
Access Control Friendly Query Verification for
Outsourced Data Publishing

Hong Chen1, Xiaonan Ma2 ?, Windsor Hsu2 ??, Ninghui Li1, and Qihua Wang1

1 CERIAS & Department of Computer Science, Purdue University
{chen131, ninghui, wangq}@cs.purdue.edu

2 IBM Almaden Research Center
xiaonan.ma@gmail.com, windsorh@cs.berkeley.edu

Abstract. Outsourced data publishing is a promising approach to
achieve higher distribution efficiency, greater data survivability, and
lower management cost. In outsourced data publishing (sometimes re-
ferred to as third-party publishing), a data owner gives the content of
databases to multiple publishers which answer queries sent by clients. In
many cases, the trustworthiness of the publishers cannot be guaranteed;
therefore, it is important for a client to be able to verify the correctness
of the query results. Meanwhile, due to privacy concerns, it is also re-
quired that such verification does not expose information that is outside
a client’s access control area. Current approaches for verifying the cor-
rectness of query results in third-party publishing either do not consider
the privacy preserving requirement, or are limited to one dimensional
queries. In this paper, we introduce a new scheme for verifying the cor-
rectness of query results while preserving data privacy. Our approach
handles multi-dimensional range queries. We present both theoretical
analysis and experimental results to demonstrate that our approach is
time and space efficient.

1 Introduction

The amount of data stored in databases is rapidly increasing in today’s world. A
lot of such data is published over the Internet or large-scale intranets. Given the
large sizes of databases and the high frequency of queries, it is often desirable
for data owners to outsource data publishing to internal or external publishers.
In such a model, the data center of an organization gives datasets to internal
publishers (for publishing within the organization’s intranet), or external third-
party publishers (for publishing over the Internet) [1–4].

Offloading the task of data publishing from data owners to dedicated data
publishers offers the following advantages: (1) the publishers may have higher
bandwidths; (2) the publishers may be geographically closer to the clients and
have lower latencies; (3) having multiple publishers helps to avoid the data owner
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being a single point of failure; (4) overall data management cost can be signif-
icantly reduced, by leveraging hardware and software solutions from dedicated
data publishing service providers [5].

In many settings the trustworthiness of the data publishers cannot be guar-
anteed – the security of the publishers’ servers is not under the control of the
data owners. Historical computer security incidents have shown that securing
large online systems is a difficult task. The threat of insider attacks from within
a data publishing service provider cannot be overlooked either. Therefore it is
critical for a client to be able to verify the correctness of query results.

There are three aspects of correctness: authenticity, completeness and fresh-
ness [1, 6–8]. A query result is authentic if all the records in the result are from
the dataset provided by the data owner. A query result is complete if the pub-
lisher returns all data records that satisfy the query criteria. A query result is
fresh if the query result reflects the current state of the owner’s database.

Suppose a dataset contains numbers 12, 20, 5, 10, 18, 30, 16, 31. The range
query [15, 25) asks for numbers between 15 (inclusive) and 25 (non-inclusive).
The correct result is {16, 18, 20}. A result {16, 17, 18, 20} is not authentic. And
a result {18, 20} is not complete.

Several approaches have been proposed for verifying the query results in
third-party publishing, e.g., [1, 6, 4]. Most of these solutions use techniques from
public-key cryptography. The data owner has a pair of public/private keys. Ver-
ification metadata is generated over the dataset using the private key by the
owner, and the metadata is provided to the publishers with the dataset. When
a client queries from a data publisher, the publisher returns the query result
together with a proof called a Verification Object (VO) [1], which is constructed
based on such metadata. The client can then verify the correctness of the query
result using the corresponding VO , with the data owner’s public key.

