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Abstract

Comparing the expressive power of access control models is recognized as a fundamental problem in
computer security. While such comparisons are generally based on simulations between different access
control schemes, the definitions for simulations that are used in the literature are informal, and make it im-
possible to put results and claims about the expressive power of access control models into a single context.
Furthermore, some definitions for simulations used in the literature such as those used for comparing RBAC
(Role-Based Access Control) with other models, are too weak to distinguish access control models from one
another in a meaningful way. We propose a theory for comparing the expressive power of access control
models. We perceive access control systems as state-transition systems and require simulations to preserve
security properties. We discuss the rationale behind such a theory, apply the theory to reexamine some ex-
isting work on the expressive power of access control models in the literature, and present four results. We
show that: (1) the well known HRU scheme is limited in its expressive power when compared to a rather
simple trust-management scheme, thereby formally establishing a conjecture from the literature; (2) RBAC
with a particular administrative scheme from the literature (ARBAC97) is limited in its expressive power,
countering claims in the literature that RBAC is more expressive than DAC (Discretionary Access Control)
schemes; (3) the ability to check for the absence of rights (in addition to the presence of rights) causes
ATAM (Augmented Typed Access Matrix) to be more expressive than TAM (Typed Access Matrix); and (4)
a trust-management scheme is at least as expressive as RBAC with a particular administrative scheme (the
URA97 component of ARBAC97).

1 Introduction

An access control system enforces a policy on who may access a resource in a certain manner (e.g., “Alice
may read the file,f ”). The protection state(or simply, state) of the system represents all the accesses that are
allowed at a given time. Policies are generally expressed in terms of the current state of the system, and states
that may result from prospective changes (e.g., “Alice should always have read access to the file,f ”). Thus,
when an access control system is perceived as a state-transition system, it consists of a set of states, rules on
how state-transitions may occur and a set of properties or queries that are of interest in a given state (e.g., “Does
Alice have read access to the file,f?”) Policies may then be expressed in terms of these components, and such
policies may be verified to hold notwithstanding the fact that state-transitions occur.

An access control modelis generally associated with how the state is represented. An example of an access
control model is the access matrix model [7, 5, 6], in which a state is represented by a matrix in which each
cell, indexed by a(subject , object) pair, contains a set of rights. Formally, an access control model is a set of

∗A preliminary version of this paper appears in the proceedings of the 2004 ACM Conference on Computer and Communications
Security (CCS) [22]
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access control schemes; a scheme specifies a set of states, and a set of state-transition rules. An example of a
scheme based on the access matrix model is the HRU scheme [6] for which a state is an access matrix, and a
state-transition rule is a set of commands, each of which is of a particular form. Anaccess control systemis an
instance of an access control scheme. A specific set of HRU commands together with a start state is an example
of an access control system. The expressive power of an access control model captures the notion of whether
different policies can be represented in systems based on schemes from that model.

Comparing the expressive power of access control models is recognized as a fundamental problem in com-
puter security and is studied extensively in the literature [1, 3, 4, 17, 21, 18, 20]. The expressive power of a
model is tied to the expressive power of the schemes from the model. In comparing schemes based on expres-
sive power, we ask what types of policies can be represented by systems based on a scheme. If all policies that
can be represented in schemeB can be represented in schemeA, then schemeA is at least as expressive as
schemeB.

A common methodology used for comparing access control models issimulation. When a schemeA is
simulated in a schemeB, each system inA is mapped to a corresponding system inB. If every scheme in one
model can be simulated by some scheme in another model, then the latter model is considered to be at least as
expressive as the former. Furthermore, if there exists a scheme in the latter model that cannot be simulated by
any scheme in the former, then the latter model is strictly more expressive than the former. Different definitions
for simulations are used in the literature on comparing access control models. We identify three axes along
which these definitions differ.

• The first axis is whether the simulation maps only the state, or also the state-change rule. The approach of
Bertino et al. [2] is to map only the states of two access control models to a common language based on
mathematical logic, and to compare the results to determine whether one model is at least as expressive
as the other, or whether the two models are incomparable. Other work, such as [1, 3, 4, 18, 20] however,
require both the state and the state-change rule to be mapped under the simulation.

An advantage with an approach such as the one that is adopted by Bertino et al. [2] is that it captures
“structural” differences in how the protection state is represented in a system based on an access control
model. For instance, it is observed in [2] that the existence of an indirection (the notion of a role)
between users and permissions in RBAC gives it more expressive power than an access matrix model.
Such “structural” differences are not captured by our theory, or other approaches that consider both the
state and the state-change rule.

We point out, however, that the state-change rule is an important component of an access control system,
and therefore assert that a meaningful theory for expressive power must consider it as well. In fact, it is
often the case that it is the state-change rule that endows considerable power to an access control system.
Consider, for example, the access matrix schemes proposed by Graham and Denning [5] and by Harrison
et al. [6]. In both schemes, the state is represented by an access matrix. However, the state-change rules
are quite different: in the Graham-Denning scheme [5], there are only specific ways in which rights may
be transferred, while in the HRU scheme [6], one may define arbitrary commands in a state-change rule.
It has also been demonstrated [12] that safety is decidable in polynomial time in the Graham-Denning
scheme, while it is known to be undecidable [6] in the HRU scheme. Such differences cannot be captured
by an approach that does not consider both the state and the state-change rule.

• The second axis is whether a simulation is required to preserve safety properties. In the comparison of
different schemes based on the access matrix model [1, 4, 18, 20], the preservation of safety properties is
required. If a schemeA is simulated in a schemeB, then a system in schemeA reaches an unsafe state
if and only if the image of the system under the simulation (which is a system in schemeB) reaches an
unsafe state.
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On the other hand, the preservation of safety properties is not required in the simulations used for com-
paring MAC (Mandatary Access Control), DAC (Discretionary Access Control), and RBAC (Role-Based
Access Control) [17, 21, 15]. Nor is it required in the simulations used for the comparison of Access
Control Lists (ACL), Capabilities, and Trust Management (TM) systems [3]. In these comparisons, the
requirement for a simulation ofA in B is that it should be possible to use an implementation of the
schemeB to implement the schemeA. We call this theimplementation paradigmof simulations.

