
A Semantics-Based Approach to Privacy Languages

Ninghui Li∗ Ting Yu† Annie I. Antón‡

Abstract

A key reason for the slow adoption of the Platform for Privacy Preferences (P3P) is the lack of a for-
mal semantics. Without a formal semantics, a P3P policy may be semantically inconsistent and may be
interpreted and represented differently by different user agents. In this paper, we redress these problems
by proposing a relational formal semantics for P3P policies, which precisely models the relationships
between different components of P3P statements (i.e., collected data items, purposes, recipients and re-
tentions) during online information collection. Based on this semantics, we present SemPref, a simple,
efficient and expressive semantics-based preference language. Unlike previously proposed preference
languages, SemPref queries the meaning of a privacy policy rather than its syntactic representation. The
proposed formal semantics and preference language are an important step towards improving P3P, mak-
ing it more comprehensible to enterprises and individual users, and ultimately accelerating the large-scale
adoption of P3P across the Internet.

1 Introduction
Privacy is increasingly a major concern that prevents Internet users from fully enjoying the convenience,
variety and flexibility offered by e-services. Many Internet users tend to avoid websites that ask for personal
information because they fear potential misuses of their private information [12]. Effective protection of
individuals’ privacy is in the best interest of Internet users as well as e-service providers. The W3C’s
Platform for Privacy Preferences Project (P3P) [23] is one major effort to improve today’s online privacy
practices. P3P enables websites to encode their data-collection and data-use practices in a machine-readable
XML format, known as P3P policies [11]. The W3C also has a working draft on APPEL (A P3P Preference
Exchange Language) [20], which allows users to specify their privacy preferences. Ideally, through the use
of P3P and APPEL, a user’s agent should be able to check a website’s privacy policy against the user’s
privacy preferences, and automatically determine when the user’s private information can be disclosed.
In short, P3P and APPEL are designed to enable users to play an active role in controlling their private
information.

After proposed, P3P has received broad attention from both industry and the research community. For
example, according to [13], 21% of the top 100 most visited web sites post or in the process of post P3P
privacy policies. Nevertheless, P3P adoption has been slow to date. Overall, only a small portion of websites
post their P3P policies; according to W3C, as of May 2005, only 445 websites were compliant with the P3P
1.0 specification [24]. A major problem that hinders P3P adoption is that a P3P policy may be interpreted
and represented differently by different user agents. Companies are thus reluctant to provide P3P policies on

∗Department of Computer Sciences and CERIAS (Center for Education and Research in Information Assurance and Security),
Purdue University, ninghui@cs.purdue.edu.

†Computer Science Department, North Carolina State University, yu@csc.ncsu.edu.
‡Computer Science Department, North Carolina State University, anton@csc.ncsu.edu.

1

their websites, fearing that the policies may be misrepresented [10, 22]. Quoting from CitiGroup’s position
paper [22], “The same P3P policy could be represented to users in ways that may be counter to each other
as well as to the intent of the site.” “... This results in legal and media risk for companies implementing P3P
that needs to be addressed and resolved if P3P is to fulfill a very important need.”

APPEL, the preference language documented in a W3C working draft [20], is also plagued with prob-
lems. For example, expressing one’s privacy preferences in APPEL is a highly error-prone process. A
seemingly correct APPEL privacy preference often behaves in a counterintuitive manner. The designers of
APPEL even made mistakes in the APPEL specification [20]. Quoting from the position paper by the Joint
Research Center (JRC) of the European Commission [14], “a preference exchange language is a very nec-
essary part of P3P. However, there are various problems with the preference expression language (APPEL).
Constructing the logic of matching patterns is very complex, and involves various inherent contradictions.”
(In Section 3, we give a detailed analysis of APPEL.)

Recently, work has focused on improving the usability and clarity of P3P and APPEL. Many authors
have expressed various limitations of P3P and APPEL, and have made some suggested improvements, see,
e.g., [3, 14, 15, 16, 21]. Agrawal et al. [3] proposed XPref, an XPath-based P3P preference language, to
remedy APPEL’s ambiguity and expressiveness limitations. Additionally, a variety of privacy policy tools
(e.g., Privacy Bird [5] and JRC P3P Proxy [6]) have been developed, providing user-friendly interfaces
for P3P and APPEL policy design. In [7], P3P designers identify several potential inconsistency problems
within a P3P policy, and propose guidelines to deal with these problems. Also in [7] are some guidelines
for user agents to present privacy policies. However, the previously mentioned problems have only been
alleviated to a limited extent by these solutions.

The fundamental reason underlying the aforementioned technical difficulties is that the need for a se-
mantics was apparently overlooked in the initial design of P3P and APPEL. We recognize the impact of
this claim given that, to the best of our knowledge, there have been no formal semantics to ground P3P
and APPEL. This lack of a formal and precise semantics allows inconsistent P3P policies to be written and
allows inconsistent representations of P3P policies to users because it leaves too much freedom for user
agents to misinterpret P3P policies. design. Similarly, APPEL’s design is purely syntax-based; it is based on
the XML-encoding of information, rather than the information itself. Because P3P allows the same policy
to be encoded differently, a preference specified in APPEL may accept one encoding and reject another. The
XPath-based preference language, XPref [3], has the same problem.

In this paper, we propose a semantics-based approach for analyzing and designing privacy policy and
preference languages. We develop a relational formal semantics for P3P. A P3P policy is essentially a col-
lection of statements, each of which describes the purpose, retention and recipient of a piece of collected
data. However, the current P3P specification is missing a well-defined model of the relationships between
purposes, retentions, recipients and the collected data. Moreover, a P3P statement may be semantically
inconsistent and/or in conflict with other P3P statements in the same policy. Our formal semantics for P3P
transforms each P3P policy into a database that has five relations: data purpose, data recipient, data re-
tention, data collection, and data category. Integrity constraints are introduced to maintain a P3P policy’s
semantic consistency. We observe that a formal semantics by itself does not eliminate the problem of poten-
tial misrepresentation of P3P policies. Standards and guidelines for consistent user interface and vocabulary
representation are also necessary. However, a formal semantics for P3P is a necessary step, without which
there is little hope for completely solving P3P’s misrepresentation and ambiguity problems.

In this paper we also propose SemPref, a semantics-based preference language for P3P. Unlike previ-
ously proposed preference languages, SemPref queries the meaning of a privacy policy (which is represented
as a database) rather than its syntactical representation. As a result, SemPref has a concise and clear syn-

2

Example 1. A P3P Example Statement
<STATEMENT> stmt(
<PURPOSE><admin required="opt-in"/></PURPOSE> purpose: {admin(opt-in)}
<RECIPIENT><public/></RECIPIENT> recipient: {public}
<RETENTION><indefinitely/></RETENTION> retention: {indefinitely}
<DATA-GROUP> data: {#user.home-info.postal}
<DATA ref="#user.home-info.postal"></DATA>)
</DATA-GROUP>
</STATEMENT>

Figure 1: An Example P3P Statement. The XML representation appears on the left side and a more succinct
representation on the right side.

tax, making it much easier to understand. It offers a declarative semantics as well as a simple and efficient
evaluation algorithm.

The remainder of this paper is organized as follows. Section 2 provides an overview of P3P and presents
a formal semantics for it. Section 3 analyzes the pitfalls and limitations of APPEL. Section 4 describes
SemPref, a semantics-based privacy preferences exchange language. The relevant work is discussed in
Section 5. Finally, a summary and our plans for future work appear in Section 6.

2 A Formal Semantics for P3P
Although at first sight P3P appears to be a simple XML-based language, developing a formal semantics
for it is quite challenging. There are often several ways to interpret a particular P3P policy and the P3P
specification does not clearly state which way is the correct one. There are also many ways for a P3P policy
to be semantically inconsistent as we now discuss.

