
Purpose Based Access Control of Complex Data
for Privacy Protection

Ji­Won Byun

byunj@cs.purdue.edu

Elisa Bertino

bertino@cerias.purdue.edu

Ninghui Li

ninghui@cs.purdue.edu

CERIAS and Department of Computer Sciences
Purdue University

656 Oval Drive, West Lafayette, IN 47907

ABSTRACT

As privacy becomes a major concern for both consumers
and enterprises, many research efforts have been devoted to
the development of privacy protecting technology. We re-
cently proposed a privacy preserving access control model
for relational databases, where purpose information associ-
ated with a given data element specifies the intended use
of the data element. In this paper, we extend our previous
work to handle other advanced data management systems,
such as the ones based on XML and the ones based on the
object-relational data model. Another contribution of our
paper is that we address the problem of how to determine
the purpose for which certain data are accessed by a given
user. Our proposed solution relies on the well-known RBAC
model as well as the notion of conditional role which is based
on the notions of role attribute and system attribute.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—Ac-
cess Controls; E.2 [K.6 Management of Computing and
Information Systems]: Security and Protection

General Terms

Management, Design, Security

Keywords

Privacy, Access Control, Private Data Management, Pur-
pose, Role Attributes

1. INTRODUCTION
The rapid advances in database systems and information

technology have greatly increased the awareness of the need
for privacy protection. The fact that personal information
can be collected, stored and used creates fear of privacy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’05, June 1–3, 2005, Stockholm, Sweden.
Copyright 2005 ACM 1­59593­045­0/05/0006 ...$5.00.

violation for many online consumers. Also, potential law-
suits brought up by consumers and recently enacted privacy
legislations [12, 5, 11] require organizations to pay closer
attention to the management of private data.

As privacy becomes a major concern for both consumers
and enterprises, many research efforts have been devoted to
the development of privacy protecting technology. As an
important step for helping users to gain control over the
use of their personal information, the W3C has proposed
the Platform for Privacy Preferences (P3P) [18]. P3P al-
lows websites to encode their privacy practice, such as what
information is collected, who can access the data for what
purposes, and how long the data will be stored by the sites,
in a machine-readable format. Even though P3P provides a
standard means for enterprises to make privacy promises to
their users, P3P does not provide any mechanism to ensure
that these promises are consistent with the internal data
processing.

To the best of our knowledge, the first approach to incor-
porate privacy protection within relational database systems
was proposed by Agrawal et al. [1]. Introducing the concept
of Hippocratic databases, Agrawal et al. showed that much
work is needed to be done in order to build database systems
which accurately protect private information. Observing the
lack of adequate privacy protecting systems, we also recently
proposed a privacy preserving access control model for re-
lational databases, based on the notion of purpose [3]. In
our work, purpose information associated with a given data
element specifies the intended use of the data element. A
key characteristics of our model is that multiple purposes
can be associated with each data element. We also exploit
query modification techniques to support data access control
based on the purpose information.

Our previous work has, however, some limitations. The
first is that it has been developed based on a simple data
model, that is, the relational data model. However, many
advanced data management systems, such as the ones based
on XML and the ones based on the object-relational data
model, need to manage objects that are complex, have hier-
archical structures and are characterized by several semantic
relationships. We thus need a more sophisticated purpose
management model; such model is the first contribution of
this paper. The second limitation of our previous work is
that it does not adequately address the problem of how to
determine the purpose for which certain data are accessed
by a given user. We believe that this issue may be sat-

isfactorily addressed by relying on the well-known RBAC
model [14, 16]. However, in order to support policies spec-
ifying for which purpose a certain data can be accessed by
a given role, we need to expand conventional RBAC models
with the notion of conditional role which is based on the no-
tions of role attribute and system attribute. Such extended
RBAC model is the second contribution of this paper.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work that motivates the discussion
in the paper. Section 3 provides a brief overview of pur-
pose based access control. Section 4 introduces the notion
of conditional role and presents a method for determining
access purposes. Section 5 describes our hierarchical data
model and intended purpose labeling scheme, whereas Sec-
tion 6 discusses query compliance based on intended pur-
pose labels. Section 7 suggests future work and concludes
our discussion.

2. RELATED WORK
Our work is related to many areas of privacy preserv-

ing access control, specifically privacy policy specification
and private data management systems. We also exploit the
tremendous work carried out for traditional access control
which mainly focuses on secure management of data. In
this section we briefly survey related work that motivates
our discussion.

The Enterprise Privacy Authorization Language (EPAL)
[8] proposed by IBM is a formal language for writing enter-
prise privacy policies to govern data handling practices in IT
systems. An EPAL policy defines lists of hierarchies of data-
categories, user-categories, and purposes. User-categories
are the entities (users/groups) that use collected data, and
data-categories define different categories of collected data
that are handled differently from a privacy perspective. Pur-
poses model the services for which data is intended to be
used. An EPAL policy also defines sets of actions, obliga-
tions, and conditions. Actions model how the data is used,
and obligations define actions that must be taken by the
environment of EPAL. Lastly, conditions are boolean ex-
pressions that evaluate the context. Privacy authorization
rules are defined using these elements, and each rule allows
or denies actions on data-categories by user-categories for
certain purposes under certain conditions while mandating
certain obligations.

The concept of Hippocratic databases, incorporating pri-
vacy protection within relational database systems, was in-
troduced by Agrawal et al. [1]. The proposed architecture
uses privacy metadata, which consist of privacy policies and
privacy authorizations stored in two tables. A privacy pol-
icy defines for each attribute of a table the usage purpose(s),
the external-recipients and retention period, while a privacy
authorization defines which purposes each user is authorized
to use.

