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Abstract

In recent years, a major thread of research on k-
anonymity has focused on developing more flexible gener-
alization schemes that produce higher-quality datasets. In
this paper we introduce three new generalization schemes
that improve on existing schemes, as well as algorithms
enumerating valid generalizations in these schemes. We
also introduce a taxonomy for generalization schemes and a
new cost metric for measuring information loss. We present
a bottom-up search strategy for finding optimal anonymiza-
tions. This strategy works particularly well when the value
of k is small. We show the feasibility of our approach
through experiments on real census data.

1. Introduction

Organizations, industries and governments are increas-
ingly publishing microdata. While the released datasets
provide valuable information to researchers, they also con-
tain sensitive information about individuals whose privacy
may be at risk. A major challenge is to limit disclosure
risks to an acceptable level while maximizing data utility.
To limit disclosure risk, Samarati and Sweeney [6, 5, 7, 8]
introduced the k-anonymity privacy requirement, which re-
quires each record in an anonymized table to be indistin-
guishable with at least k-1 other records within the dataset,
with respect to a set of quasi-identifier attributes. They
suggested the use of generalization and suppression for
anonymizing data. Unlike traditional privacy protection
techniques such as data swapping and adding noise, infor-
mation in a k-anonymized table through generalization and
suppression remains truthful.

A major thread of research in the area of data anonymiza-
tion aims at developing flexible generalization schemes for
k-anonymity. Each generalization scheme defines a space
of valid generalizations. A more flexible scheme allows
a larger space of valid generalizations and can thus pro-

duce better-quality data. Many of the existing generaliza-
tion schemes use value generalization hierarchies (VGHs)
of attributes. In a VGH, leaf nodes correspond to actual
attribute values, and internal nodes represent more-general
values. Figure 1 shows a VGH for the work-class attribute.
Three generalization schemes have been proposed and stud-
ied in the literature:

Basic Hierarchical Scheme (BHS) Earlier work on k-
anonymity focuses on this scheme [3, 5, 6, 7, 8]. In BHS,
all values are generalized to the same level of VGH. Thus
the number of valid generalizations for an attribute is the
height of the VGH for that attribute. BHS is likely to suf-
fer from high information loss due to unnecessary gener-
alizations, which motivated the development of other more
flexible generalization schemes.

Group Hierarchical Scheme (GHS) Proposed by Iyen-
gar [2], GHS allows different values of an attribute to be
generalized to different levels. In GHS, a valid generaliza-
tion is represented by a “cut” across the VGH, i.e., a set of
nodes such that the path from every leaf to the root encoun-
ters exactly one node in that set (the value corresponding to
the leaf will be generalized to the value represented by that
node). GHS is likely to produce better-quality anonymiza-
tions than BHS. However, the solution space is still limited
by the VGHs, and the quality of the resulted dataset depends
on the choice of the VGHs.

Ordered Partitioning Scheme (OPS) The fact that the
quality of the resulted dataset depends on the choice of
VGHs motivated the OPS scheme [1]. OPS does not re-
quire predefined VGHs. Instead, a total order is defined
over each attribute domain, and any order-preserving parti-
tion (i.e., no two blocks in the partition overlap) is a valid
generalization. The total number of valid generalizations
for an attribute with n values is 2n−1.

The work in this paper is motivated by three observa-
tions. First, OPS requires a total order on the attribute do-
main. However, it is difficult to define a total order for a cat-
egorical attribute and such a total order limits the possible
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Figure 1. A value generalization hierarchy for the attribute work-class.

solutions. For example, consider the work-class attribute
in Figure 1, assume that one orders the values from left
to right; then generalizations that combine State-gov and
Federal-gov but not Local-gov are not considered in OPS.

Second, semantic information represented by VGHs can
be utilized in defining valid generalizations. Again consider
Figure 1, it is more desirable to combine State-gov with
Local-gov than with Private. Therefore, one may combine
State-gov with Private only when all values under Govern-
ment have been combined together. In other words, one
could use VGHs to eliminate some undesirable generaliza-
tions.

Third, the search algorithm in [1] is a top-down ap-
proach, which starts from the most general generalization,
and gradually specializes it. Such an approach works well
when the value k is large. For smaller k, a bottom-up search
is likely to find the optimal generalization faster.