• The third axis is whether to restrict the number of state-transitions that the simulating scheme needs to
make in order to simulate one state-transition in the scheme being simulated. [3] define the notions of
strong and weak simulations. A strong simulation ofA in B requires thatB makes one state-transition
whenA makes one state-transition. A weak simulation requires thatB makes a bounded (by a constant)
number of state-transitions to simulate one state-transition inA. A main result in [3] is that a specific
TM scheme considered there is more expressive than ACL because there exists no (strong or weak)
simulation of the TM scheme in ACL. The proof is based on the observation that an unbounded (but still
finite) number of state-transitions in ACL is required to simulate one state-transition in the TM scheme.

On the other hand, an unbounded number of state-transitions is allowed by [20]. They use a simulation
that involves an unbounded number of state-transitions to prove that ATAM (Augmented Typed Access
Matrix) is equivalent in expressive power to TAM (Typed Access Matrix).

Although significant progress has been made in comparing access control models, this current state of art
is unsatisfactory for the following reasons. First, different definitions of simulations make it impossible to
put different results and claims about expressive power of access control models into a single context. For
example, the result that RBAC is at least as expressive as DAC [17, 15] is qualitatively different from the result
that TAM is at least as expressive as ATAM [20], as the former does not require the preservation of safety
properties. These results are again qualitatively different from the result that ACL is less expressive than Trust
Management [3], as the latter requires a bounded number of state-transitions in simulations.

Second, some definitions of simulations that are used in the literature are too weak to distinguish access
control models from one another in a meaningful way. Sandhu et al. [15, 17, 21] show that various forms of
DAC (including ATAM, in which simple safety is undecidable) can be simulated in RBAC, using the notion of
simulations derived from the implementation paradigm. We show in this paper that using the same notion of
simulations, RBAC can be simulated in strict DAC, one of the most basic forms of DAC where simple safety
is trivially decidable. This suggests that using such a notion of simulations, it is likely that one can show that
almost all access control models have the same expressive power. Thus, this notion of simulations is not useful
in differentiating between models based on expressive power.

Finally, the rationale for some choices made in existing definitions of simulations is often not clearly stated
and justified. It is unclear why certain requirements are made or not made for simulations when comparing the
expressive power of access control models. For instance, when a simulation involves an unbounded number of
state-transitions, [4] considers this to be a “weak” simulation, while [3] do not consider this to be a simulation
at all. Neither decision was justified in [4] and [3].

In this paper, we build on existing work and seek to construct uniform bases for comparing access control
models. To determine the requirements on simulations in a systematic and justifiable manner, we start from the
rationales and intuitions underlying different definitions for simulations. Our approach is to first identify the
desirable and intuitive properties one would like simulations to have and then come up with the conditions on
simulations that are both sufficient and necessary to satisfy those properties. Informally, what is desired is that
when one scheme can represent all types of policies that another can, then the former is deemed to be at least
as expressive as the latter.

Our theory is based on definitions of simulations that preserve security properties. Examples of such se-
curity properties are availability, mutual exclusion and bounded safety. Intuitively, such security properties are
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the sorts of policies one would want to represent in an access control system.Security analysisis used to verify
that desired security properties are indeed maintained across state-transitions in an access control system. It
was introduced by [13, 10], and generalizes the notion of safety analysis [6]. In this paper, we introduce com-
positional security analysis, which generalizes security analysis to consider logical combinations of queries in
security analysis.

We introduce two notions of simulations calledstate-matching reductionsand reductions. We show that
state-matching reductions are necessary and sufficient for preserving compositional security properties and that
reductions are necessary and sufficient for preserving security properties. A state-matching reduction reduces
the compositional security analysis problem in one scheme to that in another scheme. A reduction reduces the
security analysis problem in one scheme to that in another scheme.

To summarize, the contributions of this paper are as follows.

• We introduce a theory for comparing access control models based on the notions of state-matching re-
ductions and reductions, together with detailed justifications for the design decisions.

• We analyze the deficiency of using the implementation paradigm to compare access control models and
show that it leads to a weak notion of simulations and cannot be used to differentiate access control
models from one another based on expressive power.

• We apply our theory in four cases. We show that:

– there exists no state-matching reduction from a rather simple trust-management scheme,RT[ ] [10],
to the HRU scheme [6]. To our knowledge, this is the first formal evidence of the limited expressive
power of the HRU scheme. In [10], Li et al. showed that, contrary to the undecidability result of
safety analysis in the HRU scheme, safety analysis and more sophisticated security analysis in the
trust management scheme,RT[�,∩], is decidable. Li et al. conjectured that these schemes cannot
be encoded in the HRU scheme and that the expressive powers of the HRU scheme and ofRT[ ] are
incomparable. In this paper, we present formal proof and this.

– there exists a reduction, but no state-matching reduction from a rather simple DAC scheme, Strict
DAC with Change of Ownership (SDCO), to RBAC with ARBAC97 [19] as the administrative
model. Several authors [17, 21] have argued that RBAC is more expressive than various forms of
DAC, including SDCO. To our knowledge, this is the first evidence of the limited expressive power
of an RBAC scheme in comparison to DAC.

– there exists a state-matching reduction from RBAC with an administrative scheme that is a compo-
nent of ARBAC97 [19] toRT[∩] [8, 9], a trust-management scheme. This shows that state-matching
reductions can be constructed for powerful access control schemes in the literature.

– there exists no state-matching reduction from ATAM to TAM, when we permit queries in ATAM
that check for both the absence and the presence of a right in a cell. This revisits the issue addressed
by Sandhu and Ganta [20] and formalizes the benefit from the ability to check for the absence of
rights in addition to the ability to check for the presence of rights.

The remainder of this paper is organized as follows. We present our theory for comparing access control
models in Section 2. In Section 3, we analyze the implementation paradigm for simulations. In Section 4,
we apply our theory to compare the expressive power of schemes in four cases. We conclude with Section 5.
Appendix A presents a “simulation” of RBAC in strict DAC.
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2 Comparisons Based on Security Analysis

A requirement used in the literature for simulations is the preservation of simple safety properties. Indeed, this
is the only requirement on simulations in [1, 18, 20]. If a simulation of schemeA in schemeB satisfies this
requirement, then a system inA reaches an unsafe state if and only if the system’s mapping inB reaches an
unsafe state. In other words, the result of simple safety analysis1 is preserved by the simulation.

