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Abstract

We analyze the notion of “local names” in SPKI/SDSI.
By interpreting local names as distributed groups, we de-
velop a simple logic program for SPKI/SDSI’s linked local-
name scheme and prove that it is equivalent to the name-
resolution procedure in SDSI 1.1 and the 4-tuple-reduction
mechanism in SPKI/SDSI 2.0. This logic program is itself
a logic for understanding SDSI’s linked local-name scheme
and has several advantages over previous logics, e.g., those
of Abadi [1] and Halpern and van der Meyden [13].

We then enhance our logic program to handle authoriza-
tion certificates, threshold subjects, and certificate discov-
ery. This enhanced program serves both as a logical char-
acterization and an implementation of SPKI/SDSI 2.0’s cer-
tificate reduction and discovery.

We discuss the way SPKI/SDSI uses threshold subjects
and names for the purpose of authorization and show that,
when used in a certain restricted way, local names can be
interpreted as distributed roles.

1 Introduction

Rivest and Lampson introduced “linked local names” in
the Simple Distributed Security Infrastructure (SDSI) [17].
They were motivated by the inadequacy of public-key in-
frastructures based on global name hierarchies, such as
X.509 [11] and Privacy Enhanced Mail (PEM) [12]. Af-
ter version 1.1, the SDSI effort merged with the Simple
Public Key Infrastructure (SPKI) effort. The result is
SPKI/SDSI 2.0, about which the most up-to-date docu-
ments are [7, 9, 10].

∗This paper appears in Proceedings of the 13th IEEE Computer Secu-
rity Foundations Workshop.

One goal of this paper is to study the notion of “local
names.” We give two interpretations for local names: dis-
tributed groups and distributed roles. Here, a group is a set
of principals; a role is both a set of principals and a collec-
tion of permissions.

Based on the distributed-group interpretation, we are
able to give a simple logic program for SDSI’s linked local-
name resolution. Existing work on logic for SDSI’s linked
local names includes the logic of Abadi [1] and Halpern
and van der Meyden’s Logic of Linked Name Containment
(LLNC) [13]. Our logic program is itself a logic for linked
local names. Compared with existing work, our logic has
the following advantages.

• It corresponds exactly to SPKI/SDSI 2.0. We prove the
equivalence of our logic program, SDSI’s name reso-
lution process, and SPKI’s 4-tuple-reduction mecha-
nism.

• The logic program can be run in any Prolog system
with at most trivial modifications. We have run it us-
ing the XSB logic programming system (a Prolog vari-
ant) [19]. Under XSB, it is guaranteed to terminate for
a large class of queries, including, but not limited to,
all the queries necessary for SPKI’s evaluation of au-
thorization requests.

• The logic program is quite simple. It has only four
rules and is significantly simpler than the two existing
logics.

Moreover, the logic program can easily be enhanced to
handle authorization certificates and threshold subjects. It
can also easily be enhanced to handle certificate discovery
in addition to certificate reduction. By certificate discov-
ery, we mean the problem of finding relevant certificates
among a potentially very large set of certificates and provid-
ing them in the order needed for SPKI’s certificate reduction
process.



We give the enhanced program in this paper. It
serves both as a logical characterization and a function-
ing implementation of certificate reduction and discovery in
SPKI/SDSI 2.0. Our hope is that it will contribute to the un-
derstanding of SPKI/SDSI’s linked local-name scheme and
authorization framework. We also believe that this logic
program can be used in real applications, by using inter-
faces between XSB and other languages, e.g., Java, C, Ora-
cle, and ODBC (see [5] and XSB manual [19]).

The SPKI/SDSI work focuses more on data structures
for certificates and infrastructure issues such as certificate
distribution and revocation. Processing procedures of cer-
tificates are less clearly defined. The meaning and usage
of different structures are not thoroughly discussed. In [9],
Ellison et al. state: “The processing of certificates and re-
lated objects to yield an authorization result is the province
of the developer of the application or system.” Although
we agree that data structures and infrastructure issues are
very important, we disagree with this approach to certifi-
cate processing. We believe that the meaning and process-
ing of certificates should be application-independent, rigor-
ously defined, and extensively discussed so that people can
understand the system; in this respect, we agree with the
trust-management approach to authorization [4]. Only then
can people who write policies have confidence that the poli-
cies have the intended meaning.

We discuss threshold subjects in SPKI/SDSI and pro-
pose adding an intersection operator in name certs. We also
discuss the way SPKI/SDSI uses SDSI names for the pur-
pose of authorization and describe a restricted version of
SPKI/SDSI 2.0. This restricted framework is much simpler
and “cleaner” than SPKI/SDSI 2.0 and still has significant
expressive power. In this framework, local names can be
interpreted as distributed roles.

The rest of this paper is organized as follows. In sec-
tion 2, we review SPKI/SDSI 2.0 and other related work.
In section 3, we give the distributed-group interpretation of
local names and our logic program for linked local-name
resolution. In section 4, we generalize the logic program
to handle authorization certificates, threshold subjects, and
certificate discovery. In section 5, we discuss the use of
threshold subjects and SDSI names for the purpose of au-
thorization. We conclude in section 6.

2 Background on Local Names

In this section, we give background information on “lo-
cal names.” In section 2.1, we review the linked local-name
scheme in SPKI/SDSI 2.0 [7, 9, 10]. In this process, we oc-
casionally refer to SDSI 1.1 [17] when there are differences
between SPKI/SDSI 2.0 and SDSI 1.1. We review the logics
of Abadi [1] and Halpern and van der Meyden [13] in sec-
tion 2.2 and related work on certificate discovery [3, 7, 8] in

section 2.3.

2.1 Linked local names in SPKI/SDSI

In SDSI, there are principals and local identifiers. Prin-
cipals are public keys and are therefore unique. Each prin-
cipal has its own name space. Besides principals and local
identifiers, SDSI 1.1 also has special roots. A special root
is an identifier that is bound to the same principal in every
name space. Although this notion seems to be meaningful,
it is not present in SPKI/SDSI 2.0. For this reason, we do
not deal with special roots in this paper, but it would not be
difficult to add them to our logic program.

SDSI names are formed by linking principals and local
identifiers. SDSI names as defined in SDSI 1.1 are more
general than those in SPKI/SDSI 2.0, so we call them gen-
eral SDSI names. A general SDSI name is a principal, a
local identifier, an object of the form “(e),” or an object of
the form “e′s f ,” where e and f are general SDSI names.1

The name-resolution procedure in SDSI 1.1 always resolves
SDSI names from left to right and ignores any parenthe-
sis. Therefore, one can remove all parentheses from a SDSI
name and still have an equivalent name.

In most cases, a SDSI name starts with a principal. The
only exception is when a name occurs inside a certificate,
in which case it may start with a local identifier that is as-
sumed to be in the certificate issuer’s name space; one can
always explicitly add the issuer to the front of the SDSI
name. Therefore, every SDSI name can be transformed to a
fully-qualified SDSI name defined as follows.

Definition 1 A fully-qualified SDSI name has the form:
(a′s m′

1s m
′
2s . . .mq)

where a is a principal and each mi is either a local identi-
fier or a principal; the parentheses are optional.