2.1 An Overview of P3P’s Syntax
Each P3P policy is specified by one POLICY element that includes the following major elements.

One ENTITY element: identifies the legal entity making the representation of privacy practices contained
in the policy.
One ACCESS element: indicates whether the site allows users to access the various kinds of information
collected about them.
One DISPUTES-GROUP element: contains one or more DISPUTES elements that describe dispute reso-
lution procedures to be followed when disputes arise about a service’s privacy practices.
Zero or more EXTENSION elements: contain a website’s self-defined extensions to the P3P specification.
One or more STATEMENT elements: describe data collection, use and storage. A STATEMENT element
specifies the data (e.g. user’s name) and the data categories (e.g. user’s demographic data) being collected
by the site, as well as the purposes, recipients and retention of that data.

There are two kinds of P3P statements. The first kind contains the NON-IDENTIFIABLE element,
which is used to indicate that either no information will be collected or information will be anonymized dur-
ing collection. The second kind does not contain the NON-IDENTIFIABLE element; this is the commonly
used one. In this paper, we will focus on the second kind of P3P statements.

Figure 1 gives an example of the second kind of statements. (We also show a more succinct represen-
tation on the right side. Due to space limitation, we will use this succinct representation in the rest of the
paper.) Each such statement contains the following:

3

One PURPOSE element, which describes for which purpose(s) the information will be used. It contains
one or more pre-defined values such as admin, individual-analysis and historical. A purpose value can have
an optional attribute required, which takes one of the following values: ‘opt-in’, ‘opt-out’, and ‘always’.
The value ‘opt-in’ means that data may be used for this purpose only when the user affirmatively requests
this use. The value ‘opt-out’ means that data may be used for this purpose unless the user requests that it
not be used in this way. The value ‘always’ means that users cannot opt-in or opt-out of this use of their
data. Therefore; in terms of strength of data usage, ‘always’ > ‘opt-out’ > ‘opt-in’. In Figure 1, PURPOSE
is opt-in.

One RECIPIENT element, which describes with whom the collected information will be shared. It
contains one or more pre-defined values such as ours, delivery and public. A recipient value can have an
optional attribute required, which is similar to that of a PURPOSE element. In Figure 1, RECIPIENT is
public.

One RETENTION element, which describes for how long the collected information will be kept.
It contains exactly one of the following pre-defined values: no-retention, stated-purpose,
legal-requirement, business-practices and indefinitely. In Figure 1, the RETENTION
value is indefinitely.

One or more DATA-GROUP elements, which specify what information will be collected and used.
Each DATA-GROUP element contains one or more DATA elements. Each DATA element has two at-
tributes. The mandatory attribute ref identifies the data being collected. For example, ‘#user.home-
info.telecom.telephone’ identifies a user’s home telephone number. The optional attribute indicates
whether or not the data collection is optional. A DATA element may also contain a CATEGORIES ele-
ment, which describes the kind of information this data item is, e.g., financial, demographic and health. In
Figure 1, DATA is postal info.

Zero or one CONSEQUENCE element, which contains human-readable contents that can be shown to
users to explain the data usage practice’s ramifications and why the usage is useful.

2.2 Towards a formal semantics of P3P
Clearly, statements comprise the core of a P3P policy, as they specify a website’s data-collection and data-
use practices. They are also the most complicated parts of a P3P policy. In this paper, we limit the scope
of the formal semantics to statements. To develop a formal semantics for P3P statements, we must first
determine the relationships among the four major components (purpose, recipient, retention and data) of a
P3P statement.

In the statement in Figure 1, the three components (purpose, recipient and retention) all refer to the
same data item ‘#user.home-info.postal’; however, for the statement to have a precise meaning, one must
also determine how these components interact. We consider two interpretations. In the first interpretation,
all three components are related, i.e., the purpose, the recipient and the retention are about one data usage. In
Figure 1, the postal information will be used for the administration purpose (technical support of the website
and its computer system), the information will be shared with the public, and it will be stored indefinitely.
This interpretation seems counterintuitive because in the P3P statement there is no need to share the data
with the public for the administration purpose. Furthermore, it is not clear whether this data usage is required
or optional, since the ‘required’ attribute has the ‘opt-in’ value for purpose but the default ‘always’ value
for recipient. The explanation [8] for this statement, provided by one of the P3P architects, is that the data
item ‘#user.home-info.postal’ will always be collected and shared with the public. Additionally, if the user
chooses to opt-in, their postal information will be used for the admin purpose. In other words, whether
the individual’s postal information will be shared with the public does not depend upon whether or not the

4

information is used for the admin purpose.
This leads us to the second interpretation, in which purpose, recipient and retention are considered

orthogonal. In this interpretation, a P3P statement specifies three relations: the purposes for which a data
item will be used, the recipients with whom a data item will be shared, and how long the data item will
be stored. Even though these relations are specified in the same statement, they are not necessarily about a
single data usage. Given this data-centric interpretation, the following three P3P policies will have the same
meaning in the sense that the three relations derived from them are the same.

Example 2. Three P3P policies that have the same meaning.
Policy 1: Policy 2:
stmt(data: {#user.home-info.telecom}, stmt(data: {#user.home-info.telecom,

purpose: {individual-analysis, #user.bdate(optional)},
telemarketing(opt-in)}, purpose: {individual-analysis},

recipient: {ours}, recipient: {ours},
retention: {stated-purpose}) retention: {stated-purpose})

stmt(data: {#user.bdate(optional)}, stmt(data: {#user.home-info.telecom,
purpose: {individual-analysis, #user.bdate(optional)},

telemarketing(opt-in)}, purpose: {telemarketing(opt-in)},
recipient: {ours}, recipient: {ours},
retention: {stated-purpose}) retention: {stated-purpose})

Policy 3:
stmt(data: {#user.home-info.telecom,

#user.bdate(optional)},
purpose: {individual-analysis,

telemarketing(opt-in)},
recipient: {ours},
retention: {stated-purpose})

As we will see in Section 3, the fact that the same meaning may be encoded in several different ways
makes it very difficult to correctly express privacy preferences in a syntax-based preference language such
as APPEL. One representation can be accepted by a preference, but another representation could be rejected
by the same preference. A preference language based on the formal semantics proposed herein will help
ensure the same meaning will always be handled the same way.

We adopt this data-centric interpretation in the rest of this paper for the following reasons. First, this
appears to be the intention of P3P’s designers, as it is consistent with the P3P specification and the expla-
nation we were given [8].1 Second, it is simpler than the first interpretation. It is not clear that end users
can distinguish the differences among the three example policies in Example 2. Third, the size of the repre-
sentation of such a semantics is smaller than one that is usage-centric. We discuss semantics that take other
interpretations in Section 2.6.

In the statements in Example 2, the data item ‘#user.bdate’ is ‘optional’ but the purpose ‘individual-
analysis’ is ‘always’. This seems counterintuitive: if the collection of the data is optional, why is it always
used for a certain purpose? According to Cranor [8], this means that the collection of ‘#user.bdate’ is
optional, i.e, the user can choose not to provide the information. However, once the user provides it, it will
be used for ‘individual analysis’. The user cannot opt out of this purpose. This explanation is consistent
with the data-centric interpretation in which the components are orthogonal. It suggests that data collection
is independent of data usage. In addition to the three dimensions: purpose, recipient, and retention, there is a

1In fact, if the first interpretation is intended, it is more intuitive for the ‘required’ attribute to be associated with the whole
statement rather than with both purpose and recipient.

5

Relation name Field name Domain of the field Key for the relation
d-purpose data URI references to data items (data, purpose)

purpose The P3P-defined purpose values
required {opt-in, opt-out, always}

d-recipient data URI references to data items (data, recipient)
recipient The P3P-defined recipient values
required {opt-in, opt-out, always}

d-retention data URI references to data items (data)
retention The P3P-defined retention values

d-collection data URI references to data items (data)
optional {required, optional}

d-collection data URI references to data items (data, category)
category The P3P-defined category values

Figure 2: The schema for the five relations in the data-centric semantics for P3P.

fourth dimension about whether data collection is required or optional. Therefore, we need a fourth relation
in the P3P semantics to specify this.