Recently, Lefevre et al. [10] presented an approach to en-
forcing privacy policy in database environments. Their work
focuses on ensuring limited data disclosure, based on the
premise that data providers1 have control over who is al-
lowed to see their personal data and for what purpose. In
their work, they introduce two models of cell-level limited
disclosure enforcement; table semantics and query seman-

1By data providers, we refer to the subjects to whom the
stored data is related.

tics. They also suggest an implementation based on query
modification techniques.

Previous work on multilevel secure relational databases [17,
15, 6] also provides many valuable insights for designing a
fine-grained secure data model. In a multilevel relational
database system, every piece of information is classified ac-
cording to a security level, and every user is assigned a se-
curity clearance. Based on this access class, the system en-
sures that each user gains access to only the data for which
she has proper clearance, according to the well known ba-
sic restrictions [2]. These constraints ensure that there is
no information flow from a lower security level to a higher
security level and that subjects with different clearances see
different versions of multilevel relations.

Rabitti et al. [13] developed a comprehensive authoriza-
tion model designed for next-generation database systems.
The data models considered in their work support object-
oriented concepts and incorporate some key semantic data
modeling concepts such as composite objects and versions.
Furthermore, they formalize and develop a clear semantics
for various types of authorizations such as strong/weak and
negative/positive authorizations. A number of key issues
that arise in implementing such a model are also discussed
in their work.

Role Based Access Control (RBAC) [14, 16], which has
made a significant impact on many access control systems,
greatly simplifies the specification and management of se-
curity policies within an enterprise. The basic concept of
RBAC is as follows: permissions are assigned to functional
roles within an enterprise and individual users are then au-
thorized to the necessary permissions by being appropriately
assigned to a role or a set of roles. Most RBAC models also
include a role hierarchy, a partial order defining a relation-
ship between roles, to facilitate the administration tasks.

The idea of incorporating attributes into RBAC mod-
els has been proposed to address some distinct problems
in RBAC. Chen et al. [4] introduced the attributes associ-
ated with roles in order to enforce global constraints such
as the principle of separation of duty. They discuss various
attributes for roles, permissions, users and sessions and sug-
gest a practical way to specify and enforce constraints based
on these attributes. The notion of role attribute is also pre-
sented in [7, 9]. In their work, role attributes are used to
provide more flexibility to the access control in RBAC. Us-
ing their approaches, access control policies sensitive to the
system context can be easily specified and enforced.

3. PRELIMINARIES
In this section, we present an overview of the notion of

purpose, previously introduced in [3].
In privacy protecting access control models, the notion

of purpose plays a central role as the purpose is the basic
concept on which access decisions are made. In order to sim-
plify the management, purposes are organized according to
a hierarchical structure based on the principles of general-
ization and specialization, which is appropriate in common
business environments.

Definition 1. (Purpose and Purpose Tree) A purpose de-
scribes the reason(s) for data collection and data access.
Purposes are organized in a tree structure, referred to as
Purpose Tree, where each node represents a purpose in P
and each edge represents a hierarchical relation (i.e., spe-

� � � � � � � � � � � 	
 � �� �
 �
 �
 � �� � �
 � � � � � � �
 � ��
 � � � � � �
 � � � � � � � �� � � � �
 �� 	 � �
 � � � � � � � � � � � � �
 � � � � 	 � � � � �� � � � � �
 �� � � � � � � � � � �
 � � � �� � � � �
 �� � � �
 � �� �
 	 	
 � �
Figure 1: Purpose Tree

cialization and generalization) between two purposes. Let
pi, pj be two purposes in a purpose tree. We say that pj is
a specialization of pi (or pi is a generalization of pj) if there
exists a downward path from pi to pj . 2

Figure 1 gives an example of purpose tree. The following
notations will be used through out the paper.

Notation 1. (Ancestors and Descendants) Let PT be a
purpose tree and P be the set of purposes in PT . Let pi be
a purpose in PT .

1. Ancestors(pi) is the set of all nodes that are ancestors
of pi in PT , including pi itself.

2. Descendants(pi) is the set of all nodes that are descen-
dants of pi in PT , including pi itself.

Intuitively, an access to a specific data item is allowed
if the purposes allowed by privacy policies for the data in-
clude or imply the purpose for accessing the data. We refer
to purposes associated with data and thus regulating data
accesses as Intended Purposes, and to purposes for accessing
data as Access Purposes. Intended purposes can be viewed
as brief summaries of privacy policies for data, stating for
which purposes data can be accessed. When an access to
data is requested, the access purpose is checked against the
intended purposes for the data.

In this model intended purposes support both positive
and negative privacy policies. An intended purpose consists
of two components: Allowed Intended Purposes and Pro-
hibited Intended Purposes. This structure provides greater
flexibility to the access control model. Moreover, by using
prohibited intended purposes, one can guarantee that data
accesses for particular purposes are never allowed. Conflicts
between the allowed intended purposes and the prohibited
intended purposes for the same data item are resolved by ap-
plying the denial-takes-precedence policy where prohibited
intended purposes override allowed intended purposes.

Definition 2. (Intended Purpose) Let PT be a purpose
tree and P be the set of all purposes in PT . An intended
purpose, IP, is a tuple 〈AIP, PIP〉, where AIP ⊆ P is a
set of allowed intended purposes and PIP ⊆ P is a set of
prohibited intended purposes. Let AIP = {aip1, . . . , aipn}
be a set of allowed intended purposes and PIP = {pip1, . . . ,
pipm} be a set of prohibited intended purposes. We define
the set of intended purposes entailed by AIP and PIP as
follows:

1. AIP↓ =
S

aipj∈AIP Descendants(aipj)

2. PIPl = (
S

pipk∈PIP Ancestors(pipk)) ∪
(

S

pipk∈PIP Descendants(pipk)) 2

Example 1. Suppose IP = 〈AIP={Admin, Direct}, PIP=
{D-Email}〉 is defined over the purpose tree given in Fig-
ure 1.