From now on, we use SDSI names or names to mean fully-
qualified SDSI names. In SPKI/SDSI 2.0, names must take
the form of a principal followed by zero or more local iden-
tifiers, i.e., the mi’s in the above definition can not be prin-
cipals; we call these names SPKI names. We choose to use
the this more general version of definition 1 in order to be
compatible with SDSI 1.1.

We further define local names and compound names. A
local name is a principal followed by a local identifier. A
compound name is a SDSI name of length three or more.

SPKI/SDSI 2.0 has two kinds of certificates. Name-
definition certificates (name certs for short) came originally
from SDSI; a name cert binds a local name to the cert’s sub-
ject. Authorization certificates (auth certs) came originally
from SPKI; an auth cert delegates a certain permission from

1This is a simplified and syntactically sugared version of the actual
syntax.
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1 REF(Certs, A’s m1’s m2’s ... mq) {
2 if (q=0) return A;
3 else if (q=1) {
4 if (m1 is a principal) return m1;
5 else if (m1 is a local name and there exists a name cert
6 "A says binds(m1, B’s n1’s n2’s ... nr)" in Certs)
7 return REF(Certs, B’s n1’s n2’s ... nr);
8 else fail;
9 } else {

10 C = REF(Certs, A’s m1);
11 return REF(Certs, C’s m2’s ... mq);
12 }
13 }

Figure 1. Adapted version of SDSI’s name-resolution procedure

a principal (the cert’s issuer) to the cert’s subject. There are
also access control lists (ACLs). An entry in an ACL is re-
ally a delegation from the issuer to the subject of the entry.
Because ACL entries are always stored by their issuers and
are never transmitted, they do not need to be signed and can
only be used by their issuers. Otherwise, they are the same
as auth certs. In this paper, we often use auth certs to mean
both auth certs and ACL entries.

In SPKI/SDSI, the subject of a certificate can also be a
k-of-n threshold subject.

Definition 2 A subject is either a SDSI name or an object
of the form:

(k-of-n K N sub1 sub2 ... subN)
where K and N are both positive integers and K ≤ N ;
each subi is a subject.

Different documents on SPKI/SDSI 2.0 differ on
whether threshold subjects are allowed to appear in name
certs. They are allowed in [9] and earlier versions of [10],
but are not allowed in [7, 10]. In an earlier version of this
paper, we deal with threshold subjects in name certs. In this
paper we disallow them to conform to the newest SPKI doc-
uments. Instead, we deal with auth certs, which can have
threshold subjects. There are more discussions of threshold
subjects in section 5.1.

In this paper, name certs are represented in the following
syntax:

a says binds (m, b’s n1’s ... nr).

The principal a is the issuer of this name cert;m is the local
identifier to be defined; and the name (b’s n1’s ... nr) is the
subject. We say that this name cert defines the local name
(a’s m).

SDSI names are eventually resolved to principals.
SDSI 1.1 [17] gives a resolution procedure. Figure 1 gives
an adapted version of it in C-style syntax. This version re-
moves the code for things that do not exist in SPKI/SDSI
2.0, namely group certificates, quote certificates, and en-
crypted objects; and it only deals with fully-qualified SDSI

names. Otherwise, it is equivalent to the procedure in SDSI
1.1, although we use one function REF instead of two func-
tions REF and REF2 and make the set of certificates an ex-
plicit argument, i.e., the argument Certs.

The function REF in Figure 1 is nondeterministic. On
lines 5 and 6, it is free to choose any name cert that defines
the name (A’s m1). Given a set of name certs C and a
SDSI name sn, the function call REF(C, sn) may return a
principal, fail, or run forever. Given C, the function REF de-
fines a binary relation between SDSI names and principals.

Definition 3 A SDSI name “sn” is resolvable to a princi-
pal “b” given a set of name certs C if and only if there exists
an execution of REF(C, sn) that returns “b.”

SPKI/SDSI 2.0 defines a 4-tuple-reduction mechanism to
reduce SPKI names to principals. Recall that SPKI names
have the form of a principal followed by a list of local iden-
tifiers. The following definition is from [9].

The rule for name reduction is to replace the name
just defined by its definition. For example,

(name a m1 ... mq) + [(name a m1) → b]
=⇒ (name b m2 ... mq)

or,
(name a m1 ... mq)

+ [(name a m1) → (name b n1 ... nr)]
=⇒ (name b n1 ... nr m2 ... mq)

The 4-tuple-reduction mechanism defines the following bi-
nary relation among SDSI names.

Definition 4 A SPKI name “sn1” is reducible to a SPKI
name “sn2” given a set of name certs C if and only if there
exists a sequence of name certs in C such that when they
are applied one after another to “sn1” using the name-
reduction rules, the final result is “sn2.”

Note that although a reducible relationship is between
two SPKI names, the goal of reduction is to reduce a SPKI
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Propositional Logic: All instances of propositional tautologies
Reflexivity: p 7−→ p

Transitivity: (p 7−→ q) ⇒ ((q 7−→ r) ⇒ (p 7−→ r))
Left-monotonicity: (p 7−→ q) ⇒ ((p′s r) 7−→ (q′s r))
Associativity: ((p′s q)′s r) 7−→ (p′s (q′s r))

(p′s (q′s r)) 7−→ ((p′s q)′s r))
Key Globality: (a′s b) 7−→ b

if b is a global identifier, i.e., a principal
Key Linking: (a says (m 7−→ r)) ⇒ ((a′s m) 7−→ (a′s r))

if m is a local name
Key Distinctness: ¬(a1 7−→ a2) if a1 and a2 are distinct keys, i.e., principals
Witnesses: ¬(p 7−→ q) ⇒ ∨a(¬(p 7−→ a) ∧ (q 7−→ a))

(p′s q) 7−→ a1 ⇒ ∨a((p 7−→ a) ∧ (a′s q 7−→ a1))
Modus Ponens: From φ and φ ⇒ ψ infer ψ

in all axioms, p, q, and r are SDSI names and a and a1 are principals.

Figure 2. Axioms of LLNC

name to a principal. Authorization process in SPKI/SDSI
only needs to know the reducible relationships between
SPKI names and principals.

2.2 Previous logics for linked local names

Both Abadi’s logic [1] and Halpern and van der Mey-
den’s Logic of Local Name Containment (LLNC) [13] aim
at giving a logical account of SPKI/SDSI’s linked local-
name scheme. However, their goals are somewhat different.

Abadi’s goal is not to capture SDSI’s name-resolution
procedure exactly but rather to generalize it and to study
axioms for linked local names in his generalized setting.
Abadi’s logic deals with general SDSI names rather than
fully-qualified SDSI names. Also, the main relation 7−→ in
his logic is among general SDSI names, instead of between
names and principals. These lead to a quite complex axiom
system. Also, Abadi’s logic draws conclusions about local
names that do not follow from SDSI’s name-resolution pro-
cedure, as shown by Abadi [1] and Halpern and van der
Meyden [13]. Studying axioms in this generalized setting
may be an interesting problem, but it is not needed to under-
stand or to implement SDSI’s linked local-name scheme.

