m(A, r, Z)}.



Simple Member syntax: K.r ←− K1

meaning: members(K.r) ⊇ {K1}
LP clause: m(K, r,K1) (m1)

Simple Inclusion syntax: K.r ←− K1.r1
meaning: members(K.r) ⊇ members(K1.r1)
LP clause: m(K, r, ?Z) :− m(K1, r1, ?Z) (m2)

Linking Inclusion syntax: K.r ←− K.r1.r2
meaning: members(K.r) ⊇

⋃

K1∈K.r1
members(K1.r2)

LP clause: m(K, r, ?Z) :− m(K, r1, ?Y ), m(?Y, r2, ?Z) (m3)
Intersection Inclusion syntax: K.r ←− K1.r1 ∩K2.r2

meaning: members(K.r) ⊇ members(K1.r1) ∩members(K2.r2)
LP clause: m(K, r, ?Z) :− m(K1, r1, ?Z), m(K2, r2, ?Z) (m4)

Figure 1: Statements inRT[�,∩]. There are four types of statements. For each type, we give the syntax, the intuitive meaning of the
statement, and the LP (Logic-Programming) clause corresponding to the statement. The clause uses one ternary predicatem, where
m(K, r,K1) means thatK1 is a member of the roleK.r Symbols that start with “ ?” represent logical variables:

• Inclusion: X.u w A.r
Intuitively, this means that all the members ofA.r are also
members ofX.u. Formally,γT ` X.u w A.r if and only
if {Z | SP(γT ) |= m(X,u, Z)} ⊇ {Z | SP(γT ) |=
m(A, r, Z)}.

Each form of query can be generalized to allow compound role
expressions that use linking and intersection. These generalized
queries can be reduced to the forms above by adding new roles and
statements to the state. For instance,{} w A.r ∩ A1.r1.r2 can be
answered by addingB.u1←−A.r∩B.u2,B.u2←−B.u3.r2, and
B.u3←−A1.r1 to γT , in whichB.u1, B.u2, andB.u3 are new
g/s-restricted roles, and by posing the query{} w B.u1.

Main results for security analysis inRT[�,∩]

Membership and boundedness queries (both whether a query is
possible and whether a query is necessary) can be answered in time
polynomial in the size of the input. The approach taken in [13] uses
logic programs to derive answers to those security analysis prob-
lems. This approach exploits the fact thatRT[�,∩] is monotonic
in the sense that more statements will derive more role member-
ship facts. This follows from the fact that the semantic program is
a positive logic program.

Inclusion queries are more complicated than the other two kinds.
In [13], only the∀ case (i.e., whether an inclusion query is neces-
sary) is studied. It is not clear what the security intuition is of an
∃ inclusion query (whether an inclusion query is possible); there-
fore, it is not studied in [13]. The problem of deciding whether an
inclusion query is necessary, i.e., whether the set of members of
one role is always a superset of the set of members of another role
is calledcontainment analysis. It turns out that the computational
complexity of containment analysis depends on the language fea-
tures. InRT[ ], the language that allows only simple member and
simple inclusion statements, containment analysis is inP. It be-
comes more complex when additional policy language features are
used. Containment analysis iscoNP-complete forRT[∩] (RT[ ]
plus intersection inclusion statements),PSPACE-complete for
RT[�] (RT[ ] plus linking inclusion statements), and decidable in
coNEXP for RT[�,∩].

5. REDUCING AATU AND AAR TO SECU-
RITY ANALYSIS IN RT[�,∩]

In this section, we solve AATU (Definition 4) and AAR (Defini-
tion 5). Our approach is to reduce each of them to security analysis
in RT[�,∩].

5.1 Reduction for AATU
The reduction algorithmAATU Reduce is given in Figure 3; it

uses the subroutines defined in Figure 2. Given an AATU instance
〈γ = 〈UA,PA,RH 〉, q = s1 w s2, ψ = 〈can assign, T 〉, Π ∈
{∃, ∀}〉, AATU Reduce takes〈γ, q, ψ〉 and outputs〈γT , qT , ψT 〉
such that theRT[�,∩] analysis instance〈γT , qT , ψT ,Π〉 has the
same answer as the original AATU instance.