1. AIP↓ = Descendants(Admin) ∪ Descendants(Direct)
= {Admin, Profiling, Analysis} ∪ {Direct, D-Email,
D-Phone, Special-Offers, Service-Updates}

2. PIPl = Descendants(D-Email) ∪ Ancestors(D-Email)
= {D-Email, Special-Offers, Service-Updates} ∪ {D-
Email, Direct, Marketing, General-Purpose}

An access purpose is the purpose of a particular data ac-
cess, which is determined or validated by the system when
the data access is requested. We now present the formal
definition of access purpose and discuss further the issue of
how to determine access purposes in Section 4.

Definition 3. (Access Purpose) Let PT be a purpose tree.
An access purpose, denoted by AP, is a purpose for accessing
a data element, and it is a node in PT . 2

As already discussed, an access decision is made based
on the relationship between the access purpose and the in-
tended purposes of data. That is, an access is granted if the
access purpose is entailed by the allowed intended purposes
and not entailed by the prohibited intended purposes; in this
case we say the access purpose is compliant to the intended
purpose. The access is denied if any of these two conditions
fails; we then say that the access purpose is not compliant
to the intended purpose.

Definition 4. (Access Purpose Compliance) Let PT be a
purpose tree. Let IP = 〈AIP, PIP〉 and AP be an intended
purpose and an access purpose defined over PT , respec-
tively. AP is said to be compliant to IP according to PT ,
denoted as AP ⇒PT IP, if and only if the following two
conditions are satisfied:

1. AP /∈ PIPl

2. AP ∈ AIP↓
2

Example 2. Let PT be the purpose tree in Figure 1, and
let IP and AP be an intended purpose and an access purpose
defined based on PT , respectively.

1. Suppose IP = 〈{General-Purpose}, {Third-Party}〉. If
AP = Marketing, then AP ;PT IP as Marketing ∈
PIPl. However, if AP = Admin, then AP ⇒PT IP as
Marketing /∈ PIPl and Marketing ∈ AIP↓.

2. Suppose IP = 〈{Admin, Purchase, Shipping}, {General-
Purpose}〉. Then no AP defined over PT is compliant
to IP.

3. Suppose IP = 〈{General-Purpose}, ∅〉. Any AP de-
fined over PT is compliant to IP.

4. ACCESS PURPOSE DETERMINATION
An access purpose is the reason for accessing a data item,

and it must be determined by the system when a data ac-
cess is requested. Evidently, how the system determines the
purpose of an access request is crucial as the access deci-
sion is made directly based on the access purpose. In this
section we present a possible method for determining access
purposes. In our method, users are required to state their
access purposes along with the data access requests, and the
system validates the stated access purposes by ensuring that
the users are indeed allowed to access data for the particular

purposes. To facilitate the validation process, each user is
granted authorizations for a set of access purposes, and an
authorization for an access purpose permits users to access
data with the particular purpose.

To ease the management of access purpose authorizations,
users are granted authorizations through their roles; i.e., ac-
cess purpose authorizations are granted to roles, not directly
to individual users. This method has a great deployment
advantage as many systems are already using RBAC mech-
anisms for the management of access permissions. This ap-
proach is also reasonable as access purposes can be granted
to the tasks or functionalities over which roles are defined
within an organization. However, using an RBAC mecha-
nism for the management of both access permissions and
access purposes may increase the complexity of the role en-
gineering tasks. To address this problem, we introduce a
simple extension to RBAC. An important feature of our ap-
proach is that by integrating RBAC with attribute-based
control, our extension simplifies the role administration and
also provides increased flexibility.

In this section, we first present our extended RBAC model
and discuss the details of the access purpose authorization
and verification based on this model. We do not discuss
the general concepts of RBAC, assuming that readers are
already familiar with them. For interested readers, we refer
to [14, 16].

4.1 Role Attributes, System Attributes and
Conditional Roles

As the role hierarchy is predefined for the access permis-
sion assignments, it is possible that the existing role defi-
nitions do not adequately specify the set of users to whom
we wish to grant an access purpose. For instance, consider
the purpose tree in Figure 1 and the role hierarchy in Fig-
ure 2. Suppose that we wish to allow some users in the
E-Marketing team to access data for the purpose of “Service-
Update”. Under the “E-Marketing” role, there are two de-
scendant roles: “E-Analysts” and “Writers”. “E-Analysts”
are the users who analyze the customer information and pre-
pare the contents of emails, and “Writers” are the users who
write and send out emails to customers. Note that these two
roles are defined based on the access permission assignments
in that the permissions to access the customer profiles are
exclusively assigned to the “E-Analysts” role while the per-
missions to access the email addresses of the customers are
exclusively assigned to the “Writers” role. However, as we
want to assign the access purpose only to the users who are
responsible for the specific task of sending out updated ser-
vice information, neither the definition of “E-Analysts” or
“Writers” matches our intention. Moreover, assigning the
access purpose to the “E-Marketing” role is not desirable
as it will allow all the users with the “E-Marketing” role to
access data with the access purpose. An alternative solution
is to split the “E-Marketing” role or the “E-Analysts” and
the “Writers” roles into more specific roles. However, this
method requires the reconstruction of both the user assign-
ments and the permission assignments for the modified roles.
Authorizing the access purpose on an individual basis is not
an elegant solution either, as it does not utilize the existing
role hierarchy and thus is not scalable. In order to address
these issues, we introduce a new concept, Conditional Roles,
which is based on the notion of Role Attributes and System
Attributes.