Halpern and van der Meyden want to capture SDSI’s
name-resolution procedure exactly. However, they still use
Abadi’s generalized relation 7−→. The axioms for their logic
LLNC are given in Figure 2. We think it is inadequate to
use the generalized relation 7−→ for their purpose of captur-
ing SDSI’s name-resolution procedure. There is no query
in SPKI/SDSI about the 7−→ relationship between two ar-
bitrary SDSI names. Furthermore, using 7−→ leads to some
problems that we now discuss.

The semantics for 7−→ is hard to define. The semantics
for both logics maps SDSI names to sets of principals. They

use the notation [[p]] to represent the set of principals that
the name p maps to. In LLNC’s semantics, 7−→ is defined
as the superset relation, which seems to be the only reason-
able choice. (For reasons I don’t understand, Abadi [1] used
a semantics that interprets 7−→ as the subset relation rather
than the superset relation.) LLNC’s semantics has the rule:

p 7−→ q if and only if [[p]] ⊇ [[q]]

As claimed in [13], LLNC’s axiomatization is complete
with respect to this semantics. To achieve this, LLNC has
Witnesses Axioms, which are not in Abadi’s logic.

Now consider the following example, in which one prin-
cipal sees only the following three name certs:

keyAlice says binds(friends, keyTom).
keyAlice says binds(friends, keyJohn).
keyAlice says binds(classmates, keyJohn).

Then [[keyAlice′s friends]] = {keyTom, keyJohn} and
[[keyAlice′s classmates]] = {keyJohn}. According to
the above semantics, LLNC has to conclude:

keyAlice′s friends 7−→ keyAlice′s classmates

This conclusion can be derived in LLNC by using the
first Witness axiom and propositional tautologies. We be-
lieve that this conclusion is counter-intuitive. One intu-
itive reading of the relationship p 7−→ q is that p is some-
how reducible (through 4-tuple reduction or some similar
but more powerful mechanism) to q. However, it seems
unlikely that the name “keyAlice′s friends” can be re-
duced to “keyAlice′s classmates” from the above three
certificates. Moreover, this conclusion is nonmonotonic.
By nonmonotonic, we mean that if a principal sees only
the above three certificates, it can derive this conclusion;
but if it sees an additional certificate, it may no longer do
so. E.g., consider adding the name cert “keyAlice says
binds(classmates, keyJack).” We think that this non-
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monotonicity is quite unacceptable in SDSI’s distributed
setting. All conclusions in SDSI are monotonic. It is of-
ten very difficult to know that one has all the certificates
in a distributed environment. Therefore, one doesn’t know
whether the conclusion is valid from another principal’s
point of view or whether the conclusion will remain valid
when the principal knows more information later.

Another disadvantage of using 7−→ is that, given one
SDSI name p, there may exist an infinite number of SDSI
names q’s such that p 7−→ q is true. For example, applying
the Left-monotonicity axiom:

(p 7−→ q) ⇒ ((p′s r) 7−→ (q′s r))
to (alice′s friends) 7−→ (alice′s friends′s friends)
results in an infinite sequence of new conclusions. This
problem causes difficulty in implementing the logic. A
query for all SDSI name q’s such that p 7−→ q is true may
not be answered in finite time. This is the nontermination
problem discussed by Elien [8]. In the following, we review
Elien’s work.

2.3 Certificate discovery

SPKI/SDSI 2.0 gives a certificate-reduction process
when certificates are provided in the right order. The re-
quester needs to find the relevant certificates among a poten-
tially very large set of certificates and to provide them in the
right order. In [8], Elien, studied this certificate discovery
problem and gave an algorithm for it. In a later paper [7],
Elien et al.improved the algorithm.

Elien et al.considered the certificate-discovery problem
with name certs as well as auth certs (including ACL en-
tries). They considered the problem of finding a path of cer-
tificates that delegates a certain permission r from a source
principal to a destination principal given a set of certificates.
Each certificate, name or auth, is translated into an implica-
tion: (I −→ S). In which I and S are SDSI names; I is
called the issuer, and S is called the subject. The implica-
tion (a −→ sn) means that the principal a delegates the
permission r to sn; the implication ((a′s m) → sn) means
that the principal a defines its local name (a′s m) to be sn.

Certificate discovery can be done by inferring new impli-
cations from those translated from certificates, in ways sim-
ilar to 4-tuple reduction. Let I1, I2, S1, S2 be SDSI names.

Implication Chaining:

From (I1 → (I ′2s S1)) and (I2 → S2),
derive (I1 → (S′

2s S1)).

They showed that certificate discovery is a non-trivial prob-
lem. The following implication

(a′1s m) → (a′1s m
′s m)

alone generates an infinite number of implications:

(a′1s m) → (a′1s m
′s m′s m)

(a′1s m) → (a′1s m
′s m′s m′s m)

· · · · · ·
They solved this problem by utilizing the fact that ulti-
mately one only needs implications of the form (a0 → a1),
where a0 and a1 are principals. To generate all such impli-
cations, a restricted version of the Implication Chaining rule
suffices. Their algorithm restricts the Implication Chaining
rule to be used only when |S2| = 1, i.e., S2 is a principal.
They proved that all implications of the form (a0 → a1) can
still be generated even with this restriction. This restriction
guarantees termination and polynomial complexity. Given a
set C of n certificates, the total number of implications that
can be derived from C is O(n3L), where L is the length of
the longest SDSI name in C.

Their certificate-discovery algorithm in [7, 8] first gen-
erates all new implications and then checks whether the de-
sired one is in it. This bottom-up evaluation mechanism can
be very inefficient when there are lots of certificates many
of which are not relevant to the desired result.

In [3], Aura also studied the certificate discovery prob-
lem. He used Delegation Networks (a special kind of
graphs) to represent certificates and discussed efficient algo-
rithms to search for a path in a Delegation Network. Aura
argued that Delegation Networks typically have the hour-
glass shape with large number of servers and even larger
number of clients connected through relatively small num-
bers of intermediate nodes and gave search algorithms opti-
mized for Delegation Networks of this shape.

Aura’s work [3] does not deal with linked local-name
scheme in SPKI/SDSI; it only addresses certificate discov-
ery in the “pre-SDSI version of SPKI.” Delegation networks
can represent auth certs that have a principal or a k-of-n-
principal threshold as subject. But they can not represent
auth certs that have SDSI names in subject, nor can they
represent name certs. It is thus quite different from the work
of Elien et al.and the goal of this paper.

3 A Logic Program for Linked Local Names

In this section, we present a four-rule logic program
that captures exactly the linked local-name scheme of
SPKI/SDSI 2.0. In this section, we first discuss the
distributed-group interpretation of local names, then give
the logic program to capture SDSI’s linked local-name
scheme. We also discuss the termination behaviour of this
program and prove its equivalence to the name-resolution
procedure of SDSI 1.1 and the 4-tuple-reduction mecha-
nism of SPKI/SDSI 2.0.
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Linking: contains([A0,M0,M1|T ], B) :- contains([A0,M0], A1), contains([A1,M1|T ], B).
Superset: contains([A0,M0], B) :- includes([A0,M0], SN), contains(SN, B).
Globality: contains([A0, B], B) :- isPrincipal(B).
Self-containing: contains([B], B) :- isPrincipal(B).