In the reduction, we use one principal for every user that appears
in γ, and the special principalSys to represent the RBAC system.
TheRT role names used in the reduction include the RBAC roles
and permissions inγ and some additional temporary role names.
The RT role Sys.r represents the RBAC roler and theRT role
Sys.p represents the RBAC permissionp. Each(u, r) ∈ UA is
translated into theRT statementSys.r ←− u. Eachr1 � r2 is
translated into theRT statementSys.r2←−Sys.r1 (asr1 is senior
to r2, any member ofr1 is also a member ofr2.) Each(p, r) ∈ PA

is translated intoSys.p←− Sys.r (each member of the roler has
the permissionp.)

The translation of thecan assign relation is less straightfor-
ward. Each〈ra, rc, r〉 ∈ can assign is translated into theRT

statementSys.r←−Sys.ra.r ∩ Sys.rc. The intuition is that a user
ua who is a member of the rolera assigning the useru to be a
member of ther role is represented as adding theRT statement
ua.r←− u. As ua is a member of theSys.ra role, the useru is
added as a member to theSys.r role if and only if the useru is also
a member of therc role.

In the reduction, all theSys roles (i.e.,Sys.x) are fixed (i.e., both
g-restricted and s-restricted). In addition, for each trusted useru in
T , all the roles starting withu is also g-restricted; this is because
we assume that trusted users will not perform operations to change
the state (i.e., user-role assignment operations). We may also make
roles starting with trusted users s-restricted; however, this has no
effect as no statement defining these roles exists in the initial state.

The following proposition shows that the reduction is sound,
meaning that one can use RT security analysis techniques to an-
swer RBAC security analysis problems.

PROPOSITION 1. Given an AATU instance〈γ, q, ψ,Π〉, let
〈γT , qT , ψT 〉 = AATU Reduce(〈γ, q, ψ〉), then:
• Assertion 1:For every RBAC stateγ′ such thatγ

∗

7→ψ γ′,
there exists an RT stateγT ′ such thatγT

∗

7→ψT γT ′ and
γ′ ` q if and only ifγT ′ ` qT .

• Assertion 2:For every RT stateγT ′ such thatγT
∗

7→ψT γT ′,

there exists an RBAC stateγ′ such thatγ
∗

7→ψ γ
′ andγ′ ` q

if and only ifγT ′ ` qT .



1 Subroutine Trans(s, γT) {
2 /* Trans(s,γT) returns an RT role corresponding to the user set s*/
3 if s is an RBAC role then return Sys.s;
4 else if s is an RBAC permission then return Sys.s;
5 else if s is a set of users then {
6 name=newName(); foreach u ∈ s {γT+= Sys.name←−u;} return Sys.name; }
7 else if (s = s1 ∪ s2) then {
8 name=newName(); γT+=Sys.name←−Trans(s1, γ

T ); γT+= Sys.name←−Trans(s2, γ
T );

9 return Sys.name; }
10 else if (s = s1 ∩ s2) then {
11 name=newName(); γT+=Sys.name←−Trans(s1, γ

T ) ∩ Trans(s2, γ
T ); return Sys.name; }

12 } /* End Trans */
13
14 Subroutine QTrans(s, γT) {

/* Translation for users sets that are used at top level in a query */
15 if s is a set of users then return s;
16 else return Trans(s,γT);
17 } /* End QTrans */
18
19 Subroutine HTrans(s, γT) {
20 if s is an RBAC role then return HSys.s;
21 else if (s = s1 ∪ s2) then {
22 name=newName(); γT+= Sys.name←−HTrans(s1, γ

T );
23 γT+= Sys.name←−HTrans(s2, γ

T ); return Sys.name; }
24 else if (s = s1 ∩ s2) then {
25 name=newName(); γT+=Sys.name←−HTrans(s1, γ

T ) ∩ HTrans(s2, γ
T ); return Sys.name; }

26 } /* End HTrans */

Figure 2: SubroutinesTrans, QTrans, and HTrans: They are used by the two reduction algorithms. We assume call-by-reference for
the parameterγT .

