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Abstract—Existing work on privacy-preserving data publish-
ing cannot satisfactorily prevent an adversary with background
knowledge from learning important sensitive information. The
main challenge lies in modeling the adversary’s background
knowledge. We propose a novel approach to deal with such
attacks. In this approach, one first mines knowledge from the data
to be released and then uses the mining results as the background
knowledge when anonymizing the data. The rationale of our
approach is that if certain facts or background knowledge exist,
they should manifest themselves in the data and we should be
able to find them using data mining techniques. One intriguing
aspect of our approach is that one can argue that it improves both
privacy and utility at the same time, as it both protects against
background knowledge attacks and better preserves the features
in the data. We then present the Injector framework for data
anonymization. Injector mines negative association rules from the
data to be released and uses them in the anonymization process.
We also develop an efficient anonymization algorithm to compute
the injected tables that incorporates background knowledge.
Experimental results show that Injector reduces privacy risks
against background knowledge attacks while improving data
utility.

I. INTRODUCTION

Agencies and other organizations often need to publish
microdata, e.g., medical data or census data, for research
and other purposes. Typically, such data is stored in a table,
and each record (row) corresponds to one individual. Each
record has a number of attributes, which can be divided
into the following three categories. (1) Attributes that clearly
identify individuals. These are known as explicit identifiers and
include Social Security Number, Address, Name, and so on.
(2) Attributes whose values can be known from other sources,
e.g., publicly-available databases such as a voter registration
list. These attributes when taken together can potentially
identify an individual; thus they are known as quasi-identifiers.
These may include, e.g., Zip-code, Birth-date, and Gender. (3)
Attributes that are considered sensitive, such as Disease and
Salary.
While releasing microdata gives useful information to re-

searchers, it presents disclosure risk to the individuals whose
data are in the table. Two types of information disclosure have
been identified in the literature [1], [2]: identity disclosure
and attribute disclosure. Identity disclosure occurs when an
individual is linked to a particular record in the released table.
Attribute disclosure occurs when new information about some
individuals is revealed, i.e., the released data makes it possible

to infer the characteristics of an individual more accurately
than it would be possible before the data release. Identity
disclosure often leads to attribute disclosure. Once there is
identity disclosure, an individual is re-identified and the cor-
responding sensitive values are revealed. Attribute disclosure
can occur with or without identity disclosure.
To limit disclosure risk, Samarati and Sweeney [3], [4],

[5] introduced the k-anonymity privacy requirement, which re-
quires each record in an anonymized table to be indistinguish-
able with at least k-1 other records within the dataset, with
respect to a set of quasi-identifiers. We say that these records
form an equivalence class. To achieve k-anonymity, Samarati
and Sweeney used both generalization and tuple suppression
for data anonymization [3], [4]. Generalization replaces a
value with a “less-specific but semantically consistent” value
and tuple suppression removes an entire record from the table.
The k-anonymity property aims at protecting against iden-

tity disclosure, and does not provide sufficient protection
against attribute disclosure. This has been recognized by
several authors, e.g., [6], [7], [8]. Machanavajjhala et al. [6]
identified two attacks on k-anonymity. In the homogeneity
attack, while an equivalence class may contain at least k
records, it is possible that all records have the same sensitive
attribute value, enabling the adversary to infer the sensitive
attribute value of individuals in the equivalence class. Even if
not all records have the same value, probabilistic inference
is still possible. In the background knowledge attack, the
adversary may possess background information that enables
her to eliminate some values from the set of sensitive attribute
values in an equivalence class and then infer the sensitive
value with high precision. The background knowledge that an
adversary has may be some known facts, e.g., a male patient
cannot have ovarian cancer, or some public demographical
information about a specific group, e.g., it is unlikely that a
young patient of certain ethnic groups has heart disease. A
powerful adversary with these additional information can make
more precise inference on the sensitive values of individuals.
To address the limitations of k-anonymity, Machanavajjhala

et al. [6] introduced a new notion of privacy, called !-diversity,
which requires that each equivalence class has at least ! “well-
represented” values. To achieve !-diversity, anonymization
approaches other than generalization have been proposed.
Recently Xiao and Tao [9] introduced the Anatomy technique
to achieve !-diversity.



ZIP Code Age Sex Disease
1 47677 29 F Ovarian Cancer
2 47602 22 F Ovarian Cancer
3 47678 27 M Prostate Cancer
4 47905 43 M Flu
5 47909 52 F Heart Disease
6 47906 47 M Heart Disease
7 47605 30 M Heart Disease
8 47673 36 M Flu
9 47607 32 M Flu