Simple safety analysis, i.e., determining whether an access control system can reach a state in which an
unsafe access is allowed, was first formalized by [6] in the context of the well-known access matrix model [7, 5].
In the HRU scheme [6], a protection system has a finite set of rights and a finite set of commands. A state of a
protection system is an access control matrix, with rows corresponding to subjects, and columns corresponding
to objects; each cell in the matrix is a set of rights. A command takes the form of “if the given conditions hold
in the current state, execute a sequence of primitive operations.” Each condition tests whether a right exists in
a cell in the matrix. There are six kinds of primitive operations: enter a right into a specific cell in the matrix,
delete a right from a cell in the matrix, create a new subject, create a new object, destroy an existing subject,
and destroy an existing object. The following is an example command that allows the owner of a file to grant
the read right to another user.

command grantRead(u1,u2,f)
if ‘own’ in (u1,f)
then enter ‘read’ into (u2,f)

end

In the example,u1 , u2 andf are formal parameters to the command. They are instantiated by objects (or
subjects) when the command is executed. [6] prove that in the HRU scheme, the safety question is undecidable,
by showing that any Turing machine can be simulated by a protection system.

Treating the preservation of simple safety properties as the sole requirement of simulations is based on the
implicit assumption that simple safety is theonly interesting property in access control schemes, an assumption
that is not valid. When originally introduced by [6], simple safety was described as just one class of queries
one can consider. Recently, [13, 10] introduced the notion of security analysis, which generalizes simple safety
to other properties such as bounded safety, simple availability, mutual exclusion and containment.

In this section, we present a theory for comparing access control models based on the preservation of
security properties.

2.1 Access Control Schemes and Security Analysis

Definition 1 (Access Control Schemes) An access control schemeis a state-transition system〈Γ, Q,`,Ψ〉, in
whichΓ is a set of states,Q is a set of queries,̀: Γ×Q→ {true, false} is called the entailment relation, and
Ψ is a set of state-transition rules.

A state, γ ∈ Γ, contains all the information necessary for making access control decisions at a given time.
Theentailment relation, `, determines whether aquery is true or not in a given state. When a query,q ∈ Q,
arises from an access request,γ ` q means that the access requestq is allowed in the stateγ, andγ 6` q means
that q is not allowed. Some access control schemes also allow queries other than those corresponding to a
specific request, e.g., whether every subject that has access to a resource is an employee of the organization.
Such queries can be useful for understanding the properties of complex access control systems.

A state-transition rule, ψ ∈ Ψ, determines how the access control system changes state. More precisely,
ψ defines a binary relation (denoted by7→ψ) on Γ. Givenγ, γ1 ∈ Γ, we writeγ 7→ψ γ1 if the change of state

1What we call simple safety analysis is called safety analysis in the literature. In [13], more general notions of safety analysis, for
which the traditional safety analysis is just a special case, were introduced. Here we follow the terminology in [13].
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from γ to γ1 is allowed byψ, andγ
∗7→ψ γ1 if a sequence of zero or more allowed changes leads fromγ to γ1.

In other words,
∗7→ψ is the reflexive and transitive closure of7→ψ. If γ

∗7→ψ γ1, we say thatγ1 is ψ-reachable
from γ, or simplyγ1 is reachable, whenγ andψ are clear from the context.

An access control modelis a set of access control schemes. Anaccess control systemin an access control
scheme〈Γ, Q,`,Ψ〉 is given by a pair(γ, ψ), whereγ ∈ Γ is the current state the system is in andψ ∈ Ψ the
state-transition rule that governs the system’s state changes.

Similar definitions for access control schemes appear in [1, 3]; our definition from above also appears
in [11], and is different from the definitions in [1, 3] in the following two respects. First, our definition is more
abstract in that it does not refer to subjects, objects, and rights and that the details of a state-transition rule
are not specified. We find such an abstract definition more suitable to capture the notion of expressive power
especially when the models or schemes that are compared are “structurally” different (e.g., a scheme based on
RBAC that has a notion of roles that is an indirection between users and permissions, and a scheme based on
the access-matrix model in which rights are assigned to subjects directly). Second, our definition makes the
set of queries that can be asked an explicit part of the specification of an access control scheme. In existing
definitions in the literature, the set of queries is often not explicitly specified. Sometimes, the implicit set of
queries is clear from context; other times, it is not clear.

The HRU Scheme We now show an example access control scheme, the HRU scheme, that is derived from
the work by [6]. We assume the existence of three countably infinite sets:S, O, andR, which are the sets of
all possible subjects, objects, and rights. We further assume thatS ⊆ O, i.e., all subjects are also objects. In
the HRU scheme:

• Γ is the set of all possible access matrices. Formally, eachγ ∈ Γ is identified by three sets,Sγ ⊂ S,
Oγ ⊂ O, andRγ ⊂ R, and a functionMγ [ ] : Sγ × Oγ → 2Rγ , whereMγ [s, o] gives the set of rights
that are in the cell.

• Q is the set of all queries having the form:r ∈ [s, o], wherer ∈ R is a right,s ∈ S is a subject,o ∈ O is
an object. This query asks whether the rightr exists in the cell corresponding to subjects and objecto.

• The entailment relation is defined as follows:γ ` r ∈ [s, o] if and only if s ∈ Sγ , o ∈ Oγ , andr ∈
Mγ [s, o].

• Each state-transition ruleψ is given by a set of command schemas. Givenψ, the change fromγ to γ1 is
allowed if there exists an instance of a command schema inψ that when applied toγ getsγ1.

The set of queries is not explicitly specified in [6]. It is conceivable to consider other classes of queries,
e.g., comparing the set of all subjects that have a given right over a given object with another set of subjects. In
our framework, HRU with different classes of queries can be viewed as different schemes in the access matrix
model.

Definition 2 (Security Analysis) Given an access control system〈Γ, Q,`,Ψ〉, asecurity analysis instancehas
the form〈γ, q, ψ,Π〉, whereγ ∈ Γ is a state,q ∈ Q is a query,ψ ∈ Ψ is a state-transition rule, andΠ ∈ {∃,∀}
is a quantifier.

An instance〈γ, q, ψ,∃〉 is said to beexistential; it asks whether there existsγ1 such thatγ
∗7→ψ γ1 and

γ1 ` q? If so, we sayq is possible(givenγ andψ).
An instance〈γ, q, ψ,∀〉 is said to beuniversal; it asks whether for everyγ1 such thatγ

∗7→ψ γ1, γ1 ` q? If
so, we sayq is necessary(givenγ andψ).