31 AATU Reduce (〈 γ = 〈UA,PA,RH 〉, q = s1 w s2, ψ = 〈can assign, T 〉 〉)
32 {
33 /* Reduction algorithm for the first class of analysis problems */
34 γT = ∅; qT = QTrans(s1,γ

T)wQTrans(s2,γ
T);

35 foreach (ui, rj) ∈ UA { γT+= Sys.rj←−ui; }
36 foreach (ri, rj) ∈ RH { γT+= Sys.rj←−Sys.ri; }
37 foreach (pi, rj) ∈ PA { γT+= Sys.pi←−Sys.rj; }
38 foreach (ai, s, rset) ∈ can assign {
39 tmpRole=Trans(s,γT); name=newName(); γT+= Sys.name←−Sys.ai.r;
40 foreach r ∈ rset { γT+= Sys.r←−Sys.name ∩ tmpRole; } }
41 foreach RT role name x appearing in γT {
42 G+=Sys.x; S+=Sys.x; foreach user u ∈ T { G+=u.x; } }
43 return 〈γT , qT , (G,S)〉;
44 } /* End AATU Reduce */

Figure 3: Reduction Algorithm for AATU



See Appendix A.1 for the proof.

THEOREM 2. An AATU instance〈γ, q, ψ,Π〉 can be solved ef-
ficiently, i.e., in time polynomial in the size of the instance, ifq is
semi-static. The general AATU problem iscoNP-hard.

PROOF. Sketch: Follows directly from Proposition 1 and the re-
sults on security analysis inRT[�,∩]. Observe thatAATU Reduce

runs in time polynomial in the size of the input. ThecoNP-
hardness of the problem can be shown by reducing the monotone
3SAT problem to the AAR problem. The proof is similar to the
proof for coNP-hardness of security analysis inRT[∩] (Section
A.3 of [13]). In summary, the monotone 3SAT problem can be re-
duced to determining whether a propositional formula having the
form φ1 ⇒ φ2 is not valid, whereφ1 andφ2 are propositional for-
mulas constructed using conjunction and disjunction. Such a for-
mula can be encoded using a query in a containment analysis. In
fact, the AAR problem remainscoNP-hard even when no precon-
dition occurs incan assign; the expressive power of the queries is
sufficient for reducing the monotone 3SAT problem.

5.2 Reduction for AAR
The reduction algorithm for AAR is given in Figure 4. The re-

duction algorithm includes in the set of principals a principal for
every user inU and five special principals:Sys, RSys, HSys, ASys,
andBSys. Again, theSys roles simulate RBAC roles and permis-
sions. In this reduction, we do not distinguish whether a role as-
signment operation is effected by one user or another, and use only
one principal,ASys, to represent every user that exercises the user-
role assignment operation. The roles of the principalRSys contain
all the initial role memberships inUA; these may be revoked in
state changes.HSys.r maintains the history of the RBAC roler;
its necessity is argued using the following scenario. A user is a
member ofr1, which is the precondition for being added to another
role r2. After one assigns the user tor2 and revoke the user from
r1. The user’s membership inr2 should maintain, even though the
precondition is no longer satisfied (a similar justification for this ap-
proach is provided in the context of ARBAC97 [18] as well.)BSys

is similar toASys, but it is used to construct theHSys roles. An ad-
ministrative operation to try to add a userui to the rolerj is repre-
sented by adding the statementASys.rj←−ui andBSys.rj←−ui
to γT . An administrative operation to revoke a userui from the
role rj is represented by removing the statementsRSys.rj←− ui
andASys.rj←−ui if either exists inγT .