TABLE I
ORIGINAL PATIENTS TABLE

While !-diversity directly prevents the homogeneity attack,
it does not satisfactorily deal with the background knowl-
edge attack. We illustrate background knowledge attack in
Section II and show that the anatomizing algorithm proposed
in [9] is especially vulnerable to this attack. We also empiri-
cally evaluate the vulnerability of the anatomizing algorithm
in Section VI.
The main challenge of dealing with background-knowledge-

based attack lies in how to model the adversary’s background
knowledge. We believe that it is unreasonable to require man-
ual specification of the background knowledge an adversary
may have. In this paper, we propose a novel approach to
model the adversary’s background knowledge. Our approach
is to generate such knowledge by mining the data to be
released. The rationale of our approach is that if certain facts
or knowledge exist, they should manifest themselves in the
whole table and we should be able to find them using data
mining techniques. We then use the mined knowledge in
the data anonymization process. One intriguing aspect about
our approach is that one can argue that it improves both
privacy and utility at the same time, as it both protects against
background knowledge attacks and better preserves features in
the data.
Based on this rationale, we propose the Injector framework

for data anonymization. Injector first mines negative associa-
tion rules from the data using data mining techniques and then
uses them in the data anonymization process. A negative asso-
ciation rule is an implication saying that some combination of
the quasi-identifier values cannot entail some sensitive attribute
values. We also develop an efficient anonymization algorithm
to incorporate these negative association rules. Finally, we
show the effectiveness of our approach in both protecting
privacy and improving data utility through experiments on a
real dataset.
While Injector uses only negative association rules as the

adversary’s background knowledge, using other types of back-
ground knowledge is possible but is beyond the scope of this
paper. We provide more discussion of using other types of
background knowledge in Section VIII.
The rest of this paper is organized as follows. We illus-

trate the background knowledge attack against Anatomy in
Section II and present the Injector methodology in Section III.
We discuss negative association rule mining in Section IV and
show how to use negative association rules in data anonymiza-

ZIP Code Age Sex Group-ID
1 47677 29 F 1
2 47602 22 F 1
3 47678 27 M 1
4 47905 43 M 2
5 47909 52 F 2
6 47906 47 M 2
7 47605 30 M 3
8 47673 36 M 3
9 47607 32 M 3

(a) The quasi-identifier table (QIT)

Group-ID Disease Count
1 Ovarian Cancer 2
1 Prostate Cancer 1
2 Flu 1
2 Heart Disease 2
3 Heart Disease 1
3 Flu 2

(b) The sensitive table (ST)
TABLE II

THE ANATOMIZED TABLE

tion in Section V. Experimental results are presented in
Section VI and related work is discussed in Section VII.
In Section VIII, we discuss limitations of our approach and
avenues for future research.

II. BACKGROUND KNOWLEDGE ATTACK AGAINST
ANATOMY

Recently, Xiao and Tao [9] introduced Anatomy as an al-
ternative anonymization technique to generalization. Anatomy
releases all the quasi-identifier and sensitive data directly into
two separate tables. For example, the original table shown in
Table I is decomposed into two tables, the quasi-identifier table
(QIT) in Table II(a) and the sensitive table (ST) in Table II(b).
The QIT table and the ST table are then released.
The authors also proposed an anatomizing algorithm to

compute the anatomized tables. The algorithm first hashes
the records into buckets based on the sensitive attribute,
i.e., records with the same sensitive values are in the same
bucket. Then the algorithm iteratively obtains the ! buckets
that currently have the largest number of records and selects
one record from each of the ! buckets to form a group. Each
remaining record is then assigned to an existing group.
We show background knowledge attack on the anatomized

tables. Suppose Alice knows that Bob’s record belongs to
the first group in Table II where the two sensitive values are
“prostate cancer” and “ovary cancer”, then Alice immediately
knows that Bob has “prostate cancer”. The apparent diversity
does not help provide any privacy, because certain values can
be easily eliminated. This problem is particularly acute in
the Anatomy approach. The anatomizing algorithm randomly
picks records and groups them together (rather than grouping
records with similar quasi-id values together). Therefore, it
is likely that one may be grouping records with incompatible
sensitive attribute values together. We will empirically evaluate
the effect of background knowledge attack on the anatomizing
algorithm in Section VI.



III. INJECTOR: MINING BACKGROUND KNOWLEDGE
FROM THE DATA

In this section, we propose a novel approach to deal with
background knowledge attack.

A. Background Knowledge
We first examine what background knowledge an adversary

may have. In traditional settings of data anonymization, the
adversary is assumed to know certain knowledge besides the
released data, e.g., the quasi-identifier values of individuals in
the data and the knowledge of whether some individuals are
in the data. In the following, we identify a list of additional
knowledge that an adversary may have.
First, the adversary may know some absolute facts. For

example, a male can never have ovarian cancer.
Second, the adversary may have partial knowledge of the

demographic information of some specific groups. For exam-
ple, the adversary may know that the probability that young
females of certain ethnic groups have heart disease is very low.
This knowledge can be represented as patterns or association
rules that exist in the data.
Third, the adversary may have some adversary-specific

knowledge, which is available to the adversary for some
reason. For example, an adversary may know some targeted
victim in person and have partial knowledge on the sensitive
values of that individual (e.g., Alice may know that his friend
Bob does not have short breath problem since she knows
that Bob runs for two hours every day). An adversary may
get additional information from other sources (e.g., Bob’s
son told Alice that Bob does not have heart disease). This
type of knowledge is associated with specific adversaries and
the channel through which an adversary obtains this type of
knowledge can be varied among different adversaries.
While adversary-specific knowledge is hard to predict, it

is possible to discover the other two types of background
knowledge. Now we describe our proposed approach.