Due to increasing privacy3 concerns for today’s information management,
preserving data privacy has become a critical requirement. The data owner and
the publishers need to enforce access control policies so that each client can only
access the information within her own accessible area. On the other hand, clients
should be able to verify the correctness (namely authenticity, completeness and
freshness) of the query results, even if the publishers could be malicious or be
compromised. The data privacy should be preserved at least when the pub-
lishers are benign. When the publishers are compromised, the bottom line is
that the publishers cannot cheat the clients by giving them bogus query results.
Though in that case, data privacy might be violated. As the security model
discussed in [7], the publishers are not fully trusted. Although it seems contra-
dictory that the publishers are not fully trusted but yet are expected to protect
data privacy, such a combination of requirements is reasonable given the follow-
ing observations: (1) even highly secure systems cannot promise that they would
never be compromised, and cautious clients may require correctness verification
nevertheless. Leaking private information as a side effect of offering correctness

3 By privacy we mean the data should not be accessed by any unauthorized party;
from another perspective, it means the confidentiality of users’ data.
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verification (even when the publishers are benign) is problematic; (2) The semi-
trusted publisher model also fits well when the correctness requirement and the
privacy requirement are not equally stringent. For example, a data owner uti-
lizing such semi-trusted servers may want to ensure that clients can verify data
correctness. The data owner may be less concerned with data privacy (therefore
could tolerate semi-trusted publishers) but still want decent protection such that
information is not leaked voluntarily and access control is not trivially bypassed.

Achieving completeness of query results while preserving privacy is challeng-
ing. To achieve completeness, one needs to show that there exists no other record
in the query region other than the ones that are returned in the query result.
Most existing approaches leak information that is outside the query region and
the client’s accessible area, violating the privacy preserving requirement.

For instance, back to the above example. Recall that the user’s query is
[15, 25) and the correct result is {16, 18, 20}. Assume that the access control
area for the user is [10, 29), meaning that she can only access numbers in [10, 29).
To prove the completeness of the query result, the publisher should show that
the following numbers are not in the dataset: 15, 17, 19, 21 − 24. Most existing
solutions rely on proving the adjacency of data points. The data owner signs
the data pair (20, 30) to indicate that there are no data points between 20 and
30 in the dataset. The publisher can return the signed data pair as part of the
proof of completeness. However, in doing so, the data point 30, which is outside
the client’s access control area, is revealed to the client and thus data privacy is
violated. Besides data privacy, we also considers policy privacy, where the client
should not know the boundaries of other users’ access control areas (details in
Section 3.3). In [7] Pang et al. proposed a scheme which allows correctness
verification while preserving the privacy of data records. However, the solution
applies only to one dimensional range queries, which is a significant limitation
given the multidimensional nature of the relational databases today.

In this paper, we present a novel scheme for proving the correctness of query
results produced by data publishers. Our approach preserves data privacy and
therefore can be used to perform access control. Our approach does not rely on
proving the adjacency of neighboring data points for completeness verification,
and can handle multi-dimensional queries.

The rest of the paper is organized as follows. Section 2 discusses the related
work. Section 3 gives the security model and formalizes the problem. Section 4
presents our verification scheme. Section 5 analyzes the time and space efficiency
of our scheme and discusses experimental results. Section 6 concludes the paper.

2 Related Work

Query-answering with third party publishing has been studied in the computer
security and cryptography community under the name authenticated dictio-
nary [1, 9, 10]. Schemes using Merkle Tree [11] and skip lists have been proposed;
however these approaches assume that the data is public and do not consider
the access control requirement. In [1], a scheme based on Merkle Tree is pro-
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posed to guarantee the authenticity and completeness. In [12], this approach is
generalized and applied to other authenticated data structures. Data structures
based on space and data partitioning are introduced in [13] for verifying multi-
dimensional query results. In these approaches, data privacy is not preserved. A
scheme to verify the integrity of the query results in edge computing is proposed
in [14]. The scheme does not check the completeness of query results. The secu-
rity model in [15], where semi-trusted service providers answer user queries on
behalf of the data owner, is similar to ours.

In order to preserve the data privacy, [7] proposed another scheme to solve
the problem. This approach handles one-dimensional case well, but it cannot
be applied to two or higher dimensional cases. In [6], the overheads and perfor-
mances of different approaches to guarantee the authenticity and completeness
are compared.

