
On the Correctness Criteria of Fine-Grained Access
Control in Relational Databases

Qihua Wang∗ Ting Yu† Ninghui Li∗ Jorge Lobo‡ Elisa Bertino∗

Keith Irwin† Ji-Won Byun∗

ABSTRACT
Databases are increasingly being used to store information covered
by heterogeneous policies, which require support for access control
with great flexibility. This has led to increasing interest in using
fine-grained access control, where different cells in a relation may
be governed by different access control rules. Although several
proposals have been made to support fine-grained access control,
there currently does not exist a formal notion of correctness regard-
ing the query answering procedure. In this paper, we propose such
a formal notion of correctness in fine-grained database access con-
trol, and discuss why existing approaches fall short in some circum-
stances. We then propose a labeling approach for masking unau-
thorized information and a query evaluation algorithm which better
supports fine-grained access control. Finally, we implement our
algorithm using query modification and evaluate its performance.

1. INTRODUCTION
In recent years, there is growing interest in fine-grained access

control in relational databases. While traditional access control fo-
cuses on limiting data access at the table level, fine-grained access
control, also known as low-level access control, provides a way to
restrict data access at the row level or even at the cell level. Fine-
grained access control is also referred to as content-based access
control, as the accessibility of a data item is often specified and de-
termined based on the content of the row where the data is located.

One strong driving force for fine-grained access control is pri-
vacy protection. As privacy protection requires data access to re-
spect individual preferences and comply with many enacted pri-
vacy laws, the control of data access must have a fine granular-
ity. Another motivation is to move access control from applications
to databases. Although fine-grained access control can be imple-
mented at the application level, this approach has many drawbacks;
such control may be bypassed, and it is hard to maintain the con-

∗CERIAS & Department of Computer Science, Purdue University,
{wangq,ninghui,bertino,byunj}@cs.purdue.edu
†Department of Computer Science, North Carolina State Univer-
sity, {yu,kirwin}@csc.ncsu.edu
‡IBM Watson Research Center, jlobo@us.ibm.com

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07,September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

sistency between various applications. By placing access control at
the database level, one can ensure that access control policies are
consistently applied to every user and every application.

Existing approaches to specify and enforce fine-grained access
control include, for example, query modification in INGRES [15],
Virtual Private Database (VPD) in Oracle [13, 12], label-based
access control in DB2 [3], and the recent Hippocratic databases
work [1, 10]. Existing works describe how a policy is specified,
and how to answer a query while enforcing the policy. However,
a clear specification of the correctness criteria of the enforcement
scheme is lacking.

In this paper, we pose and answer the following question “how
to correctly enforce a fine-grained access control policy”. We limit
ourselves to “read” access control only and do not consider “write”
access control. One justification is that “read” access control is
much more likely to be fine-grained than other types of access.
Fine-grained access control for update and deletion will be investi-
gated in our future work.

We identify three criteria for enforcing fine-grained access con-
trol policies in databases. Ideally, an algorithm that enforces fine-
grained access control policies should besound, secure, andmaxi-
mum. Intuitively, the algorithm is sound if the answer returned by it
is consistent with the answer when there is no fine-grained access
control. The algorithm is secure if the returned answer does not
leak information not allowed by the policy. The algorithm is maxi-
mum if it returns as much information as possible, while satisfying
the first two properties. We formalize these properties in Section 2.
As we discuss there, achieving the maximum property may be dif-
ficult in practice. However, we argue that any algorithm must be
sound and secure, and should strive to be maximum.

We argue that our list of the three properties is intuitive and nat-
ural. In particular, it is declarative in that it does not define any
procedure for answering queries. Although our requirements seem
reasonably simple and necessary, to the best of our knowledge,
there is no existing access control algorithm that is both “sound”
and “secure”. This rather disappointing current state of art is due
to many technical difficulties posed by fine-grained access control.

In this paper, we propose a solution for fine-grained access con-
trol. Our solution consists of a labeling approach and a query eval-
uation algorithm. To strive for the maximum property, we propose
a novel labeling approach that makes use of two types of variables
rather thanNULL to mask unauthorized information. Based on this
labeling approach, we propose a query evaluation algorithm, and
prove that it is both secure and sound, and returns as much infor-
mation as existing approaches. Finally, we show that our algorithm
can be implemented in existing DBMS, such as Oracle, using query
modification.

The remainder of this paper is organized as follows. In Section 2,

we formalize the three correctness criteria and show that some ex-
isting approaches do not satisfy our list of correctness properties.
Also, we prove that our notion of security as a correctness crite-
ria is strong enough to resist collusion and multi-query attacks. In
Section 3, we propose a labeling approach for cell-level disclosure
policy. We then present a query evaluation algorithm in Section 4.
Furthermore, we design a query modification approach to imple-
ment our evaluation algorithm and present experimental results of
the implementation in Sections 5 and 6. Finally, we survey some
related work in Section 7 and conclude in Section 8.

2. CORRECTNESS CRITERIA
In this section, we answer the following question: Given a

query processing algorithmA that enforces fine-grained access
control policies, what should be the correctness criteria for the al-
gorithm? Abstractly, the algorithmA takes as input a database
D, a disclosure policyP , and a queryQ, and outputs a result
R = A(D, P, Q).

Here, the policyP specifies what information inD may be dis-
closed to answer queryQ. In reality, the portion of information that
can be disclosed to answer a query depends on the context in which
the query is issued. The context includes the identity of the issuer,
the purpose of the query, the data-provider’s policy settings, and so
on. For conceptual simplicity, we assume there is a disclosure pol-
icy applying to each context. Thus, the notion of policyP refers to
the policy applying to a specific context, specifically, the context in
which queryQ is issued.

Intuitively, a policy P defines an equivalence relation among
database states. Two databases statesD andD′ are “equivalent”
with respect to a policyP (denoted asD ≡P D′) if the informa-
tion allowed byP in D is the same as that allowed byP in D′. By
looking at what the policy allows, one cannot distinguish one data-
base state from another within the same equivalence class; hence
the policy protects private information. The concrete definition of
≡P depends on specifications of policy. We will give a formal defi-
nition of≡P when we define a particular specification of cell-level
policies in Section 3.

We assume that the resultR = A(D, P, Q) is of the following
form: each cell inR takes either a constant value or a special sym-
bol unauthorized which indicates that the information cannot be
revealed. We call such a relation asimply generalized relation, and
assume that this is the kind of relations that will be returned to the
user. We choose to usesimply generalized relationsas represen-
tation of query answers because they can be supported by existing
DBMSs (e.g., by using NULL forunauthorized) and because they
provide a simple interface for users who need to process the query
results. We stress that while we are using a simple representation
for the final query result, we will use more sophisticated internal
representation during query answering, in order to return more in-
formation in the query result.

Before defining the requirement of a “correct” query processing
algorithm, we need to define what we mean when we say two sim-
ply generalized relations are equal and when we say one of them
is subsumed by the other. When comparing equality,unauthorized
is treated as just a constant distinct from any other value, i.e., it is
equal to itself. Intuitively,R1 is subsumed byR2 if R2 contains all
the information inR1. It is formally defined as follows.

DEFINITION 1. Given two simply generalized relationsR1 and
R2, we say thatR1 is subsumed byR2 (and writeR1 v R2) if and
only if there exists a mappingf : R1 → R2 such that∀t1 ∈
R1(t1 v f(t1)), where〈x1, x2, · · · , xn〉 v 〈y1, y2, · · · , yn〉 if
and only if∀i ∈ [1..n] (xi = yi ∨ xi = unauthorized).

We argue that a “correct” query processing algorithm should be
sound, secure, andmaximum. In the following, we formally define
the three correctness criteria.

Sound: For soundness, we require thatA returns onlycorrect in-
formation. LetS denote the standard query answering procedure
andS(D, Q) the result of answering the queryQ when the data-
base state isD and there is no fine-grained access control policy.
BecauseP restricts access toD, A(D, P, Q) may return less infor-
mation thanS(D, Q) does, but it should not returnwronginforma-
tion. In particular, if a tuple is not inS(D, Q), then it should not
be inA(D, P, Q) either.

We formalize this as follows: A query processing algorithmA is
sound if and only if

∀P∀Q∀DA(D, P, Q) v S(D, Q).

Secure: For security, we requires thatA(D, P, Q) use only in-
formation allowed byP ; in other words,A(D, P, Q) should not
depend on any information not allowed byP . To capture this in-
tuition, we borrow from the notion of “non-interference” [7] in
information flow and the notion of “indistinguishability” security
requirement for encryption schemes [8]. We observe that the pol-
icy P defines an equivalence relation among all database states.
Furthermore, ifA(D, P, Q) does not depend on information not
allowed byP , then by issuing queries and observing the results,
one should not be able to tell the difference among states that are
equivalent underP .