B. Our Approach
The main problem of dealing with background knowledge

attacks is that we are unaware of the exact knowledge that
an adversary may have and we believe that requiring the
background knowledge as an input parameter is not feasible
as it places too much a burden on the user. In this paper, we
propose a novel approach to model the adversary’s background
knowledge. Our approach is to extract background information
from the data to be released. For example, the fact that male
can never have ovarian cancer should manifest itself in the
data to be released, and thus it should be possible for us to
discover the fact from the data. Also, it is often the case that
an adversary may have access to similar data, in which case
patterns or association rules mined from one data can be an
important source of the adversary’s background knowledge on
the other data. We are aware that we do not consider adversary-
specific knowledge. The specific knowledge that an adversary
may have is hard to predict. Also, since the adversary cannot
systematically obtain such knowledge, it is unlikely that the

adversary knows specific knowledge about a large number of
individuals.
With this background knowledge extracted from the data,

we are able to anonymize the data in such a way that inference
attacks using this background knowledge can be effectively
prevented. For example, if one is grouping records together for
privacy purposes, one should avoid grouping a male patient
with another record that has ovarian cancer (or at least
recognize that doing so does not help meet attribute disclosure
privacy requirements).
One may argue that such an approach over-estimates an

adversary’s background knowledge, as the adversary may not
possess all knowledge extracted from the data. We justify
our approach through the following arguments. First, as it is
difficult for us to bound exactly what the adversary knows and
what she doesn’t know, a conservative approach of utilizing
all extracted knowledge of a certain kind is appropriate.
Second, it is often the case that the adversary has access to
similar data and knowledge extracted from the data can be the
adversary’s background knowledge on the other data. Finally,
utilizing such extracted knowledge in the anonymization pro-
cess typically results in (at least partial) preservation of such
knowledge; this increases the data utility. Note that privacy
guarantees are still met.
One intriguing aspect about our approach is that one can

argue that it improves both privacy and data utility at the
same time. Grouping a male patient with another record
that has ovarian cancer is bad for privacy because it offers
a false sense of protection; it is also bad for data utility,
as it contaminates the data. By not doing that, one avoids
introducing false associations and improves data utility. This
is intriguing because, in the literature, privacy and utility have
been viewed as two opposing properties. Increasing one leads
to reducing the other.

C. The Injector Framework

We now present the Injector framework for data anonymiza-
tion. Injector focuses on one type of background knowledge,
i.e., a certain combination of quasi-identifier values cannot
entail certain sensitive values. This type of background knowl-
edge can be represented as negative association rules of the
form “Sex=M⇒ ¬ Disease=ovarian cancer” and we are able
to discover them from the data using data mining techniques.
Mining other types of knowledge from the data and using them
in data anonymization is an interesting direction for future
work.
Injector uses permutation-based bucketization as the method

of constructing the published data from the original data,
which is similar to the Anatomy technique [9] and the
permutation-based anonymization approach [10]. The bucke-
tization method first partitions tuples in the table into buckets
and then separates the quasi-identifiers with the sensitive
attribute by randomly permuting the sensitive attribute values
in each bucket. The anonymized data consists of a set of
buckets with permuted sensitive attribute values.



The Injector framework consists of two components: (1)
mining negative association rules from the table and (2) using
these rules in data anonymization. We discuss these two
components in the following two sections respectively.

IV. MINING NEGATIVE ASSOCIATION RULES
In this section, we study the problem of mining negative

association rules from the data. We first formalize our problem
and introduce the expectation measure in Section IV-A. We
present techniques for dealing with quantitative attributes in
Section IV-B and describe the algorithm in Section IV-C.

A. Problem Formulation
Let T be a table which has m quasi-identifier attributes

Aj(1 ≤ j ≤ m), each with an attribute domain Dj , and a
sensitive attribute Am+1 with a domain Dm+1. We define a
value generalization hierarchy (VGH) for each quasi-identifier
attribute where leaf nodes correspond to actual attribute values,
and internal nodes represent less-specific values. We denote
ti[j] as the j-th attribute value of tuple ti.
Our objective is to discover interesting negative association

rules [11]. In our setting, a negative association rule is an
implication saying that some combination of quasi-identifier
values cannot entail certain sensitive values. Specifically, a
negative association rule is an implication of the form X ⇒
¬Y , whereX is a predicate involving only the quasi-identifiers
and Y is a predicate involving only the sensitive attribute.
The intuitive meaning of such a rule is that tuples that satisfy
X do not satisfy Y with a high confidence. Usually, Y is a
predicate of the form Am+1 = s with s ∈ Dm+1 and X is a
conjunction of predicates each of which is of the form A i = vi

(1 ≤ i ≤ m) with vi ∈ Di.
In the rules defined above, only values at the leaf level of

the VGHs are involved in the predicate X. To allow rules to
take values from any level of the VGH, we define extended
attribute domainsD′

j = Dj∪Ej , where Ej is the set of internal
nodes of the VGH for the j-th attribute for 1 ≤ j ≤ m, and
D′

m+1 = Dm+1. A generalized negative association rule is an
implication of the form X ⇒ ¬Y , where Y is a predicate of
the form Am+1 = s with s ∈ D′

m+1 andX is a conjunction of
predicates each of which is of the form Ai = vi (1 ≤ i ≤ m)
with vi ∈ D′