Simple safety analysis is a special case of security analysis. A simple safety analysis instance that asks
whether a system(γ, ψ) in the HRU scheme can reach a state in which the subjects has the rightr over the
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objecto is represented as the following instance:〈γ, r ∈ [s, o], ψ,∃〉. The universal version of this instance,
〈γ, r ∈ [s, o], ψ,∀〉, asks whethers always has the rightr over the objecto in every reachable state. Thus it
refers to the availability property and asks whether a particular access right is always available to the subjects.

We now introduce a generalized notion of security analysis.

Definition 3 (Compositional Security Analysis) Given a scheme〈Γ, Q,`,Ψ〉, acompositional security analy-
sis instance has the form〈γ, ϕ, ψ,Π〉, whereγ, ψ, andΠ are the same as in a security analysis instance, andϕ
is a propositional formula overQ, i.e.,ϕ is constructed from queries inQ using propositional logic connectives
such as∧, ∨, ¬.

For example, the compositional security analysis instance〈γ, (r1 ∈ [s, o1]) ∧ (r2 ∈ [s, o2]), ψ,∃〉 asks
whether the system(γ, ψ) can reach a state in whichs has both the rightr1 over o1 and the rightr2 over
o2. We allow the formulaϕ to have infinite size. For example, suppose thatS, the set of all subjects, is
{s1, s2, s3, s4, . . .}, then the formula¬(r ∈ [s2, o] ∨ r ∈ [s3, o] ∨ r ∈ [s4, o] ∨ · · · ) is true when no subject
other thans1 has the rightr over objecto.

Whether we should use security analysis or compositional security analysis is related to what types of
policies we want to represent, and what types of policies we want to use as bases to compare the expressive
power of different access control models or schemes. With compositional security analysis, we would be
comparing models or schemes based on types of policies that are broader than with security analysis. For
instance, if our set of queriesQ contains queries related to users’ access to files, then with compositional
security analysis we can consider policies such as “Bob should never have write access to a particular file so
long as his wife, Alice has a user account (and thus has some type of access to some file).”

2.2 Two Types of Reductions

In this section, we introduce the notions of reductions and state-matching reductions that we believe are ade-
quate for comparing the expressive power of access control models. Before we introduce reductions, we discuss
mappings between access control schemes.

Definition 4 (Mapping) Given two access control schemesA = 〈ΓA, QA,`A,ΨA〉 and B =
〈ΓB, QB,`B,ΨB〉. A mappingfromA toB is a functionσ that maps each pair〈γA, ψA〉 inA to a pair〈γB, ψB〉
in B and maps each queryqA in A to a queryqB in B. Formally,σ : (ΓA ×ΨA) ∪QA → (ΓB ×ΨB) ∪QB.

Definition 5 (Security-Preserving Mapping) A mappingσ is said to besecurity-preservingwhen every security
analysis instance inA is true if and only if theimageof the instance is true. Given a mappingσ : (ΓA×ΨA)∪
QA → (ΓB×ΨB)∪QB, theimageof a security analysis instance〈γA, qA, ψA,Π〉 underσ is 〈γB, qB, ψB,Π〉,
where〈γB, ψB〉 = σ(〈γA, ψA〉) andqB = σ(qA).

The notion of security-preserving mappings captures the intuition that simulations should preserve security
properties. Given a security-preserving mapping fromA toB and an algorithm for solving the security analysis
problem inB, one can construct an algorithm for solving the security analysis problem inA using the mapping.
Also, security analysis inB is at least as hard as security analysis inA, modulo the efficiency of the mapping.
If an efficient (polynomial-time) mapping fromA to B exists, and security analysis inA is intractable (or
undecidable), then security analysis inB is also intractable (undecidable). Security preserving mappings are
not powerful enough for comparisons of access control schemes based on compositional security analysis. We
need the notion of a strongly security-preserving mapping for that purpose.

Definition 6 (Strongly Security-Preserving Mapping) Given a mappingσ from schemeA to schemeB, the
image of a compositional analysis instance,〈γA, ϕA, ψA,Π〉, in A is 〈γB, ϕB, ψB,Π〉, where〈γB, ψB〉 =
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σ(〈γA, ψA〉) andϕB is obtained by replacing every queryqA in ϕA with σ(qA); we abuse the terminology
slightly and writeϕB = σ(ϕA). A mappingσ from A to B is said to bestrongly security-preservingwhen
every compositional security analysis instance inA is true if and only if the image of the instance is true.

While the notions of security-preserving and strongly security-preserving mappings capture the intuition
that simulations should preserve security properties, they are not convenient for us to use directly. Using
the definition for either type of mapping to directly prove that the mapping is (strongly) security preserving
involves performing security analysis, which is expensive. We now introduce the notions of reductions, which
state structural requirements on mappings for them to be security preserving. We start with a form of reduction
appropriate for compositional security analysis and then discuss weaker forms.

Definition 7 (State-Matching Reduction) Given a mapping fromA to B, σ : (ΓA × ΨA) ∪ QA → (ΓB ×
ΨB)∪QB, we say that the two statesγA andγB areequivalentunder the mappingσ when for everyqA ∈ QA,
γA `A qA if and only if γB `B σ(qA). A mappingσ fromA toB is said to be astate-matching reductionif
for everyγA ∈ ΓA and everyψA ∈ ΨA, 〈γB, ψB〉 = σ(〈γA, ψA〉) has the following two properties:

1. For every stateγA1 in schemeA such thatγA
∗7→ψ γ

A
1 , there exists a stateγB1 such thatγB

∗7→ψB γB1 and
γA1 andγB1 are equivalent underσ.

2. For every stateγB1 in schemeB such thatγB
∗7→ψB γB1 , there exists a stateγA1 such thatγA

∗7→ψ γ
A
1 and

γA1 andγB1 are equivalent underσ.

Property 1 says that for every stateγA1 that is reachable fromγA, there exists a reachable state in schemeB
that is equivalent, i.e., answers all queries in the same way. Property 2 says the reverse, for every reachable state
in B, there exists an equivalent state inA. The goal of these two properties is to guarantee that compositional
security analysis results are preserved across the mapping. With the following theorem, we justify Definition 7.