The following proposition shows that the reduction is sound.

PROPOSITION 3. Given an AAR instance〈γ, q, ψ,Π〉, let
〈γT , qT , ψT 〉 = AAR Reduce(〈γ, q, ψ〉), then:
• Assertion 1:For every RBAC stateγ′ such thatγ

∗

7→ψ γ′,
there exists an RT stateγT ′ such thatγT

∗

7→ψT γT ′ and
γ′ ` q if and only ifγT ′ ` qT .

• Assertion 2:For every RT stateγT ′ such thatγT
∗

7→ψT γT ′,

there exists an RBAC stateγ′ such thatγ
∗

7→ψ γ
′ andγ′ ` q

if and only ifγT ′ ` qT .

THEOREM 4. An AAR instance〈γ, q, ψ,Π〉 can be solved effi-
ciently, i.e., in time polynomial in the size of the instance, ifq is
semi-static. The general AAR problem iscoNP-complete.

PROOF. Sketch: Follows directly from Proposition 3 and the
results on security analysis inRT[∩]. Observe thatAAR Reduce

runs in time polynomial in the size of the input, and the result is an
instance of security analysis inRT[∩], which iscoNP-complete.
This shows that the general AAR problem is incoNP. That AAR
is coNP-hard can be proved using arguments similar to those for
AATU.

6. CONCLUSION AND FUTURE WORK
We have proposed the use of security analysis techniques to main-

tain desirable security properties while delegating administrative
privileges. More specifically, we have defined a family of secu-
rity analysis problems in RBAC and two classes of problems in
this family, namely AATU and AAR, based on the URA97 com-
ponent of the ARBAC97 administrative model for RBAC. We have
also shown that AATU and AAR can be reduced to similar analy-
sis problems in theRT0 trust-management language, establishing
an interesting relationship between RBAC and theRT (Role-based
Trust-management) framework. The reduction gives efficient algo-
rithms for answering most kinds of queries in these two classes and
helps establish the complexity bounds for the intractable cases.

Much work remains to be done for understanding security anal-
ysis in RBAC. The family of RBAC security analysis defined in
this paper can be parameterized with more sophisticated adminis-
trative models, e.g., those that allow negative preconditions, those
that allow changes to the role hierarchy or role-permission assign-
ments, and those that allow the specification of constraints such as
mutually exclusive roles.
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APPENDIX
A.1 Proof for Proposition 1

PROOF. For Assertion 1:A state change in AATU occurs when
a user assignment operation is successfully performed. For every
RBAC stateγ′ such thatγ

∗

7→ψ γ′, let γ0, γ1, · · · , γm be RBAC
states such thatγ = γ0 7→ψ γ1 7→ψ · · · 7→ψ γm = γ′. We
construct a sequence ofRT statesγT0 , γ

T
1 , · · · , γ

T
m as follows:

γT0 = γT ; for eachi = [0..m− 1], consider the assignment opera-
tion that changesγi to γi+1, let it be the operation in which a user
u1 adds(u, r) to the user-role assignment relation; the stateγTi+1

is obtained by addingu1.r←−u to γTi . Let γT ′ beγTm.
Step one:Prove that ifγ′ ` q thenγT ′ ` qT . It is sufficient to

prove the following: for eachi ∈ [0..m], if γi implies that a certain
useru is a member of a roler (or has the permissionp), thenγTi
implies thatu is a member of theRT role Sys.r (or Sys.p). We
use induction oni to prove this. The base case (i=0) follows di-
rectly from theAATU Reduce algorithm; lines 35–37 reproduces
UA, RH , PA in theRT stateγT0 . For the step, assumes that the
induction hypothesis holds forγ0, · · · , γi, considerγi+1. Let the
operation leading toγi+1 be one in whichu1 assignsu to a role
r. Since both sequences of states are increasing, we only need to
consider role memberships implied byγi+1 but notγi; these are
caused (directly or indirectly) by this assignment. There must ex-
ists a〈ra, c, r〉 ∈ can assign to enable this assignment; thus inγi,
u1 is a member of the rolera andu satisfies the conditionc. By in-
duction hypothesis, inγTi , u1 is a member ofSys.ra andu satisfies
the conditionc. From the translation and the construction ofγTi+1,
γTi+1 has the following statements:u1.r←−u, Sys.r←−Sys.ra.r,