i.
We now define “interestingness” of a negative association

rule. Some traditional interestingness measures are based on
support and confidence. Specifically, a rule is interesting
if its support is at least minSup and its confidence is at
least minConf where minSup and minConf are user-defined
parameters. The rule X ⇒ ¬Y has support s% if s% of
tuples in T satisfy both X and ¬Y . The rule X ⇒ ¬Y
holds with confidence c% if c% of tuples which satisfy X
in T also satisfy ¬Y . If we denote the fraction of tuples that
satisfy predicate Z as P (Z), then s% = P (X ∪ ¬Y ) and
c% = P (X ∪ ¬Y )/P (X).
We observe that setting a single minSup value for different

sensitive values would be inappropriate for our purpose. A
frequent sensitive value is expected to occur with a high

probability even in a small number of tuples; when this
probability turns out to be small, it is an interesting rule.
On the other hand, an infrequent sensitive value is expected
to occur with a low probability even in a large number of
tuples; even when this probability is small, the rule may not
be interesting. Intuitively, we should set a largerminSup value
for a negative association rule involving a frequent sensitive
attribute value.
Based on this observation, we propose to use expectation

instead of support as the measure of the strength of a negative
association rule. Given a negative association rule X ⇒ ¬Y ,
the number of tuples satisfying X is n ∗ P (X) where n is
the total number of tuples in T . Among these tuples, the
probability that the sensitive value of Y occurs at least once
is 1 − (1 − P (Y ))n∗P (X). We define this probability as the
expectation of the rule. The rule X ⇒ ¬Y is interesting if it
has expectation at least minExp, i.e., 1−(1−P (Y ))n∗P (X) ≥
minExp, which is equivalent to P(X ) ≥ 1

n log1−P (Y )(1 −
minExp).
We now define our objective as finding all generalized

negative association rules X ⇒ ¬Y that satisfy the following
two requirements where minExp is a user-defined parameter
and minConf is fixed to be 1.

• Minimum expectation requirement: P (X) ≥ SupY ,
where SupY = 1

n log1−P (Y )(1 − minExp).
• Minimum confidence requirement: P (X ∪¬Y )/P (X) ≥

minConf .
Note that in Injector, minConf is fixed to be 1. A more

general approach would allow us to probabilistically model the
adversary’s knowledge. We provide more discussion on this in
Section VIII.

B. Dealing with Quantitative Attributes

The above definition does not consider the semantics of
quantitative attributes. Consider the rule {Age = 21} ⇒
¬{Salary = 50K}. Suppose few records with age 21 in
the table have a salary close to 50K . However, the rule
{Age = 21} ⇒ ¬{Salary = 50K} may not hold if a large
number of records with age close to 21 in the table have a
salary of 50K . This suggests that while tuples with age exactly
21 directly support the rule, tuples with age close to 21 have
partial support for this rule.
To consider partial support of quantitative attributes, we

interpret nodes in the VGH of a quantitative attribute as a
fuzzy set [12]. A value can belong to the node with set
membership between [0, 1]. We denote the membership of
value t[ai] in Z[i] as Mem(Z [i ], t [ai ]). There are two ways
to define the support of Z from t (denoted as P (Z, t)): (1)
the product of the membership of each attribute value, i.e.,
P (Z, t) = Π1≤i≤qMem(Z[i], t[ai]) and (2) the minimum
of the membership of each attribute value, i.e., P (Z, t) =
min1≤i≤q Mem(Z[i], t[ai]). We adopt the first method to
compute P (Z, t). Again, P (Z) =

∑
t∈T P (Z, t). We are then

able to use this support function to define the interestingness
measures.



C. The Algorithm
As we have discussed in Section IV-A, the expectation

requirement is equivalent to P(X ) ≥ SupY . We define
minSup = mins∈Dm+1 SupY where Y is the predicate
Am+1 = s. Then the problem of discovering interesting
negative association rules can be decomposed into two sub-
problems: (1) Discovering all itemsets that involve only quasi-
identifiers and have support at least minSup; (2) Finding
all negative association rules satisfying the expectation and
confidence requirements. We study the two problems in the
rest of this section.
Discovering Frequent Itemsets: We can efficiently solve

this problem by modifying existing frequent itemset generation
algorithm Apriori [13] or the FP-tree algorithm [14]. For each
frequent itemset X , we also record a count CX indicating the
support for X and an array of counts CX [s] for each sensitive
value s indicating the number of tuples that support X and
have sensitive value s (Note that CX =

∑
s CX [s]). These

counts are used in solving the second subproblem.
Finding Negative Association Rules: The second subprob-

lem is to generate negative association rules. For each frequent
itemset X and for each sensitive value Y , we check if the
following two conditions hold:

• CX
n ≥ SupY

• CX [Y ]
CX

≤ 1 − minConf
If both conditions are satisfied, X ⇒ ¬Y is identified as

a negative association rule. The first condition ensures that
the negative association rule has sufficient expectation (Note
that CX

n = P (X)). The second condition ensures that the
negative association rule has sufficient confidence (Note that
1 − CX [Y ]

CX
= P (X ∪ ¬Y )/P (X)).

V. USING NEGATIVE ASSOCIATION RULES IN DATA
ANONYMIZATION

In this section, we study the problem of using negative
association rules in data anonymization. We define the privacy
requirement for data anonymization in the new framework and
develop an anonymization algorithm to achieve the privacy
requirement.