In a P3P statement, each DATA element has a set of categories associated with it. Some categories
are implicitly specified by the base P3P data schema whereas some others are specified explicitly in the
statement. We need another (fifth) relation to store the categories with which a data item is associated, as
this is not included in any of the other four relations.

2.3 A data-centric semantics for P3P
We now propose a formal semantics for P3P policies. Recall that a P3P statement determines three relations,
specifying the purpose, recipient, and retention associated with data items. We also need a fourth relation to
specify whether the data collection is required or optional. Finally, we need a relation to store the categories
(i.e., financial, health, demographic, etc.) associated with a data item. Thus, in the semantics, every P3P
policy’s data usage part is mapped onto five relations. (See any standard textbook on databases for an
introduction to relational databases.) The schemas for the five relations are given in Figure 2.

One can consider the semantics of a P3P policy as a database consisting of five tables (the previous
subsection provides the justification and rationale for why we need these five tables). For example, the three
policies in Example 2 all have the same semantics, given by the semantic database in Figure 3. (Note that
The d-category relation is constructed according to the P3P specification, which specifies that one’s tele-
com information belongs to the Physical Contact Information category and one’s date of birth information
belongs to the Demographic and Socioeconomic Data category.)

Given a set of P3P statements, it is straightforward to translate them into the data-centric semantics.
Intuitively, for each data item in a statement, we pair it with each purpose, recipient and the retention in the
statement, then insert the resulting pairs into corresponding relations.

2.4 Potential semantic inconsistencies in P3P policies
In general, any combinations of the values for purpose, recipient and retention are allowed in P3P. How-
ever, in a practical setting, semantic dependencies arise naturally between these values, making some of the
combinations invalid. A P3P policy using invalid combinations is thus semantically inconsistent. This prob-
lem has been recognized [7, 21], and P3P’s designers are beginning to address some of these conflicts [7].

6

d-purpose data purpose required
#user.home-info.telecom individual-analysis required
#user.home-info.telecom telemarketing opt-in
#user.bdate individual-analysis required
#user.bdate telemarketing opt-in

d-recipient data recipient required
#user.home-info.telecom ours required
#user.bdate ours required

d-retention: data retention
#user.home-info.telecom stated-purpose
#user.bdate stated-purpose

d-collection: data optional
#user.home-info.telecom required
#user.bdate optional

d-category: data category
#user.home-info.telecom ‘Physical Contact Information’
#user.bdate ‘Demographic and Socioeconomic’

Figure 3: The semantic database for the three P3P policies in Example 2, which have the same meaning.

Nonetheless, many places where potential conflicts may occur have not been previously identified. We now
identify some additional classes of potential semantic inconsistencies in P3P.

Issue 1. A P3P policy may be inconsistent because multiple retention values apply to one data item.

P3P allows one data item to appear in multiple statements, which introduces a semantic problem. Re-
call that in each P3P statement, only one retention value can be specified, even though multiple purposes
and recipients can be used. The rationale behind this is that retention values are mutually exclusive, i.e.,
two retention values conflict with each other. For instance, no-retention means that “Information is not
retained for more than a brief period of time necessary to make use of it during the course of a single on-
line interaction”[11]. And indefinitely means that “Information is retained for an indeterminate period of
time”[11]. One data item cannot have both retention values. However, allowing one data item to appear in
multiple statements makes it possible for multiple retention values to apply to one data item.

Issue 2. A statement may have conflicting purposes and retention values.

Consider a statement in a P3P policy that collects users’ postal information for the purpose historical
with retention no-retention. Clearly, if the postal information is going to be “... archived or stored for the
purpose of preserving social history ...”, as described by the historical purpose, it will conflict with no-
retention, which requires that the collected information “... MUST NOT be logged, archived or otherwise
stored”[11].

Issue 3. A statement may have conflicting purposes and recipients.

Consider a statement that includes all the purpose values (e.g., history, admin, telemarketing, individual-
analysis, etc.) but only the recipient value delivery (delivery services). This does not make sense as one
would expect that at least ours should be included in the recipients.

Issue 4. A statement may have conflicting purposes and data items.

7

Certain purposes imply the collection and usage of some data items. This has been recognized by the
P3P designers and reflected in the guidelines for designing P3P user agents [7]. For example, suppose a
statement contains purpose contact but does not collect any information from physical or online. Then the
statement is inconsistent because, in order to contact a user, “the initiator of the contact would possess a
data element identifying the individual This would presuppose elements contained by one of the above
categories”[7].

We suggest that all semantic inconsistency instances be identified and specified in the P3P specification.
Completion of this work requires a detailed analysis of the vocabulary, which is beyond the scope of the
current paper; ideally by the individuals who design and use these vocabularies.

2.5 Integrity constraints in the semantics
We handle the aforementioned semantic problems by employing integrity constraints in the semantics. If a
P3P policy is translated into a semantics database that violates these constraints, then this policy is invalid.
Such a set of integrity constraints can benefit both end users and websites. First, policies that are seman-
tically inconsistent can be automatically rejected by user agents. Thus, the design of preference languages
is simplified because we only need to handle semantically consistent policies. Second, a website may also
use integrity constraints to detect semantic inconsistency in their policies and fix them promptly, to avoid
confusing Internet users.

In the formal semantics for P3P, we specify the following classes of integrity constraints:

Data-Centric Constraints. The keys in the relations imply four functional dependency constraints. For
example, in the d-purpose relation, a pair (data item, purpose value) can only have one required value.
This is a reasonable constraint because the three required choices are mutually exclusive. It does not make
sense for the purpose of a data item to be, for example, both opt-in and required. The same constraint is
also applied to the d-recipient relation and d-retention relation. Similarly, a website cannot specify that the
collection of a data item is both optional and required. Therefore, the d-collection relation requires that no
more than one optional value be associated with a data item. These constraints are implied by the definition
of the semantics and do not need to be explicitly specified.

Data Hierarchy Constraints. Data items in P3P are organized into hierarchies. Each data item can be
viewed as a node in a tree. For example, the data item ‘#user.home-info’ is a child node of the data item node
‘#user’, and is the parent node of the three data items: ‘#user.home-info.postal’, ‘#user.home-info.telecom’
and ‘#user.home-info.online’. When a data collection statement refers to a node in the tree, it means all data
in the subtree rooted at the node may be collected.

This introduces the potential for a semantics conflict. For example, if the collection of ‘#user.home-info’
is required, which means that the collection of all data items under ‘#user.home-info’ is required, then it does
not make sense for the collection of ‘#user.home-info.online’ to be optional. However, it may be reasonable
for the collection of ‘#user.home-info’ to be optional, but the collection of ‘#user.home-info.online’ to be
required, which would mean that the collection of ‘#user.home-info.postal’ and ‘#user.home-info.telecom’
are optional.

Based on the above observation, we define the following constraint. For any two tuples
d-purpose(d1, p1, r1) and d-purpose(d2, p2, r2), if d1 is more specific than d2 and p1 = p2, then r1 ≥ r2.
(‘always’ > ‘opt-out’ > ‘opt-in’). Similar constraints apply to the d-recipient relation and the d-collection
relation.

The data hierarchy constraint for the d-retention relation is as follows. For any two tuples
d-retention(d1, r1) and d-retention(d2, r2), if d1 is more specific than d2, then r1 ≥ r2 (‘indefinitely’

8

> ‘business-practices’, ‘legal-requirement’, ‘stated-purpose’ > ‘no-retention’; the middle three values are
incomparable).