Several approaches are proposed for enforcing access control policies in out-
sourced XML documents [16–18]. The XML documents, which can be viewed as
trees, present different structures from relational databases.

The data structure and algorithms derived in this paper uses the divide-and-
conquer strategy developed in data structures and algorithms for range searching
by the computational geometry community [19–21]. Our approach is unique
in that our approach addresses the specific requirements of outsourced data
publishing, especially the need to efficiently prove the search results. Also our
solution incurs low communication and storage overhead when updating the data
items and/or the access policies of clients.

3 Problem Overview

In this section we discuss the security model and requirements of the problem.

3.1 Security Model

The security model for our scheme is the same as that of [7]. We assume the data
owners are secure and trusted. Each data owner maintains one public/private
key pair for signing data and verifying data. We also assume that the publishers
and clients can obtain the correct public keys for each data owner through some
secure channel. The clients should be able to verify the authenticity, completeness
and freshness of the query results using the public keys of the data owners. When
the clients perform the query verification, they should not be able to gain any
information that they do not have access to.

3.2 Formalization

The dataset contains k attributes A1, . . . , Ak. We assume that each attribute is
of an integer. We assume the ranges of all attributes are [0, N), and N is a power
of two. Hence each record can be represented by a point in the k-space. Let T
denote the set of all the points in the dataset, we have T ⊆ [0, N)k.
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Given any record r ∈ T , let Ai(r) denote the value of the ith attribute of the
record. The client may issue a range query Q(L1, R1, . . . , Lk, Rk), which defines
a query space q = [L1, R1)× · · · × [Lk, Rk) ⊆ [0, N)k A client submits Q to get
the result T ′ = T ∩ q. Upon receiving the query, the publisher will provide the
client with the query result T ′ with a verification object VO to guarantee the
authenticity and completeness.

The publishers enforce access control policies on the clients to protect pri-
vacy. Suppose we have a payroll database, and each record contains salary, rank
and other information of an employee. Access control policies enforce that a par-
ticular accountant can only access the records with the salary below 20, 000 and
the rank below 10. We call this accessible space of a user. The access policy en-
forced on a user is represented as AC(L1, R1, . . . , Lk, Rk). The accessible space
ac of a user is a sub-space in the k-space:

ac = [L1, R1)× · · · × [Lk, Rk) ⊆ [0, N)k (1)

3.3 Requirements

In order to prove the correctness of the query results, authenticity and com-
pleteness need to be satisfied. At the same time, privacy needs to be preserved:
(1) the client should not get any information about any data that is outside the
client’s access control area; (2) the client should not learn any information about
the access control policies except her own access control policy.

Suppose the result of a query is T ′′, and the database is T , we say that
the result is authentic when T ′′ ⊆ T . Suppose the range query space is q, if
∀r ∈ T r ∈ q ⇒ r ∈ T ′′, we say the result is complete.

Suppose the accessible space for the user is ac. The records within the user’s
accessible space are v = T ∩ ac, and the points that are outside the accessible
space are v′ = T − v. Suppose v0 ⊆ [0, N)k is a set of data points, we use
P1(v′ = v0) to denote the probability that the data points outside ac are a
particular set v0 when the user observes all the data points in ac. After observing
the verification object, the user has another probability function P2(v′ = v0)
which denotes the probability that the data points outside ac are a particular
set v0. The privacy is preserved if

∀v0 ⊆ [0, N)k P1(v′ = v0) = P2(v′ = v0) (2)

In our approach, we use a more practical (and stronger) definition for privacy
preserving: data privacy is preserved if VO only depends on the access control
policy of the user and the records within the user’s accessible space:

VO = VO(v, ac) (3)

4 Query Result Verification

As described in some related works, there are several ways to guarantee the au-
thenticity of the query result. The main challenge is to prove the completeness
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while preserving the privacy. Thus our main focus is on proving completeness.
For simplicity and easier description, we assume that the data owner signs each
data point in the database for authenticity verification. Previous works on more
efficient data integrity verification and data freshness verification can be com-
bined with our scheme [1, 6, 8].