Figure 3. P4: A logic program for linked local-name resolution 2

3.1 Local names as distributed groups

The function REF in Figure 1 defines a “resolvable” re-
lation between SDSI names and principals. Since a name
may be resolvable to multiple principals, it represents a
group of principals. Thus, we can view the resolvable rela-
tion as a group-member relation. We use a binary predicate
“contains” to represent this relation.

Let us now consider local names; recall that a local name
is a principal followed by a local identifier. The groups
defined by local names are distributed, in the sense that
there isn’t a central authority that manages all the groups.
These groups are local to each principal. Each principal is
in charge of defining its own groups; it does this by issuing
name certs. An interesting point of SDSI is that one can
use compound names to define local names. Compound
names are “linked groups.” For example, the compound
name (a′s m′

1s m2) represents the following group:
⋃

{ (x′s m2) | x ∈ (a′s m1) }

The information for determining the contains relation
comes from name certs. A name cert “a says binds(m,
sn)” means that any principal that the name “sn” contains
is also contained by the name (a′s m). Thus a name cert
actually defines a superset relationship, which we use the
binary predicate “includes” to represent.

3.2 A logic program for SDSI’s name resolution

In our logic program, a fully-qualified SDSI name
“a′s m′

1s m′
2s . . . mq” is represented by a list:

“[ a, m1, m2, . . . , mq ].” We assume that principals and
local identifiers are not encoded in lists and that principals
are distinguishable from local identifiers by a unary predi-
cate “isPrincipal.” A name cert is translated into a fact of
the predicate “includes.” For example:

From “a0 says binds(m, a1)”
to “includes([a0, m], [a1]).”
From “a0 says binds (m, a1’s n1’s n2)”
to “includes([a0, m], [a1, n1, n2]).”

Our program P4 has four rules; they infer about the predi-
cate contains from facts of includes, which are translated
from name certs. These rules are shown in Figure 3.

2Note that we are using Prolog’s syntax. Variables start with an upper-
case letter. The notation [A0, M0|T ] represents a list in which the first
element is A0, the second element is M0, and the rest of the list is T .

The Linking rule implements the semantics of linked lo-
cal names. The Superset rule enforces the semantics of
includes. Actually, the predicate includes is not strictly
necessary. We can translate each name cert to a rule using
only the predicate contains. For example:

From “a0 says binds(m, a1)”
to “contains([a0,m], a1).”
From “a0 says binds (m, a1’s n1’s n2)”
to “contains([a0,m], B) :-

contains([a1, n1, n2], B).”

If we use this translation, the Superset rule won’t be
needed. However, we think it is clearer to have the pred-
icate includes. The distinction of contains and includes
is also helpful when we extend the program P4 to handle
certificate discovery. The Globality rule handles principals
that occur inside a SDSI name. This rule can be removed
if we only deal with SPKI names, i.e., names of the form a
principal followed by a list of local identifiers. We choose
to have it in order to be compatible with SDSI 1.1. The
Self-containing rule handles name certs that have a single
principal as their subjects. They are translated into facts
of the form includes([a,m], [b]). It is quite clear that the
essence of SDSI’s linked local-name scheme is the Linking
rule.

Now let us compare the rules in P4 with LLNC’s axioms
(Figure 2). The Self-containing rule is a limited version of
LLNC’s Reflexivity axiom. The Globality rule is the same
as LLNC’s Key Globality axiom. The Superset rule is a
limited version of the Transitivity axiom. The Linking rule
is a limited version of the chaining of the Left-monotonicity
axiom and the Transitivity axiom. The second Associativity
axiom in LLNC is used implicitly when translating general
SDSI names to fully-qualified SDSI names. The Key Link-
ing axiom is used implicitly when translating name certs to
facts of includes. Our logic program does not have counter-
parts for the first Associativity axiom, the Key Distinctness
axiom, the Witnesses Axioms, and propositional tautologies
in LLNC.

Our logic program can be viewed as a simplified ver-
sion of LLNC’s axioms, yet it can still fully capture
SPKI/SDSI’s linked local-name scheme. This simplifica-
tion is possible because we use two relations contains and
includes instead of just one relation 7−→ to exploit the fact
that ultimately one wants to resolve names to principals.
The simplicity leads to direct implementation and is, we
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hope, easier to understand.

3.3 Termination results of query answering

Given a set of name certs C, we can get a logic program
PC as follows: Start with P4; then add a fact of the predicate
includes for each certificate in C; finally add definitions for
principals by, for example, adding a fact isPrincipal(b) for
each principal “b” that appears in C.

The semantics of PC is defined by its minimal Herbrand
model, as defined in standard logic programming literature.
The semantics of C is defined by this minimal model of PC .
For any atom contains(sn, b) in the minimal model of PC ,
we can construct a proof sequence for it.

Definition 5 A proof sequence for an atom
contains(sn, b) from a set of name certs C is a sequence
of atoms: “a1, a2, . . . , aq,” where aq = contains(sn, b).
Each atom ai is the head of a ground rule RINST that is
the ground instantiation of one of the four rules in P4, and
each atom in the body of RINST is either a fact in PC or
appears as aj , where 1 ≤ j ≤ i− 1.

Definition 6 A SDSI name “sn” contains a principal “b”
given a set of name certs C if and only if there exists a proof
sequence for the atom contains(sn, b) from C.

The minimal Herbrand model of PC may be infinite, be-
cause we can construct an infinite number of SDSI names
from just one principal and one local name. However,
given any SDSI name sn, the set of principal b’s such that
contains(sn, b) is true is finite, because the total number of
principals is finite.

The program PC can be executed by any logic program-
ming system to answer queries. If the query terminates, it
will give the correct answer. However, readers familiar with
Prolog might notice that the Linking rule is left-recursive;
thus, a backward-chaining inference engine, such as a Pro-
log engine, may never terminate when using the program
PC to answer queries. To deal with this problem, we use the
XSB system [19], a logic programming system developed
at SUNY Stony-Brook. XSB has several nice features that
most Prolog systems do not have. One of them is tabling,
which enables the handling of left-recursive programs. Be-
cause of tabling, we can guarantee the termination of a large
class of queries.

Claim 1 Given a program PC, any query that consists of
one atom of the predicate “contains” always terminates
if the atom’s first argument is a list with fixed number of
elements.

In [6], Chen and Warren proved that a query Q with a
program P terminates under XSB’s tabled evaluation if P

has the bounded-term-size property. A even stronger re-
quirement is that there exists an upper bound on the size
of the arguments of all goals generated during answering a
query Q with a program P . If this requirement is satisfied,
only a finite number of goals will be generated; thus, the
query terminates. If the query Q is a contains atom that
has a list with a fixed number of elements as its first argu-
ment, let q1 be the size of this argument and q2 be the size
of the longest SDSI name in PC; then the size of any argu-
ment of any goal generated during answering Q is bounded
by O(max(q1, q2)).