Semantic Vocabulary Constraints. As discussed in Section 2.4, many contradictions may arise if we
carefully examine the semantics of P3P’s pre-defined values. These can be specified as integrity constraints.
For example, we may use the following integrity constraints to address some of the semantic inconsistencies
among purposes, recipients and retentions.

Constraint 1. If a data item is collected for the purpose historical, then its retention cannot be
no-retention.
∀p ∈ d-purpose ¬∃r ∈ d-retention, p.data = r.data ∧ p.purpose = historical ∧ r.retention =
no− retention

Constraint 2. If a data item is shared with public fora, then its retention should be indefinitely.
(From [11].)
∀s ∈ d-recipient r ∈ d-retention, (s.data = r.data ∧ s.recipient = public) → r.retention =
indefinitely

Identifying all the constraints to handle all such inconsistencies is beyond the scope of this paper, but
these examples demonstrate the need for individuals who design these vocabularies to conduct a detailed
analysis.

2.6 Discussion
Because of the lack of clear specification, we have to make some judgment calls in defining a formal se-
mantics for P3P. We make these decisions based on the information we obtained from P3P architects and
the rationales for these decisions are documented in this paper.

The proposed semantics takes a strong step in the formal study of online privacy policies; however,
it is not intended to be the only interpretation of P3P to be accepted by everybody. Rather, we view the
proposed semantics as a starting point for a standard semantics for P3P. We now explore alternative designs
and related issues.
Alternative Semantics for P3P. As mentioned in Section 2.2, other alternative semantics certainly ex-
ist. For example, instead of a data-centric semantics, one can also design a purpose-centric semantics [1],
where a data item along with a purpose determines other elements (i.e., recipients and retention) in a P3P
statement. Similar to the data-centric semantics, a purpose-centric semantics may be modeled as two re-
lations dp-recipient(data, purpose, recipient) and dp-retention(data, purpose, retention), where data
and purpose form a primary key for both relations. Integrity constraints can be defined accordingly.2

The rationale of this purpose-centric semantics is obvious. In practice, certain data are sometimes used
for multiple purposes. Depending on the specific purposes, the data may be shared by different parties
and may be kept for different periods of time. In some sense, the purpose-centric semantics represents a
fine-grained interpretation of P3P whereas the data-centric semantics is relatively coarse-grained. The two
semantics reflect a tradeoff between expressiveness and ease of management. We choose the data-centric
semantics due to its simplicity. Further a coarse-grained semantics enables users to act more conservatively

2In fact, as shown in section 2.2, some tricky issues may arise when one tries to handle the required attribute of purposes and
recipients. Thus, more integrity constraints may need to be introduced. A detailed discussion about this topic is outside the scope
of this paper.

9

when disclosing information to a website, without worrying about complex relationships between the major
components of P3P statements.

Vocabulary Issues. Besides providing a set of pre-defined values, P3P also allows websites to define their
own data schemas and categories, so that privacy policies can be better tailored to fit specific applications.
However, Internet users and websites often interact from different domains. They may not have any pre-
existing knowledge about each other. We currently lack a mechanism that allows two parties to dynamically
agree on a common vocabulary for the data schema and category definitions. Without such a mechanism,
websites’ self-defined data schemas will not be understood by user agents. In order to protect their privacy,
users may have to reject any policies involving non-standard data schemas, or design very complex rules,
hoping to cover all possible self-defined data schemas from a website.

3 An Analysis of APPEL
P3P enables websites to express their privacy policies. To support users, the creators of P3P designed
APPEL (A P3P Preference Exchange Language) [20]. APPEL allows users to specify privacy preference
rules, termed rulesets. The ruleset can then be used by the user agent to make automated or semi-automated
decisions regarding whether a P3P enabled website’s policies are acceptable to the user. A main design goal
of APPEL is to allow users to import preference rulesets created by other parties and to transport their own
ruleset files between multiple user agents.

Many authors have noted that APPEL is complex and problematic [3, 14, 15, 25]. In this section, we
analyze APPEL’s pitfalls and the rationales for some of the design decisions embedded in APPEL. The main
objective for our analysis is to ensure we design a preference language that avoids the APPEL’s pitfalls but
preserves the desirable functionalities in APPEL.

3.1 An overview of APPEL
Privacy preferences are expressed as a ruleset in APPEL. A ruleset is an ordered set of rules. An APPEL
evaluator evaluates a ruleset against a P3P policy.3 A rule includes the following two parts:

• A behavior, which specifies the action to be taken if the rule fires. It can be request, implying that a
P3P policy conforms to preferences specified in the rule body and should be accepted. We call this
an accept rule. It can be block, implying that a P3P policy violates the user’s privacy preferences and
should be rejected. We call this a reject rule. It can also be limit, which can be interpreted as accept
with warning.

• A number of expressions, which follow the XML structure in P3P policies. An expression may contain
subexpressions. An expression is evaluated to TRUE or FALSE by matching (recursively) against a
target XML element. A rule fires if the expressions in the rule evaluate to TRUE.

Every APPEL expression has a connective attribute that defines the logical operators between its subex-
pressions and subelements of the target XML element to be matched against. A connective can be: or,
and, non-or, non-and, or-exact and and-exact. The default connective is and, which means that all subex-
pressions must match against some subelements in the target XML element, but the target element may
contain subelements that do not match any subexpression. The connective and-exact further requires that

3The APPEL specification allows arbitrary XML elements not related to P3P to be included together with the P3P policy for
evaluation. Since the users may not even know about them, it is not clear how they write preferences dealing with them. In this
paper, we assume that only a P3P policy is evaluated against a ruleset.

10

any subelement in the target match one subexpression. The or connective means that at least one subexpres-
sion matches a subelement of the target. The or-exact connective further requires that all subelements in the
target matches some subexpressions.

When evaluating a ruleset against a P3P policy, each rule in a ruleset is evaluated in the order in which
it appears. Once a rule evaluates to true, the corresponding behavior is returned.

The following subsections examine the pitfalls and limitations of APPEL.

3.2 Semantic inconsistencies of APPEL
Because of APPEL’s syntax-based design, two P3P policies that have the same semantic meanings but are
expressed in syntactically different ways may be treated differently by one APPEL ruleset. This deficiency
in APPEL has been identified before [16]. We now show an example APPEL rule.

01 <appel:RULE behavior="block">
02 <p3p:POLICY>
03 <p3p:STATEMENT>
04 <p3p:DATA-GROUP>
05 <p3p:DATA ref=
06 "#user.home-info.telecom"/>
07 <p3p:DATA ref="#user.bdate"/>
08 </p3p:DATA-GROUP>
09 </p3p:STATEMENT>
10 </p3p:POLICY>
11 </appel:RULE>

This is a reject rule, since the behavior (on line 1) is “block”. The body of this rule has one expression
(lines 2-10) for matching a P3P policy. This expression contains one subexpression (lines 3-9), which
in turns contain one subexpression (lines 4-8). The outmost expression (lines 2-10) uses the default and
directive; therefore, it matches a P3P policy only if the policy contains at least one statement that matches
the enclosed expression (lines 3-9). Overall, this APPEL rule says that a P3P policy will be rejected if
it contains a STATEMENT element that mentions both the user’s birthday and the user’s home telephone
number.

This rule rejects Policies 1 and 2 in Example 3, but not Policy 3. In Policy 3, the two data items are
mentioned in different statements and no statement mentions both data items. This is clearly undesirable, as
the three statements have the same semantics. This problem is a direct consequence of that fact that APPEL
is designed to query the representation of a P3P policy, rather the semantics of the policy.

The same problem exists in XPref [3], since it is also syntax-based.

3.3 The subtlety of APPEL’s connectives
The meaning of an APPEL rule depends very much on the connective used in the expressions. However, the
connectives are difficult to understand and use. The APPEL designers made mistakes using them in the first
example in the APPEL specification [20]. Consider the following example taken from [20].