We formalize this as follows: A query processing algorithmA is
secure if and only

∀P∀Q∀D∀D′
�
(D ≡P D′) → (A(D, P, Q) = A(D′, P, Q))

�
.

This property says that if the algorithmA is used for query process-
ing, then whenD andD′ are equivalent underP , one cannot tell
whether the database is in stateD or in D′, no matter what query
one issues. We now use an intuitive but imprecise argument to
illustrate that our indistinguishability requirement is sufficient for
security. Suppose thatA uses a portion inD that is not allowed by
P when answering queries, then one should be able to find a query
Q such that changing that portion to another value affects the query
result (if one cannot find such a query, then one can argue that the
portion is not actually used). LetD′ be the result of the change and
we haveA(D, P, Q) 6= A(D′, P, Q). Because the changed part
is not allowed byP , we thus haveD ≡P D′. This violates our
security definition.

Discussions on security against collusion and multi-query attack
will be given in Section 2.1.

Maximum: We require thatA returns as much information as
possible. To appreciate the importance of this property, observe
that a trivial algorithm that always returns no information (i.e., an
empty result-set) would satisfy the sound property and the secure
property; however, such an algorithm is clearly unacceptable.

We formalize this as follows: A query processing algorithmA
is maximum if and only if for each(D, P, Q), and for each simply
generalized relationR that satisfies

∀D′
�
(D ≡P D′) → (R v S(D′, Q))

�
(1)

we haveR v A(D, P, Q).
The above definition says thatA(D, P, Q) should contain at

least as much information as anyR that is acceptable as an an-
swer forD, P, Q. Note that when (1) above is true, one can return
R as an answer for queryQ under anyD′ such that(D ≡P D′).
BecauseR v S(D′, Q), returningR is always sound. As the same

R is returned for eachD′ that is equivalent withD with respect to
P , returning it under stateD is secure.

2.1 Collusion and Multi-Query Resistance
We have introduced the notion of security as a correctness cri-

teria for query evaluation algorithm. Intuitively, if an algorithm is
secure, then a user cannot acquire information not allowed by the
disclosure policy by issuing a single query. We call such notion of
securityone-party single-query security, or weak security.

In real-world, a malicious user may attempt to derive unautho-
rized information by (adaptively) issuing a sequence of queries.
Furthermore, malicious users with different disclosure policies may
collude to acquire information that is not allowed by any of the
disclosure policies applying to them. LetP1, P2, · · · , Pn be the
policies for the colluding users, we want to ensure that if two data-
base statesD andD′ are equivalent under policiesP1, P2, · · · , Pn

(i.e.,(D ≡P1 D′) ∧ (D ≡P2 D′) ∧ · · · ∧ (D ≡Pn D′)), then even
when these users collude they cannot tellD andD′ apart. Note that
if D andD′ are not equivalent under somePi, then the user, whose
policy is Pi, is allowed to tellD andD′ apart, without colluding
with any other user; in this case, allowing the users to collude to
tell D andD′ apart does not violate any security guarantee. In the
following, we give some examples of these attacks.

• Let P1 be the disclosure policy applying to Alice. Alice is-
sues two queriesQ1 andQ2 and the query evaluation algo-
rithm returnsR1 andR2 as answers to these queries. If when
the database state isD, she hasR1 = R2, while when the
state isD′, she hasR1 6= R2, then Alice can distinguishD
andD′ by checking whetherR1 equalsR2.

• DenoteP1 and P2 as the disclosure policies applying to
Alice and Bob, respectively. Assume that there exist two
queriesQ1 and Q2, and a certain tuplet, such thatt ∈
(A(D, P1, Q1)−A(D, P2, Q2)) andt 6∈ (A(D′, P1, Q1)−
A(D′, P2, Q2)). When Alice and Bob collude, they can tell
D fromD′. What they do is to have Alice issuedQ1 and Bob
issuedQ2, compute the difference of the answers returned by
A, and then check whether the final result includest or not.

• Let u1, · · · , un be a group of colluding users andPi (i ∈
[1, n]) be the disclosure policy applying toui. These users
issue a number of queries and then feed the answers to a
complicated procedure. The procedure performs some com-
putation on its parameters and outputs a result (which may
include multiple relations). For example, the procedure
may computeRi − (Rj ∩ Rk) for every three parameters
Ri, Rj , Rk. The users try to tell whether the database is in
D or D′ by observing the result outputted by the procedure.

The rest of this section aims at addressing the security problem of
multi-query attack and multi-party collusion. We will show that an
algorithm having the weak security property is able to resist multi-
query and multi-party collusion attacks.

To model security against multi-query and multi-party collusion
attacks, imagine the following situation. The adversary controls a
number of colluding users who face the database. The adversary
knows that the current database state is eitherD or D′ and tries to
tell which one it is by issuing queries. The adversary issues queries
through the users under her control. After obtaining the query re-
sults, the adversary computes a functionf using these results as
input, and tries to use the result to tell whether the current state is
D or D′. If we ensure that no matter what queries the adversary is-
sues and what functionf the adversary uses, the result is always the

same underD andD′, then the adversary fails. This is formalized
in the following definition.

DEFINITION 2. We say that algorithmA is secure against
multi-party multi-query attack(or has the property ofstrong secu-
rity), if and only if, for any two statesD, D′ and anyn policy-query
pair (P1, Q1), · · · , (Pn, Qn), the following is true.

∀i∈[1,n](D ≡Pi
D′)

→ ∀f∈F (f(A(D, P1, Q1), · · · , A(D, Pn, Qn))

= f(A(D′, P1, Q1), · · · , A(D′, Pn, Qn)))

whereF is the set of all computable functions.

The definition of strong security is general enough to cover all
the collusion and multi-query attacks given earlier in this section.
WhenPi = Pj (i, j ∈ [1, n]), Qi andQj can be viewed as two
queries issued by the same user. In particular, a single-user multi-
query attack is captured by the case wherePi = Pj for all i, j ∈
[1, n].

Furthermore,F contains all computable functions attackers can
use to derive information from the answers to their queries. For
example,Diff (R1, R2) = (R1 − R2, R2 − R1) belongs toF ,
which implies that if a query evaluation algorithm has the property
of strong security andD ≡P D′, then a user with policyP cannot
tell D from D′ by comparing the answers of any two queries she
issues.

Finally, a strongly secure algorithm resists adaptive attack as
well. For an adaptive attack to succeed, there must exist a sequence
of queries (generated adaptively) that allows a computable func-
tion to distinguishD andD′ based on the query answers. This is
impossible when a strongly secure algorithm is used, according to
Definition 2.

The following theorem states that the notion of weak security is
equivalent to the notion of strong security. In other words, weak
security, while having a simple form, implies very strong security
guarantees.

THEOREM 1. An algorithm has the property of strong security
if and only if it has the property of weak security.

PROOF. First of all, weak security is a special case of strong
security. To see this, weak security is covered by Definition 2 when
n = 1 andf is the identity function (i.e.f(R) = R).

Next, we prove that weak security implies strong security.
First of all, for any computable functionf that takesn parame-

ters, if Ri = R′i for every i ∈ [1, n], thenf(R1, · · · , Rn) =
f(R′1, · · · , R′n). In other words,f gives the same output when it
is given the same set of inputs.

The next step is to show that whenA is weak secure,f is given
the same set of inputs in statesD andD′. In that case,f outputs
the same result in both states.

By definition, algorithmA has the property of weak security if
and only if

∀D∀P ∀Q∀D′
�
(D ≡P D′) → (A(D, P, Q) = A(D′, P, Q))

�
Thus, for everyi ∈ [1, n], we have

(D ≡Pi
D′) → (A(D, Pi, Qi) = A(D′, Pi, Qi))

Therefore,∀i∈[1,n](D ≡Pi D′) implies that

∀i∈[1,n]A(D, Pi, Qi) = A(D′, Pi, Qi),

which further implies

f(A(D, P1, Q1), · · · , A(D, Pn, Qn))

=f(A(D′, P1, Q1), · · · , A(D′, Pn, Qn))

Therefore,A has the property of strong security.

ID name age phone
C001 (Y) Linda (Y) 32 (Y) 111-1111 (Y)
C002 (Y) Mary (Y) 29 (Y) 222-2222 (Y)
C003 (Y) Nick (Y) 34 (N) 333-3333 (N)
C004 (Y) Jack (Y) 21 (Y) 444-4444 (Y)
C005 (Y) Mary (Y) 30 (Y) 555-5555 (N)

(a) Customer

name phone
Linda 111-1111
Mary 222-2222
Nick NULL
Jack 444-4444
Mary NULL

(b) Result ofQ1

name phone
Linda 111-1111
Mary 222-2222
Mary NULL

(c) Result ofQ2

name phone
Nick NULL
Jack 444-4444

(d) Result ofQ1−Q2

name phone
Jack 444-4444

(e) Result without
access control policy

Figure 1: Relations appearing in Example 1

As the two notions of security are equivalent, in the rest of this
paper, we use “security” to refer to “weak security”.