Employee

Admin-Dept Marketing-Dept Shipping-Dept

E-Marketing Tele-Marketing

 Writers E-Analysts T-Analysts Operators

EmployeeID
Name
YearsInCompany

ManagerID
ExpLevel

TeamLeaderID
ServiceType

RegionID
Specialty

Purchase-Dept

Figure 2: Role Hierarchy and Role Attributes

Role attributes are the pre-assigned, specific descriptions
associated with each role. The role attributes of each role
are defined by system administrators at the time of role
creation, and each role inherits the role attributes that are
defined at the ancestor roles. When a user is assigned to
a role, the values of the role attributes (both defined and
inherited role attributes) are specified according to the rel-
evant information of the particular user. Then when the
user activates the role, the values of the role attributes are
loaded and made available to the access control system un-
til the user deactivates the role. The role attributes can be
viewed as a cached user information that is relevant to the
specific roles, and the role attribute values of a user should
be updated if the user information changes.

Definition 5. (Role Attributes) Let R be the set of roles
defined in the system. Every role r ∈ R is associated with
a set of attributes, denoted by r.Attributes = {r.attr1,. . .,
r.attrn}, that are defined for r or inherited from the ances-
tor roles of r. Each attribute r.attri is associated with a
set of values Di, called the domain of r.attri. The values of
the role attributes for a particular role r are specified within
the domains for each user when a user is assigned to r. The
specified role attribute values of a user u under r, denoted
by r(u).Attributes, are available to the access control sys-
tem from the time the user activates r to the time the user
deactivates r. 2

Figure 2 shows an inverted tree role hierarchy and the role
attributes for a hypothetical enterprise. The role in the root
of the hierarchy, “Employee”, represents the most general
role (i.e., the junior-most role) and has three role attributes:
EmployeeID, Name, and YearsInCompany. The roles below
the root are constructed based on the principle of specializa-
tion, and they all inherit the role attributes of “Employee”.
For instance, the role attributes of the “Marketing-Dept”
role include the role attributes of “Employee” as well as
ManagerID and YearsInDept. Even though any role can be
associated with a set of attributes, we only show the role
attributes of a few selected roles in the figure for simplicity.
We do not show the inherited role attributes for the same
reason.

Using the role attributes we can assign an access purpose
to a specific subset of users in the same role; that is, we can
assign a particular access purpose to a role with a set of con-
ditions that must be satisfied by the users of the role in order
to access data with the access purpose. For instance, con-
sider the previous scenario where we wish to assign the ac-
cess purpose “Service-Update” to a particular group of users
in the E-Marketing team. Provided that the attribute Ser-

viceType is defined for the role “E-Marketing” as in Figure 2,
we first set the value of this attribute to, say, “Update-Info”
only for the users who are responsible for the task. Then
by assigning the access purpose to the “E-Marketing” role
with a condition saying that the user’s value of the attribute
ServiceType must be equal to “Update-Info”, we can autho-
rize the access purpose “Service-Update” only to the users
whom we wish to grant the access purpose.

When authorizing access purposes, one may also need to
consider the states of the system where the authorizations
should become effective (or ineffective). For instance, we
may wish to allow an access purpose to be used by a set of
users only in a specific time interval (e.g., business hours) or
only when the users are logged into specific machines (e.g.,
machine identification number). Thus, the system informa-
tion that affects the access purpose authorizations must be
clearly defined and available to the access control system.
We refer to this system information as system attributes.

Definition 6. (System Attributes) Given a system S , a
set of attributes, denoted by S .Attributes = {S .attr1,. . .,
S .attrn}, is available to the access control system at all
times. The system attributes are defined by system admin-
istrators for the application needs, and the values of the sys-
tem attributes in a system state s, denoted by S(s).Attributes,
specify the environment of the system in the state s. 2

Now we introduce the notion of conditional role which uti-
lizes both the role attributes and the system attributes to
describe a specific set of users in a particular system envi-
ronment.

Definition 7. (Conditional Roles) Let R be the set of roles
defined in the system S . A conditional role cr is defined as
a 2-tuple 〈r, C〉, where r ∈ R and C is a finite propositional
logic formula which may use the logical operators ∧ and ∨.
Each predicate in the formula is of the form x φ y, where
x ∈ r.Attributes or x ∈ S .Attributes, y is a constant, and
φ ∈ {<, ≤, >, ≥, =, 6=}. We say that a user u with the
activated role r belongs to a conditional role cri = 〈ri, Ci〉
in a system state s if and only if the following conditions are
satisfied:

1. r ∈ Descendants(ri)
2. Ci(r, s), which substitutes the variables of Ci with

the values of r(u).Attributes and S(s).Attributes, is
evaluated to true. 2

More specifically, if r = ri and the second condition is
satisfied, we say that u explicitly belongs to cri. On the
other hand, if r ∈ Descendants(ri), but r 6= ri, and the
second condition is satisfied, then we say that u implicitly
belongs to cri.

Example 3. Suppose a conditional role “CanUpdate” is
defined as 〈E-Marketing, (ExpLevel > 5) ∧ (ServiceType =
“Update-Info”)〉.

1. When a user u with ExpLevel = 7 and ServiceType =
“Update-Info” activates the “E-Marketing” role, u ex-
plicitly belongs to the conditional role “CanUpdate”.

2. If the same user u activates the “E-Analysts” role, then
u implicitly belongs to the conditional role “CanUp-
date”.

3. If any other user whose ExpLevel is less than 5 or
ServiceType is not “Update-Info” activates the “E-
Marketing” role (or its two descendant roles), he/she
does not belong to the conditional role “CanUpdate”.

4.2 Access Purpose Authorization and
Verification

As discussed in the previous section, access purposes are
authorized to users through conditional roles. The use of
conditional roles provides great flexibility in that the au-
thorizations are sensitive to both the user profiles and the
system environments. In this section, we formally define the
access purpose authorization and its verification.