Example 3. The user does not mind revealing click-stream and user agent information to sites that collect
no other information. However, she insists that the service provides some form of assurance.

The APPEL rule used in [20] for the above example is as follows:

11

01 <appel:RULE behavior="request"
02 description="clickstream okay">
03 <p3p:POLICY>
04 <p3p:STATEMENT>
05 <p3p:DATA-GROUP
06 appel:connective="or-exact">
07 <p3p:DATA
08 ref="#dynamic.http.useragent"/>
09 <p3p:DATA
10 ref="#dynamic.clickstream.server"/>
11 </p3p:DATA-GROUP>
12 </p3p:STATEMENT>
13 <p3p:DISPUTES-GROUP>
14 <p3p:DISPUTES service="*"/>
15 </p3p:DISPUTES-GROUP>
16 </p3p:POLICY>
17 </appel:RULE>

The above APPEL rule is an accept rule; its body has one outmost expression (lines 3-16) to match
a P3P policy. The expression contains two subexpressions, matching different elements in a policy. The
expression denoted by the p3p:POLICY element (lines 3–16) does not have the ‘connective’ attribute;
therefore, the default and connective is used, which means that as long as the two included expressions,
i.e., p3p:STATEMENT (lines 4-12) and p3p:DISPUTES-GROUP (lines 13-15), match some parts in the
P3P policy, the rule accepts the policy. The expression denoted by p3p:DATA-GROUP uses the or-exact
connective, it matches a DATA-GROUP element if the DATA elements contained in the element is a non-
empty subset of {#dynamic.http.useragent, #dynamic.clickstream.server}.

Overall, this rule means that a P3P policy will be accepted if it contains a STATEMENT element that
mentions only the two specified data items and a DISPUTES-GROUP element.

Observe that this rule does not express the preference, as it does not take into consideration the
fact that a P3P policy can have multiple statements. Subsequently, a policy that only mentions “#dy-
namic.http.useragent” in the first statement can be accepted by the rule, even if the next statement collects
and uses other user data.

One may try to fix this problem by using the and-exact connective on line 2, which means that each
element contained in the P3P policy must match one of the expressions within the APPEL rule. For such
a rule to work as intended, the p3p:POLICY expression (lines 3–16) must contain two additional sub-
expressions: p3p:ENTITY and p3p:ACCESS. Otherwise, no P3P policy will be accepted because of the
existence of ENTITY and ACCESS elements. However, this fix still does not work. A P3P policy may op-
tionally contain an EXTENSION element. Even when such a policy collects only ‘#dynamic.http.useragent’
and ‘#dynamic.clickstream.server’, it will not be accepted by the above rule, due to the semantics of and-
exact. On the other hand, including a sub-expression p3p:EXTENTION cannot fix the problem, as a policy
without extensions will not be accepted in this case.

Another approach to fix the problem is to use the or-exact connective on line 3 and to include subexpres-
sions for p3p:ENTITY, p3p:ACCESS and p3p:EXTENSION. Recall that the or-exact connective means
that all elements in the policy must match some subexpressions, but not every subexpression is required to
match some element in the policy. However, this means that the p3p:DISPUTES-GROUP element also
becomes optional. A P3P policy that does not have the DISPUTES-GROUP element will also be accepted.
This is not the preference described in Example 3.

12

In fact, as far as we can see, there is no way to correctly specify the preference in Example 3 in APPEL.
One source of difficulty is that one has to intermingle statements and other aspects (e.g., dispute procedures)
of a P3P policy in a preference rule. This is caused by APPEL’s syntactic nature and the fact that statements
and dispute procedures are all immediate children of a POLICY element. If conditions about data usages
and other aspects of P3P policies may be specified separately, it is possible to specify the conditions on data
usage in Example 3 using the or-exact connective.

3.4 The subtlety of accept and reject
APPEL uses both accept and reject rules. This means that one preference rule does not need to completely
decide whether to accept or reject a policy. Unfortunately, this introduces another level of subtlety into
APPEL. Consider the following example, which was used by Agrawal et al. [3] to illustrate the limitation of
APPEL:

Example 4. Only the purposes current and pseudo-analysis are acceptable.

There are three ways to interpret the above preference. Let us classify P3P policies into two classes. Class
one contains all policies in which the only purposes mentioned are a subset of {‘current’, ‘pseudo-analysis’}.
Class two contains all other policies. The three possible interpretations are:

1. Class two policies should be rejected. Class one policies may or may not be accepted, depending on
other rules.

2. Class one policies should be accepted. Class two policies may or may not be rejected, depending on
other rules.

3. Class one policies should be accepted, and class two policies should be rejected.

The three interpretations are different. From the wording of the preference, interpretation 1 seems to be
the correct interpretation. Agrawal et al. [3] did not differentiate the three interpretations. They started by
implementing interpretation 2 and discussed two approaches and the reasons why they did not work. The
first approach is to use the default and connective in the p3p:POLICY element, which accept policies that
it should not. The second approach is to use the and-exact connective, which rejects good policies. The
reasons why these two approaches fail are similar to the example discussed in Section 3.3.

Additionally, Agrawal et al. did not discuss the approach of using the or-exact connective, which would
correctly express interpretation 2 of the preference. Instead, they concluded that one must specify pref-
erences using reject rules and switched to implement interpretation 1. Because one can only specify what
occurs in an expression, one has to explicitly list all the purposes other than current and pseudo-analysis in a
reject rule. They pointed out that such an approach is verbose and hard to understand, and more importantly,
this approach is not robust since websites may use extensions to define additional purposes.

4 SemPref: A Semantics-Based Privacy Preference Language
In this section, we present SemPref, a semantics-based privacy preference language that seeks to avoid
APPEL’s pitfalls. To accomplish this, we must first understand where those pitfalls originate. Although
many authors agree that APPEL is complex and problematic [3, 14, 15, 25], most authors have not analyzed
the reasons for these problems. We argue that the problems with APPEL come directly from its syntax-based
design. It is designed to match the XML representation of a P3P policy, rather than the underlying meaning
of a P3P policy.

13

It is fundamentally more difficult to express privacy preferences in a syntax-based preference language
compared with doing so in a semantics-based language. To express one’s preferences, one starts by thinking
about meanings of what policies should be accepted or rejected. Using a syntax-based language, one also
needs to think about how these meanings may be encoded syntactically in P3P and try to cover all the
possible representations of the same meaning.

4.1 Design Desiderata
Before presenting SemPref, we first provide a set of desiderata for designing SemPref.

Semantic consistency. Given any preference encoded in the preference language, two P3P policies that
have the same semantic meaning should have the same result. Syntax-based languages such as APPEL
and XPref violate this requirement.

Efficient evaluation. Evaluating a preference against a P3P policy should be efficient, i.e., worst-case time
complexity is low-degree polynomial in the size of the P3P policy and the preference ruleset.

Declarative semantics. In addition to algorithms for checking a preference ruleset against a P3P policy,
there should also be a declarative semantics defining those P3P policies that are accepted or rejected
by a preference ruleset.

Ease of use. It should be relatively easy for end users to specify preference rules and understand them.
APPEL has been shown to be very hard to use [3, 14, 15, 16]; and XPref requires first learning
another language, XPath, a complex language that is the subject of many books.

Expressive power. Common preferences should be expressible in the language.
Support for partial specification of preferences. The preference language should allow a policy to be nei-

ther accepted nor rejected. This is one of the design decisions made in APPEL. The motivation is as
follows. Because of the large number of possible combinations, it is very difficult (if not impossible)
to create a complete specification covering all possible cases. If a user is required to come up with
a complete specification before starting to use the tool, then the adoption will be very difficult. On
the other hand, if a user can start by specifying some data usage practices to be acceptable and others
to be unacceptable, and defer the decision about other cases to the time of accessing websites using
those policies, the adoption will be much easier.