Our notion of “strong security” does not cover attacks involving
updating the database states. That is, it does not cover the case that
the adversary issues a query, updates the database, issues another
query, and so on, and tries to identify whether the initial state isD
or D′. To handle that, we need to model how database update un-
der fine-grained access control is processed, which is an interesting
open problem that is beyond the scope of this paper.

2.2 Examining Existing Approaches
In this section, we show that two existing approaches for fine-

grained access control fail to satisfy our correctness criteria.
LeFevre et al. [10] presented a database architecture for correctly

enforcing limited disclosure expressed by privacy polices. In their
approach, when a queryQ is issued, the evaluation ofQ is sub-
jected to acell-level disclosure policy, which specifies the content
of which cells in a table may be used to answerQ. To answerQ
without violating the cell-level disclosure policyP , one first gen-
erates masked versions of related tables by replacing all the cells
that are not allowed to be seen byP with NULL. After that,Q is
evaluated as a normal query on the masked versions of the tables
with evaluation rules “NULL 6= NULL” and “NULL 6= c” for any
constant valuec. LeFevre et al. [10] implemented such an approach
by rewriting queries.

The approach in [10] satisfies the secure property, but it violates
the sound property and the maximum property. When a query con-
tains any negation, as expressed using the keywords MINUS, NOT
EXISTS or NOT IN, this approach returns incorrect results, violat-
ing the sound property. To see this, consider the following example.

EXAMPLE 1. We have a relation “Customer”, with four at-
tributes: id, name, age, and phone, where id is the primary key
(See Fig 1(a)). We mark each cell with “(Y)” or “(N)”, indicating
whether the cell is allowed by the policy.

Now consider the queryQ=“(SELECT name, phone FROM Cus-
tomer) MINUS (SELECT name, phone FROM Customer WHERE
age≥ 25)”. Let Q1 = “SELECT name, phone FROM Customer”
andQ2 = “SELECT name, phone FROM Customer WHERE age
≥ 25”. We haveQ = Q1−Q2. If there is no access control policy
(or equivalently, the access control policy allows everything to be
accessed) then the answer to the query is{(Jack, 444-4444)} (See

Fig 1(e)). However, under the cell-level disclosure policy specified
on “Customer”, the algorithm in [10] would answer the queryQ
with the relation in Fig 1(d) which includes Nick, whose age is not
in the correct answer. To see that the answer toQ is such a rela-
tion, observe that the answer to the sub-queryQ1 is the relation in
Fig 1(b), and since the age of Nick cannot be accessed, the answer
to the sub-queryQ2 is the relation in Fig 1(c)1.

Furthermore, the approach in [10] violates the maximum prop-
erty in several ways. First, when the primary key of a record is
not allowed to be seen, then no query can be answered, even for
queries that project out that field. Second, when one individual’s
information is stored in multiple tables that are linked using keys
that may be considered sensitive, then the linking is completely
lost. For example, suppose that a credit card company maintains
two tables, one for contact information, and the other for trans-
action information, linked through the account number, which is
considered to be a sensitive field. Then by replacing these fields
with NULL, one cannot establish the relationship between contact
information and transactions, even though such information is not
private. Finally, the approach loses information even if a selection
with a trivial condition is performed on a table. To see this, con-
sider the queryQ3 = “SELECT name FROM Customer WHERE
phone = phone”. One would expect that names of all people in
“Customer” are returned. However, the approach in [10] only re-
turns three tuples whose phone numbers are viewable.

We have observed through experimentations that similar prob-
lems also exist in Oracle when the column-level VPD [13] is used.

3. A LABELING MECHANISM FOR
CELL-LEVEL DISCLOSURE POLICIES

In the rest of this paper, we consider the case that fine-grained
access control policies are specified in the form of cell-level disclo-
sure policies. When a particular subject issues a query, the corre-
sponding disclosure policyP determines whether a cell is viewable
or not. A cell that is not allowed to be seen byP is called anunau-
thorized cell. Cell-level disclosure policies are considered in work
on privacy-centered database systems [10, 4] as well.

A key question that has not been adequately addressed in the
literature is: When an entity specifies that a field is private (e.g.,
should not be used for a given purpose, or given to certain recip-
ient), what does it mean? As we have pointed out at the end of
Section 2, too much information is lost when replacing unautho-
rized cells withNULL and using the rule that any comparison with
NULL results in unknown. In particular, certain information is re-
lated to the structure or definition of tables and does not depend on
the content of cells. In order to achieve (or at least strive for) the
maximum property, we should make use of as much information as
possible to evaluate queries, as long as no sensitive content or rela-
tion is leaked. We argue that the following information can be used
to evaluate queries without leaking sensitive content: (1) A cell is
equivalent to itself. (2) When the primary key of a table contains
only one attribute, cells in that attribute differ from each other. (3)
When information about one entity (e.g., an individual) is stored in
two (or more) relations and are linked through foreign keys, then
the linking should be allowed even when the values of the keys can
not be released for privacy concern.

1In Oracle, “NULL = NULL” when performing the operation “dif-
ference”. We adopt such semantics here. Since{Mary,NULL } ap-
pears in both Fig 1(b) and Fig 1(c), it does not appear in Fig 1(d).
But even if we use the semantics “NULL 6= NULL” to compute
“difference”, our argument, which makes use of “Nick”, still holds.

To appreciate the point (3) above, observe that when individu-
als specify their privacy requirements, it should not be specified
directly at the table level. Privacy policies should be specified at
the level of conceptual data model, and is independent of the actual
database schema. The database designer should have the flexibility
to decompose one entity’s information into two (or more) smaller
relations so as to achieve certain normal forms, and be able to en-
force the same privacy policy no matter what the decomposition
is. Suppose that the foreign key used in the linking happens to be
one that some entities are considered to be sensitive, then while
the value of the key should be hidden, the linking should still be
allowed. Conceptually, one can think of this as having the same
effect as if one has created a new, non-sensitive attribute (like a
Surrogate key) that takes a unique value for each entity and is used
for linking only (and nothing else).

We point out that not all attributes with the same type should be
linked. For example, not all SSN attributes in one database should
be linkable. Two attributes of the same type should be linked only
if they are from the same data source and they link together the
same user’s data from the same source.

Given two tablesT1 andT2 such that an attributeA is the pri-
mary key of bothT1 andT2, the database administrator may declare
thatT1 andT2 aresecurely linkableover attributeA, and attribute
A is called thereference attributeof T1 andT2. Note that the deci-
sion whether two tables are securely linkable is not made by each
individual’s privacy options, but rather by the database administra-
tor who designs/controls the database schema.

In order to preserve useful information for query evaluation, we
propose two types of variables to label unauthorized cells. An
unauthorized cell, rather than being replaced byNULL, will be re-
placed by a variable of one of the two types.

DEFINITION 3. A type-1 variableis a symbol in some alpha-
bet. Given two different type-1 variablesv1, v2, “v1 = v1” is true,
while “v1 = v2” and “v1 = c” are unknown, wherec is a constant
value.

A type-2 variableis given as〈α, d〉, whereα andd are called
the nameand thedomain of the variable, respectively. Given
α, β, d1, d2, “〈α, d1〉 = 〈α, d1〉” and “〈α, d1〉 6= 〈β, d1〉” are
true, while whether “〈α, d1〉 = 〈α, d2〉”, “ 〈α, d1〉 = 〈β, d2〉”,
“〈α, d1〉 = v” or “ 〈α, d1〉 = c” are unknown, wherev is a type-1
variable andc is constant value.

Intuitively, one can determine both equality and inequality
among type-2 variables of the same domain. However, neither
equality nor inequality can be determined between type-2 variables
of different domains.

Our labeling algorithm makes use of both types of variables to
mask unauthorized cells. We assume that declaration on pairs of
securely linkable tables is specified in policyP . The labeling algo-
rithm VarLabel(D, P) takes as input a databaseD and a cell-level
disclosure policyP and outputs amasked versionof D.