The contributions of this paper are as follows. We intro-
duce three new generalization schemes, and compare them
with existing schemes in the framework of a taxonomy tree.
We also develop an approach for systematically enumer-
ating all partitions in an unordered set. This enumeration
algorithm can be used and adapted in enumerating valid
generalizations for the new schemes. We also introduce a
bottom-up search strategy that works better for smaller k.
Finally, we introduce a fine-grained cost metric which we
believe better captures information loss.

2. A Taxonomy of Generalization Schemes

Before we describe the new generalization schemes, we
introduce some basic concepts. The attribute domain of an
attribute is the set of all values for the attribute. An attribute
generalization g for an attribute is a function that maps each
value in the attribute domain to some other value. The func-
tion g induces a partition among all values in the attribute’s
domain. Two values vi and vj are in the same partition if
and only if g(vi) = g(vj). An anonymization of a dataset
D is a set of attribute generalizations {g1, ..., gm} such that
there is one attribute generalization for each attribute in the

quasi-identifier. A tuple t = (v1, ..., vm) in D is trans-
formed into a new tuple t′ = (g1(v1), ..., gm(vm)).

Another anonymization technique is tuple suppression,
which removes the entire record from the table. Tuple sup-
pression can be incorporated into the framework of gen-
eralization by first transforming the dataset D into a new
dataset D′ using anonymization g and then deleting any tu-
ples in D′ that fall into an equivalence class of size less
than k. Anonymizations that do not allow suppression can
be modeled by assigning the penalty of a suppressed tuple
to be infinity. We now introduce three new generalization
schemes:

Set Partitioning Scheme (SPS) OPS requires a pre-
defined total order over the attribute domain, which is dif-
ficult to define for categorical attributes and unnecessarily
imposes constraints on the space of valid generalizations.
We propose the Set Partitioning Scheme (SPS), in which
generalizations are defined without the constraint of a pre-
defined total order or a VGH; each partition of the attribute
domain represents a generalization. We discuss how to enu-
merate all valid generalizations in SPS in Section 3.

The number of different ways to partition a set with n
elements is known as the Bell number [4]. They satisfy the
recursion formula: Bn+1 =

∑n
k=0

(
n
k

)
Bk. The first few

Bell numbers are: B0 = B1 = 1, B2 = 2, B3 = 5, B4 =
15, B5 = 52, .... There are B8 = 4140 generalizations for
the work-class attribute shown in Figure 1, as compared to
128 generalizations in OPS.

Guided Set Partitioning Scheme (GSPS) SPS does not
take into account the semantic relationship among values of
an attribute domain. For example, when compared with Pri-
vate, the values Local-gov and Federal-gov are semantically
closer with State-gov.

To incorporate such semantic information, we propose
the Guided Set Partitioning Scheme (GSPS), which gener-
alizes data based on the VGHs. GSPS defines a general-
ization g to be valid if whenever two values from different
groups are generalized to the same value v, all values in that
two groups should all be generalized to v. If we define the
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(a) A taxonomy of generalization schemes (b) “Solution space” relationship

Figure 2. A Taxonomy of generalization schemes and “solution space” relationship

semantic distance between two values to be the height of
the lowest common ancestor of the two values in the VGH,
then the intuitive idea behind GSPS is that if two values x
and y are in one partition, then any value that is semanti-
cally closer to x than y must also be in the same partition.
(The same applies to any value that is semantically closer
to y than x.) Note that a value that has the same semantical
distance to x as y does not need to be in the same partition.
Consider the VGH for work-class attribute shown in Fig-
ure 1, if Local-gov and Inc are combined together, then the
five values (State-gov, Local-gov, Federal-gov, Inc, Not Inc)
must be in the same partition while the other three values
do not need to be in that partition.

We can view SPS as a special case of GSPS. GSPS be-
comes SPS when the VGH is degenerated, i.e., the VGH
has only two levels: one root at the root level and all values
at the leaf level.

Guided Ordered Partitioning Scheme (GOPS) Similar
to SPS, OPS does not keep semantic relationship among
values in an attribute domain. Consider the age attribute,
one may consider [20-29] and [30-39] to be two different
age groups and two values in the two groups should not be
in the same partition unless the two groups are merged in or-
der to achieve a desired level of anonymity. Thus, partitions
such as [28-32] are prohibited.