We first give several examples of potentially nontermi-
nating queries. A query of contains may not terminate if
its first argument is a variable or a list that has a variable
as its tail. One such query is “:- contains(SN, b),” where
SN is a variable, and b is a principal. This query asks for
a SDSI name that contains b. It may not terminate, because
there are an infinite number of SDSI names. Similarly, the
query “:- contains([a|SN ], b)” may not terminate either.

The following are some terminating queries. Let sn
be a SDSI name and b be a principal. The query
“:- contains(sn, b)” determines whether sn contains b.
Each answer to the query “:- contains(sn, Y )” gives a
principal that sn contains. To find all such principals, one
can use the query “:- findall(Y, contains(sn, Y ), Y S),”
where the predicate findall is a standard predicate in Pro-
log; when this query returns, the variable Y S will be in-
stantiated to the list of all principals that are contained in
sn. Given two principals a, b, the query

“:- findall([a, Z], contains([a, Z], b), ZS)”
gives the set of all local names in a’s name space that re-
solve to b. This can be useful when one wants to determine
all the authorizations one principal gives to another. Such
kinds of queries are useful in writing, understanding, and
debugging policies.

3.4 Equivalence results

The program P4 is a rather straightforward translation
from the function REF in Figure 1 into Prolog. Line 2 of
the function REF corresponds to the Self-containing rule.
Line 4 corresponds to the Globality rule. Lines 5-7 corre-
spond to the Superset rule. And lines 10-11 correspond to
the Linking rule. In the following, we formally state the
equivalence of the function REF, 4-tuple-reduction, and the
logic program P4. The proofs are given in Appendix A.

Proposition 2 Equivalence of 4-tuple reduction and
REF: A SPKI name “sn” is reducible to a principal “b”
given a set of name certs C if and only if the name “sn” is
resolvable to the principal “b” given C.

Proposition 3 Equivalence of REF and P4: A SDSI name
“sn” is resolvable to a principal “b” given a set of name
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certs C if and only if the name “sn” contains the principal
“b” given C.

4 Handling certificate discovery, auth certs,
and threshold subjects

In this section, we enhance the program P4 to handle
certificate discovery, authorization certificates, and thresh-
old subjects.

4.1 Handling certificate discovery

The program P4 in Figure 3 can do certificate reduc-
tion with name certs. Now we extend it to do certificate
discovery as well, by keeping track of which name certs
are used when deriving a new conclusion. To do this, we
add a third argument to the two predicates contains and
includes. The third argument of the predicate includes
is a “certID”– a string constant that uniquely identifies the
name cert from which this fact of includes is translated.
The third argument “es” of the atom contains(sn, g, es) is
a list of certID’s. We call “es” an evidence sequence for
contains(sn, b); it is a list of certID’s of those certificates
that have been used in deriving contains(sn, b). We then
enhance the program P4 to generate evidence sequences.
The enhanced program returns the evidence sequence in the
same order as used in SPKI’s certificate-reduction.

4.2 Handling auth certs

Now we further extend our logic program to handle auth
certs and ACL entries in SPKI. An auth cert (including an
ACL entry) is a delegation from its issuer to its subject about
a certain permission. We use techniques from Delegation
Logic (DL) [15, 16] to handle auth certs; an auth cert is
represented using the following syntax:

Issuer delegates RightˆD to Sub.

In which Issuer is the principal that is the issuer of this
cert. Perm is a term that encodes the permission being
delegated in this cert. Sub is the subject of this cert; in DL,
it is called the delegatee of this delegation. D is ∗ if the
subject is allowed to re-delegate this permission to others,
and is 1 otherwise.

In our logic program, such an auth cert is represented as:

authorizes(Issuer, Perm,D, Sub, CertID).

In which CertID is a unique identifier for this auth cert.
To represent delegations of permissions that are de-

rived through chaining certificates, we use another predicate
delegates, which also takes give arguments :

delegates(Sub, Perm,D,B,CertIDList).

In which Sub is a subject; it is a SPKI name. Perm and

D are the same as in the authorizes predicate. B is the
delegatee of this delegation. Note that B is required to be
a principal; the delegates predicate represents only delega-
tions to a single principal. If one wants to know whether
there is a delegation to a conjunction of multiple princi-
pals, e.g., in the case of a co-signed request, one can use
the dummy principal trick used in [16] to handle delegation
queries that have a conjunction of principals as delegatee.
CertIDList is a list of CertID’s that have been used to de-
rive this delegation.

We could use one predicate instead of having both
authorizes and delegates. However, we choose to use two
predicates to make things clearer, just as we choose to use
both includes and contains for name resolution. Also note
that the predicate delegates in [16] has a different fifth ar-
gument from the predicate delegates in this paper. In [16],
delegates does not have the CertIDList argument; there
we were defining DL’s semantics and were not concerned
with certificate discovery. Instead, the predicate delegates
in [16] has a length argument. In this paper, we are able
to get rid of the length argument because the boolean re-
delegation control mechanism in SPKI/SDSI corresponds
to delegation depth 1 and *, so we only need to distinguish
between length 1 and *, which can be done by using the two
predicates: authorizes and delegates.

To allow reasoning of delegation relationships, we fur-
ther add the following four rules.

1. delegates(Sub,R,D,B,Cs) :-
contains(Sub,A1, Cs1),
delegates(A1, R,D,B,Cs2),
append(Cs1, Cs2, Cs).

This rule means that if a SDSI name Sub is resolv-
able to a principal A1 and A1 delegates to a princi-
pal B, then Sub delegates to the principal B. The
effect of contains(Sub,A1) is passing through ev-
ery permission from Sub to A1. In fact, we interpret
contains(Sub,A1) as the speaks for relationship “A1
speaks for Sub” in DL [16]: .

2. delegates(A,R,D,B, [C|Cs]) :-
authorizes(A,R, ∗, Sub1, C),
delegates(Sub1, R,D,B,Cs).

This rule means that if a principal A delegates to a
name Sub1 in an auth cert and allows it to re-delegate,
and Sub1 delegates to a principalB, then the principal
A also delegates to the principal B, whether B can re-
delegate is determined by whether Sub1 allows B to
do so.

3. delegates(A,R, 1, B, [C|Cs]) :-
authorizes(A,R, 1, Sub1, C),
contains(Sub1, B, Cs).
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This rule means that if a principalA delegates to Sub1
in an auth cert but doesn’t allow it to re-delegate, and
the name Sub1 is resolvable to a principal B, then the
principal A delegates to the principal B, but doesn’t
allow B to re-delegate.

4. delegates(B, R, D,B, []) : −isPrincipal(B).

This rule means that every principal delegates to itself
unconditionally.

The above rule 1, 2, and 3 are essentially instantiations
of the delegation chaining rules in DL, except that we have
added the evidence sequence for certificate discovery pur-
pose. Rule 1, 2, and 3 are for the cases where the first dele-
gation is a speaks for relationship, a depth-∗ delegation, or
a depth-1 delegation, respectively.

Abadi interpreted the relation 7−→ in his logic [1] as
a speaks for relationship as well. He used the notion of
speaks for in [2, 14], which is similar to but not the same as
that in [16]. His logic of linked local names has axioms of
modal logics to enforce the meaning of speaks for relation-
ships, i.e., p 7−→ q means that if q says something, then p
says it too.