Our solution to the problem is based on the following insight: when we are
limited to using only information in a region, proving a positive statement saying
that there exists a record in a region is easy, but proving a negative statement
saying that there does not exist a record in a region in a privacy-preserving way
is difficult. Our approach aims to turn a negative proof for completeness into a
positive proof.

4.1 Solution Overview

Suppose the query space is q and the access control space is ac. There are nq

records in the query space. The publisher returns those nq records as the query
results. To prove those are the only records in the query space, the publisher
proves:

1. There are totally nac records in ac.
2. There are at least nac − nq records in ac− q (the area outside q and inside

ac).

An example is shown in Figure 1. Data points A, B, C,D, E are inside ac,
where A, B are inside q. F,G, H, I are outside ac. The publisher first returns
A, B as the query result. To prove there are only two records in the query space,
the publisher will prove that: (1) there are totally 5 records inside ac; (2) there
are at least 3 records in ac− q.

Fig. 1. Solution Overview
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To achieve this, the data owner will provide a signature indicating that there
are nac data points in ac. Also the data owner needs to provide efficient proof
that there are at least nac−nq data points in ac−q. We propose a data structure
to provide the efficient proof.

Intuitively, the reason we use the data points in ac− q is that it is easier to
prove “existence” than “non-existence”. As in Figure 1, if we only construct the
VO using data points in q, we need to prove that all the space in q is empty
except for A and B. This is not an easy task since the query space can be any
subspace inside ac and is not predictable. In contrast, to prove the existence of
data points only requires using data points in ac− q. In this case, the publishers
only need to provide the number of data points in ac−q, which can be produced
efficiently utilizing aggregated counting data structures, instead of the actual
values of these data points.

To prove the existence of a number of records in ac− q, we need an efficient
proof. A trivial solution is to return all the records in ac−q, which is too expensive
therefore not practical. To solve this problem, we design a data structure called
Canonical Range Tree, the details of which are discussed in section 4.2.

Thus, there are three components in the VO : the authentication data struc-
ture which proves the authenticity of the data records in the query result; the
number of records in the accessible space of the client, which is signed by the
data owner; and the number of records in ac− q which is also authenticated by
the data owner. Note that although ac − q is different for different queries, our
approach does not require the data publisher to contact the data owner for each
query. The authentication data structure we developed allows the data publisher
to efficiently prove to the client the number of data records in a particular ac−q.

4.2 Canonical Range Tree

To better explain our idea, we define the following concepts in k-space.

Definition 1 (Cube). A sub-space of the k-space in the following form is called
a cube: [L1, R1)× · · · × [Lk, Rk)

Definition 2 (Shell). A sub-space of the k-space in the form c1 − c2 is called
a shell. Here c1 and c2 are both k-dimensional cubes and c2 ⊆ c1.

From the problem definition, a query space is a cube, the accessible space of
a client is also a cube. The space inside a user’s accessible space but outside the
query space is a shell.

Range tree [20, 22] is a data structure used in computational geometry to
store points in k-space. In our solution, we use a modified version of range tree.
It is called Canonical Range Tree, or CRT for short.

We use CRT to store the counting information for data points. And we will
use a set of nodes of the tree as evidence of existence of records in the shell. We
first discuss one dimensional CRT. In this case CRT is used to store a list of
numbers x1, . . . , xn. One dimensional CRT is a binary tree. Each node of the tree
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corresponds to an interval. Suppose node is a CRT node, it stores the number
of points in the interval [node.l, node.r).

If the interval of a node is a unit interval (node.l + 1 = node.r) the node is
a leaf node. The size of the interval of a node node.r− node.l is always a power
of 2. We call [node.l, (node.r + node.l)/2) the left sub-interval, and [(node.r +
node.l)/2, node.r) the right sub-interval.