Theorem 1 Given two schemesA andB, a mappingσ fromA toB is strongly security-preserving if and only
if σ is a state-matching reduction.

Proof.
The “if” direction. Whenσ is a state-matching reduction, given a compositional security analysis instance

〈γA, ϕA, ψA,Π〉 in schemeA, let 〈γB, ψB〉 = σ(〈γA, ψA〉) andϕB = σ(ϕA), we show that〈γA, ϕA, ψA,Π〉
is true if and only if〈γB, ϕB, ψB,Π〉 is true.

First consider the case that the instance〈γA, qA, ψA,Π〉 is existential, i.e.,Π is∃. If the instance is true, i.e.,
there exists a reachable stateγA1 in whichϕA is true. Property 1 in Definition 7 guarantees that there exists a
reachable stateγB1 that is equivalent toγA1 ; thusϕB is true inγB1 ; therefore, the instance inB, 〈γB, ϕB, ψB,∃〉,
is also true. On the other hand, if〈γB, ϕB, ψB,∃〉 is true, then there exists a reachable stateγB1 in whichϕB is
true. Property 2 in Definition 7 guarantees that there exists a state inA in which the analysis instance inA is
true.

Now consider the case that the instance〈γA, ϕA, ψA,Π〉 is universal, i.e.,Π is ∀. If the instance is false,
i.e., there exists a reachable stateγA1 in whichϕA is false. Property 1 guarantees that the instance inB is also
false. Similarly, if the instance inB is false, then the instance inA is also false.

The “only if” direction. Whenσ is not a state-matching reduction, then there existsγA ∈ ΓA andψA ∈
ΨA such that〈γB, ψB〉 = σ(〈γA, ψA〉) violates one of the two properties in Definition 7.

First consider the case that Property 1 is violated. There exists a reachable stateγA1 such that no state
reachable fromγB is equivalent toγA1 . Construct a formulaϕA as follows:ϕA is a conjunction of queries in
Q or their complement. For every query queryqA in QA, ϕA includesqA if γA1 `A qA and¬qA if γA1 `A qA.
(Note that the length ofϕA may be infinite, as the total number of queries may be infinite.) Clearly,ϕA is true
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in γA1 , butσ(ϕA) is false in all states reachable fromγB. Thus, the existential compositional analysis instance
involvingϕA has different answers, andσ is not strongly security preserving.

Then consider the case that Property 2 is violated. There exists a stateγB1 reachable fromγB such that
no state reachable fromγA is equivalent toγB1 . Construct a formulaϕA as follows:ϕA is a conjunction of
queries inQ or their complement. For every query queryqA in QA, ϕA includesqA if γB1 `B σ(qA) and¬qA
if γB1 `B σ(qA). Clearly,ϕA is false in in all states reachable fromγA, but σ(ϕA) is true inγB1 ; thus, the
existential compositional analysis instance involvingϕA has different answers, andσ is not strongly security
preserving.

Note that the proof uses a compositional analysis instance that contains a potentially infinite-length formula.
If one chooses to restrict the formulas in analysis instances to be finite length, then state-matching reduction
may not be necessary for being strongly security-preserving. Also, a state-matching reduction preserves com-
positional security properties. If we only need queries fromQ to represent our policies and not compositions
of those queries, then the following weaker notion of reductions is more suitable. However, we believe that
the notion of state-matching reductions is quite natural by itself; it is certainly necessary when compositional
queries are of interest.

Definition 8 (Reduction) Given two access control schemesA = 〈ΓA, QA,`A,ΨA〉 and B =
〈ΓB, QB,`B,ΨB〉. A mapping fromA toB, σ, is said to be areductionfromA toB if for everyγA ∈ ΓA and
everyψA ∈ ΨA, 〈γB, ψB〉 = σ(〈γA, ψA〉) has the following two properties:

1. For every stateγA1 and every queryqA in schemeA, if γA
∗7→ψ γ

A
1 , then in schemeB there exists a state

γB1 such thatγB
∗7→ψB γB1 andγA1 `A qA if and only if γB1 `B σ(qA).

2. For every stateγB1 in schemeB and every queryqA in schemeA, if γB
∗7→ψB γB1 , there exists a stateγA1

such thatγA
∗7→ψ γ

A
1 andγA1 `A qA if and only if γB1 `B σ(qA).

Definition 7 differs from Definition 8 in that the former requires that for every reachable state inA (B,
resp.) there exist a matching state inB (A, resp.) that gives the same answer forevery query. Definition 8
requires the existence of a matching state for every query; however, the matching states may be different for
different queries. Property 1 in Definition 8 says that for every reachable state inA and every query inA, there
exists a reachable state inB that gives the same answer to (the image of) the query. Property 2 says the reverse
direction. The goal of these two properties is to guarantee that security analysis results are preserved across
the mapping. The fact that a reduction, as defined in Definition 8, is adequate for preserving security analysis
results is formally captured by the following theorem.

Theorem 2 Given two schemesA andB, a mapping,σ, fromA toB is security preserving if and only ifσ is
a reduction.

Proof. The “if” direction. Whenσ is a reduction, given a security analysis instance〈γA, qA, ψA,Π〉 in
schemeA, let 〈γB, ψB〉 = σ(〈γA, ψA〉) andqB = σ(qA), we show that〈γA, qA, ψA,Π〉 is true if and only if
〈γB, qB, ψB,Π〉 is true.

First consider the case that the instance〈γA, qA, ψA,Π〉 is existential, i.e.,Π is ∃. If the instance is true,
i.e., there exists a reachable stateγA1 in which qA is true. Property 1 in Definition 8 guarantees that there exists
a reachable stateγB1 in which qB is true. Therefore, the instance inB, 〈γB, qB, ψB,∃〉, is also true. On the
other hand, if〈γB, qB, ψB,∃〉 is true, then there exists a reachable stateγB1 in which qB is true. Property 2 in
Definition 8 guarantees that there exists a state inA in which qA is true; thus the analysis instance inA is true.

Now consider the case that the instance〈γA, qA, ψA,Π〉 is universal, i.e.,Π is ∀. If the instance is false,
i.e., there exists a reachable stateγA1 in which qA is false. Property 1 guarantees that the instance inB is also
false. Similarly, if the instance inB is false, then the instance inA is also false.
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The “only if” direction. Whenσ is not a reduction, then there existsγA ∈ ΓA andψA ∈ ΨA such that
〈γB, ψB〉 = σ(〈γA, ψA〉) violates one of the two properties in Definition 8.