A. Privacy Requirement
Let g be a group of tuples {t1, ..., tp}. We say a tuple

t cannot take a sensitive attribute value s if there exists a
negative association rule X ⇒ ¬s and t satisfies X .
A simple privacy requirement would require that each group

g satisfies the condition that, for every tuple ti in g, g
contains at least ! sensitive attribute values that ti can take.
This simple privacy requirement is, however, insufficient to
prevent background knowledge attack. Suppose that a group
contains 1 female record and ! male records and the values
of the sensitive attribute include 1 ovarian cancer and ! other
diseases common to both male and female. This satisfies the
simple privacy requirement. The female record is compatible
with all !+1 sensitive attribute values while each male record
is compatible with ! sensitive attribute values. However, when

1. for every ti ∈ g
2. Set = ∅
3. for every tj ∈ g
4. construct a new tuple t′ = (qj , si)
5. if MBM (g − {ti, tj} ∪ {t′})==|g|− 1
6. Set = Set ∪ {sj}
7. if |Set | < ! return false
8. return true

Fig. 1. The checking algorithm

one considers the fact that there must be a one-to-one mapping
between the records and the values, one can infer that the only
female record must have ovarian cancer, since no other record
can be mapped to this value. This suggests that a stronger
privacy requirement is needed to bound the privacy risk caused
by background knowledge attack.
Definition 1 (The Matching !-Diversity Requirement):

Given a group of tuples, we say a sensitive value is valid
for a tuple if there exists an assignment for the remaining
tuples in the group. A group of tuples satisfy the matching
!-diversity requirement if every tuple in the group has at least
! valid sensitive values.
The matching !-diversity requirement guarantees that the

adversary with background knowledge cannot learn the sensi-
tive value of an individual from a set of at least ! values.

B. Checking Privacy Breaches

We have defined our privacy requirement, now we study the
checking problem: given a group of tuples, are there at least !
valid sensitive values for every tuple in the group? To check
whether a sensitive value sj is valid for a tuple ti, we assigns
sj to ti and then check if there is an assignment for the group
of remaining tuples g ′.
Checking the existence of an assignment for a group of

tuples g′ can be reduced to the maximum bipartite matching
problem [15] where all qi’s in g′ form one set of nodes, all
si’s in g′ form the other set of nodes, and an edge between q i

and sj represents that ti can take value sj . Specifically, there
is an assignment for g ′ if and only if there is a matching of
size |g′| in the corresponding bipartite graph.
There are polynomial time algorithms (e.g., path augmen-

tation [15]) for the maximum bipartite matching (MBM)
problem. We denote MBM (g) as the procedure for solving
the MBM problem given the bipartite graph constructed from
g. Our algorithm iteratively invokes MBM procedure.
The algorithm is given in Figure 1. The input to the

algorithm is a group of tuples g. The algorithm checks if
there are at least ! valid sensitive values for every tuple in
g. The MBM (g) procedure takes time O(|g|2p) where p is
the number of edges in the constructed bipartite graph for g.
The checking algorithm invokes the MBM (g) procedure at
most |g|2 times. It follows that our checking algorithm takes
time O(|g|4p).



/* Line 1 computes N [s ][O ] and N [s ][S ′] */
1. for ∀ti ∈ T , increment N [si ][O ] and N [si ][IVS [ti ]]
/* Lines 2-17 groups tuples into buckets L */
2. while |T | ≥ !
3. pick a tuple ti ∈ T that maximizes NIT [{ti}]
4. g = {ti}, T = T − {ti}
5. decrement N [si ][O ] and NS[si ][IVS [ti ]]
6. while |g| < !
7. if no tj ∈ T is compatible with g
8. for every tj ∈ g
9. increment N [sj ][O ] and N [sj ][IVS [tj ]]
10. insert all tuples in g − {ti} into T
11. insert ti into Tr, go to line 2
12. else select tj ∈ T that is compatible with g and
13. minimizes NIT [g ∪ {tj}]
14. g = g ∪ {tj}, T = T − {tj}
15. decrement N [sj ][O ] and N [sj ][IVS [tj ]]
16. insert g into L
17. insert all tuples in T into Tr

/* Lines 18-23 add the remaining tuples Tr to groups */
18. for every tj in Tr

19. select g ∈ L having the smallest number of tuples
20. that are incompatible with tj , set g = g ∪ {tj}
21. while tj has less than ! valid sensitive values in g
22. select g′ ∈ L maximizing |SEN (g ′) − SEN (g)|
23. g = g ∪ g′, remove g′ from L

Fig. 2. The bucketization algorithm

C. A Bucketization Algorithm

We present the bucketization algorithm. To describe the
algorithm, we introduce the following notations. Let g be
a group of tuples {t1, ..., tp} such that ti = 〈qi, si〉 where
qi is the quasi-identifier value of ti and si is the sensitive
attribute value of ti. Let IVS [ti ] denote the set of sensitive
attribute values that ti cannot take. Let SEN [g] denote the set
of sensitive attribute values in g.
The bucketization algorithm, when given a set of tuples T

and an IVS set for each tuple, outputs a number of groups of
tuples for publication. We first give the following definition.
Definition 2: A tuple tj is incompatible with a tuple ti if at

least one of the following three conditions holds: (1) s j = si,
(2) ti cannot take the value sj , and (3) tj cannot take the value
si. A tuple tj is incompatible with a group of tuples g if tj

is incompatible with at least one tuple in g.
Our bucketization algorithm includes three phases. The first

phase is the initialization phase, which initializes the data
structures. The second phase is the grouping phase where
groups are formed. To form a group, the algorithm first
chooses a tuple ti that has the largest number of incompatible
tuples. The group g initially contains only t i. Then additional
tuples are added to the group iteratively. Each time, a tuple
tj is selected such that tj is compatible with g and the new
group (formed by adding tj to g) has the smallest number of
incompatible tuples. If no tuples are compatible with g, we put
ti in the set of remaining tuples and consider the next tuple.