Suppose there are n′ records in the left sub-interval, node will have a left
child node1 if n′ > 0:

node1.l = node.l node1.r = (node.r + node.l)/2 node1.cnt = n′

And node will have a right child node2 if n′ < node.cnt:

node2.l = (node.l + node.r)/2 node2.r = node.r node2.cnt = node.cnt− n′

We refer to the left and right child of node as node.c1 and node.c2. Each of
them can be nil if empty. The root node of the tree corresponds to the interval
[0, N). Figure 2 shows a CRT storing the list of 3 numbers: 5, 12, 15.

[0,16) 3

[0,8) 1 [8,16) 2

[4,8) 1

[4,6) 1

[5,6) 1

[12,16) 2

[12,14) 1 [14,16) 1

[12,13) 1 [15,16) 1

Fig. 2. 1-D CRT Example

[0,16) 3

[5,6) 1 [12,16) 2

[12,13) 1 [15,16) 1

Fig. 3. Optimized 1-D CRT

Now we discuss how to build a CRT for 2-D space. Suppose we have a list
of points (x1, y1), . . . , (xn, yn). We first build a 1-D CRT for the list of num-
bers x1, . . . , xn. This tree is called the primary structure. Then for every node
node of the primary structure, suppose there are n′ points of which the first
coordinate is in the interval [node.l, node.r). By definition node.cnt = n′. Let
(x′1, y

′
1), . . . , (x′n′ , y′n′) be those points. We then build a one dimensional CRT for

this node, to store information for the numbers y′1, . . . , y
′
n′ . In this way, we build

a primary structure on the first attribute of the data points, and for every node
of the primary structure, we build a secondary structure. For each node node of
the primary structure, node.sec stores the root of the corresponding secondary
structure. This completes the CRT construction for 2-D space. Figure 4 gives an
example of a 2-D CRT to store a list of 3 points: (5, 10), (12, 4), (15, 19).

For two dimensional CRT, we call a node of the primary structure a 1st order
node, and a node of the secondary structure a 2nd order node. A 1st order node
node stores the number of points in the area [node.l, node.r) × [0, N). Suppose
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[0,16) 3 1-d CRT for {4,10,19}

[0,8) 1 [8,16) 2...

[4,8) 1 ...

[4,6) 1 ...

[5,6) 1 ...

1-d CRT for {4,19}

[12,16) 2 1-d CRT for {4,19}

[12,14) 1 [14,16) 1...

[12,13) 1 ...

...

[15,16) 1 ...

Fig. 4. Two-dimensional CRT Example

node′ is a node belongs to the secondary structure attached to node, then node′

stores the number of points in the area [node.l, node.r)× [node′.l, node′.r).
We can construct k dimensional CRTs similarly. There are 1st, 2nd, . . . ,

kth order nodes in a k-D CRT. Every tth (t < k) order node has a t + 1-ary
structure. The insertion and deletion algorithms of CRT are shown in Figure 5
and Figure 6.

function CRT Insert(r, node, t)
node.cnt← node.cnt + 1
if t < k then

if node.sec = nil then
create node.sec with [0, N)

CRT Insert(r, node.sec, t + 1)

if node.r − node.l > 1 then
mid = (node.l + node.r)/2
if At(r) < mid then

if node.c1 = nil then
create node.c1 with [node.l,mid)

CRT Insert(r, node.c1, t)
else

if node.c2 = nil then
create node.c1 with [mid, node.r)

CRT Insert(r, node.c2, t)

Fig. 5. CRT Insertion

function CRT Delete(r, node, t)
node.cnt← node.cnt− 1

if t < k then
CRT Delete(r, node.sec, t + 1)
if node.sec.cnt = 0 then

remove node.sec

if node.r − node.l > 1 then
mid = (node.l + node.r)/2
if At(r) < mid then

CRT Delete(r, node.c1, t)
if node.c1.cnt = 0 then

remove node.c1
else

CRT Delete(r, node.c2, t)
if node.c2.cnt = 0 then

remove node.c2

Fig. 6. CRT Deletion

4.3 Constructing Evidence in a Cube/Shell

Given a cube/shell, CRT nodes could be used as proof of existence of all the
records in the cube/shell. In both cases, the evidence is a list of verified non-
overlapping kth order CRT nodes. The counter of a such node gives the number
of records in the corresponding sub-space. Summing up the counters we get a
proof of existence of the records.