First consider the case that Property 1 is violated. There exists a reachable stateγA1 and a queryqA such that
for every state reachable fromγB the answer for the queryσ(qA) under the state is different from the answer
for qA underγA1 . If γA1 `A qA, then this means thatqB is false in every state reachable fromγB. Thus the
security analysis instance〈γA, qA, ψA,∃〉 is true, but its image underσ is false. Thus, the mappingσ is not
security-preserving. IfγA1 6`A qA, then this means thatqB is true in every state reachable fromγB. Thus the
security analysis instance〈γA, qA, ψA,∀〉 is false, but its image underσ is true.

Then consider the case that Property 2 is violated. There exists a stateγB1 reachable fromγB and a query
qA such that for every state reachable fromγA the answer for the queryqA under the state is different from the
answer forσ(qA) underγB1 . If γB1 `B σ(qA), then this means thatqA is false in every state reachable fromγA.
Thus the security analysis instance〈γA, qA, ψA,∃〉 is false, but its image underσ is true. IfγB1 6`B qB, then
this means thatqA is true in every state reachable fromγA. Thus the security analysis instance〈γA, qA, ψA,∀〉
is true, but its mapping inB is false.

Comparisons of two access control models are based on comparisons among access control schemes in
those models.

Definition 9 (Comparing the Expressive Power of Access Control Models) Given two access control models
M andM′, we say thatM′ is at least as expressive asM (orM′ has at least as much expressive power asM′)
if for every scheme inM there exists a state-matching reduction (or a reduction) from it to a scheme inM′. In
addition, if for every scheme inM′, there exists a state-matching reduction (reduction) from it to a scheme in
M, then we say thatM andM ′ are equivalent in expressive power. IfM′ is at least as expressive as theM,
and there exists a schemeA inM′ such that for any schemeB inM, no state-matching reduction (reduction)
fromA toB exists, we say thatM′ is strictly more expressive thanM.

We compare the expressive power of two schemes based on state-matching reductions when compositional
queries are needed to represent the policies of interest. Otherwise, reductions suffice. Observe that we can use
the above definition to compare the expressive power of two access control schemesA andB, by viewing each
scheme as an access control model consists of just that scheme.

2.3 Discussions of alterative definitions for reduction

In this section, we discuss alternative definitions that differ slightly from the ones discussed in the previous
section. The first of these definitions is used by [18, 20] for simulations.

Definition 10 (Form-1 Weak Reduction) A mapping fromA toB, given byσ : (ΓA × ΨA) ∪ QA → (ΓB ×
ΨB) ∪ QB, is a form-1 weak reductionif for every γA ∈ ΓA and everyψA ∈ ΨA, 〈γB, ψB〉 = σ(〈γA, ψA〉)
has the following two properties:

1. For every queryqA, if there exists a stateγA1 in schemeA such thatγA
∗7→ψA γA1 andγA1 `A qA, then

there exists a stateγB1 such thatγB
∗7→ψB γB1 andγB1 `B σ(qA).

2. For every queryqA, if there existsγB1 in schemeB such thatγB
∗7→ψB γB1 andγB1 `B σ(qA), then there

exists a stateγA1 such thatγA
∗7→ψ γ

A
1 andγA1 `A qA if and only if γB1 `B σ(qA).

The intuition underlying Definition 10, as stated by [18] is, “systems are equivalent if they have equivalent
worst case behavior”. Therefore, simulations only need to preserve the worst-case access. Definition 10 is
weaker than Definition 8 in that it requires the existence of a matching state when a query is true in the state,
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but does not require so when the query is false. Therefore, it is possible that a queryqA is true in all states that
are reachable fromγA, but the queryσ(qA) is false in some states that are reachable fromγB (the queryσ(qA)
needs to be true in at least one state reachable fromγB). This indicates that Definition 10 does not preserve
answers to universal security analysis instances. Definition 10 is adequate for the purposes in [18, 20] as only
simple safety analysis (which is existential) was considered there.

The decision of defining a mapping to be a function from(ΓA × ΨA) ∪ QA to (ΓB × ΨB) ∪ QB also
warrants some discussion. One alternative is to define a mapping fromA toB to be a function that maps each
state inA to a state inB, each state-transition rule inA to a state-transition rule inB, and each query inA to
a query inB. Such a function would be denoted asσ : ΓA ∪ ΨA ∪ QA → ΓB ∪ ΨB ∪ QB. One can verify
any such function is also a mapping according to Definition 4, which gives more flexibility in terms of mapping
states and state-transition rules fromA to B. By Definition 4, the state corresponding to a stateγA may also
depends upon the state-transition being considered.

Another alternative is to define a mapping fromA toB to be a functionσ : ΓA×ΨA×QA → ΓB×ΨB×QB,
in other words, the mapping of states, state-transition rules, and queries may depend on each other. This
definition will also leads to a weaker notion of reduction:

Definition 11 (Form-2 Weak Reduction) A form-2 weak reduction fromA toB is a functionσ : ΓA ×ΨA ×
QA → ΓB × ΨB × QB such that for everyγA ∈ ΓA, everyψA ∈ ΨA, and everyqA ∈ QA, 〈γB, ψB, qB〉 =
σ(〈γA, ψA, qA〉) has the following two properties:

1. For every stateγA1 in schemeA such thatγA
∗7→ψ γ

A
1 , there exists a stateγB1 such thatγB

∗7→ψB γB1 and
γA1 `A qA if and only if γB1 `B qB.

2. For every stateγB1 in schemeB such thatγB
∗7→ψB γB1 , there exists a stateγA1 such thatγA

∗7→ψ γ
A
1 and

γA1 `A qA if and only if γB1 `B qB.

It is not difficult to prove that a Form-2 weak reduction is also security preserving, in the sense that any
security analysis instance〈γA, qA, ψA,Π〉 in A can be mapped to a security analysis inB. However, it is not a
mapping, as the mapping of states and state-transition rules may depend on the query.

Definition 11 is used implicitly in Theorems 2 and 3 in [11] for reductions from security analysis in two
RBAC schemes to that in the RT Role-based Trust-management framework [9, 13]. As we state in Theorem 7
in this paper, a form-2 weak reduction used in [11] for one of the RBAC schemes can be changed to a security-
preserving mapping in a straightforward manner.