The speaks for interpretation makes perfect sense when
using SDSI names in authorization, in which case the
speaks for interpretation of contains(sn, b) means that if
the principal b makes a request, the request can be viewed
as from sn. The effect is that b has all permissions that sn
has.

However, we think this is not part of the name resolution,
but rather an effect of interpreting SDSI names as groups
of principals. In authorization, members of a group speak
for the group. We believe that this speaks for interpretation
should be left out of name resolution.

Note that we use a term to represent the permission being
delegated through an auth cert. Intersection of two permis-
sions is computed automatically by unification. This should
suffice for most applications. If one wants to compute in-
tersection differently, it is always possible to provide a new
predicate and change the rule 2 accordingly. For example,
one can define a predicate intersects and change the rule 2
to the following.

delegates(A,R,D,B, [C|Cs]) :-
authorizes(A,R1, ∗, Sub1, C),
delegates(Sub1, R2, D,B,Cs).
intersects(R1, R2, R).

Note that our logic program does not deal with the valid-
ity of a certificate, this is the only field in SPKI’s 5-tuples
that is missing in our logic program. It is straightforward to
enhance the program to handle validity period expressed by
“not-before” and “not-after.” However, SPKI/SDSI 2.0 also
has online-test as a possible validity testing method, so we
choose to leave validity testing out of the logic program.

4.3 Handling threshold subjects

We now extend our logic program to handle threshold
subjects. A threshold subject is represented by a term of the
following form:

threshold(k, [ sub1, sub2, . . . , subn ])

The evidence sequence for a delegation from a threshold
subject “threshold(k, [ sub1, sub2, . . . , subn ])” to a prin-
cipal b is more complex than a list of certID’s. We use the
following form to represent it:

branch(k, [ [i1, subi1 , es1], . . . , [ik, subik
, esk] ]),

where ij ∈ [1..n], subij
is the ij’th subject in the list of

subjects in the threshold, and esj is the evidence sequence
for the delegation from subij

to b. It is straightforward to
use such an evidence sequence to reduce a threshold subject
to a principal.

The full XSB program that handles name certs, auth
certs, threshold subjects, and certificate discovery is given
in Figure 4. We have added five rules to handle thresh-
old subjects, so the program has 13 rules in total. This
logic program provides a logical characterization as well
as a functional implementation for certificate reduction and
discovery with threshold subjects. This program together
with some examples can be downloaded from the author’s
homepage: http://cs.nyu.edu/ninghui/software.

In section 2.3, we argued that the bottom-up approach in
[7, 8] is inefficient when there are lots of certificates many
of which are not relevant to the desired result. Our logic
programming approach puts the burden on the underlying
logic programming system. In this way, we can leverage
extensive research in logic programming field. The XSB’s
table-based evaluation is like a query-oriented hybrid of
top-down and bottom-up evaluation. It is more efficient than
pure bottom-up evaluation, because unrelated conclusions
are not generated.

5 Discussions

In this section, we discuss the use of threshold subjects
and SDSI names in authorization. We also show that when
used in a restricted way, local names can be interpreted as
distributed roles.

5.1 Threshold subjects in SPKI/SDSI

In [9] and earlier versions of [10], threshold subjects may
appear in name certs. This practice is disallowed in [7] and
the most up-to-date version of [10]. The authors of [7] ex-
plained this decision:

The reason that a threshold subject may not ap-
pear in a name cert is that a name cert is used to
define a name as a set of public keys; if a name
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:- table(contains/3).
:- table(delegates/5).
:- import append/3 from basics.

contains([A0, M0, M1 | T], B, CertS) :-
contains([A0, M0], A1, CertS1),
contains([A1, M1 | T], B, CertS2),
append(CertS1, CertS2, CertS).

contains([A, M], B, [Cert | CertS]) :-
includes([A, M], SN, Cert),
contains(SN, B, CertS).

contains([_A, B], B, []) :- isPrincipal(B).

contains([B], B, []) :- isPrincipal(B).

delegates(threshold(K, SubList), R, D, B, CertS) :-
!, delegates(threshold(K, 1, SubList), R, D, B, CertS).

delegates(threshold(K, _I, _SL), _R, _D, _B, [branch(0, [])]) :- K = 0, !.

delegates(threshold(K, _I, []), _R, _D, _B, []) :- K > 0, !, fail.

delegates(threshold(K, I, [Sub | SubList]), R, D, B,
[branch(K, [[I, Sub, CertS1] | CertS2])]) :-

delegates(Sub, R, D, B, CertS1),
K_1 is K - 1, I1 is I + 1,
delegates(threshold(K_1, I1, SubList), R, D, B, [branch(K_1, CertS2)]).

delegates(threshold(K, I, [_Sub | SubList]), R, D, B, CertS) :-
!, I1 is I + 1,
delegates(threshold(K, I1, SubList), R, D, B, CertS).

delegates([A0|T], R, D, B, CertS) :- % Delegates from a SDSI name
contains([A0|T], A1, CertS1),
delegates(A1, R, D, B, CertS2),
append(CertS1, CertS2, CertS).

delegates(A, R, D, B, [Cert | CertS]) :- % Delegates from a principal
authorizes(A, R, *, Sub1, Cert),
delegates(Sub1, R, D, B, CertS).

delegates(A, R, 1, B, [Cert | CertS]) :- % Delegates from a principal
authorizes(A, R, 1, Sub1, Cert),
contains(Sub1, B, CertS).

delegates(B, _R, _D, B, []) :- isPrincipal(B).

Figure 4. The XSB Program for Name Resolution
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cert could have a threshold subject as a subject
the notion of the value of a name would become
too convoluted to the usable in practice.

Now let us examine the intuitive meaning of a threshold
subject in a name cert. Consider the following name cert:

“a0 says binds(m0, (k-of-n 2 3
(a1’s m1) (a2’s m2) (a3’s m3))).”

It means that the group (a0’s m0) should include the group
defined by the threshold subject “(k-of-n 2 3 (a1’s m1)
(a2’s m2) (a3’s m3)).” Then what group does this thresh-
old subject define? It seems that the only reasonable in-
terpretation is the set of principals who belong to at least
two of the three groups: (a1’s m1), (a2’s m2), and (a’s
m3). For example, the group “(k-of-n 2 3 (alice’s friends)
(bob’s friends) (carl’s friends))” means the set of princi-
pals who are the friends of at least two among alice, bob,
and carl.

Threshold subjects can implement intersections. For ex-
ample, the group “(k-of-n k k sn1 sn2 ... snk)” is
the intersection of all groups sn1, sn2, ..., snk. In fact,
there is no other way to express intersections in SPKI/SDSI
2.0. Without using threshold subjects in name certs, there
is no way to define a local name to be the intersection
of two other names. We think this is undesirably lim-
ited; SPKI/SDSI should support intersection in name certs
through some mechanism, preferably an intersection op-
erator. Note that an intersection operator can implement
SPKI/SDSI’s threshold subjects, because multiple name
certs can express unions, and SPKI/SDSI threshold subjects
are static in the sense that all subjects in a threshold subject
are explicitly listed.