Suppose a cube is c = [L1, R1) × · · · × [Lk, Rk), recursive function
Cnt Cube(node, t, c) in Figure 7 returns a list of CRT nodes as evidence in c.

Function Cnt Shell(node, t, c, c′) in Figure 8 returns a list of non-overlapping
kth order nodes as evidence for shell c− c′, where c′ ⊆ c.
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function Cnt Cube(node, t, c)
if node.r ≤ Lt ∨ node.l ≥ Rt then

return φ

if node.l ≥ Lt ∧ node.r ≤ Rt then
if t = k then

return {node}
else

return Cnt Cube(node.sec, t+1, c)

else
ret← φ
if node.c1 6= nil then

ret← ret ∪ Cnt Cube(node.c1, t, c)

if node.c2 6= nil then
ret← ret ∪ Cnt Cube(node.c2, t, c)

return ret

Fig. 7. Constructing Evidence in a Cube

function Cnt Shell(node, t, c, c′)
if node = nil then

return φ

if c.Lt ≤ node.l ∧ node.r ≤ c′.Lt then
x← c
x.Rt ← c′.Lt
return Cnt Cube(node, t, x)

if c′.Rt ≤ node.l ∧ node.r ≤ c.Rt then
x← c
x.Lt ← c′.Rt
return Cnt Cube(node, t, x)

if c′.Lt ≤ node.l ∧ node.r ≤ c′.Rt then
if t = k then

return φ

return Cnt Shell(node.sec, t + 1, c, c′)

ret← φ
if [c.Lt, c.Rt)∪[node.c1.l, node.c1.r) 6= φ then

ret← ret∪ Cnt Shell(node.c1, t, c, c′)
if [c.Lt, c.Rt)∪[node.c2.l, node.c2.r) 6= φ then

ret← ret∪ Cnt Shell(node.c2, t, c, c′)
return ret

Fig. 8. Constructing Evidence in a Shell

Note that in the solution, we need to provide evidence outside the query
space and inside the accessible space, which is a shell. The above algorithm is
used to achieve this.

4.4 VO Construction

The data owner will maintain a k-dimensional CRT for all the records. Suppose
there are n records in the database, the owner will first build an empty CRT
and then insert the n records. The owner should also guarantee the integrity
of the CRT nodes, so the user can use the CRT nodes to verify the number
of records in a shell. Verifying whether a CRT node is generated by the owner
is a membership testing problem. This problem is not the focus of this work,
any solution for membership testing that incurs low storage and communication
overhead can be used in our scheme, e.g., authenticated dictionary [9, 10].

Also, the data owner will maintain a counter for each access control space.
Suppose there are m access control spaces ac1, . . . , acm, the data owner maintains
and signs the pairs (ac1, cnt1), . . . , (acm, cntm). cnti is the number of records in
access control space aci. The data owner can call the function Cnt Cube for acm

to get the list of nodes and add up the counters of the nodes to get cnti.
Canonical range tree has a nice property: given any k dimensional rectan-

gular space S, say there are a points from T that are inside S. CRT can use a
small number of non-overlapping nodes that are completely within S, to prove
that there are at least a points in S. This property is very useful in our VO
construction.

The data owner will give the signed CRT and the signed list of access control
counters to the publisher. When the client submits a query with query space
q, the publisher will return the query result to the client with the following
Verification Object(suppose the access control space of the client is ac):
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– The metadata for the user to verify the integrity of the records in the query
result.

– The verifiable number of records in the user’s accessible space ac.
– A set of verifiable CRT nodes that can be used to verify that there are at

least nac − nq records in ac− q. This evidence could be collected by calling
the function Cnt Shell.