andSys.r←−Sys.name∩ tmpRole (wheretmpRole corresponds
to the preconditionc). Furthermore, inγTi+1, u1 is a member of the
rolera andu satisfies the conditionc. Therefore,u is a member of
theSys.r role inγTi+1.

Step two:Prove that ifγT ′ ` qT thenγ′ ` q. It is sufficient
to show that if anRT role membership is implied byγT ′, then the
corresponding RBAC role membership (or permission possession)
is also implied. A detailed proof uses induction on the number of
rounds in which a bottom-up datalog evaluation algorithm outputs
a ground fact. Here, we only point out the key observations. (For
details of similar proofs, see the Appendix in [13].) ART role
membership is proved by statements generated on lines 35, 36, 37,
or 40. The first three cases correspond to theUA, RH , PA. For
the last case, there must exist a statementu1.r←−u in γT ′, and it
implies thatu is a member of the roleSys.r. By the construction of
γT ′, the useru has been assigned to the roler during the changes
leading toγ′.

For Assertion 2:Given anRT stateγT ′ such thatγT
∗

7→ψT γT ′,
we can assume without loss of generality thatγT ′ adds toγT only
simple member statements. Also, we only need to consider state-
ments definingui.rj , whereui is a user inγ and rj is a role
in γ. Consider the set of all statements inγT ′ having the form
ui.rj←− uk. For each such statement, we perform the following
operation on the RBAC state, starting fromγ, haveui assignuk to
the rolerj . Such an operation may not succeed either becauseui
is not in the right administrative role or becauseuk does not sat-
isfy the required precondition. We repeat to perform all operations
that could be performed. That is, we loop through all such state-
ments and repeat the loop whenever the last loop results in a new
successful assignment. Letγ′ be the resulting RBAC state. It is not
difficult to see thatγ′ implies the same role memberships asγT ′;
using arguments similar to those used above.

A.2 Proof for Proposition 3
PROOF. For Assertion 1:A state change in AAR occurs when

a user assignment or a revocation operation is successfully per-
formed. Given any RBAC stateγ′ such thatγ

∗

7→ψ γ′, let
γ0, γ1, · · · , γm be RBAC states such thatγ = γ0 7→ψ γ1 7→ψ

· · · 7→ψ γm = γ′. We construct a sequence ofRT states
γT0 , γ

T
1 , · · · , γ

T
m as follows:γT0 = γT ; for eachi = [0..m − 1],

consider the operation that changesγi to γi+1. If it is an assign-
ment operation in which a useru1 adds(u, r) to the user-role as-
signment relation; the stateγTi+1 is obtained by addingSys.r←−u
andBSys.r←− u to γTi . For each revocation that revokes a user
u from a roler, we remove (if they exist) from theRT state the
statementsASys.r←−u andRSys.r←−u. Let γT ′ beγTm.

Step 1: Prove that ifγ′ ` q then γT ′ ` qT . Step 1a: We
prove that inγT ′, HSys.r captures all users that are ever a mem-
ber of the roler at some time, i.e., for eachi ∈ [0..m], if
u ∈ usersγi

[r], thenu is a member of theRT role HSys.r in γTm
(

SP(γT

m) |= m(HSys, r, u)
)

. We prove this by induction oni. The
basis (i = 0) is true, since inγT we reproduceUA andRH in the
definition of theHSys roles (see lines 54 and 56 in Figure 4); fur-
thermore, theHSys roles never shrink. For the step, we show that if
(u, r) ∈ UAi+1, thenu is a member of theRT roleHSys.r in γTm.
This is sufficient for proving the induction hypothesis because the
effect of propagation through role hierarchy is captured by the def-
inition of HSys roles. If (u, r) ∈ UAi+1, then either(u, r) ∈ UA