Definition 8. (Access Purpose Authorization) Let PT be
a purpose tree, P be the set of purposes in PT , and R be
the set of roles defined in the system S . An access purpose
is authorized to a specific set of users by a 2-tuple 〈ap, cr〉,
where ap ∈ P and cr is a conditional role defined over R
and S . 2

Note that both the access purposes and the conditional
roles are organized in hierarchies. Consequently, an access
purpose authorization has its implications; i.e., authorizing
an access purpose ap for a conditional role cr implies that
the users belonging to cr either explicitly or implicitly are
authorized to access data with ap as well as all the descen-
dants of ap in the purpose tree. The definition of access pur-
pose verification below captures these implications of access
purpose authorizations.

Definition 9. (Access Purpose Verification) Let PT be a
purpose tree and P be the set of purposes defined over PT .
R be the set of roles defined in the system S . Given an
access purpose ap and a role r activated by a user u, ap
is valid for u under r if there exists an access purpose au-
thorization 〈api, crj〉, where api ∈ P and crj = 〈rj , Cj〉
is a conditional role defined over R and S , satisfying the
following two conditions:

1. ap ∈ Descendants(api)
2. The user u belongs to the conditional role crj either

explicitly or implicitly. 2

For example, the access purpose “Service-Update” in the
previous scenario can be assigned to 〈E-Marketing, (Service-
Type = “Update-Info”) ∧ (timeofday ≥ 9) ∧ (timeofday ≤
17)〉, assuming timeofday is defined as a system attribute.
Then only the users who activate the role “E-Marketing” (or
the two descendant roles) with their ServiceType attribute
equal to “Update-Info” can access data with the purpose of
“Service-Update” between 9 am and 5 pm.

5. HIERARCHICAL DATA MODEL AND

INTENDED PURPOSE LABELING
As in [3], our access control model is based on purpose

metadata associated with data objects. That is, every data
object is tagged with intended purpose labels, and the data
access is controlled according to these labels. In this section,
we present a general model for hierarchical data and consider
various key issues on labeling the hierarchical data objects
with intended purposes in the model.

5.1 Hierarchical Data Model
In most practical systems, data elements are organized

in hierarchical structures. In typical file systems the ba-
sic data objects (i.e., files) are organized and stored using
type information (e.g., file extensions) and directory hier-
archies, and in XML data elements are organized in XML

documents which have tree-like data structures. A relational
data model can be considered hierarchical to some extent as
it stores data items in tables which are composed of multiple
columns and rows. We now provide a general hierarchical
data model which can relate to many variations of hierar-
chical data management systems.

Definition 10. (Hierarchical Data Model) A hierarchical
data model H is represented as a 5-tuple 〈T H , OH , IOH ,
SOH , ROH〉, where

1. T H is a set of types.
2. OH is a set of objects.
3. IOH : OH −→ T H is a function that assigns a type to

each object. When IOH(o) = t, we say that the object
o is an instance-of the type t and we write o → t.

4. SOH : OH −→ OH is a function that assigns a parent
to each object. When SOH(o1) = o2, we say that o2

is the parent of o1 and o1 is a subelement-of of o2, and
we write o1 ⇒ o2.

5. ROH is a function, denoted as OH 99K OH , mapping
the reference-of relations between objects.

An auxiliary function, Nodes(H) returns a set containing
all of the types and the objects in H; i.e., Nodes(H) = T H

∪ OH . 2

For example, consider XML. An XML document Oi, which
is an object, is created based on a DTD document (or an
XML schema) Tj , which is a type; i.e., Oi → Tj . Also, an
XML document can contain an element E which consists of
other subelements, say Es and Et, and in this case Es ⇒ E
and Et ⇒ E and we say that E is the parent of Es and Et.
An XML document Oi can also include a links that point to
an external document Oj , and this relation is captured by
the reference-of relations; i.e., Oj 99K Oi.

5.2 Intended Purpose Labeling
One of the main issues on designing a data labeling scheme

is at what level of granularity data should be associated with
labels. In order to optimize the metadata storage space, la-
beling at a coarse granularity seems to be an appropriate
choice. However, a coarse-grained labeling scheme means
that data access will also be controlled at a coarse granular-
ity. This can be highly undesirable in many private or secure
data management systems. Especially in private data man-
agement systems, the granularity of access control models
must be fine as access control decisions are determined based
on privacy requirements and data owner’s privacy prefer-
ences, both of which are typically complex and fine-grained.
Explicitly assigning intended purpose labels to every type
and every object in the system is not an ideal solution either,
as it requires storing a great deal of redundant information
and it increases the burden of the intended purpose label
management. A solution that is both storage-efficient and
fine-grained is to allow explicit intended purpose labeling at
any granularity level and at the same time to make use of
the notion of implicit intended purpose, which is analogous
to the notion of implicit authorization [13]. For instance,
labeling a type with an intended purpose implies that the
intended purpose will apply to all objects that are instances
of the type. Similarly, assigning an intended purpose to an
object implies that the intended purpose will apply to all
the subelements of the object. This concept of implicit in-
tended purpose provides another advantage in that labeling

a type (or an object) will ensure that all the instances of
the type (or all the subelements of the object) will also be
governed by the intended purpose. However, we note that
the implication of intended purposes does not apply to the
reference-of relations. The reason is that the referred ob-
jects are external to the referring objects; i.e., the referred
objects are not part of the referring objects. Thus, they do
not strictly share the same data hierarchy.