Attribute Type # of values Height
1 Age Numeric 74 5
2 Workclass Categorical 8 3
3 Education Categorical 16 4
4 Marital Status Categorical 7 3
5 Race Categorical 5 3
6 Gender Categorical 2 2
7 Occupation Sensitive 14 N/A

TABLE III
DESCRIPTION OF THE ADULT DATASET

The third phase is the group assignment phase where each
of the remaining tuples tj is assigned to a group. Initially,
tj is added to the group g which has the smallest number
of tuples that are incompatible with tj (i.e., g = g ∪ {tj}).
We iteratively merge g with the group which has the largest
number of sensitive values that are different from g until t j has
at least ! valid sensitive values in g (the checking algorithm is
invoked to count the number of valid sensitive values for t j).
One nice property about the matching !-diversity requirement
is that if a group of tuples satisfy the requirement, they still
satisfy the requirement when additional tuples are added. We
thus only need to consider the remaining tuples in this phase.
The key component of the algorithm is to compute the

number of tuples that are incompatible with g (denoted as
NIT [g]). To efficiently compute NIT [g], we maintain a com-
pact data structure. For each sensitive value s, we maintain
a list of counts N [s ][S ′] which denotes the number of tuples
whose sensitive value is s and whose IVS set is S ′. Note
that we only maintain positive counts. Let N [s ][O ] denote the
number of tuples whose sensitive value is s, i.e., N [s ][O ] =∑

S′ N [s ][S ′], and O is only a special symbol.
We denote IVS [g] as the set of sensitive values that are

incompatible with g. We have IVS [g] = ∪t∈gIVS [t ], i.e., a
sensitive value is incompatible with g if it is incompatible with
at least one tuple in g. We denote IS [g] = SEN [g]∪ IVS [g].
We can then partition the set of tuples that are incompatible
with g into two groups: (1) {tj|sj ∈ IS [g]} and (2) {tj|(sj /∈
IS [g]) ∧ (SEN [g] ∩ IVS [tj ] .= ∅)}. Then, NIT [g] can be
computed as follows.

NIT [g] =
∑

s∈IS [g]

N [s ][O ] +
∑

(s/∈IS [g])

∑

(S′∩SEN [g]'=∅)

N [s ][S ′]

The algorithm is given in Figure 2. We now analyze its
complexity. Let |T | = n and assume n / |S| and n / !. The
initialization phase scans the data once and thus takes O(n)
time. The grouping phase takes at most n rounds. In each
round, the algorithm scans the data once and the computation
of NIT [g] takes time O(q) where q is the number of positive
N [s][S′] entries (note that q ≤ n). The grouping phase thus
takes O(qn2) time. The group assignment phase takes |Tr| ≤
n rounds and at most n merges, each takes O(n) time. Thus,
the total time complexity is in O(qn2).



minExp |R| N0 N1 N2 N3 N4 N≥5

0.75 45 0 80.4% 15.9% 2.3% 1.2% 0.2%
0.80 39 0 84.6% 12.2% 2.1% 1.0% 0.1%
0.85 32 0 87.5% 9.2% 2.0% 1.0% 0
0.90 22 0 87.9% 9.2% 2.5% 0.4% 0
0.95 15 0 96.2% 1.8% 2.0% 0 0

Fig. 3. Number of discovered rules and percentage of tuples with incom-
patible sensitive values
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Fig. 4. Background knowledge attack

VI. EXPERIMENTS

The main goals of the experiments are to study the effect of
background knowledge attack on Anatomy and to investigate
the effectiveness of Injector in both privacy protection and
data utility preservation.
The dataset used in the experiments is the adult dataset from

the UC Irvine machine learning repository, which is comprised
of data collected from the US census. The description of the
dataset is given in Table III.
Given the dataset, we compute both the corresponding

anatomized tables and the injected tables. The anatomized
tables are computed using the anatomizing algorithm described
in [9]. To compute the injected tables, we first find negative
association rules in the original dataset using differentminExp
values. In all our experiments, minConf is fixed to be 1.
Figure 3 shows the results of negative association rule

mining on the original data. |R| indicates the number of
discovered negative association rules. N0, N1, N2, N3, and
N4 indicate the percentage of tuples that have 0, 1, 2,
3, and 4 incompatible sensitive values, respectively. N≥5

indicates the percentage of tuples that have at least 5 in-
compatible sensitive values. The negative association rules
discovered from the data include, for example, {Workclass
= Government}⇒ ¬{Occupation = Priv-house-serv} and
{Education = Doctorate}⇒ ¬ {Occupation = Handlers-
cleaners}. We then compute the injected tables using the
bucketization algorithm described in Section V.
We evaluate the performance of Anatomy and Injector

on two parameters: (1) minExp value within the range
[0.75, 0.95] (the default value is 0.9); (2) ! value which ranges
from 3 to 6 (the default value is 6). Since the anatomizing
algorithm is a randomized algorithm, for each set of selected
parameters, we run the anatomizing algorithm for 10 times
and the average value is reported.
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A. Background Knowledge Attack
To illustrate the effects of background knowledge attack

on Anatomy and Injector, we count the number of tuples in
the anatomized tables and the injected tables that have less
than ! possible sensitive values using the extracted negative
association rules. These tuples are viewed as vulnerable to
background knowledge attack.
The experimental results are shown in Figure 4. In all

experiments, Injector has no vulnerable tuples, indicating that
Injector better protects the data against background knowledge
attacks.
In the rest of this section, we compare Injector against

Anatomy and show that Injector also improves data utility.