We choose not to adopt this weaker notion of reduction for the following reason. Under this definition,
given an access control system(γA, ψA), to answern analysis instances involving different queries, one has to
don translations of states and state-transitions, which are often time consuming. While using Definition 4 and
Definition 8, one can do the mapping of(γA, ψA) once and use it to answer alln analysis instances.

A third weak form of reduction is introduced by [1]. That work discusses the expressive power of multi-
parent creation when compared to single-parent creation.

Definition 12 (Form-3 Weak Reduction) A mapping fromA toB, given byσ : (ΓA × ΨA) ∪ QA → (ΓB ×
ΨB) ∪ QB, is a form-3 weak reductionif for every γA ∈ ΓA and everyψA ∈ ΨA, 〈γB, ψB〉 = σ(〈γA, ψA〉)
has the following two properties:

1. For every stateγA1 and every queryqA in schemeA, if γA
∗7→ψ γ

A
1 , then in schemeB there exists a state

γB1 such thatγB
∗7→ψB γB1 andγA1 `A qA if and only if γB1 `B σ(qA).

2. For every stateγB1 in schemeB and every queryqA in schemeA, if γB
∗7→ψB γB1 , then either (a) there

exists a stateγA1 such thatγA
∗7→ψ γA1 andγA1 `A qA if and only if γB1 `B σ(qA), or (b) there exists
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a stateγB2 such thatγB1
∗7→ψB γB2 and a stateγA1 such thatγA

∗7→ψ γA1 , andγA1 `A qA if and only if
γB2 `B σ(qA).

As pointed out by [1], this form of reduction suffices for preserving simple safety properties in monotonic
schemes — those schemes in which once a state is reached in which a query is true, in all reachable states from
that state, the query remains true. Therefore, this form of reduction cannot be used to compare schemes when
queries can become false after being true. As with the reduction from Definition 10, this form of reduction
cannot be used for universal queries.

3 The Implementation Paradigm for Simulation: An Examination

Several authors use the implementation paradigm for simulations, e.g., [17] state that “a positive answer [to the
question whether LBAC (lattice-based access control) can be simulated in RBAC] is also practically significant,
because it implies that the same Trust Computing Base can be configured to enforce RBAC in general and
LBAC in particular.” However, in these papers [15, 17, 21], a precise definition for simulations is not given.
This makes the significance of such results unclear, at least in terms of comparing the expressive power of
different access control models.

In this section, we analyze the implementation paradigm and argue that this does not lead to a notion of
simulations that is meaningful for comparing the expressive power of different access control models. More
precisely, the notions of simulations derived from this paradigm are so weak that almost all access control
schemes are equivalent.

To formalize the implementation paradigm for simulation, a natural goal is to use an implementation of an
access control scheme for another scheme. Intuitively, if a schemeA can be simulated in a schemeB, then
there exists asimulator that, when given access to the interface to (an implementation of)B, can provide an
interface that is exactly the same as the interface to (an implementation of)A.

When considering the interface of an access control scheme, we have to consider how state-transitions
occur. Intuitively, an access control system changes its state because some actors (subjects, principals, users,
etc.) initiate certain actions. An implementation of an access control scheme thus has an interface consisting of
at least the following functions:

• init(γ): set the current state toγ.

• query(q): ask the queryq and receives a yes/no response.

• apply(a): apply the actiona on the system, which may result in a state-transition in the system.

• functions providing other capabilities, e.g., traversing the subjects and objects in the system.

A simulator ofA in B is thus a program that takes an interface ofB and provides an interface ofA that is
indistinguishable from an implementation forA. In other words, the simulator is a blackbox that when given
access to a backbox implementation ofB, gives an implementation ofA. This intuition seems to make sense if
the goal is to use an implementation ofB to implementA.

It is tempting to start formalizing the above intuition; however, there are several subtle issues that need to
be resolved first.

As can be easily seen, for any two schemesA andB, a trivial simulator exists. The simulator implements
all the functionalities ofA by itself, without interacting with the implementation ofB. Clearly, one would like
to rule out these trivial simulators. One natural way to do so is to restrict the amount of space used by the
simulator to be sub-linear in the size of the state of the scheme it is simulating. Itseemsto be a reasonable
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requirement that the simulator takes constant space on its own, i.e., the space used by the simulator does not
depend on the size of the state. (The space used by the implementation ofB is not considered here.)

Another issue is whether to further restrict a simulator’s internal behavior. When the simulator receives a
query in the schemeA, it may issue multiple queries to the blackbox implementation ofB before answering
the query; it may even perform some state-transition onB before answering the query. Similarly, the simulator
may perform multiple queries and state-transitions onB to simulate one state-transition inA.

If no restriction is placed, then the notion of simulation is too weak to separate different access control
models. For example, [15] constructed a simulation of ATAM in RBAC. In Appendix A, we give a simulation
of RBAC in strict DAC, a discretionary model that allows only the owner of an object to grant rights over the
object to another subject and ownership cannot be transferred. According to these results, the simplest DAC
(in which security analysis is efficiently decidable) has the same expressive power as ATAM (in which simple
safety analysis is undecidable). This illustrates the point that, without precise requirements, simulation is not a
very useful concept for comparing access control models.

If one places restrictions on the simulator, then the question is what restrictions are reasonable. Our con-
clusion is that it is very difficult to justify such requirements. In the following, we elaborate on this.

One possibility that we now argue to be inadequate is to restrict the internal behavior of the simulator, e.g.,
to restrict it to issue only one query toB in order to answer one query inA and to make bounded number of
state-transitions inB to simulate one state-transition inA. Under these restrictions, one can prove that RBAC
cannot be simulated in the HRU model. The assignment of a user to a role in RBAC results in the user gaining
all the accesses to objects implied by the permissions associated with that role; therefore, it changes the answers
to an unbounded number of queries (queries involving those permissions.) One may argue that the assignment
of a user to a role is a single “action” in RBAC, and therefore, the acquiring of those permissions by that user is
accomplished in a single “action.” The corresponding assignment of rights in the HRU access matrix cannot be
accomplished by a single command, or a bounded number of command for that matter, as each command only
changes a bounded number of cells in the matrix. Thus, any mapping of the user-assignment in RBAC involves
an unbounded number of commands being executed in HRU. Nonetheless, one can argue that this is balanced
by the efficiency of checking whether a user has a particular right in the two models. A naive implementation
of an RBAC model may involve having to collect all roles to which that user is assigned, and then collecting
all permissions associated with those roles, and then checking whether one of those permissions corresponds
to the object and access right for which we are checking. The time this process takes depends on the size of
the current state and is unbounded. The corresponding check in HRU is simpler: we simply check whether the
corresponding access right exists in the cell in the matrix. Thus, we can argue that there is a trade-off between
time-to-update, and time-to-check-access between the two schemes. Therefore, we argue that it does not make
sense to restrict the number of steps involved in the simulation.