To impose these semantic constraints, we propose the
Guided Ordered Partitioning Scheme (GOPS). GOPS de-
fines a generalization g to be valid such that if two values x
and y (x < y) from two different groups are in the same par-
tition pg , any value between the least element in x’s group
and the largest element in y’s group must also be in pg .

The relationship between GOPS and OPS is the same as

that between GSPS and SPS. GOPS reduces to OPS when
the degenerated VGH is used.

Figure 2(a) shows a taxonomy of the generalization
schemes. We now analyze the relationship among them
with regard to the space of valid generalizations. Given
two generalization schemes π1 and π2, we write π1 ≺
π2 when the space of valid generalizations allowed by
π1 is a proper subset of the space of valid generaliza-
tions allowed by π2. We then have the following re-
lationship: BHS≺GHS≺GOPS, GOPS≺OPS≺ SPS, and
GOPS≺GSPS≺SPS. The partial order relationship among
the six generalization schemes is shown in Figure 2(b).

We point out that one can use a combination of general-
ization schemes for different attributes. For example, one
can use SPS for categorical attributes and OPS for continu-
ous attributes.

3. Enumeration Algorithms

We first study how to enumerate all generalizations for a
single attribute in SPS. Let Σ be the domain of one attribute.
In SPS, each generalization for the attribute corresponds to
one partition of Σ. A partition of Σ is a family of mutually
disjoint sets S1, S2, ..., Sm, such that Σ = S1∪S2∪...∪Sm.
Our objective is to enumerate all partitions on Σ without
visiting any partition more than once. We use breadth-first
search (BFS) strategy to build an enumeration tree of all
partitions of Σ. The root of the tree is the partition in which
each value itself is in a set; this represents the most specific
generalization, where no value is generalized. Each child of
the node is generated by merging two sets in the partition
into one set. Two sets Sj and Si (j > i) can be merged if
and only if all three of the following conditions are satisfied:
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1. Si contains a single element e.

2. Each set in between (i.e., Sj+1, ..., Si−1) contains a
single element.

3. Each element in Sj is less than e.

Figure 3. Enumeration tree over {1,2,3,4}

For example, the partition enumeration tree for the un-
ordered alphabet {1,2,3,4} is shown in Figure 3.

The algorithm for enumerating all child partitions of a
given partition is given in Figure 4.

Child Partitions
Input: A partition P=〈S1, ..., St〉 on Σ
Output: The set of child partitions of P
T = ∅
for i=2 to t do

if Si contains a single element e then
for j=i-1 to 1 do

if e is larger than any element in Sj then
T = T ∪ {〈S1, S2...Sj−1, Sj ∪ Si, Sj+1,

...Si−1, Si+1, ...St〉}
else break
if Sj contains more than one element
then break

return T

Figure 4. Algorithm for enumerating child
partitions of a given partition

The following theorem shows that our algorithm enu-
merates all partitions of S in a systematic manner.

Theorem: The algorithm in Figure 4 enumerates all
partitions of S in a systematic manner, i.e., each partition
of S is enumerated exactly once.

Proof Sketch: Consider a partition P =
〈{a11, a12...a1t1}, {a21, a22, ...a2t2}, ...{as1, as2, ...asts}}〉
of S, such that (1) aij < aik for i = 1, 2, ...s and
1 ≤ j < k ≤ ti. (2) aj1 < ak1 for 1 ≤ j < k ≤ s. We
show that there is exactly one valid sequence of merging
that result in this partition; this show that the partition is
generated exactly once in the tree.

In order to make the proof concise, we denote “merg-
ing e with the set s” as 〈e, s〉. Then we give an order
of merging that results in P from the initial partition Po:
〈a12, {a11}〉,〈a13, {a11, a12}〉,...,〈a1t1 , {a11, a12, ...a1t1−1}〉,
〈a22, {a21}〉,〈a23, {a21, a22}〉,...,〈a2t2 , {a21, a22, ...a2t2−1}〉,
...,
〈as2, {as1}〉,〈as3, {as1, as2}〉,...,〈asts

, {as1, as2, ...asts−1}〉.
We can easily see that all

∑s
i=1(ti− 1) merges are valid

and therefore the partition P is enumerated in our algo-
rithm. We can also show that the above ordering is unique
through two observations:

1. aij must be merged before aik for any i = 1, 2, ..s and
1 ≤ j < k ≤ ti. Since aij < aik and aij cannot be
merged with a set that contains aik which is a larger
element than aij .