The meaning of threshold subjects in auth certs is dif-
ferent from that in name certs. In a name cert, k of the n
subjects in a threshold subject must be resolved to a single
principal. In an auth cert, k subjects can be resolved to dif-
ferent principals, as long as they further delegate to a single
principal. For example, given the following certificates:

a0 delegates read(file1)ˆ* to (k-of-n 2 3
(a1’s m1) (a2’s m2) (a3’s m3)).

a1 says binds(m1, a4).
a2 says binds(m2, b).
a4 delegates read(file1)ˆ1 to b.

One can derive that “a0 delegates read(file1)ˆ1 to b”;
whereas the group “(k-of-n 2 3 (a1’s m1) (a2’s m2) (a3’s
m3))” is empty because no principal belongs to more than
one of (a1’s m1), (a2’s m2), and (a3’s m3).

Therefore, the same threshold subject needs to be treated
differently depending on whether it occurs in an auth cert
or in a name cert. In our opinion, it is this difference that
makes the notion of threshold subjects convoluted. Perhaps,
this is also the reason why the designers of SPKI/SDSI 2.0
took threshold subjects out from name certs. An intersec-

tion operator in name certs provides similar functionality to
(and perhaps is more intuitive than) threshold subjects with-
out causing confusion, as it is syntactically different from
threshold subjects.

5.2 Are auth certs necessary?

The functionality of authorization certificates can be per-
formed by ACLs and name certs. What value do auth certs
add? This issue is discussed in section 4.3 of RFC 2693 [9],
and the following example is given as a justification for auth
certs.

Consider a firewall proxy for a network of DoD ma-
chines. The authors of [9] argue that using ACL on the
firewall would require a gigantic ACL. But this is only true
without using name certs. The solution proposed in [9] uses
auth certs. It uses an ACL to grant the access permission
to the key of the Secretary of Defense and also allows this
key to further delegate. This can be done as easily without
using auth certs. Let keyFW be the firewall proxy’s public
key; and let keySD be the public key of the Secretary of
Defense. Then the firewall proxy creates an ACL entry au-
thorizing “keyFW’s authdUsers” and issues a name cert:
“keyFW says binds(authdUsers, keySD’s authdFWUsers).”
The principal keySD can in turn define the group “keySD’s
authdFWUsers” to include groups of other principals, and
so on.

This example does not show that auth certs are necessary.
Instead, we see that ACLs and name certs can achieve del-
egation of authority. Actually, this is true in general. Dele-
gating to a principal bwithout allowing it to further delegate
can be achieved by putting b into a local group m that has
the authority from an ACL or from being member of an-
other principal’s local group. Furthermore, delegating to b
and allowing it to further delegate can be achieved by in-
cluding one of b’s local groups in m. This can implement
SPKI’s boolean re-delegation control. Note that we do not
even need compound names to achieve this, just local names
suffice.

Auth certs may contain threshold subjects. Without auth
certs, threshold subjects can only be used in the roots of au-
thority, i.e., ACL entries. A principal can not delegate a per-
mission it gets from others to a threshold subject. Besides
the ability to delegate to threshold subjects, what additional
values do auth certs offer? Our answer is “a different view
of authorization.” Auth certs give a per-permission view.
They allow the delegation of a specific permission. When
principal a delegates a certain permission to principal b, b
has to delegate this permission explicitly to other principals
if the permission is to propagate. For this to work, princi-
pals need to have a common understanding of permissions.

Local names give a per-group view to authorization.
Each member of a group has every permission the group
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is entitled. In this sense, a group membership is a delega-
tion of all authorities. Thus, one has to be very careful when
defining one local group to include a group of another prin-
cipal. In this framework, principals need to have a common
understanding of local names.

Having two views of authorization can be helpful in
some special cases. But, in general, it causes unnecessary
confusion. It may be easier to achieve a common under-
standing of local names, because permissions tend to be re-
lated to local resources, which may not be known by other
principals. Moreover, SPKI/SDSI already uses linked local
names, which only makes sense when there is some com-
mon understanding on local names.

5.3 Local names as distributed roles

We have discussed the interpretation of local names as
distributed groups. Groups can be used to implement roles.
Can we interpret local names as roles?

In Role-Based Access Control [18], a role is both a col-
lection of entities and a collection of permissions. The role
serves as an intermediate layer between entities and autho-
rizations. Entities in a system can only get permissions by
adopting certain roles.

In SPKI/SDSI 2.0, the subject of an ACL entry can be a
local name, a principal, or a threshold subject. Thus, per-
missions can be given to principals directly. This is differ-
ent from roles in RBAC, in which permissions can only be
given to roles.

Now let us create an authorization framework by restrict-
ing SPKI/SDSI. We make three restrictions: no auth certs
are allowed; the subject of an ACL entry must be a local
name; and the subject of a name cert must be a principal
or a local name. With these restrictions, we get a subset
of SDSI 1.1. Although this framework seems very limited,
it has quite some expressive power. As we have discussed
before, it can still implement delegation of authorities and
boolean re-delegation control.

Another advantage of this framework is that local names
can be viewed as roles. In this framework, there are only
three kinds of credentials. An ACL entry grants a certain
permission to a role of the form (a’s m). A name cert “a
says binds(m, b)” means that the principal b is a member
of the role (a’s m). A name cert “a says binds(m, b’s
n)” defines the role dominance relationship: the role (b’s
n) dominates the role (a’s m), i.e., the role (b’s n) has all
the permissions that the role (a’s m) has, or equivalently,
the role (a’s m) contains all the principals in the role (b’s
n). This framework is quite simple and is hopefully easy to
understand.

Note that local names are different from roles in tradi-
tional RBAC in some aspects. In traditional RBAC, control
of role membership and role permissions is typically cen-

tralized to a few users and there is a centrally defined role
hierarchy. Local names are distributed and controlled by
different principals. In this sense, they are distributed roles.
This is useful in scenarios where there is no central author-
ity, e.g., e-commerce.

RBAC also has the notion of sessions. An entity can
create a session and choose to activate some subsets of the
entity’s roles in one session. In this restricted SDSI frame-
work, since principals are responsible for providing certifi-
cates, they can choose to provide only enough certificates to
prove their membership in a subset of all its roles.

There seems to be no easy way to implement RBAC’s
constraints in this framework. This is partly because of the
distributed nature of local names and the non-monotonic na-
ture of constraints.

In this framework, local names are brought closer to ex-
isting paradigms such as groups and roles. This makes it
easier for administrators to understand. We think this is
very important. No matter how good a mechanism is, if it is
very hard for the people who are going to write policies to
understand, it is going to be hard to deploy the mechanism
widely.

6 Conclusion

We gave a simple logic program to capture SPKI/SDSI’s
linked local-name scheme. We also gave an enhanced ver-
sion of the program; it serves both as a logical characteri-
zation and as an implementation of SPKI/SDSI’s certificate
reduction and discovery. We discussed the use of thresh-
old subjects and names in authorization and proposed a re-
stricted way to use SPKI/SDSI in which local names can be
interpreted as distributed roles. We hope that this paper con-
tributes to the understanding of local names, SPKI/SDSI,
and trust management and distributed authorizations in gen-
eral.
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A Proofs

To prove propositions 2 and 3, we classify name certs into
two types.