Pass 1: For each tableT in D, do the following. If the primary
key of T contains only one attributeA, consider two cases. Case
one, eitherT is not securely linkable with any table, or none of the
tables that are securely linkable withT has been processed. In this
case, every unauthorized cell inA is labeled with a fresh type-2
variable, and all such variables are in the same domain. Case two,
T is declared to be securely linkable with another tableT1 over
attributeA. In this case, for every cell ofA in T1 that has been
replaced with a type-2 variable, replace the corresponding cell with
the same variable. Furthermore, for every unauthorized cell forA
in T that has not been masked, label it with a fresh type-2 variable

SSN Name Age
1111 (N) Alice (Y) 19 (N)
2222 (N) Bob (Y) 35 (Y)
3333 (N) Carol (Y) 19 (N)

(a) Member

SSN Occupation
1111 (N) Student (Y)
1111 (N) Waiter (Y)
2222 (N) Professor (Y)
3333 (N) Secretary (Y)
3333 (N) Dancer (Y)

(b) Occupation

SSN Name Age
〈α, d1〉 Alice v1

〈β, d1〉 Bob 35
〈γ, d1〉 Carol v2

(c) Masked version of
Member

SSN Occupation
〈α, d1〉 Student
〈α, d1〉 Waiter
〈β, d1〉 Professor
〈γ, d1〉 Secretary
〈γ, d1〉 Dancer

(d) Masked version of
Occupation

Figure 2: Relations in example 2

in the same domain.

Pass 2: For each tableT in D, do the following. First, for each at-
tributeB in T , if B is declared as a foreign key pointing to the pri-
mary keyA of another tableT1, then for every cell ofA in T1 that
has been replaced with a type-2 variable, replace the corresponding
cell in B with the same variable. Second, for other unauthorized
cells inT , label each of them with a fresh type-1 variable.

In other words, a type-2 variable can be used for linking in two
cases. The first case is that two tables use the same attribute as the
primary key and they are declared to be securely linkable because
they represent information about the same entities from the same
data source. The second case is that tableT1 uses attributeA as
a foreign key pointing to attributeB in T2, and some cells onB
in T2 are declared to be unauthorized. For example, whenT1 con-
tains transaction information andT2 stores customer information,
and SSN is used as primary key forT2, then the linking would be
preserved. On the other hand, if cells onA in T1 are declared to be
unauthorized, then the linking relation will not be preserved.

The following example illustrates how the labeling mechanism
works.

EXAMPLE 2. An organization maintains a database that stores
personal information of its members, which includes social security
number (SSN), name, age and occupations. SSN uniquely identi-
fies a person, while every person may have more than one occupa-
tions. In order to avoid update anomaly, the information is stored in
two tables “Member” and “Occupation”, which are shown in Fig-
ure 2(a) and 2(b), respectively. In “Occupation”, SSN is declared
as a foreign key referencing the primary key SSN of “Member”.

Consider a queryQ3 = “SELECT Name, Occupation FROM
Member, Occupation WHERE Member.SSN = Occupation.SSN”.
Assume that the cell-level disclosure policy is shown in Fig-
ure 2(a) and 2(b) with the two relations. Our algorithm first la-
bels unauthorized cells in SSN of “Member” with type-2 vari-
ables. After that, since SSN in “Occupation” is a foreign
key referring to SSN of “Member”, cells in SSN of “Occupa-
tion” are labeled with the same type-2 variables as their peers
in “Member”. Finally, unauthorized cells in Age of “Mem-
ber” are labeled with type-1 variables. The masked versions
of “Member” and “Occupation” are shown in Figure 2(c) and
2(d), respectively. According to our evaluation rules, relation
{(Alice,Student), (Alice,Waiter), (Bob,Professor),
(Carol ,Secretary), (Carol ,Dancer)} will be returned as the an-
swer toQ3, which is the same as the answer of a standard query
evaluation procedure without access control policy.

Given the labeling algorithm, we can define the relation “equiv-

alence” between database states.

DEFINITION 4. Two tuplest1 = 〈x1, x2, · · · , xn〉 and t2 =
〈y1, y2, · · · , yn〉 areequivalent(denoted ast1 = t2) if and only
if they are defined on the same schema, and for everyi ∈ [1, n],
eitherxi andyi take the same constant value or they are masked by
the same variable.

Two relationsR1 andR2 areequivalent(denoted asR1 = R2)
if and only if they are defined on the same schema, and there ex-
ists a bijectionf between tuples inR1 and tuples inR2, such that
∀t∈R1 t = f(t).

The next definition defines the equivalence relation between
database states. Here,VarLabel(D, P) is our labeling algorithm
described earlier in this section. Also, we assume that a cell-level
disclosure policy contains declaration of securely linkable tables.

DEFINITION 5. Given a cell-level disclosure policyP , two
database statesD1 and D2, let D′

1 = VarLabel(D1, P) and
D′

2 = VarLabel(D2, P). We say thatD1 is equivalent toD2 with
respect toP (denoted asD1 ≡P D2) if and only if the following
conditions hold:

• D1 andD2 are defined on the same database schema.

• There exist a bijectionf between variables appearing inD′
1

and variables appearing inD′
2 and a bijectiong between re-

lations inD′
1 and relations inD′

2.

• If R1, R2 ∈ D′
1 are securely linkable, theng(R1) andg(R2)

are securely linkable.

• For any relationR in D′
1, we haveUnify(R, f) = g(R),

whereUnify(R, f) returns a relationR′ by replacing every
occurrence of variablev in R with f(v).

Generally speaking, Definition 5 states thatD1 ≡P D2 when
VarLabel(D1, P) is the same asVarLabel(D2, P) (with variables
renamed). This exactly captures the intuition thatD1 ≡P D2 if
and only if we can obtainD2 by merely modifying the content of
unauthorized cells inD1, with the restriction that if we change a
cell c in the reference attribute of two securely linkable tables, then
all the cells referring toc must be changed to the same value asc.

While the maximum property is desirable, it is difficult to
achieve. Consider the Customer Table in Figure 1(a), and the
query “SELECT name FROM Customer WHERE age> 30 OR
age<= 29”. Because Nick’s age is not allowed by the policy, a
query answering algorithm may return only the other four names.
This is not maximum, because one can return Nick in the answer
without violating the sound or the secure property. This is because
the selection condition is a logical tautology and no matter what the
value of Nick’s age is, it will satisfy the condition. Thus evaluating
the query on any equivalent database state will result in an answer
that includes Nick. One may try to address this by examining the
predicate and determine whether it is a tautology. However, when
the predicate allows the use of integer multiplication and equality,
determining whether it is a tautology can be undecidable [11].

4. A SECURE AND SOUND QUERY
EVALUATION ALGORITHM

In this section, we propose a secure and sound query evaluation
algorithm to handle fine-grained access control. We are given a
queryQ and a databaseD that is masked by the labeling algorithm
with type-1 or type-2 variables, and our query evaluation algorithm
needs to answerQ onD.

In a normal evaluation algorithm, an atomic predicate with a
parameterNULL will be evaluated to “unknown” which is then
treated as “false”. As we see from Example 1, when difference
is involved in a query and the tables containNULL, a normal query
evaluation algorithm may violate soundness. The problem is not
solved by masking unauthorized cells with variables. To see this,
we may label the unauthorized cells in table Customer in Exam-
ple 1 and evaluate the queryQ on the masked Customer using the
normal evaluation procedure. We will still have Nick in the result.
This indicates that special effect needs to be made to handle queries
with minus. More specifically, we need to define the semantics of
query operators differently depending on whether it is inside the
scope of a difference operator.

Intuitively, for a single queryQ, to ensure soundness, the result
of Q should return no more information than runningQ over the
unmasked version of a database. Therefore, we need to treat an
unauthorized cell in a conservative way so that the query result only
contains tuples that aredefinitely correct. We call this evaluation
a low evaluationof Q, denoted asQ−. However, ifQ is on the
righthand side of the difference operator, for example,Q′ − Q,
the result ofQ needs to also contain those tuples that arepossibly
correct. Only by doing so can we ensure the soundness of the whole
query Q′ − Q. We call this evaluation ahigh evaluationof Q,
denoted asQ−. Before formally defining the low evaluation and
the high evaluation, we first introduce an auxiliary definition.

DEFINITION 6. Given two tuplest1 = 〈x1, · · · , xn〉 andt2 =
〈y1, . . . , yn〉 of the same schema, we sayt1 andt2 arecompatible
if for all i = 1, . . . , n, neither of the following conditions holds:

• xi andyi take different constant values.

• xi andyi are different type-2 variables in the same domain.

Given two tuples in the query result over the masked database, if
they are compatible, then it is possible that they correspond to the
same tuple in the actual query result over the unmasked database.

We define a predicateIsUn(x), which returns true whenx is
evaluated to be “unknown”. The queryσIsUn(c)R returns every tu-
ple t in R such thatc(t) = unknown. An expression is evaluated
to “unknown” if its truth value depends on an unknown value. For
example,“(〈α, d1〉 = 〈β, d2〉) ∧ true′′ evaluates to “unknown”,
while“(v = v)∨ unknown′′ evaluates to true, wherev is a type-1
variable.

DEFINITION 7. Given a queryQ:

• if Q = R, whereR is a relation in a database, thenQ− =
Q− = R′, whereR′ is the masked version ofR.