2. aip must be merged before ajq for any 1 ≤ i < j ≤ s,
1 < p ≤ ti and 1 < q ≤ tj . Two cases are identified:

• aip < ajq . Since if an element is merged, any
other elements before it cannot be merged, we
see that aip must be merged first.

• aip > ajq . Since an element cannot be merged
with any set before a set which contains more
than one element, aip must be merged earlier
than ajq .

We have shown that our algorithm enumerates all parti-
tions on S and each partition is enumerated exactly once.
The enumeration algorithm is thus systematic.

We now study how to enumerate anonymizations for
SPS. Recall that an anonymization is a set of attribute gen-
eralizations {P1, P2, ..Pm} consisting of one attribute gen-
eralization per attribute. We build an enumeration tree to
enumerate all valid anonymizations. Each node in the enu-
meration tree has m attribute generalizations (one for each
attribute) and an applicator set. An applicator set is an or-
dered subset of {1, . . . , m}, denoting the order in which the
attributes are to be expanded. By applying each applicator
in the applicator set of a node, we obtain a set of children
of that node. For example, the first set of children of a node
is the set of anonymizations created by generalizing the at-
tribute specified by the first applicator. A child of a node
inherits all other applicators and inherits the applicator that
has been applied if the attribute corresponding to the appli-
cator can still be generalized.

The algorithm for enumerating all child anonymizations
of a given anonymization in SPS is shown in Figure 5.

The enumeration algorithm for SPS discussed above can
be adapted for GSPS. The only difference is that when we
expand a node, we examine each of its child nodes to see
if this child node represents a valid generalization with re-
spect to the VGH or not. If yes, the child node is added
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Child Nodes
Input: A tree node N (an anonymization

〈P1, P2, ...Pm〉 and an applicator set AS)
Output: All child nodes of node N
T = ∅
for each applicator i in AS do

parSet=Child Partitions(Pi)
for each partition P in parSet do

Create a new child node N ′

Set anonymization of N ′ to be 〈P1, ...
Pi−1, P, Pi+1, ...Pm〉

Set the applicator set of N ′ to be AS
if P is the most generalized partition then

remove i from the applicator set of N ′.
T = T ∪N ′

return T

Figure 5. Algorithm for enumerating child
nodes of a give node

to the queue. Otherwise, the algorithm identifies all sets of
attribute values that need to be merged to get a valid gen-
eralization and check whether such merging is allowed ac-
cording to the three conditions described above. If such
merging is allowed, then a new node is created. This enu-
meration approach remains systematic and complete.

Enumeration algorithm for OPS can also be adapted for
GOPS using the same approach.

4. Cost Metrics and Cost-based Pruning

To model an optimal anonymization, we need a cost met-
ric to measure the data quality of the resulted dataset. One
widely used metric is the discernibility metric (DM) [1].
DM assigns a penalty to each tuple according to the size of
the equivalence class that it belongs to. If the size of the
equivalence class E is no less than k, then each tuple in E
gets a penalty of |E|(the number of tuples in E). Otherwise
each tuple is assigned a penalty of |D|(the total number of
tuples in the dataset), because the tuple needs to be sup-
pressed.

DM measures the discernibility of a record as a whole.
We propose Hierarchical Discernibility Metric (HDM),
which captures the notion of discernibility among attribute
values. For example, consider the work-class attribute in
Figure 1, suppose 50 records have value Inc and 200 records
have value Not-inc. If values Inc and Not-inc are com-
bined (e.g., generalized to Self-employed), we would expect
a larger information loss for value Inc than for value Not-
Inc. Given an attribute generalization g and its correspond-
ing partition P , suppose that a record has value v for this
attribute, and v is in the group e ∈ P . We quantify the infor-

mation loss for generalizing v in this record. Let N be the
total number of records. Let Ne be the number of records
that have values in the group e. Let Nv be the number of
records that have value v. In our metric, generalizing val-
ues from v to e leads to a penalty of (Ne−Nv)/(N −Nv).
For the earlier example, suppose the total number of records
is 1000, generalizing Inc to Self-employed gets a penalty
of (250 − 50)/(1000 − 50) = 4/19 while the penalty is
(250− 200)/(1000− 200) = 1/16 when Not-inc is gener-
alized to Self-employed.The penalty for a record is the aver-
age penalty for each attribute.