Some of the above considerations are unavoidably subjective, e.g., ease of use. Some considerations are
mutually conflicting, e.g., there is always a tradeoff between expressive power and ease of use.

4.2 SemPref: Syntax, Semantics, and Examples
The BNF syntax of SemPref is provided in Figure 4. There are two kinds of rules in SemPref: accept rules
and reject rules. Each rule has a body, which is a list of constraints. Each constraint consists of zero or
more predicates; specify conditions on data, purpose, recipient, etc. We note that he above syntax is used
in this paper for conciseness and ease of presentation. It can be equivalently encoded by using standards
such as XML. To understand the semantics of SemPref, it helps to consider the relation data-usage that
has eight fields: data, data-category, collection, purpose, purpose-required, recipient, recipient-required and
retention. Each P3P policy P defines the table data-usage(P) in this relation. The table data-usage(P) can
be obtained by doing a natural join across the five tables in the P3P semantics.

Given a constraint, a tuple of data-usage either satisfies it or does not. The relationship
among multiple predicates in a constraint is logical AND. For example, given the constraint [

14

〈list of X〉 ::= 〈X〉 | 〈X〉 〈list of X〉 (1)
〈set of X〉 ::= “{” 〈list of X〉 “}” (2)
〈ruleset〉 ::= 〈list of rule〉 (3)
〈rule〉 ::= 〈accept-rule〉 | 〈reject-rule〉 (4)

〈accept-rule〉 ::= “accept” “:” 〈list of constraint〉 “;” (5)
〈reject-rule〉 ::= “reject” “:” 〈list of constraint〉 “;” (6)
〈constraint〉 ::= “[” [〈data-pred〉 | 〈category-pred〉] [〈collection-pred〉] [〈purpose-pred〉]

[〈pr-pred〉] [〈recipient-pred〉] [〈rr-pred〉] [〈retention-pred〉] “]” (7)
〈data-pred〉 ::= “(” “data” (“∈” | “6∈”) 〈set of data-value〉 “)” (8)

〈collection-pred〉 ::= “(” (“collection = optional” | “data-optional = required”) “)” (9)
〈category-pred〉 ::= “(” “category” (“∈” | “ 6∈”) 〈set of category-value〉 “)” (10)
〈purpose-pred〉 ::= “(” “purpose” (“∈” | “6∈”) 〈set of purpose-value〉 “)” (11)

〈pr-pred〉 ::= “(” “purpose-required” (“∈” | “6∈”) 〈subset of {opt-in opt-out, always}〉 “)” (12)
〈recipient-pred〉 ::= “(” “recipient” (“∈” | “6∈”) 〈set of recipient-value〉 “)” (13)

〈rr-pred〉 ::= “(” “recipient-required” (“∈” | “6∈”) 〈subset of {opt-in, opt-out, always}〉 “)” (14)
〈retention-pred〉 ::= “(” “required” (“∈” | “6∈”) 〈set of retention-value〉 “)” (15)

Figure 4: Syntax of SemPref in BNF. Symbols inside quotation are terminals. Elements inside square
brackets ([]) are optional. The first two definitions, 〈list of X〉 and 〈set of X〉, are macros.

(data ∈ {user.bdate}) (purpose ∈ {individual-analysis})], which contains two
predicates, a tuple of data-usage satisfies it if its data field is user.bdate and its purpose field is
individual-analysis. An empty constraint is viewed as the constant “true”; every tuple satisfies
it.

A constraint C thus also defines a table of the data-usage relation, denoted by data-usage(C), by
selecting all the tuples that satisfy the predicate from the universal table of the data-usage relation. The
universal table contains all the possible tuples for the data-usage relation, e.g., with all data items, purpose
values, recipient values, etc.

An accept rule with C1, C2, · · · , Ck in its body means that a policy P is accepted by the rule if and only
if:

data-usage(P) ⊆
k⋃

i=1

data-usage(Ci) (1)

In other words, the rule-body, C1, C2, · · · , Ck, also defines a table of the data-usage relation, given by
data-usage(C1)∪· · ·∪data-usage(Ck). (Therefore, the relationship between the constraints C1, C2, · · · , Ck

is logical OR.) A policy is accepted by an accept rule if and only if the data-usage table specified by the
policy is contained in the table given by the rule-body.

Each accept rule defines a maximal acceptable set of data-collection and data-use practices. Multiple
accept rules in one ruleset defines multiple maximal acceptable sets. Consider the following two accept
rules, each having a single constraint in its body:

accept : [(data ∈ {user.bdate})];
accept : [(data ∈ {user.home-info})];

These two rules say that collecting and using only the user’s birthday is acceptable, collecting and using
only the user’s home-info is also acceptable, but these two rules do not accept a policy that collects both

15

information items. Such a policy will be accepted by the following accept rule, provided that the policy does
not collect other information.
accept : [(data ∈ {user.bdate})]

[(data ∈ {user.home-info})];

Another way to understand the behavior of an accept rule is as follows: a policy P is accepted if every
tuple in data-usage(P) satisfies at least one constraint (i.e., satisfying all the predicates in the clause) in the
body of the rule.

A reject rule having C1, C2, · · · , Ck in its body means that a P3P policy P is rejected if and only if

data-usage(P) ∩
(

k⋃

i=1

data-usage(Ci)

)
6= ∅ (2)

In other words, a policy P is rejected if data-usage(P) overlaps with the data-usage table specified by the
rule-body. Thus, the body of a reject rule defines a set of data usages that are considered unacceptable.

Another way to understand the behavior of a reject rule is as follows: a policy P is rejected if any tuple
in data-usage(P) satisfies at least one constraint in the rule-body. Multiple reject rules can be merged into
one by combining all the constraints into one rule body.

We now use the following examples to illustrate how to express preference rules in SemPref.

Example 5. A user’s preferences are as follows:
1. Policies that collect only click-stream and user agent information are acceptable. (From [20])

accept :
[(data∈{#dynamic.http.useragent,

#dynamic.clickstream.server})];
2. The purposes current and pseudo-analysis are acceptable. The purpose individual-analysis is also

acceptable, as long as the recipient is ours. (From [3])
accept :
[(purpose ∈{current,pseudo-analysis})]
[(purpose ∈ {individual-analysis})
(recipient ∈ {ours})];

This rule contains two constraints, defining two maximal acceptable sets.
3. Reject policies that give out personal information to third parties, but only when the collection of such

information is required or the data sharing is always.
reject :
[(data-category∈{physical,

demographic,uniqueid})
(collection = required)
(recipient 6∈ {ours})]
[(data-category∈{physical,

demographic,uniqueid})
(recipient 6∈ {ours})
(recipient-required ∈ {always}];

This rule contains two constraints, describing two kinds of data usage that should be rejected.
4. Rejects if the P3P policy includes contact or telemarketing purposes unless those purposes are opt-in.

reject :
[(purpose∈{contact,telemarketing})
(purpose-optional∈{opt-out,always})];

16

4.3 Dealing with conflicts
When a ruleset has both accept rules and reject rules, conflict may arise. A policy may be accepted by one
rule but rejected by another rule. APPEL uses ordered rules to resolve conflicts. When two rules are in
conflict, the earlier one overrides the latter one. As a result, the semantics of one rule cannot be completely
determined without looking at earlier rules and understanding how they interact. This also makes it very
difficult to import preferences from more than one source (which was one of APPEL’s original objectives).
When one combines two preference rulesets sequentially, the semantic of the second one is completely
changed. Other researchers also question the adequacy of using ordered rules for preferences [25].