• if Q = σcQ
′, thenQ− = σcQ

′
− andQ− = σc∨IsUn(c)Q

′−

• if Q = πa1,...,anQ′, thenQ− = πa1,...,anQ′− andQ− =
πa1,...,anQ′−.

• if Q = Q1 × Q2, thenQ− = Q1− × Q2− andQ− =

Q1
− ×Q2

−.

• if Q = Q1 ∪ Q2, thenQ− = Q1− ∪ Q2− and Q− =

Q1
− ∪Q2

−.

• if Q = Q1 −Q2, thenQ− contains all tuplest ∈ Q1− such
that there exists no tuple inQ2

− that is compatible witht
(we call the operation to computeQ− aggressive minus, de-
noted as−a), andQ− contains all tuplest ∈ Q1

− such that
t 6∈ Q2− (we call the operation to computeQ− conservative
minus, denoted as−c).

The above definition in fact provides a query evaluation algo-
rithm over a masked database.

Given any queryQ over a databaseD whose masked version
is D′, let [Q−(D′)] denotesQ−(D′) with the type-1 and type-2
variables replaced by the keywordunauthorized. We need to show
that[Q−(D′)] is subsumed byQ(D) (i.e. [Q−(D′)] v Q(D)). In
other words, by returning[Q−(D′)], soundness is guaranteed. Fur-
ther, it is easy to see that[Q−(D′)] is secure, since no actual values
of masked cells are used during the evaluation ofQ−. To prove the
soundness of the evaluation algorithm, we need to define the no-
tions of dominationand generalizationand prove the invariance
thatQ−(D′) is always dominated byQ(D) andQ−(D′) always
generalizesQ(D).

The definitions of domination and generalization make use of a
functionval(〈α, d〉), which returns the value masked by the type-
2 variable〈α, d〉. We would like to point out that the relations
“domination”, “generalization” and the functionval are introduced
merely for the purpose of proving the correctness of our algorithm.

DEFINITION 8. Given two tuplest1 = 〈x1, x2, · · · , xn〉 and
t2 = 〈y1, y2, · · · , yn〉 of the same schema, we say thatt1 is dom-
inated byt2 (and writet1 ¹ t2) if and only if for everyi ∈ [1..n],
one of the followings is true:

• If yi takes a constant value, then (1)xi = yi, or (2) xi is a
type-1 variable, or (3)xi is a type-2 variable andval(xi) =
yi.

• If yi is a variable, thenxi = yi.

Given two relationsR1 andR2, we say thatR1 is dominated by
R2 (and writeR1 ¹ R2) if and only if there exists a one-to-one
mappingf : R1 → R2 such that∀t1∈R1(t1 ¹ f(t1)). We sayf
is adominationmapping fromR1 to R2.

We point out that¹ is defined over masked relations that may
contain type-1 and type-2 variables; such relations are used during
query evaluation. The subsumption relation,v is defined over rela-
tions that may contain a special valueunauthorized; such relations
are used as the results returned to the user.

LEMMA 2. Given a relationR and its masked versionR′ gen-
erated by the labeling algorithm, we haveR′ ¹ R.

PROOF. Given a tuplet and its masked versiont′ generated by
the labeling algorithm, it is easy to see thatt′ ¹ t. In this case, we
can construct a domination mapping that maps every tuple inR′ to
its unmasked version inR. Therefore,R′ ¹ R.

DEFINITION 9. Given two relationsR1 andR2 with masked
cells, we say thatR2 is a generalizationof R1 (denoted asR2 ¥

R1), if there exists a one-to-one mappingh fromR1 toR2 such that
for any t ∈ R1, we haveh(t) ¹ t. We callh the generalization
mappingfrom R1 to R2.

Note thatS generalizesR does not meanR dominatesS. For
example, supposeS = {〈Alice, v1〉, 〈Bob, v2〉, 〈Carl, 30〉} and
R = {〈Alice, v1〉, 〈Bob, 25〉}, wherev1 andv2 are type-1 vari-
ables. ThenS generalizesR, butR does not dominateS due to the
existence of〈Carl, 30〉.

Similar to Lemma 2, we can prove the following lemma.

LEMMA 3. Given a relationR and its masked versionR′ gen-
erated by the labeling algorithm, we haveR′ ¥ R.

ID name age phone
C001 Linda 32 111-1111
C002 Mary 29 222-2222
C003 Nick v1 v2

C004 Jack 21 444-4444
C005 Mary 30 v3

(a) Masked version of Customer

name phone
Linda 111-1111
Mary 222-2222
Nick v2

Jack 444-4444
Mary v3

(b) Result ofQ1−

name phone
Linda 111-1111
Mary 222-2222
Nick v2

Mary v3

(c) Result ofQ−2

name phone
Jack 444-4444

(d) Q− = Q1 −a Q2

Figure 3: Relations appearing in Example 3

Intuitively, if S is a generalization ofR (i.e. S ¥ R), then by
replacing some type-1 variables inS with certain constant values
and some type-2 variables inS with the constant values they hide,
we will be able to get every tuple inR. Thus, when handling the
set difference operator, it would remove more information by ag-
gressively minusingS than aggressively minusingR. This ensures
the soundness when dealing with set difference. Therefore, it is
important to show that the high evaluation of a query is always a
generalization of the actual query result over the unmasked data-
base.

We show that our query evaluation algorithm is sound by proving
thatQ−(D′) ¹ Q(D).

THEOREM 4. Given any queryQ over a databaseD whose
masked version isD′, we haveQ−(D′) ¹ Q(D) andQ−(D′) ¥

Q(D).

Due to page limit, proof to the about theorem is given in a tech-
nical report [18].

Furthermore, since our algorithm operates over the masked ver-
sion of databases, the following theorem holds.

THEOREM 5. Given two databasesD1 and D2, and a query
Q, if the masked version ofD1 and D2 are the same, then the
evaluation ofQ using the above query evaluation algorithm will
return the same result forD1 andD2. In other words, the above
query evaluation algorithm is secure.

It is easy to see that when a queryQ does not involve the set
difference operator, then no high evaluation of queries is needed
and low evaluation proceeds as a normal evaluation process. The
evaluation rules for the two types of variables are more permissive
than the rules forNULL in the sense that any comparison involv-
ing NULL will return “unknown” while a comparison between two
variables may return “true”. Therefore, it is not difficult to see that
given a database and a policy, our algorithm, which masks unau-
thorized cells with variables, provides at least as much information
as the algorithm by LeFevre et al. [10], which masks unauthorized
cells withNULL, for those queries that they can handle in a secure
and sound way.

Finally, we illustrate how the query evaluation algorithm works
by the following examples.

name phone
Linda 111-1111
Mary 222-2222
Nick v2

Mary v3

(a) Result ofQ−2

name phone
Mary 222-2222
Jack 444-4444

(b) Result ofQ3−

name phone
Linda 111-1111
Nick v2

Mary v3

(c) Q−4 = Q2−cQ3

name phone
Jack 444-4444

(d) Q− = Q1 −a Q4

name phone
Mary 222-2222
Jack 444-4444

(e) Result without ac-
cess control policy

name phone
Mary 222-2222
Nick v2

Jack 444-4444
(f) A result that is
not sound

Figure 4: Relations appearing in Example 4

EXAMPLE 3. Consider the relation “Customer” (see Fig 1(a))
and the queryQ in Example 1 again. The masked version of “Cus-
tomer” is shown in Fig 3(a). LetQ1 = “SELECT name, phone
FROM Customer” andQ2 = “SELECT name, phone FROM Cus-
tomer WHERE age≥ 25”. We haveQ = Q1 − Q2. In order to
ensure soundness, we computeQ− = Q1 −a Q2, which requires
the knowledge ofQ1− andQ−2 . The answers toQ1− andQ−2 are
presented in Fig 3(b) and Fig 3(c) respectively. In particular, tuple
(Nick, v2) is included in the answer toQ−2 . The answer toQ− is
{(Jack, 444-4444)} (See Fig 3(d)), which is sound.

Note that a user may issueQ2 individually after issuingQ and
find that Nick does not appear in the answer of eitherQ or Q2.
However, this does not mean that the user can infer information
about the value of Nick’s age, because using our algorithm, Nick
will not appear in the answers to these two queries no matter how
his age compares with 25. The only information the user gains is
that he/she is not allowed to know Nick’s age.

EXAMPLE 4. Consider a more complex query on the relation
“Customer” (see Fig 3(a) for the masked version of the relation).
Let Q1 = “SELECT name, phone FROM Customer”,Q2 = “SE-
LECT name, phone FROM Customer WHERE age≥ 25” and Q3

= “SELECT name, phone FROM Customer WHERE age< 30”.
The query we are interested in isQ = Q1 − (Q2 −Q3).