Using the cost metrics, we can compare the data qual-
ity of a dataset produced by an anonymization. Significant
performance improvement can be achieved if we can effec-
tively prune parts of the enumeration tree that will not pro-
duce an optimal solution. In [1], Bayardo and Agrawal
identified a number of pruning rules using a branch and
bound approach. The key component of the pruning frame-
work is the lower-bound cost computation, which calculates
the lowest cost possible for any node in a subtree. When a
node is encountered, the lowest cost for the subtree rooted at
that node is computed and compared with the current best
cost. If it is no less than the current best cost, the whole
subtree rooted at that node can be pruned. Other pruning
rules include useless value pruning, where applicators that
cannot produce better anonymizations are removed from the
applicator set.

In addition to the pruning rules employed by Bayardo
and Agrawal [1], we also use inclusive pruning rules in-
troduced by Webb [9]; these rules identify applicators that
must be included in order to produce the best anonymiza-
tion. This class of pruning rules can be effective if we re-
quire all records satisfy k-anonymity requirement and no
suppression is allowed.

Besides these pruning rules, we used a number of tech-
niques to facilitate finding the optimal solution. One tech-
nique we used is a modified BFS search strategy. Due to the
imprecise estimation of the best cost, we could do a lot of
unnecessary search if simple BFS is used. One solution is
that when we find a node whose lower-bound cost is smaller
than the current best cost, we do not immediately add all
its children to the queue. Instead, we add that node to the
queue for later re-consideration. Since the cost associated
with that node has already been computed, it is available
when it is retrieved from the queue for the second time. At
that point, since the current best cost has decreased, it is
likely that the lower-bound cost of that node is larger than
the current best cost, in which case the whole subtree rooted
at that node can be pruned.

Using these techniques, we showed the feasibility of our
generalization schemes through experiments on real census
dataset.
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(a) Performance (k = 5) (b)Performance (QI = 7) (c) Data quality (DM) (d) Data Quality (HDM)

Figure 6. Comparison of the six generalization schemes in terms of performance and data quality

5. Experiments

The dataset used in the experiments is the adult dataset
from the UC Irvine machine learning repository, as de-
scribed in Figure 7. The algorithms are implemented in
JAVA and experiments are run on a 3.4GHZ Pentium 4 ma-
chine with 2GB Physical Memory Space.

Attribute Type # of values Height
1 Age Numeric 74 5
2 Work-class Categorical 8 3
3 Education Categorical 16 4
4 Country Categorical 41 3
5 Marital Status Categorical 7 3
6 Race Categorical 5 3
7 Gender Categorical 2 2
8 Occupation Sensitive 14 3
9 Salary Sensitive 2 2

Figure 7. Description of the Adult dataset

We first compare the performance of the generalization
schemes, as shown in Figure 6(a) and (b). The running time
increases as we use a larger quasi-identifier. Since we use
a bottom-up search method, we would expect to find the
optimal solution very quickly for small k values. As we ex-
pect, the running time of a generalization scheme increases
as k increases. The data reported in [1] shows that a top-
down search method can find the optimal solution quickly
for larger k values. The two search directions thus comple-
ment each other.

We compare the data quality of the resulted dataset pro-
duced by the six generalization schemes, as shown in Fig-
ure 6(c) and (d). For the same generalization scheme, the
cost increases as k increases. This can be explained by
the fact that a larger k value implies higher privacy level,
which in turn results in a larger cost. For the same k value,

the cost decreases for the more sophisticated generalization
schemes. This can be explained by the fact that the more
sophisticated generalization schemes allow more valid gen-
eralizations and produce a dataset with better data quality.
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