Definition 7 A type-1 name cert binds a local name in the
issuer’s name space to a principal. A type-2 name cert binds
a local name to a SDSI name other than a principal.

Proposition 2 Equivalence of 4-tuple reduction and
REF: A SPKI name “sn” is reducible to a principal “b”
given a set of name certs C if and only if the name “sn” is
resolvable to the principal “b” given C.

Proof. We need to prove that there exists a sequence of
certificates c1, . . . , cp in C such that, when c1, . . . , cp are
applied to sn one after another, sn is reduced to b if and
only if there exists an execution of REF(C,sn) that returns
b (see Figure 1 for the code of REF).

We first prove the only if part by induction on the length
p of the cert sequence. Base step: p is zero, then sn is the
principal b. Clearly, REF(C,b) returns b.

Now the induction step. When sn is a local name, let
sn be (a′0s m1); consider the name cert c1. If c1 is a
type-1 name cert, then p must be 1, and c1 must be “a0

says binds(m1, b).” Therefore, there is an execution of
REF(C,sn) that chooses c1 on lines 5-6 and returns b
on line 7. If c1 is a type-2 name cert, let c1 be “a0 says
binds(m1, sn1),” then the certificate sequence “c2, . . . , cp”
reduce “sn1” to b. By induction assumption, there is an
execution of REF(C,sn1) that returns b. Therefore, there
exists an execution of REF(C,a′0s m1) that chooses c1 and
eventually returns b.

Continuing the induction step. When sn is a compound
name, let sn be “a′0s m

′
1s m

′
2s . . .mq,” where q > 1; con-

sider the sequence of names resulted from the reduction:
sn0 = sn, sn1, . . . , snp = b, where sni is the result of ap-
plying the certificate ci to sni−1. Because each reduction
step only changes the first two symbols in a name, the only
way to shorten a name is to replace the first two symbols
with one principal, and the name sn is finally reduced to a
single principal, then there must exist a point at which the
name (a′0s m1) is reduced to a principal and “m′

2s . . .mq”
remains unchanged. Let this point be reduction step t,
then 1 <= t < p and snt = a′ts m′

2s . . .mp. There-
fore, the certificates “c1, c2, . . . , ct” reduce (a′0s m1) to at
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and the certificates “ct+1, . . . , cp” reduce (a′ts m
′
2s . . .mq)

to b. By induction assumption, there is an execution of
REF(C, a′0s m1) that returns at and there is an execu-
tion of REF(C,a′ts m

′
2s . . .mq) that returns b. Therefore,

there exists an execution of REF(C,sn) that recursively
calls REF(C,a′0s m1) and REF(C,a′ts m

′
2s . . .mq) and

returns b.
We now prove the if part. Suppose that there is an exe-

cution of REF(C,sn) that returns b. Induce on the num-
ber of calls to REF during the execution; let the number be
p. If p is one, sn must be b, so sn is trivially reducible
to b. Recall that sn is a SPKI name, i.e., a principal fol-
lowed by a list of local identifiers, so sn can not has the
form (a′0s b), it has to be a single principal b. If p is greater
than one, consider the first recursive call of REF; it hap-
pens either on line 7 or line 10. If it is on line 7, then sn
has the form (a′0s m1). Let c1 be the certificate chosen
on line 5-6 and sn1 be the subject of c1. Because the call
on line 7 returns b with p − 1 calls of REF, by induction
assumption, there exists a sequence of name certs that re-
duces sn1 to b. Therefore, c1 followed by this sequence of
name certs reduce sn to b. If the first recursive call hap-
pens on line 10, then sn has the form (a′0s m

′
1s . . .mq),

where q > 1. The call REF(C,a′0s m1) (on line 10) re-
turns a principal at with less than p calls of REF, and the
call REF(C,a′ts m

′
2s . . .mq) (on line 11) returns b within

less than p calls of REF. By induction assumption, there ex-
ist one sequence of certificates that reduce a′0s m1 to at and
another sequence of certificates that reduce a′ts m

′
2s . . .mq

to b. Concatenating two sequences together, they reduce sn
to b.

Proposition 3 Equivalence of REF and P4: A SDSI name
“sn” is resolvable to a principal “b” given a set of name
certs C if and only if the name “sn” contains the principal
“b” given C.

Proof. First, let us prove the if part. If there is a proof
sequence for contains(sn, b), induce on the length of the
sequence. When the length is one, either Globality rule or
Self-containing rule is used; in either case, sn is trivially re-
solvable to b. Otherwise, consider the rule that is used in the
last step. Again, sn is trivially resolvable to b if it is either
the Self-containing rule or the Globality rule. If it is the Su-
perset rule, then sn is of the form (a′0s m1), there is a cer-
tificate in C that is represented by includes([a0,m1], sn1),
and the atom contains(sn1, b) appears earlier in the proof
sequence. By induction assumption, there is an execution of
REF(C, sn1) that returns b. Therefore, there is an execu-
tion of REF(C, a′0s m1) that goes to line 5-7 and returns
b. If the last step uses the Linking rule, then sn is of the
form (a′0s m

′
1s m

′
2s . . .mq); both contains([a0,m1], a1)

and contains([a1,m2, . . . ,mq ], b) appear earlier in the se-

quence. By induction assumption, there exists an ex-
ecution of REF(C,a′0s m1) that returns a1 and there
exists an execution of REF(C,a′1s m′

2s . . .mq) that
returns b. Therefore, there exists an execution of
REF(C,a′0s m

′
1s m

′
2s . . .mq) that goes through lines 10

and 11 and returns b.
We now prove the only if part. Suppose that there is

an execution of REF(C, sn) that returns b. Do induc-
tion on the number p of all recursive calls of REF in the
execution. If p is one, then sn is either b or (a′1s b). Ei-
ther the Self-containing rule or the Globality rule will prove
contains(sn, b). If p is greater than one, consider the first
recursive call of REF; it happens either on line 7 or line 10.
If it is on line 7, then sn has the form (a′0s m1). Let c1 be
the certificate chosen on lines 5 and 6 and sn1 be the sub-
ject of c1. Because the call on line 7 returns b with t − 1
recursive calls, by induction assumption, there exist a proof
sequence for contains(sn1, b). This sequence followed
by includes([a0,m1], sn1) and contains([a0,m1], b) is
a proof sequence for contains(sn, b); the last step uses
the Superset rule. If the first recursive call happens on
line 10, then sn has the form (a′0s m′

1s . . .mq), where
q > 1. Then the call REF(C,a′0s m1) (on line 10) re-
turns a principal at within less than p recursive calls, and
the call REF(C,a′ts m′

2s . . .mq) (on line 11) returns b
within less than p calls. By induction assumption, there ex-
ist one proof sequence for contains([a0,m1], at) and one
for contains([at,m2, . . . ,mq ], b). Concatenating them to-
gether and add contains([a1,m1,m2, . . . ,mq], b) to the
end is a proof sequence for contains(sn, b). The last step
uses the Linking rule.
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