Our proposed approach for dealing with conflicts is to detect conflicts, inform users about those conflicts,
help users rewrite rules to avoid conflicts, but allow conflicting rules to exist in one ruleset if the user chooses
to do so. In this way, a ruleset partitions the P3P policy space into four sub-spaces: accepted, rejected, both
accepted and rejected, and neither accepted nor rejected. A user may specify how the latter two cases should
be handled. An obvious choice is to have a default action. For example, whenever a policy is not explicitly
accepted by a ruleset, the user agent should reject it by default. On the other hand, a user may specify to be
prompted to make a case-by-case decision for the latter two situations. When a policy is both accepted and
rejected, the user may be given the opportunity to make a more permanent decision by revising the rules.

Tools for authoring preferences should perform a check to determine whether inconsistencies exist, and
ask the user to revise preferences until the ruleset is consistent. In SemPref, an accept rule conflicts with a
reject rule if there exists a tuple of data-usage that could satisfy one constraint in the former rule and one
constraint in the latter rule. It is straightforward to check whether two constraints can both be satisfied.

Consider a ruleset consisting of the four rules in Example 5; 1 and 2 are accept rules; 3 and
4 are reject rules. Rule 3 does not conflict with rule 1, because it is impossible to satisfy both
(data ∈ {#dynamic.http.useragent, #dynamic.clickstream.server}) and
(data-category ∈ {physical, demographic, uniqueid}). However, rule 3 conflicts with
rule 2.

If one decides that rule 2 should override rule 3, one can revise rule 3 into the following:
reject :
[(data-category∈{physical,

demographic,uniqueid})
(collection = required)
(purpose 6∈ {current, pseudo-analysis,

individual-analysis})
(recipient 6∈ {ours})]
[(data-category∈{physical,

demographic,uniqueid})
(purpose 6∈ {current, pseudo-analysis,

individual-analysis})
(recipient 6∈ {ours})
(recipient-required ∈ {always}];

Knowing which way the user wants to resolve the conflict, a tool may, in many cases, be able to generate
candidate changes and ask the user to select from them. The simple structure of SemPref makes this possible.
The details of such algorithms are beyond the scope of the current paper.

4.4 Evaluation algorithms for SemPref
Given a ruleset in SemPref and a P3P policy, the evaluation procedure is to evaluate each rule against the
policy one by one. In Figure 5, we describe the algorithms for checking an accept rule against a policy as

17

01 // takes two parameters: the body of the accept rule and the policy.
02 check-accept(rule-body, policy)
03 foreach tuple t in data-usage (policy)
04 pass = no;
05 foreach constraint c in rule-body
06 if t is subsumed by c then pass = yes;
07 if (pass == no) then return no; // don’t accept
08 return yes; // accept
09
10 // takes two parameters: the body of the reject rule and the policy.
11 check-reject(rule-body, policy)
12 foreach tuple t in data-usage (policy)
13 foreach constraint c in rule-body
14 if (t ∧ c) is satisfiable // reject even if t is not subsumed to c
15 then return yes; // reject
16 return no; // don’t reject

Figure 5: Evaluation algorithms for SemPref. Note the difference between line 6 and line 14. For accept,
the policy should be fully contained in the rule-body. For reject, the policy should not overlap with the
rule-body.

well as for checking a reject rule.
The algorithms in Figure 5 involve checking whether a data-usage tuple is subsumed by a constraint

and whether the conjunction of a data-usage tuple and a constraint is satisfiable. Observe that a data-usage
tuple can be translated into a constraint in a straightforward manner. Further observe that such checking can
be performed in linear time, because the kinds of predicates involved are very simple.

The size of data-usage(P) is linear in the size of the P3P policy, assuming that total number of recipient
values is a constant (P3P has 6 recipient values) and the number of categories associated with any data
item is bounded by a constant. Furthermore, the algorithms in Figure 5 have worst-case time complexity
O(MN), where M is the size of data-usage(P) and N is the size of the ruleset. Therefore, evaluating a
SemPref ruleset against a P3P policy is fairly efficient.

4.5 Analysis of SemPref
The most important strengths of SemPref are its semantics-based design and its simplicity. We now evaluate
SemPref with respect to the desiderata presented in Section 4.1.

1. SemPref is semantically consistent; this follows straightforwardly from its semantics-based design.

2. Evaluation of SemPref is efficient; it takes time worst-case O(MN), where M is the size of the P3P
policy and N is the size of the preference ruleset.

3. SemPref has a simple, declarative semantics, given by equations 1 and 2. A user only needs to specify
what constraints a preference should have, instead of how to evaluate those constraints for a given
policy.

4. Compared with APPEL and XPref, SemPref is much easier to learn and understand. The semantics-
based design of SemPref avoids arcane connectives in APPEL and the learning of another nontrivial
language (XPath) in the case of XPref. In addition, SemPref rules are highly structured. Each Sem-
Pref rule has zero or more constraints, and each constraint has zero or more predicates. Inputting a

18

predicate amounts to input three values, i.e., the field name, the predicate, and a value set. Thus it is
straightforward to build a simple GUI for authoring them.

5. SemPref can express most preferences in [20] and [3]. Since SemPref deals only with data collection
and data usage information that are encoded in STATEMENT elements in P3P policies, one cannot use
SemPref to express preferences involving constraints on things such as dispute resolution procedures,
which are not encoded in STATEMENT elements. The only examples in [3, 20] that SemPref cannot
express are of this kind. It is straightforward to extend SemPref to express constraints involving such
information. For example, the preference in Example 3, which cannot be expressed in APPEL, can be
expressed in the following extension of SemPref.
accept :
[(data∈{#dynamic.http.useragent,

#dynamic.clickstream.server})
(disputes-type 6∈ {no-resolution})];

We omit further discussion of such extensions due to space limitation.

6. SemPref supports both accept and reject rule; in addition, it uses a simple conflict resolution mecha-
nism, avoiding complicated interactions among different rules.

Given that our semantics for P3P uses a relational database, a natural preference language would be
based on a subset of SQL. We did not take this approach for the following reasons. First, writing simple
preferences in SQL uses a nontrivial subset of SQL. Although expressing a reject rule in SQL is relatively
straightforward, expressing an accept rule needs to check the containment of two tables, which is not a basic
SQL query. Second, the SemPref evaluation algorithms are simpler, making it possible to have a small and
efficient user agent. In general, one can view SemPref as a macro language for writing database queries.
Because it is targeted to databases having a specific schema and a specific class of queries, it can be made
simpler and more accessible than a general language such as SQL. If in the future it is desirable to make the
preference language more expressive, it may be worthwhile to investigate whether a subset of SQL should
be used.

5 Related Work
A detailed description of P3P and APPEL can be found at [9, 11, 20]. Several APPEL implementations
have been developed, including Privacy Bird from AT&T Labs-Research [5], which can be integrated into
users’ web browsers, and a java-based implementation from JRC [6, 16]. Agrawal et al. [2] designed a
server-centric architecture for P3P, where user privacy preferences are matched with websites’ P3P policies
at the server side. In this architecture, privacy policies are stored in a relational database, and users’ APPEL
preferences are translated into SQL queries. Though database techniques are used for privacy preference
matching, this approach is still syntax based. Relational databases are only used as a means for storing the
XML representation of policies, and preference matching is still done by matching the representation of
policies. No formal semantics is defined for P3P in [2].

Many researchers have noted the limitations of P3P and APPEL [14, 15, 3, 21, 25]. Hogben [14, 15]
identified the limitations of P3P in terms of cookie management, user interfaces and vocabularies. The am-
biguity and awkwardness of APPEL was also pointed out in [14, 15]. Hogben suggested investigating XPath
as an alternative preference language. Schunter et al. [21] also showed the ambiguity of P3P and argued
that the current P3P specification lacks a clear guideline for policy design and interpretation. Suggested
solutions included augmented consent models, more specific element definitions and a simplified syntax.