4.5 Optimization

In Figure 2, we can see several “redundant” nodes, such as 〈[0, 8), 1〉, 〈[4, 8), 1〉,
〈[4, 6), 1〉. These nodes do not provide additional information. If we want to use,
e.g., 〈[4, 6), 1〉 in the VO , we can always use 〈[5, 6), 1〉 instead. The size of VO
will not be increased, and the privacy is preserved (if the user is allowed to gain
information in [4, 6), she is also allow to gain information in [5, 6).

Generally, if a node has only one child, we can simply remove this node.
After removing all redundant nodes, each non-leaf node will have exactly two
child nodes. After optimization, the CRT in Figure 2 becomes the tree CRT in
Figure 3.

Extending this optimization to higher dimensional cases is non-trivial. we
have two versions of optimization for higher dimensional cases:

– Applying the optimization to the last dimensional nodes. This version is
called LastDimOpt scheme. The CRT nodes of this version are a subset of
basic scheme, and data updating for LastDimOpt scheme is more efficient
than the basic scheme.

– Applying the optimization to all dimensional nodes. This version is called
AllDimOpt scheme. The CRT nodes of this version are a subset of the Last-
DimOpt scheme. If there are only insertions, the amortized updating cost of
this version is smaller than the basic scheme and the LastDimOpt scheme.
But the cost of inserting or deleting a specific record could be large. Therefore
LastDimOpt scheme can be used when the database is static, insertion-only,
or does not require frequent deletions.

Note that the number of CRT nodes in VO is the same for all three schemes.
There is a one to one mapping of the CRT nodes in the VOs of the three schemes.

5 Evaluation

5.1 Theoretical Analysis

This section discusses the cost of various CRT operations. The theorems can be
proved through induction. The proofs are omitted here due to space constraints.

Following theorems give the upper-bound of the number of nodes needed to
prove the existence of all nodes in a cube/shell, and the cost of inserting a record
into CRT.
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Theorem 1. If there are k attributes for every record, the range of the values
for each attribute is [0, N), at most 2k(log N)k CRT nodes are needed to cover
all the data points in a k dimensional cube.

Theorem 2. At most 4 · (2 log N)k nodes of the CRT are needed to cover all the
data points in a k dimensional shell.

Theorem 3. To insert a record to a k dimensional CRT, the insertion algorithm
will visit at most log N+1

log N ·
(

(log N + 1)k − 1
)

nodes. Creating a node is also
considered as visiting a node.

The theorem implies that the time complexity for inserting a record into
CRT is O((log N)k).

The cost of different operations are listed below. Suppose there are m different
access control areas:

– The storage overhead to store the CRT is bounded by n · log N+1
log N ·(

(log N + 1)k − 1
)
≈ n · (log N)k (when log N is sufficiently large).

– The size of the evidence for all records in a cube is bounded by (2 log N)k.
– The size of the evidence of a shell is bounded by 4 · (2 log N)k. The time

cost to insert or delete a record in the database is O((log N)k + m). This
cost includes the cost incurred in the data owner site and the cost in the
publisher site.

– The time cost to build the database is O(n(log N)k).
– The time cost to setup an access control policy is O((2 log N)k). The com-

munication cost is O(1).
– The time cost to construct the VO is O((2 log N)k).

One advantage of our scheme is that the size of the proof for completeness is
independent of the size of the query result. Also it is independent of the number
of records in the database.

After last dimension optimization, the storage cost of k dimensional CRT
can be reduced from O(n(log N)k) to O(n(log N)k−1).

5.2 Experimental Results

In this section, we discuss the efficiency of our approach based on empirical data.
We implemented three versions of the CRT data structure: the basic scheme, the
LastDimOpt scheme, and the AllDimOpt scheme.