B. Efficiency
We compare the efficiency of computing the anatomized

tables and the injected tables. The time for computing the
injected tables consists of two parts: (1) the time for computing
the negative association rules and (2) the time for computing
the injected tables using the bucketization algorithm.
Experimental results are shown in Figure 5. The time to

compute the injected tables using the bucketization algorithm
is roughly the same as the time to compute the anatomized ta-
bles using the anatomizing algorithm, usually within seconds.
The main efficiency issue of computing the injected tables
lies in computing the negative association rules. However,
computing the negative association rules using a variation of
the FP-tree algorithm is fast enough for large datasets.

C. Association Rule Mining
The first set of experiments on data utility evaluates the

errors in association rule mining. We mine positive association
rules from the original data and the anonymized data. We use
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conviction [16] as the interestingness metric. Specifically, the
conviction of X ⇒ Y is defined as P (X)P (¬Y )/P (X∪¬Y ).
We use Apriori [13] to find all positive association rules
that satisfy both minimum support and minimum conviction
requirements. Two error metrics are evaluated: confidence
error and identification error.
To evaluate confidence error, we find the set of association

rules R with sufficient support and conviction in the original
table. For each r ∈ R (the confidence of r in the original
table is denoted as org confr), we compute the corresponding
confidence of r in the anonymized table (through Anatomy
or Injector) which is denoted as the reconstructed confidence
rec confr. The Confidence Error is computed as:

ρ =
1
|R|

∑

r∈R

|rec confr − org confr|
org confr

∗ 100

The experimental results are shown in Figure 6. In all
experiments, Injector has smaller confidence errors, indicating
that Injector captures a larger amount of association between
the quasi-identifiers and the sensitive attribute.
Errors in confidence estimation can result in errors in the

identification of interesting association rules, i.e., association
rules that exist in the original data may be hidden in the
anonymized data and association rules that do not exist in the
original data may be erroneously identified in the anonymized
data. This error is called identification error.
To evaluate identification error, we perform association rule

mining on all three tables: (1) the original table, (2) the
anatomized tables, and (3) the injected tables. We denote the
set of association rules discovered from the original table
and the anonymized tables (through Anatomy or Injector) as
Rorg and Rrec, respectively. The identification error has two
components: (1) false positive σ+ indicating the percentage of
association rules that are not in Rorg but in Rrec, and (2) false
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negative σ− indicating the percentage of association rules that
are in Rorg but not in Rrec. The two metrics are computed
as:

σ+ =
|Rrec − Rorg|

|Rorg|
∗ 100 σ− =

|Rorg − Rrec|
|Rorg|

∗ 100

The experimental results are in Figure 7. In all figures, In-
jector has smaller identification errors, indicating that Injector
is more effective in identifying association rules.

D. Aggregate Query Answering
The second set of experiments on data utility evaluates the

accuracy of aggregate query answering. We only consider the
“COUNT” operator where the query predicate involves the
sensitive attribute, as in [9]. It is also possible to compute other
aggregate query operators such as “MAX” and “AVERAGE”
on numerical attributes [10]. Specifically, the queries that we
consider are of the form:

SELECT COUNT(*) FROM Table
WHERE vi1 ∈ Vi1 AND ... vidim ∈ Vidim AND s ∈ VS

where vij (1 ≤ j ≤ dim) is the quasi-identifier value for
attribute Aij , Vij ⊆ Dij and Dij is the domain for attribute
Aij , s is the sensitive attribute value and VS ⊆ DS and DS is
the domain for the sensitive attribute S. A query predicate is
characterized by two parameters: (1) the predicate dimension
dim , indicating the number of quasi-identifiers involved in the
predicate; (2) the query selectivity sel , indicating the number
of values in each Vij , (1 ≤ j ≤ dim). Specifically, the size of
Vij , (1 ≤ j ≤ dim) is randomly chosen from {0, 1, ..., sel ∗
|Dij |}. For each selected parameter, we generate 1000 queries
Q for the experiments.
For each query q, we run the query on the three tables:

(1) the original table, (2) the anatomized tables, and (3)



the injected table. We denote the count from the original
table and the reconstructed count from the anonymized tables
(through Anatomy or Injector) as org countq and rec countq

respectively. Then the average relative error is computed over
all queries as:

ρ =
1
|Q|

∑

q∈Q

|rec countq − org countq|
org countq

∗ 100

Experimental results are shown in Figure 8. In all figures,
Injector has smaller errors, which indicates that Injector per-
mits more accurate data analysis in aggregate query answering
than Anatomy.