In order to computeQ−, we need the answers toQ1− andQ−4 ,
whereQ4 = Q2−Q3. The answer toQ1− is shown in Fig 3(b). To
computeQ−4 , we need to computeQ−2 andQ3− first. The answers
to Q−2 and Q3− are presented in Fig 4(a) and Fig 4(b) respec-
tively. Although (Mary,v3) is compatible with (Mary, 222-2222), it
remains in the answer toQ−4 as conservative minus is performed.
The answer toQ−4 is given in Fig 4(c).

Next, we compute the answer toQ− from the answers toQ1−
andQ−4 . Note that (Mary,v3) in the answer toQ−4 is compatible
with both (Mary, 222-2222) and (Mary,v3) in the answer toQ1−.
The only tuple in the answer toQ1− that is not compatible with any
tuple in the answer toQ−4 is (Jack, 444-4444). That is to say, the
answer toQ− is {(Jack, 444-4444)} (see Fig 4(d)).

If there is no access control policy, the answer would be the rela-
tion presented in Fig 4(e). As we can see, soundness is achieved by
following our query evaluation algorithm. It is worth mentioning
that using the algorithm in [10] would answer the queryQ with
the relation in Fig 4(f), which includes tuple (Nick,v2) that does
not appear in the correct answer.

Finally, database query optimization relies on relational alge-
braic laws. Thus, it is important to show that our query evaluation
algorithm preserves them. In other words, if two queriesQ and
Q′ are equivalent under algebraic laws, our query evaluation algo-
rithm should produce the same results when evaluating them over
a masked database. We list the algebraic laws preserved by our al-
gorithm in Appendix A. Proofs are given in a technical report [18].

5. IMPLEMENTATION
In this section, we study implementation of the query evaluation

algorithm proposed in Section 4.
There are two general approaches to implement an access con-

trol algorithm in databases. The first one is to modify a query so
that it correctly enforces access control. We can then simply pass
the rewritten query to the original database query evaluation en-
gine and obtain the query result. This access control enforcement
scheme has been used in [10, 12, 15]. The main advantage of this
approach is that the underlying DBMSs do not need to be changed
at all. We only need to implement a middleware between the user
and the DBMSs to perform query rewriting. Thus, it is easy to be
deployed in existing systems. On the other hand, the capability
of access control is constrained by the features of the underlying
DBMSs. For example, most existing DBMSs do not support using
named variables to represent unknown values. For another exam-
ple, it is hard to implement aggressive minus in existing DBMSs. In
fact, we have to either use JOIN operation or introduce user-defined
functions to achieve our goal in Oracle.

An alternative approach is to modify DBMS query evaluation
engines to support fine-grained access control. This approach inte-
grates special functionalities of access control into the DBMS level.
Therefore, we can have optimizations specifically targeting at ac-
cess control, which in general will be more efficient than executing
a rewritten query. We observe that the proposed algorithm has a
nice modular structure. Hence, existing DBMSs evaluation engines
can be easily modified to support it. We leave this as future work.

We have implemented our algorithm using query modification.
Experiments have been performed to measure the performance of
our implementation.

5.1 Query Modification
In this section, we describe a query modification algorithm for

sound and secure query evaluation in Oracle. The algorithm mostly
follows Definition 7. It evaluates positive and negative sub-queries
differently. For positive sub-queries, the algorithm computes tu-
ples thatcertainly appear in the result (low evaluation); while for
negative sub-queries, the algorithm computes tuples thatpossibly
appear in the result (high evaluation).

Since Oracle does not support using named variables to repre-
sent unknown values, our algorithm masks unauthorized cells using
NULL. In this case, our algorithm may return less information than
when named variables could be used, but soundness and security
can still be guaranteed. We employ the Case-Statement modifica-
tion in [10] to mask unauthorized cells. We illustrate how the query
modification masks unauthorized cells by giving an example. Let
Q = “SELECT Name, Age FROM Customer WHERE Age≥ 25”.
For any tuple in Customer, the value of attribute Name (or Age) can
be disclosed only when the disclosure conditionCname (or Cage)
is satisfied. Our algorithm rewritesQ as follow.

SELECT Name, Age FROM
(SELECT CASE WHENCname

THEN Name ELSE NULL END AS Name,
CASE WHENCage

THEN Age ELSE NULL END AS Age

FROM Customer)
WHERE Age≥ 25

A challenging problem we encountered is to use query modifi-
cation to efficiently implement aggressive minus (see Definition 7).
To computeQ = Q1 −a Q2, we need to remove all tuples inQ1

that are compatible with at least one tuple inQ2. There are a cou-
ple of ways to do this. LetQ1 = “SELECT a1, · · · , an FROM
T1” and Q2 = “SELECT a1, · · · , an FROM T2”. For simplicity,
we assume thatT1 andT2 have been masked. A straightforward
approach is to modifyQ as follow.

SELECT a1, · · · , an FROMT1 WHERE
NOT EXISTS
(SELECT a1, · · · , an FROMT2 WHERE

((T1. a1=T2. a1)OR(T1. a1 IS NULL)OR(T2. a1 IS NULL)
AND · · · AND
((T1. an=T2. an)OR(T1. an IS NULL)OR(T2. an IS NULL)))

However, our experiments showed that NOT EXISTS is inefficient.
Thus, we adopt a more efficient approach using a MINUS and a
JOIN. The idea is to select all tuples in the answer toQ1 that are
compatible with some tuple in the answer toQ2 and then remove
these tuples from the answer toQ1. Such an approach is sound,
because “NULL = NULL” is evaluated to true when computing
MINUS in Oracle. Our approach modifiesQ = Q1 −a Q2 as
follow.

SELECT a1, · · · , an FROMT1

MINUS
SELECT T1. a1, · · ·, T1. an FROMT1, T2 WHERE

((T1. a1=T2. a1)OR(T1. a1 IS NULL)OR(T2. a1 IS NULL))
AND · · · AND

((T1. an=T2. an)OR(T1. an IS NULL)OR(T2. an IS NULL))

Also, since “NULL = NULL” for MINUS in Oracle, we need to
use a MINUS and a JOIN to handle conservative minus so as to
compute sound results. The idea is to select all tuples in the answer
Q1 that are equivalent to some tuple in the answer toQ2 (note that
“NULL 6=NULL” when computing SELECT in Oracle) and then
remove these tuples from the answer toQ1. Our approach modifies
Q = Q1 −c Q2 as follow.

SELECT a1, · · · , an FROMT1

MINUS
SELECT T1. a1, · · ·, T1. an FROMT1, T2 WHERE

(T1. a1=T2. a1) AND · · · AND (T1. an=T2. an)

The sketch of our query modification approach is given in Fig-
ure 5.

6. PERFORMANCE EVALUATION
We describe here the results of experiments studying the per-

formance of our query modification as a sound and secure query
evaluation algorithm for fine-grained access control. The primary
focus of these experiments is to measure the performance of using
query modification to enforce soundness and security. Also, we
would like to study the experimental parameters that may affect the
performance of our query modification approach. The parameters
we consider are:

• Table SizeThe number of tuples in a table

• Selectivity The percentage of tuples in a table that are se-
lected by an issued query

• Sensitivity The number of attributes that are selected by an
issued query and are governed by disclosure policies

• Uniformity The expected number of tuples having the same
value in an attribute that is selected by an issued query

Attribute Description
ID1 (number) Primary key, sequential order
ID2 (number) Candidate key, random order
VA (number) Value 0-k, k = TabSize/Uniformity
VB (number) Value 0-k, sensitive attribute
VC (number) Value 0-k, sensitive attribute

Select-25 (number) Values 0-1 (25% = 1)
Select-50 (number) Values 0-1 (50% = 1)
Select-75 (number) Values 0-1 (75% = 1)

Disclose-50-B (number) Values 0-1 (50% = 1), governs VB
Disclose-75-B (number) Values 0-1 (75% = 1), governs VB
Disclose-90-B (number) Values 0-1 (90% = 1), governs VB
Disclose-50-C (number) Values 0-1 (50% = 1), governs VC
Disclose-75-C (number) Values 0-1 (75% = 1), governs VC
Disclose-90-C (number) Values 0-1 (90% = 1), governs VC

Figure 6: Description of benchmark datasets.

• Disclosure Probability The probability that a cell in a sen-
sitive attribute can be disclosed

6.1 Experimental Setup
The tables (see Figure 6) used in our experiment are generated

based on the Wisconsin Benchmark [6]. We implemented the query
modification approach described in Section 5.1 in Java. All exper-
iments were run using Oracle 10g on Windows XP professional
with Service Pack 2. The machine on which the experiments were
performed has a 1.7GHz Intel Pentium M CPU, 768MB of RAM
and a single 60GB hard drive.