Storage Overhead The storage size needed to store the CRT is linear in the
number of nodes. Figure 9 shows the average number of CRT nodes needed for
each data record, against the size of the database. Each figure shows the results
for three versions of CRT. The test data is generated randomly. For a k di-
mensional database, each record is generated independently. And each attribute



13

 0

 2

 4

 6

 8

 10

 12

 0  200  400  600  800  1000

N
um

be
r 

of
 C

R
T

 N
od

es

Number of Records

Basic scheme
Last dimension opt
All dimensions opt

 2

 4

 8

 16

 32

 64

 128

 256

 0  200  400  600  800  1000

N
um

be
r 

of
 C

R
T

 N
od

es

Number of Records

Basic scheme
Last dimension opt
All dimensions opt

(a) One Dimensional CRT (b) Two Dimensional CRT
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(c) Three Dimensional CRT (d) Four Dimensional CRT

X-axis: number of records in the database. Y-axis: average number of CRT nodes
needed for each record. N = 2048 for all test cases. Each data point is the average of
10 independent runs using randomly generated data. In (d) we omit the data for basic
scheme due to large overhead.

Fig. 9. Storage Overhead

value of a record is generated independently from a uniform distribution over
[0, N).

The basic scheme incurs the highest overhead. In basic scheme, the number
of CRT nodes needed per record decreases when the number of records grows.
The intuition is that more records “share” tree nodes when database grows.

The LastDimOpt scheme makes a big improvement over the basic scheme.
Also the number of CRT nodes needed per records almost doesn’t change with
the growth of the database.

The AllDimOpt scheme improves over LastDimOpt significantly, especially
in high dimensional cases. The number of CRT nodes needed per record grows
slowly when database grows. If the application does not involve frequent updates,
we can use optimization on all dimensions to save a lot of storage space.

Communication Overhead The communication overhead of verification de-
pends on the VO size. Since a VO mostly consists of a set of CRT nodes, we use
the number of CRT nodes in the VO to represent the VO size.

Figure 10 shows the number of CRT nodes in the VO against the number
of points in the shell (which is inside the user’s accessible space but outside the
query space). In a k dimensional database, a query is generated as following.
For each dimension i, four integers are generated independently by the uniform
distribution over [0, N ]. The four integers are sorted in non-decreasing order,
we have Ri,1 ≤ Ri,2 ≤ Ri,3 ≤ Ri,4. In this query, the access control space of
the user is ac = [R1,1, R1,4) × · · · × [Rk,1, Rk,4) and the query space is q =
[R1,2, R1,3)× · · · × [Rk,2, Rk,3). Each query is generated independently.
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N = 230, 200k records N = 4096, 100k records N = 256, 100k records
(a) One Dimensional (b) Two Dimensional (c) Three Dimensional

There are 1000 random queries for each of 1-d, 2-d and 3-d cases. The x-axis is the
number of records in ac − q. The y-axis is the number of CRT nodes in the VO . The
result for each figure is grouped into 20 intervals of even sizes. For example, the left most
bar in (a) shows the maximum, average and minimum number of CRT nodes in VO for
all the queries that have 0 to 10000 records in ac− q.

Fig. 10. VO Size

The parameters used in the testing are shown in Figure 10. From the figures
we can see that the size of VO grows slowly with the number of records in the
shell. For 1-D, 2-D and 3-D cases respectively, the VO sizes of queries are less
than 45, 450 and 2.5k, while the number of records in the shell is up to 200k,
80k and 75k. The VO size is quite small compared to the number of records in
the shell.

From the figures we observe that with greater number of dimensions, the VO
size grows faster with respect to the number of records in the shell. This trend
is also shown by our theoretical analysis. In addition, our scheme favors denser
data, because under the same k and same N , when the size of database grows,
the size of VO does not grow significantly. Making the database denser will make
the ratio of VO size against number of records in the shell smaller.

6 Conclusions

We formalize the query verification problem in third-party data publishing, in
which we need to guarantee the authenticity and completeness of the query
results, while preserving the data privacy. We provide a novel solution for this
problem, in which we convert proving of non-existence to proving of existence
of data records. Our solution can be used for multiple dimensional range queries
and scales well to a reasonable number of dimensions. Based on the theoretical
analysis and empirical data, we show that our solution is efficient in terms of
storage and communication overhead.
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