VII. RELATED WORK

Existing work on data anonymization can be classified into
two categories. The first category of work aims at devising
privacy requirements. Samarati and Sweeney [3], [4], [5]
first proposed the k-anonymity model which assumes that
assumes that the adversary has access to some publicly-
available databases (e.g., a vote registration list) from which
she obtains the quasi-identifier values of the individuals. The
model also assumes that the adversary knows that some
individuals are in the table. Much of the subsequent work
on data anonymization assumes to use this adversarial model.
In [6], [8], the authors recognized that the adversary also
has knowledge of the distribution of the sensitive attribute in
each equivalence class and she may be able to infer sensitive
values of some individuals using this knowledge. In [6],
the authors proposed the !-diversity requirement [6] which,
however, does not satisfactorily prevent an adversary with
background knowledge from learning important sensitive in-
formation. Recently, Li et al. [17] observed that the distribution
of the sensitive attribute in the overall table should be public
information and the adversary can infer sensitive information
with this additional knowledge. They proposed the t-closeness
requirement as a stronger notion of privacy against this more-
powerful adversary. In [18], Martin et al. proposed a formal
language to express background knowledge about the data and
a polynomial time algorithm for computing the disclosure risk
in the worst case. However, this work does not consider the
exact background knowledge that the adversary may have.
The second category of work aims at developing anonymiza-

tion techniques to achieve the privacy requirements. One
popular approach to anonymize the data is generalization and
suppression [3], [4]. In generalization, some generalization
schemes [3], [19], [20], [21], [22] have the consistency prop-
erty, which means multiple occurrences of the same value are
always generalized in the same way, i.e., they are replaced
with the same value. A serious defect of generalization that has
been recognized by [23], [24], [8] is that experimental results
have shown that many attributes have to be suppressed in order
to guarantee privacy. A number of techniques [9], [24] have
been proposed to remedy this defect of generalization. On the
other hand, some generalization schemes [25] do not have the
consistency property. One example is the Mondrian [25] multi-
dimensional k-anonymity. Another anonymization technique is

clustering [26], which typically groups records based on some
distance metric. Recently, Xiao and Tao [9] proposed Anatomy
as an alternative anonymization technique. Koudas et al. [10]
explored the permutation-based anonymization approach and
examined the anonymization problem from the perspective of
answering downstream aggregate queries.
Several research works also consider background knowledge

in other contexts. In [27], Lakshmanan et al. studied the
problem of protecting the true identities of data objects in the
context of frequent set mining when an adversary has partial
information of the items in the domain. In their framework, the
adversary’s prior knowledge was modeled as a belief function
and formulas were derived for computing the number of items
whose identities can be “cracked”.
The problem of association rule mining was introduced by

Agrawal et al. [28] in the context of transactional database. A
number of algorithms such as Apriori [13] and FP-Tree [14]
have been proposed to discover interesting association rules.
The generalization of association rule mining to multiple levels
of hierarchies over items is studies in [29], [30]. Association
rules involving quantitative attributes are studied in [31], [32],
[33], [12]. Negative association rule mining is studied in [11],
[34]. Tan et al. [35] studied how to select the right measure
for evaluating the interestingness of association rules.

VIII. CONCLUSIONS AND FUTURE WORK

While recent work has shown that background knowledge
attack can present disclosure risks to the anonymized data, no
work has used background knowledge in data anonymization
mainly because of the challenge of modeling the adversary’s
background knowledge.
In this paper, we explicitly consider and use background

knowledge. Our approach first mines knowledge from the data
and then uses the knowledge in data anonymization. One key
advantage of our approach is that it protects the data against
background knowledge attacks while improving data utility.
We have proposed the Injector framework which uses one

type of knowledge (negative association rules). Our exper-
imental results show the effectiveness of Injector in both
privacy protection and utility preservation. Below we discuss
some interesting open research issues.

A. Mining Other Knowledge from the Data

It may be possible for us to discover knowledge from
the data other than negative association rules. One type of
knowledge is the summary statistics of the data. An example
of this might be that the average salary of physical therapists
is 70K . One direction of future work is to study how an
adversary might use this additional knowledge to make more
precise inferences and how we can use this knowledge in data
anonymization to prevent these inference attacks. Also, how
this would affect data utility is an interesting research problem.
For example, we are able to discover positive association
rules in the data. However, using positive association rules
in anonymization would hide the association rules.



B. A General Model to Deal with Background Knowledge

The Injector framework considers only negative association
rules with minConf = 1. A general framework would
allow us to probabilistically model the adversary’s background
knowledge. It is an interesting direction to study how to
compute the adversary’s posterior knowledge in this frame-
work and use these knowledge in data anonymization. In
this framework, we can model both the adversary’s posterior
knowledge and prior knowledge as distributions of the sensi-
tive attribute for all tuples. How to model the adversary’s prior
knowledge and how to compute the posterior knowledge, e.g.,
using Bayesian inference techniques, are interesting research
problems.

C. Other Uses of Knowledge Mined from the Data

The extracted knowledge from the data might be useful for
purposes other than anonymizing the data. For instance, we
can use the extracted knowledge to guide the construction of
generalization hierarchies. For example, attribute values with
very different probabilities on some sensitive value should not
be grouped together before they are combined with attribute
values that have similar probabilities on the sensitive values.
Investigating other uses of the exacted knowledge is an inter-
esting research direction.
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