When there is no negation in a query, our approach modifies
the query in the same way as the approach in [10]. Hence, we
are only interested in testing queries with negation. In our experi-
ments, all queries have the formQ1 − Q2, where neitherQ1 nor
Q2 contains sub-queries. One or two out of the three attributes (i.e.
V A, V B, V C in Figure 6) selected byQ1 andQ2 are sensitive.
To measure the cost of executing queries, every query was run 3
times on 3 different pairs of tables of the same size (i.e. 9 times
in total), flushing the buffer pool and query cache between any two
executions of query.

6.2 Experimental Results and Analysis
For convenience, we refer to our approach asSound , the ap-

proach in [10] asHippo and the normal query evaluation (without
access control policies) asUnmodified .

Our first set of experiments measure the scalability ofSound
by varying table sizes and selectivity. Experimental results are re-
ported in Figures 7 and 8. From these figures, we observe that,
with queries that require computing minus,Sound does not scale
as well asUnmodified andHippo over the size of tables.2 Also,
the runtime ofSound grows fast as selectivity grows. These re-
sults are not surprising asSound introduces a join so as to pro-
vide sound answers to minus. But we would like to point out that
when table size is moderate, say 10000,Sound can answer a query
within 2 seconds, which is acceptable in situations where efficiency
is not a major concern.

An interesting observation from Figure 7 is thatSound performs
significantly better when uniformity is small than when uniformity
is large. In other words,Sound performs well when the number
of tuples having the same value in a selected attribute is small. For
instance, when table size is 100000,Sound answers a query in
8 seconds when uniformity is 25 and in 21 seconds when unifor-

2In all other types of queries that do not contain negation,Sound
andHippo are effectively the same as they rewrite these queries in
the same way.

Input : a queryQ
Output : Q−, i.e. the low evaluation ofQ

• CaseQ = T , whereT is a table:

Q− = Q− = mask(T)

wheremask(T) replaces unauthorized cells inT with NULL.

• CaseQ = “SELECTa1, · · · , an FROMQ1, · · · , Qm WHEREconds”:

Q− = SELECTa1, · · · , an FROMQ1−, · · · , Qm− WHEREconds

Q− = SELECTa1, · · · , an FROMQ−1 , · · · , Q−m WHEREaddNull(conds)

whereaddNull(conds) adds “IS NULL” predicates to selection conditionconds. For instance, letconds = “Age≥ 25 AND Salary< 80000”. We
have,addNull(conds) = “(Age≥ 25 OR Age IS NULL) AND (Salary< 80000 OR Salary IS NULL)”.

• CaseQ = “Q1 MINUS Q2”, whereQ1 andQ2 select attributesa1, · · · , an:

Q− = Q−1 MINUS Qc

whereQc = SELECTT1.a1, · · · , T1.an FROMQ1− T1, Q2
− T2 WHERE(T1.a1 = T2.a1) AND · · · AND (T1.an = T2.an)

Q− = Q1− MINUS Qa

whereQa is as follow

SELECT T1.a1, · · · , T1.an FROMQ1− T1, Q2
− T2 WHERE

((T1. a1=T2. a1) OR (T1. a1 IS NULL) OR (T2. a1 IS NULL))
AND · · · AND

((T1. an=T2. an) OR (T1. an IS NULL) OR (T2. an IS NULL))

Figure 5: Sketch of a query modification approach for sound and secure query evaluation

mity is 100. An explanation to this is that the join operation in the
modified query outputted bySound can be performed faster when
uniformity is smaller, as each tuple in the first table is compared to
fewer tuples in the second table.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

T
im

e
(m

ill
is

ec
on

d)

Table Size

Sound, Uniformity = 25
Hippo, Uniformity = 25

Unmodified, Uniformity = 25
Sound, Uniformity = 100
Hippo, Uniformity = 100

Unmodified, Uniformity = 100

Figure 7: Scalability over Table Size and the effect of Unifor-
mity on performance. Other parameters: Selectivity = 100%,
Sensitivity = 2, Disclosure probability = 75%.

Our second sets of experiments study how disclosure probability
and sensitivity may affect the performance ofSound . From Fig-
ure 9, we observe thatSound performs better when more cells can
be disclosed. Also,Sound performs significantly better when only
one out of the three selected attributes is sensitive (i.e. sensitivity
= 1) than when two of them are sensitive (i.e. sensitivity = 2). In
fact, when sensitivity is one, the performance ofSound is similar
to that ofUnmodified andHippo . This is because of the way
we simplify the join condition inSound . More specifically, in-
stead of using “(T1.a1=T2.a1) OR (T1.a1IS NULL) OR (T2.a1IS
NULL)” (see Figure 5), we use “(T1.a1=T2.a1)” when attribute
a1is not sensitive. This greatly reduces the overhead of join.

In summary,Sound performs reasonably well when table size
is moderate or when selectivity is small or when sensitivity is one.

 5000

 10000

 15000

 20000

 25000

 20 30 40 50 60 70 80 90 100

T
im

e
(m

ill
is

ec
on

d)

Selection Percentage

Sound
Hippo

Unmodified

Figure 8: The effect of Selectivity on performance. Other para-
meters: Table Size = 100000, Sensitivity = 2, Uniformity = 100,
Disclosure probability = 75%.

The approach does not scale well when uniformity is large. Most
of the overhead is introduced by the join operation and the complex
join condition in the modified query.

Our experimental results demonstrate that using query modifica-
tion to enforce soundness is feasible in situations where table size
is relatively small and efficiency is not a major concern. To enforce
soundness more efficiently, one probably needs to use the alterna-
tive approach of modifying the DBMS query evaluation engine to
directly support operations such as aggressive minus.

7. RELATED WORK
The study of fine-grained access control in relational databases

goes back several decades. However, to our knowledge, there is no
mention of objective correctness criteria that should be satisfied by
such mechanisms.

Stonebraker and Wong [15] introduced query modification as a
part of the access control system in INGRES. The basic idea of

 0

 5000

 10000

 15000

 20000

 25000

 30000

 50 60 70 80 90 100

T
im

e
(m

ill
is

ec
on

d)

Disclosure Percentage

Sound, Sensitivity = 1
Hippo, Sensitivity = 1

Sound, Sensitivity = 2
Hippo, Sensitivity = 2

Figure 9: The effect of Disclosure Probability and Sensitivity
on performance. Other parameters: Table Size = 100000, Se-
lectivity = 100%, Uniformity = 100.

query modification is that before being processed, user queries are
modified transparently to ensure that users do not see more than
what they are authorized to see. In their scheme, an access permis-
sion for a user is specified and stored as a view (also called as “user
interaction” in [15]). Thus, each user is associated with a set of
views that define a permitted view of database for the user. When
the user issues a query, the query modification algorithm searches
for the views that are related to the query; i.e., it finds the views
whose attributes contain the attributes addressed by the query. Then
the qualifications (i.e., conditions in the WHERE clause) of such
views are conjuncted with the qualification of the original query.
The three principles of sound, secure, and maximum can also be
applied when policies are specified as authorization views. How
to handle query that involves negation (e.g., set difference) is not
clearly specified. The straightforward extension suffers the same
problem as the approach examined in Section 2, and is not sound.

Virtual Private Database (VPD), which also makes use of query
modification, has been included as one of access control compo-
nents in Oracle since the release ofOracle8i. VPD, defined as “the
aggregation of server-enforced, fine-grained access control” [12],
provides a way to limit data access at the row level. The basic idea
of VPD is as follows. A table (or a view) that needs protection is
associated with a policy function which returns various predicates
depending on the system context (e.g., current user, current time,
etc.). Then when a query is issued against the table, the system
dynamically modifies the query by adding the predicate returned
by the policy function. It is also possible to use VPD at the col-
umn level; i.e., associate policy functions with a column, not an en-
tire table. The column-level VPD provides two options for policy-
enforcement. With default behavior, VPD removes from query re-
sults all the tuples that contain sensitive attribute values, thus violat-
ing the maximum property. With masking behavior, VPD replaces
every sensitive attribute value in the query result with NULL. This
approach violates the sound property due to the NULL evaluation
rules.

Rizvi et al. [14] took a different approach to fine-grained access
control. The policy is specified by having a set of authorization
views for each subject. When a subject issues a query, one assesses
whether the query can be answered given the authorization views
associated with the subject. A query can be answered if it can be
equivalently rewritten using the authorization views. Otherwise,
the query is rejected. We follow the approach taken in [15, 12, 10]
and try to return as much as information as we can when the query

cannot be fully answered.