Bringing in the notion of implicit intended purpose raises
a problem of possible conflicts. We remind readers that by
our definitions in Section 3, an intended purpose contains
an allowed intended purpose and a prohibited intended pur-
pose, each of which is a set of purposes. As an intended
purpose consists of both positive and negative semantics,
it is possible that intended purposes have conflicts to each
other. For instance, suppose an object O which is explic-
itly labeled with an intended purpose IPO is an instance
of a type T that is labeled with another intended purpose
IPT . Suppose that IPO = 〈Admin, Marketing〉 and IPT =
〈Marketing, Admin〉; i.e., IPO states that O can be accessed
for the “Admin” purpose but cannot be accessed for the
“Marketing” purpose, while IPT states that any instance of
T, including O, can be accessed for the “Marketing” purpose
but cannot be accessed for the “Admin” purpose. These two
intended purposes clearly conflict; e.g., the access to O for
the “Admin purpose” is explicitly allowed by IPO but at
the same time implicitly prohibited by IPT . We address
this issue by introducing two types of intended purposes
in our model: Strong Intended Purpose and Weak Intended
Purpose. A strong intended purpose of a type (or an ob-
ject) cannot be overridden by intended purposes associated
with the instances of the type (or subelements of the ob-
ject) while a weak intended purpose can be overridden. We
believe that our choice of the conflict resolution policy is
very flexible and thus suitable for most private data man-
agement systems where both privacy requirements and user
preferences should be expressed and enforced by the access
control system. In next definition, we formally define the
notion of intended purpose label.

Definition 11. (Intended Purpose Label) Let PT be a pur-
pose tree and P be the set of all purposes in PT . Let IP
be the set of all possible intended purposes defined over P ;
i.e., IP = {〈AIP, PIP〉|AIP ⊆ P , PIP ⊆ P}.

An intended purpose label is a 2-tuple 〈sIP, wIP〉, where
sIP ∈ IP represents a strong intended purpose and wIP ∈
IP a weak intended purpose. An intended purpose label ℓ
= 〈〈sAIP, sPIP〉, 〈wAIP, wPIP〉〉 is said to be well-formed
if the following properties hold:

1. (sAIP↓ − sPIPl) ∩ wPIPl = ∅, that is, purposes al-
lowed by the strong intended purpose cannot be pro-
hibited by the weak intended purpose.

2. sPIPl ∩ (wAIP↓ − wPIPl) = ∅, that is, purposes pro-
hibited by the strong intended purpose cannot be al-
lowed by the weak intended purpose. 2

These two properties ensure consistency(i.e., no conflicts)
in an intended purpose label. In our data labeling model,
any node(either a type and an object) in a data hierarchy
can be associated with a well-formed intended purpose la-
bel. Note that the consistency properties are also enforced
between the intended purpose labels of any two nodes in the
same hierarchy. Now we formally define our data labeling
model.

 �
: types, � : objects, →: instance-of relations, � : subelement-of relations, --> : reference-of relations

 O1

 O3

 O2

<sIPT1, wIPT1>

<sIPT3, wIPT3>

 <sIPO1, wIPO1>

 <sIPT2, wIPT2>

<sIPO3, wIPO3>

 T1

 T3 T2

Figure 3: Data Hierarchy and Intended Purpose La-
bels

Definition 12. (Intended Purpose Labeling) Let PT be a
purpose tree and P be the set of all purposes in PT . Let
IP be the set of all possible intended purposes defined over
P . Let WL(PT) be the set of all well-formed labels in PT .
Let H be a data hierarchy, and Nodes(H) be the set of all
the nodes in H. An intended purpose labeling function, L:
Nodes(H) −→ WL(PT), associates each node in H with a
well-formed intended purpose label. We say that the in-
tended purpose label of a node D ∈ H, L(D) = 〈〈sAIPD,
sPIPD〉, 〈wAIPD, wPIPD〉〉, is consistent with L if for ev-
ery node A ∈ H that is an ancestor of D, the following
properties hold for the intended purpose label of A, L(A) =
〈〈sAIPA, sPIPA〉, 〈wAIPA, wPIPA〉〉:

1. (sAIPA
↓ − sPIPA

↓) ∩ sPIPD
l = ∅, that is, purposes

strongly allowed at a node cannot be strongly prohib-
ited at a descendant node.

2. sPIPA
↓ ∩ (sAIPD

↓ − sPIPD
l) = ∅, that is, purposes

strongly prohibited at a node cannot be strongly al-
lowed at a descendant node. 2

Malformed or inconsistent intended purpose labels should
be prevented by ensuring the properties whenever a new
intended purpose label is introduced to the system or any
existing intended purpose label is modified.

6. INTENDED PURPOSE INFERENCE AND

QUERY COMPLIANCE
In this section we discuss two key issues in access control

based on the intended purpose labels. First, we describe
how the intended purpose of an object is inferred from the
implicit and explicit intended purpose labels. Then we in-
troduce the notion of query compliance, on which our access
control model is based.

6.1 Intended Purpose Inference
As each object is associated with both the explicit in-

tended purpose of the object and all the implicit intended
purposes inherited to the object, the intended purpose that
effectively governs the usage of the object, which we call the
Effective Intended Purpose, should be inferred from both
types of intended purposes. For example, consider the data
hierarchy in Figure 3. The object O1, explicitly labeled with
〈sIPO1, wIPO1〉, also inherits the intended purpose 〈sIPT1,
wIPT1〉 from T1. Similarly, the object O3 inherits the in-
tended purposes from T3, O1 and T1. Note, however, that
O2, which is not labeled, inherits the intended purpose from

Structure IP

1. sAIP: a set of strong allowed intended purposes
2. sPIP: a set of strong prohibited intended purposes
3. wAIP: a set of weak allowed intended purposes
4. wPIP: a set of weak prohibited intended purposes

End;

Function Merge_IPs(IP ip1, IP ip2)
Input: two intended purposes to be merged, ip1 and ip2
Output: the merged intended purpose, which ip2 is merged over ip1;
i.e., ip2 overrides ip1 in case of conflict.