(in which caseHSys.r ←− u ∈ γT ′), or there is an assignment
operation that assignsu to r (in which caseBSys.r←−u ∈ γT ′).
Let (ra, c, r) ∈ can assign be an administrative rule used for this
assignment, then inγi, the useru satisfiesc. By induction hypothe-
sisu’s role memberships inγi is captured inu’s role memberships

in HSys.r; thereforeu would satisfy the translated precondition
tmpRole. Thereforeu is a member of the roleHSys.r in γTm (be-
cause of the statementHSys.u←−BSys.r ∩ tmpRole).

Step 1b: We prove that inγT ′ the Sys roles capture all the
role memberships inγ′. It is sufficient to prove the following:
let UA′ be the user assignment relation inγ′, if (u, r) ∈ UA′,
thenu is a member of the roleSys.r in γT ′. If (u, r) ∈ UA,
then either(u, r) ∈ UA and this is never revoked (in which case
RSys.r ←− u ∈ γT and this statement is never removed, there-
fore RSys.r ←− u ∈ γT ′); or there is an assignment operation
in C, and this assignment is not revoked after it (in which case
ASys.r←−u ∈ γT ′).

Step two:Prove that ifγT ′ ` qT thenγ′ ` q. It is sufficient
to show that if anRT role membership is implied byγT ′, then the
corresponding RBAC role membership (or permission possession)
is also implied. A detailed proof uses induction on the number of
rounds in which a bottom-up datalog evaluation algorithm outputs
a ground fact. Here, we only point out the key observation. ART

role membership is proved by statements generated on lines 55, 56,
57, or 63. The first three cases correspond to theUA, RH , PA. For
the last case, there must exist a statementASys.r←−u in γT ′, and
it implies thatu is a member of the roleSys.r. By the construction
of γT ′, the useru has been assigned to the roler during the changes
leading toγ′ and the assignment is not revoked after that.

Also, we only need to consider statements definingui.rj , where
ui is a user inγ andrj is a role inγ.

Consider the set of all statements inγT ′ having the form
ui.rj ←− uk. For each such statement, we perform the follow-
ing operation on the RBAC state, starting fromγ, haveui assign
uk to the rolerj . Such an operation may not succeed either be-
causeui is not in the right administrative role or becauseuk does
not satisfy the required precondition. We repeat to perform all op-
erations that could be performed. That is, we loop through all such
statements and repeat the loop whenever the last loop results in a
new successful assignment. Letγ′ be the resulting RBAC state. It
is not difficult to see thatγ′ implies the same role memberships as
γT ′; using arguments similar to those used above.

For Assertion 2:Among theRT roles,Sys roles andHSys roles
are fixed;ASys roles can grow or shrink;RSys roles can shrink
but not grow; andBSys roles can grow but not shrink. Given an
RT stateγT ′ such thatγT

∗

7→ψT γT ′, we can assume without
loss of generality thatγT ′ adds toγT only simple member state-
ments. Consider the set of all statements inγT ′ definingASys,
BSys, andRSys roles. We construct the RBAC stateγ′ as follows.
(1) For every statementBSys.r←− u in γT ′, assign the useru to
the roler. Repeat through all such statements until no new assign-
ment succeeds. Using arguments similar to those used for proving
assertion 1, it can be shown that now the RBAC roles have the same
memberships as theHSys roles. (2) Do the same thing for all the
ASys.r←− u statements. At this point, all the role memberships
for theSys roles inγT ′ are replicated in the RBAC roles, because
all theHSys memberships have been added. (3) Remove the extra
role membership in the RBAC state, i.e., those not in theSys roles.
The ability to carry out this step depends upon the requirement (in
Definition 5) that if there is acan assign rule for a role, then there
is also revoke rule for the role.