7.1 Related Work on Incomplete Information
Databases

The work on fine-grained access control in databases is closely
related to work on incomplete information databases. A fine-
grained access control policy prevents certain information from be-
ing disclosed to end-user, and thus, from the end-user’s perspective,
the information one can access is incomplete. Many ideas and tech-
niques developed to solve problems in databases with incomplete
information may be applied in the context of fine-grained access
control. Here, we emphasize our new contributions as follows:

• We focus on the security and soundness of access control.
To our knowledge, we are the first to formalize the secu-
rity property when answering queries with fine-grained ac-
cess control policies.

• We design a novel labeling scheme (with type-1 and type-
2 variables) to hide information in a database. This enables
limited (and legitimate) information about the hidden cells to
be used in query answering.

• We propose a query modification approach to soundly eval-
uate queries over tables with masked cells and study the per-
formance of the approach as well as factors that affect the
performance. To our knowledge, no similar study has been
performed on incomplete information databases.

Next, we briefly discuss literatures on incomplete information
databases that are related to our work. People have studied the rep-
resentation of incomplete information. The idea of usingNULL
to represent missing information was introduced by Codd [5] and
his approach is based on a three-valued logic. Imielinski and Lip-
ski [9] introduced the V-table representation, which makes use of
variables. The variables they used are the same as type-1 variables
in our paper. They also proposed a representation system which
associates conditions to tuples. To our knowledge, nobody has pro-
posed any representation similar to our type-2 variables.

Query evaluation on databases with incomplete information has
been widely studied in literatures [16, 2, 9, 17]. In [9], Imielin-
ski and Lipski studied query evaluation problems on representa-
tion systems such as Codd’s table and V-table which useNULL
and variables to represent unknown information, respectively. They
considered whether a representation system can answer a query in
a safe and complete manner, when the query is restricted to use
only a certain set of operators. Their notion of safety corresponds
to soundness in our paper, and an answer is complete if it subsumes
all possible worlds. Their notion of completeness is conceptually
similar to the notion of maximum in this paper; however, our de-
finition of relational containment is different from theirs and thus
the two notions (i.e. completeness and maximum) are inequivalent.
Finally, they did not give an evaluation algorithm that supports dif-
ference operators for their V-table representation as we do in this
paper.

In [17], Lipski considered the problem of computing “sure an-
swer” and “possible answer” for queries over uncertain3 informa-
tion. But his work is not based on relational model and thus cannot
be directly applied to today’s DBMSs. In his model, information is
given as a functionU , such thatU(i, a) returns the set of objects
whose attributei possibly takes valuea. Lipski used‖ Q ‖∗ and
‖ Q ‖∗ to represent the sets of objects that are surely and possibly
in the answer toQ respectively. A set of axioms which serve as a
basis for equivalent transformations of queries is provided.
3Lipski used the term “incomplete”

8. CONCLUSIONS
While fine-grained access control in relational databases has

gathered increasing interest in recent years, existing work does not
provide correct criteria for enforcement mechanisms. We have pro-
posed such criteria that include three requirements. An enforce-
ment mechanism should besoundandsecure, and try to achieve
themaximumproperty. Our notion of security implies resistance of
multi-query and multi-party collusion attacks. We have examined
an approach recently proposed by LeFevre et al. [10] and showed
that it violates soundness and the maximum property. Also, we
have proposed a labeling approach for masking unauthorized infor-
mation as well as a secure and sound query evaluation algorithm for
the case with cell-level disclosure policies, which determines for
each cell whether the cell is viewable or not. We have shown that
our approach returns as much information as existing approaches
and preserves the relational algebraic laws. Finally, we have imple-
mented our algorithm using query modification and studied factors
that affect its performance. Our experimental results show that our
query modification approach performs reasonably well on tables
with moderate size, say, 10000 tuples. In the future, we plan to
explore alternative strategies for query modification to improve the
performance. Also, we plan to implement our algorithm more effi-
ciently by modifying DBMS query evaluation engines.

AcknowledgmentsThe work reported in this paper has been par-
tially supported by: IBM under the OCR project “Privacy and Secu-
rity Policy Management”; the National Science Foundation under
Grant No.0430274.

9. REFERENCES
[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic

databases. InProceedings of the 24th International
Conference on Very Large Databases. ACM Press, Aug.
2002.

[2] J. Biskup. A foundation of codd’s relational
maybe-operations.ACM Trans. Database Syst.,
8(4):608–636, 1983.

[3] R. Bond, K. Y.-K. See, C. K. M. Wong, and Y.-K. H. Chan.
Understanding DB2 9 Security. IBM Press; 1st edition, 2006.

[4] J.-W. Byun, E. Bertino, and N. Li. Purpose based access
control for privacy protection in database systems. Technical
report, CERIAS, Purdue University, 2004.

[5] E. F. Codd. Extending the database relational model to
capture more meaning.ACM Trans. Database Syst.,
4(4):397–434, 1979.

[6] D. J. DeWitt. The wisconsin benchmark: Past, present, and
future. InThe Benchmark Handbook. 1993.

[7] J. Goguen and J. Meseguer. Security policies and security
models. InProceedings of the 1982 IEEE Symposium on
Security and Privacy, pages 11–20. IEEE Computer Society
Press, Apr. 1982.

[8] S. Goldwasser and S. Micali. Probabilistic encryption.
Journal of Computer and System Sciences, 28(2):270–299,
1984.

[9] T. Imielinski and J. Witold Lipski. Incomplete information in
relational databases.J. ACM, 31(4):761–791, 1984.

[10] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan,
Y. Xu, and D. DeWitt. Limiting disclosure in hippocratic
databases. InProceedings of the 30th International
Conference on Very Large Data Bases (VLDB), Aug. 2004.

[11] Y. V. Matiyasevich.Hilbert’s Tenth Problem. The MIT Press,
1993.

[12] Oracle.The Virtual Private Database in Oracle9iR2: An
Oracle Technical Whi te Paper, Jan. 2002. Available at
www.oracle.com/technology/deploy/security/oracle9ir2/p
df/VPD9ir2twp.pdf.

[13] Oracle Coperation.Oracle Database: Security Guide,
December 2003. Available at www.oracle.com.

[14] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. Extending
query rewriting techniques for fine-grained access control. In
Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data, pages 551–562, Paris,
France, 2004. ACM Press.

[15] M. Stonebraker and E. Wong. Access control in a relational
database management system by query modification. In
Proceedings of the 1974 Annual Conference
(ACM/CSC-ER), pages 180–186. ACM Press, 1974.

[16] Y. Vassiliou. Null values in data base management a
denotational semantics approach. InSIGMOD ’79:
Proceedings of the 1979 ACM SIGMOD international
conference on Management of data, pages 162–169, New
York, NY, USA, 1979. ACM Press.

[17] J. Witold Lipski. On semantic issues connected with
incomplete information databases.ACM Trans. Database
Syst., 4(3):262–296, 1979.

[18] T. Yu, N. Li, Q. Wang, J. Lobo, E. Bertino, K. Irwin, and
J.-W. Byun. On the correctness criteria of fine-grained access
control in relational databases.Technical Report, Available
at “www.cs.purdue.edu/homes/wangq/papers/fgdbtr.pdf” .

APPENDIX

A. PRESERVATION OF RELATIONAL
ALGEBRAIC LAWS

Set Intersection In relational algebra,Q1 ∩ Q2 is equivalent to
Q1 − (Q1 −Q2). Under our query evaluation algorithm, we have:

(Q1 ∩Q2)− = (Q1 − (Q1 −Q2))−

Commutative and Associative Laws

1. ((Q1 ×Q2)×Q3)− = (Q1 × (Q2 ×Q3))−

2. ((Q1 ×Q2)×Q3)
− = (Q1 × (Q2 ×Q3))

−

3. (Q1 ∪Q2)− = (Q2 ∪Q1)−

4. (Q1 ∪Q2)
− = (Q2 ∪Q1)

−

5. ((Q1 ∪Q2) ∪Q3)− = (Q1 ∪ (Q2 ∪Q3))−

6. ((Q1 ×Q2) ∪ (Q1 ×Q3))
− = (Q1 × (Q2 ∪Q3))

−

Laws Involving Selection

1. (σc1∧c2Q)− = (σc1(σc2Q))− = (σc2(σc1Q))−

2. (σc1∧c2Q)− = (σc1(σc2Q))− = (σc2(σc1Q))−

3. (σc1∨c2Q)− = ((σc1Q) ∪ (σc2Q))−

4. (σc1∨c2Q)− = ((σc1Q) ∪ (σc2Q))−

5. σc(Q1 ∪Q2)− = (σcQ1 ∪ σcQ2)−

6. σc(Q1 ∪Q2)
− = (σcQ1 ∪ σcQ2)

−

Set Difference

1. (σc(Q1 −Q2))− = (σcQ1 − σcQ2)−

2. (σc(Q1 −Q2))
− = (σcQ1 − σcQ2)

−