1. if (ip1 is empty) then
2. return ip2;
3. else (if ip2 is empty) then
4. return ip1;
5. else
6. merged = create a new IP;
7. merged.sAIP = (ip1.sAIP)

�
 ∪ (ip2.sAIP)

�
;

8. merged.sPIP = (ip1.sPIP)
�
 ∪ (ip2.sPIP)

�
;

9. merged.wAIP = (ip1.wAIP)
�
 ∪ (ip2.wAIP)

�
;

10. merged.wPIP = ((ip1.wPIP)
�
 − (ip2.wAIP)

�
) ∪ (ip2.wPIP)

�
;

11. return merged;
12. end if;

End;

Function Get_Effective_IP (Object o)
Input: an object o
Output: the effective intended purpose of o

1. if (o.parent is null) then
2. return Merge_IP(o.type.IP, o.IP);
3. else
4. IP temp = Get_Effective_IP(o.parent);
5. temp = Merge_IP(temp, o.type.IP);
6. return Merge_IP(temp, o.IP);
7. end if;

End;

Figure 4: Intended Purpose Inference(IPI) Algo-
rithm

T2, but not from O1 nor T1, as the intended purposes are
not inherited through the reference-of relation. We also note
that in order to correctly override the weak intended pur-
poses, the order of which effective intended purposes are in-
ferred must be top-down. For instance, consider object O1.
The effective intended purpose of O1 is inferred by merging
the intended purpose of O1 over the intended purpose of
T1; i.e., the weak intended purpose of T1 gets overridden by
the intended purpose of O1. The effective intended purpose
of O3 is inferred in a very similar way. First, the effective
intended purpose of O1 is inferred, and then the intended
purpose of T3 is merged over the effective intended purpose
of O1. Let us call this intermediate result EIP′. Then the
effective intended purpose of O3 is inferred by merging the
intended purpose of O3 over EIP′. We provide the pseudo-
code Intended Purpose Inference(IPI) algorithm in Figure 4.
The IPI algorithm recursively applies a derivation process
to determine the effective intended purpose for each data
object. It is easy to see that the IPI algorithm has the com-
putational complexity in O(khn) and the spatial complexity
in O(kn), where k is the maximum height of the data hier-
archy, h is the height of the purpose tree, and n is the total
number of purposes. However, by using techniques such as
pre-computation and bit-encoding as in [3], the complexity
can be dramatically reduced. Next theorem establishes the
correctness of IPI algorithm.

Theorem 1. If all intended purpose labels in the system

are well-formed and consistent, then the effective intended
purposes generated by IPI Algorithm are also well-formed
and consistent. 2

Proof. As the algorithm recursively merges intended pur-
pose labels of types and objects from top to bottom, we only
need to show that the theorem holds with respect to a pro-
cess of merging two intended purpose labels. We prove only
the well-formedness here, as the consistency can be proved
analogously.

As the simplest case, if at least one of the labels is empty2

(i.e., every set in the label is ∅), then the resulting intended
purpose after the merge is well-formed.

Now suppose we have two non-empty labels. To facili-
tate our illustration, let O be an object, which is labeled
with 〈〈sAIPO, sPIPO〉, 〈wAIPO, wPIPO〉〉. Let A be the di-
rect ancestor of O, which is labeled with 〈〈sAIPA, sPIPA〉,
〈wAIPA, wPIPA〉〉. Then the effective intended purpose of
O, EIPO = 〈〈sAIPE, sPIPE〉, 〈wAIPE , wPIPE〉〉 is inferred
by IPI algorithm as 〈〈(sAIPA ∪ sAIPO), (sPIPA ∪ sPIPO)〉,
〈(wAIPA ∪ wAIPO), [(wPIPA − wAIPO) ∪ wPIPO]〉〉, and
EIPO satisfies the following properties.

1. (sAIPE
↓ − sPIPE

l) ∩ wPIPE
l = [(sAIPA

↓ ∪ sAIPO
↓)

− (sPIPA
↓ ∪ sPIPO

l)] ∩ [(wPIPA
l − wAIPO

↓) ∪ wPIPO
l]

= ∅, as the following pairs are disjoint by Definition 11;
(sAIPA

↓, wPIPA
l) and (sAIPO

↓, wPIPO
l).

2. sPIPE
l ∩ (wAIPE

↓ − wPIPE
l) = (sPIPA

l ∪ sPIPO
l) ∩

[(wAIPA
↓ ∪ wAIPO

↓) − ((wPIPA
l − wAIPO

↓) ∪ wPIPO
l)]

= ∅, as the following pairs are disjoint by Definition 11;
(sPIPA

l, (wAIPA
↓ − wPIPA

l)) and (sPIPO
l, (wAIPO

↓ −

wPIPO
l)).

Therefore, EIPO is well-formed by Definition 11.

6.2 Data Query and Query Compliance
Users request an access to data by issuing a query. Query

specifications (i.e., query languages) vary from a system to
another, but how queries are specified is irrelevant to our
discussion. We also do not consider how queries are pro-
cessed in detail; e.g., how the data requested by a query is
located and fetched. Thus, in this paper we consider only
queries of the simplest form. Note that the queries of this
form are very rudimentary, but they are sufficient in the
scope of our discussion.