19

Our work extends previous work by showing that the lack of a clear formal semantics is the fundamental
reason for a variety of problems in P3P and APPEL.

Agrawal et al. [3] showed the limitations of APPEL with a series of plausible examples. They then
proposed an XPath-based privacy preference language, XPref. XPref only uses a small subset of the XPath
specification. Therefore, it can be efficiently evaluated. Meanwhile, XPref has many advantages over AP-
PEL in terms of clarity, ease of use and expressiveness. On the other hand, XPref is still a syntax-based
preference language and, thus, cannot overcome APPEL’s problems completely. The work reported in this
paper is in part inspired by the analysis of APPEL in [3].

As evidenced by the recent JetBlue Airways case, it is becoming increasing important for enterprises
to effectively enforce their privacy policies in addition to simply specifying them. In [1], Agrawal et al.
proposed a set of principles for designing databases that enforce a company’s privacy policy. Karjoth et
al. [17, 19] proposed a privacy-centric access control language (E-P3P and its successor EPAL), and de-
signed an architecture for privacy policy enforcement in the entire life cycle of customers’ information,
based on the principle of separation of duty. Because of the dynamic nature of enterprise authorization, Kar-
joth et al. [18] also investigated the translation from enterprise authorization policies to P3P policies. Such a
translation will help enterprises keep their privacy promises consistent with their privacy practices. Although
a formal model is designed for EPAL in [19], it is focused on the information flow of an enterprise’s internal
operation. The semantics proposed in this paper concentrate on private information collection during online
transaction. Therefore, some key concepts of EPAL such as action hierarchies and user hierarchies are not
applicable in our model.

Though websites are increasingly posting their P3P policies, the dominant majority of online privacy
policies are published in textual files. Compared to P3P policies, textual privacy policies usually cover a
much larger scope of companies’ privacy practices, and tend to be more ambiguous and incomplete. Current
textual privacy policy analysis involves extensive inputs from application/domain experts [4]. Computer-aid
semi-automated analysis is a promising means to increase its efficiency and accuracy. Techniques from
multiple communities, such as databases, natural language processing and software engineering, may be
applied.

6 Conclusion
Although P3P has received broad attention since it was proposed, its adoption has been slow. A fundamental
reason for its slow adoption is that it lacks a formal and precise semantics. Consequently, a P3P policy may
be inherently ambiguous and confusing to both end users and user agents. The neglect of semantics also
results in APPEL, a purely syntax-based preference language, being overly complex and highly error-prone.

In this paper, we focus on the semantics of privacy languages and show that the semantics-based ap-
proach has several important advantages. We develop a data-centric relational semantics, in which a P3P
policy is modeled as a relational database. This semantics is both simple and intuitive. In the process of
creating the semantics, we have identified various ambiguities and semantic problems in P3P. Additionally,
we have designed SemPref, a semantics-based preference language. Unlike previous preference languages,
SemPref queries the meaning of a privacy policy instead of its syntactical representation. Therefore, Sem-
Pref offers a declarative semantics and a concise syntax, so that it can be adopted by end users without
requiring a long learning curve.

This paper represents our first attempt at a formal study of online privacy policies. As discussed, many
challenging issues remain to be addressed. We plan to extend our semantics-centered approach to areas in-
cluding textual privacy policy modeling, privacy negotiation, privacy policy enforcement and privacy prac-

20

tice auditing.

Acknowledgment

This work is supported by NSF IIS-0430274. We would like to thank Lorrie Faith Cranor for answering our
questions about P3P. We thank the anonymous reviewers for their helpful comments.

References

[1] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Hippocratic databases. In
Proceedings of the 24th International Conference on Very Large Databases. ACM Press, August 2002.

[2] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Implementing P3P using
database technology. In Proceedings of the 19th International Conference on Data Engineering, March
2003.

[3] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. An XPath-based prefer-
ence language for P3P. In Proceedings of the Twelfth International World Wide Web Conference
(WWW2003), pages 629–639. ACM Press, May 2003.

[4] Annie I. Antón, Julia B. Earp, and Angela Reese. Analyzing web site privacy requirements using a
privacy goal taxonomy. In Proceedings of the 10th Anniversary IEEE Joint Requirements Engineering
Conference (RE’02), pages 605–612, Essen, Germany, September 2002.

[5] AT&T Privacy Bird. http://privacybird.com.

[6] JRC P3P Resource Centre. http://p3p.jrc.it.

[7] Lorrie Cranor. P3P user agent guidlines, May 2003. P3P User Agent Task Force Report 23.

[8] Lorrie Faith Cranor. Personal communication.

[9] Lorrie Faith Cranor. Web Privacy with P3P. O’Reilly, 2002.

[10] Lorrie Faith Cranor and Joel R. Reidenberg. Can user agents acurately represent privacy notices?,
August 2002. Discussion draft 1.0.

[11] Massimo Marchiori et al. The Platform for Privacy Preferences 1.0 (P3P1.0) Specification, April 2002.
W3C Recommendation.

[12] UCLA Center for Communication Policy. The UCLA Internet report: Year three. Available at
http://ccp.ucla.edu/pages/internet-report.asp.

[13] Joshua Freed. P3P Outreach Project, 2002.

[14] Giles Hogben. A technical analysis of problems with P3P v1.0 and possible solutions, November 2002.
Position paper for W3C Workshop on the Future of P3P. Available at http://www.w3.org/2002/p3p-
ws/pp/jrc.html.

21

[15] Giles Hogben. Suggestions for long term changes to P3P, June 2003. Position paper for W3C Work-
shop on the Long Term Future of P3P. Available at http://www.w3.org/2003/p3p-ws/pp/jrc.pdf.

[16] Giles Hogben, Tom Jackson, and Marc Wilikens. A fully compliant research implementation of the
P3P standard for privacy protection: Experiences and recommendations. In Proceedings of the 7th
European Symposium on Research in Computer Security (ESORICS 2002), volume 2502 of LNCS,
pages 104–125. Springer, October 2002.

[17] Gunter Karjoth and Matthias Schunter. A privacy policy model for enterprises. In Proceedings of
the 15th IEEE Computer Security Foundations Workshop (CSFW-15 2002), pages 271–281. IEEE
Computer Society Press, June 2002.

[18] Gunter Karjoth, Matthias Schunter, and Els Van Herreweghe. Translating privacy practices into privacy
promises – how to promise what you can keep. In Proceedings of the 4th IEEE International Workshop
on Policies for Distributed Systems and Networks (POLICY 2003, pages 135–146. IEEE Computer
Society Press, June 2003.

[19] Gunter Karjoth, Matthias Schunter, and Michael Waidner. Platform for enterprise privacy practices:
Privacy-enabled management of customer data. In Proceedings of the Second International Workshop
on Privacy Enhancing Technologies (PET 2002), number 2482 in LNCS, pages 69–84. Springer, 2003.

[20] Marc Langheinrich. A P3P Preference Exchange Language 1.0 (APPEL1.0). W3C Working Draft,
April 2002.

[21] Matthias Schunter, Els Van Herreweghen, and Michael Waidner. Expressive privacy promises — how
to improve the platform for privacy preferences (P3P). Position paper for W3C Workshop on the Future
of P3P. Available at http://www.w3.org/2002/p3p-ws/pp/ibm-zuerich.pdf.

[22] Daniel M. Schutzer. Citigroup P3P position paper. Position paper for W3C Workshop on the Future
of P3P. Available at http://www.w3.org/2002/p3p-ws/pp/ibm-zuerich.pdf.

[23] W3C. Platform for privacy preferences (P3P) project. http://www.w3.org/P3P/.

[24] W3C. Web sites using P3P. http://www.w3c.org/P3P/compliant sites.

[25] Rigo Wenning. Minutes of the P3P 2.0 workshop, July 2003. Available at
http://www.w3.org/2003/p3p-ws/minutes.html.

22