Definition 13. (Query) Let PT be a purpose tree, P be
the set of purposes in PT . Let o be an object in O and ap
be an access purpose in P . A query Q is a request for a
particular data object o with a particular access purpose ap
and denoted as a 2-tuple 〈o, ap〉. 2

As discussed earlier, users are required to state their ac-
cess purpose along with their data request, and the sys-
tem validates the stated access purpose by ensuring that
the users are indeed allowed for the access purpose. If the
validation fails, the request is rejected without being fur-
ther processed. If the validation succeeds, then the system
fetches the requested data object and checks whether or not

2This is case where a type or an object is not labeled with
an intended purpose. Note that a “empty label” is both
well-formed and consistent according to Definitions 11 and
12.

the access purpose is compliant to the intended purpose of
the data object. Note that intended purposes are inherited
as implicit intended purposes through the instance-of rela-
tions or the subelement-of relations. Thus, in order to deter-
mine whether to grant a data access for a certain access pur-
pose, the system must consider both the intended purpose
explicitly associated with the data object and the implicit
intended purposes inherited to the data object. That is, the
system accepts a query if and only if the access purpose of
the query is compliant to the effective intended purpose of
the requested data object. We capture this concept with
the notion of query compliance, which is an extension of the
access purpose compliance in Section 3.

Definition 14. (Query Compliance) Let PT be a purpose
tree, P be the set of purposes in PT . Let Q = 〈o, ap〉 be a
query accessing an object o in O with the access purpose ap
in P . Let EIPo = 〈sEIPo, wEIPo〉 be the effective intended
purpose of o. Q is said to be compliant to the intended
purpose of o with respect to PT , denoted as Q ⇛PT o, if
and only if one of the following conditions satisfies:

1. ap ⇒PT sEIPo; i.e., the access purpose of the query is
compliant to the strong effective intended purpose of
the data, or

2. ap ⇒PT wEIPo; i.e., the access purpose of the query
is compliant to the weak effective intended purpose of
the data. 2

Only if the access purpose is successfully validated and
the query is compliant to the effective intended purpose of
the requested data object, the query is accepted and the
result is returned to the user.

7. CONCLUSIONS AND FUTURE WORK
In this paper we presented a purpose-based access con-

trol suited for hierarchical data. We also proposed an ef-
ficient method for determining access purposes, which uses
the notions of role attributes and conditional roles, another
original contribution of the paper. Our future work includes
implementing an access control system based on our work
specifically for XML. On the implemented system, perfor-
mance and storage efficiency will be measured and evalu-
ated. We also plan on devising a high level language for
purpose-oriented privacy policy which can be used to auto-
matically manage the intended purposes of data. Compat-
ibility issues with P3P will also be investigated. Another
possible future work is to extend our model to deal with
other elements of privacy such as obligations and complex
conditions. Even though these elements are not trivial to
handle, they are essential part of privacy protection.

8. ACKNOWLEDGEMENT
The work reported in this paper has been partially sup-

ported by NSF under the project “Collaborative Research:
A Comprehensive Policy-Driven Framework for Online Pri-
vacy Protection: Integrating IT, Human, Legal and Eco-
nomic Perspectives”.

9. REFERENCES
[1] Rakesh Agrawal, Jerry Kiernan, Ramakrishman

Srikant, and Yirong Xu. Hippocratic databases. In
The 28th International Conference on Very Large
Databases (VLDB), 2002.

[2] David Bell and Leonard LaPadula. Secure computer
systems: mathematical foundations and model.
Technical report, MITRE Corporation, 1974.

[3] Jiwon Byun, Elisa Bertino, and Ninghui Li.
Purpose-based access control for privacy protection in
relational database systems. Technical Report
2004-52, Purdue University, 2004.

[4] Fang Chen and Ravi Sandhu. Constraints for
role-based access control. In the first ACM Workshop
on Role-based access control, 1996.

[5] Federal Trade Commision. Children’s online privacy
protection act of 1998. Available at
www.cdt.org/legislation/105th/privacy/coppa.html.

[6] Dorothy Denning, Teresa Lunt, Roger Schell, William
Shockley, and Mark Heckman. The seaview security
model. In The IEEE Symposium on Research in
Security and Privacy, 1998.

[7] Cheh Goh and Adrian Baldwin. Towards a more
complete model of role. In The 3rd ACM workshop on
Role-based access control, 1998.

[8] IBM. The Enterprise Privacy Authorization Language
(EPAL). Available at
www.zurich.ibm.com/security/enterprise-privacy/epal.

[9] Arun Kumar, Neeran Karnik, and Girish Chafle.
Context sensitivity in role-based access control. In
ACM SIGOPS Operating Systems Review, July 2002.

[10] Kristen LeFevre, Rakesh Agrawal, Vuk Ercegovac,
Raghu Ramakrishnan, Yirong Xu, and David DeWitt.
Disclosure in hippocratic databases. In The 30th
International Conference on Very Large Databases
(VLDB), August 2004.

[11] United State Department of Health. Health insurance
portability and accountability act of 1996. Available
at www.hep-c-alert.org/links/hippa.html.

[12] United State Department of Justice. The federal
privacy act of 1974. Available at
www.usdoj.gov/foia/privstat.htm.

[13] Fausto Rabitti, Elisa Bertino, Won Kim, and Darrell
Woelk. A model of authorization for next-generation
database systems. In ACM Transactions on Database
Systems (TODS), March 1991.

[14] Ravi Sandhu. Role hierarchies and constraints for
lattice-based access control. In the European
Symposium on Research in Computer Security, 1996.

[15] Ravi Sandhu and Fang Chen. The multilevel relational
data model. In ACM Transaction on Information and
System Security, 1998.

[16] Ravi Sandhu, David Ferraiolo, and Richard Kuhn.
The nist model for role-based access control: Towards
a unified standard. In the fifth ACM workshop on
Role-based access control, 2000.

[17] Ravi Sandhu and Sushil Jajodia. Toward a multilevel
secure relational data model. In ACM International
Conference on Management of Data (SIGMOD), 1991.

[18] World Wide Web Consortium (W3C). Platform for
Privacy Preferences (P3P). Available at
www.w3.org/P3P.