Another possibility that we now argue to be inadequate is to measure how much time the simulator takes
to perform a state-transition and to answer one query in the worst case and require that there cannot be a
significant slowdown. This possibility is complicated by the fact that the efficiency of these operations are not
predetermined in any access control scheme, the implementation can make trade-offs between time complexity
and space complexity and between query answering and state-transitions. Any comparison must involve at least
three axes, query time, state-transition time, and space. Furthermore, the best ways to implement an access
control scheme is not always known. Finally, these implementation-level details do not seem to belong in the
comparison of access control models; as such models by themselves are abstract models to study properties
other than efficiency.

In summary, when no restriction is placed on the simulations, the “implementation paradigm” does not
separate different access control schemes. On the other hand, it seems difficult to justify the restrictions that
have been considered in the literature. Therefore, our analysis in this section suggests that the “implementation
paradigm” does not seem to yield effective definitions of simulations that are useful to compare access control
models. This also suggests that expressive power results proved under this paradigm should be reexamined.
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4 Applying the Theory

In this section, we apply our theory from Section 2 to compare the expressive power of different access control
schemes. In the following section, we show that the HRU access matrix scheme is not as expressive as a
relatively simple trust management scheme,RT[ ]. We then examine two particular results from literature using
our theory: (1) that RBAC is at least as expressive as DAC (Sections 4.2 and 4.3), and (2) that TAM is at
least as expressive as ATAM (Section 4.5), and in each case, assert the opposite. We show also that the trust
management schemeRT[∩] is at least as expressive as an RBAC scheme (Section 4.4).

Proof Methodology In this section, we prove the existence of reductions and state-matching reductions as
well as the nonexistence of state-matching reductions. To prove that there exists a reduction or state-matching
reduction from a schemeA to a schemeB, we constructively give a mapping and show that the mapping
satisfies the requirements. To prove that there does not exist a state-matching reduction from a schemeA to a
schemeB is more difficult, as we have to show that no mapping satisfies the requirements for a state-matching
reduction. Our strategy is to use proof by contradiction. We find in schemeA a stateγA, a state-transition
ruleψA, as well as a stateγA1 that is reachable. Suppose, for the sake of contradiction, that a state-matching
reduction exists, then there exist statesγB andγB1 such thatγB is equivalent toγA, γB1 is equivalent toγA1 , and
γB1 is reachable fromγB. We show that among the sequence of states leading fromγB andγB1 , there exists one
for which there is no matching state that is reachable inA.

4.1 Comparing the HRU scheme to a trust management scheme

The HRU scheme [6] is based on the access matrix model, and has generally been believed to have considerable
expressive power, partly because it has been shown that one can simulate a Turing Machine in the HRU scheme.
In this section, we show that there does not exist a state-matching reduction from a relatively simple trust
management scheme,RT[ ] [13, 10], to the HRU scheme. ThatRT[ ] cannot be encoded in the HRU scheme
is informally discussed and conjectured in [13, 10]. Using the theory presented in Section 2, we are able to
formally prove this. As safety analysis is efficiently decidable inRT[ ] but undecidable in the HRU scheme,
there does not exist a state-matching reduction from the HRU scheme to theRT[ ] scheme either. This shows
that the expressive powers of the HRU scheme and ofRT[ ] are incomparable. To our knowledge, this Is the
first formal evidence of the limited expressive power of the HRU scheme.

The fact that the HRU scheme can simulate Turing Machine shows that it can compute any computable
function when used as a computation device. When used as an access control scheme, the HRU scheme may
nonetheless be limited in expressive power. For example, it cannot encode an access control system where in
one state a subject has no right over any object and in the next state the subject obtains rights over a potentially
unbounded number of objects.

The HRU Scheme

Γ We assume the existence of countably infinite sets of subjects,S, objectsO and rightsR, with S ⊂ O. Each
stateγ is characterized by〈Sγ , Oγ , Rγ ,Mγ [ ]〉 whereSγ ⊂ S is a finite set of subjects that exist in the stateγ,
Oγ ⊂ O is a finite set of objects that exist in the stateγ,Rγ ⊂ R is a finite set of rights that exist in the stateγ,
andMγ [ ] is the access matrix, i.e.,Mγ [s, o] ⊆ Rγ gives the set of rightss ∈ Sγ has overo ∈ Oγ in the stateγ.
Mγ [s, o] is defined only whens ∈ Sγ ando ∈ Ost. It may appear that we allowRγ to differ across states. The
definition for state-change rules precludes this possibility.

Ψ A state-change rule,ψ, in the HRU scheme is a command schema, i.e., a set of commands. Each command
takes a sequence of parameters, each of which may be instantiated by an object, Each command has also an
optional condition, which is a conjunction of clauses. Each clause checks whether a right is in a particular
cell of Mγ [ ]. Following the (optional) conditions in a command is a sequence of primitive operations. The
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primitive operations are one of the following: (1) create an object; (2) create a subject; (3) enter a right into a
cell of the access matrix; (4) remove a right from a cell of the access matrix; (5) destroy a subject; (6) destroy an
object. We refer the reader to [6] for more details on the syntax of commands. A state-change is the successful
execution of a command.

Q We allow queries of the following two forms: (1)r ∈ M [s, o], and (2)r 6∈ M [s, o]. In the queries,r ∈ R,
s ∈ S ando ∈ O. To our knowledge, these are the only kinds of queries that have been considered in the
context of the HRU scheme in the literature. In particular, these are the queries that are pertinent to the safety
property [6].

` Let q be the queryr ∈ M [s, o]. Then, given a stateγ, γ ` q if and only if r ∈ Rγ , s ∈ Sγ , O ∈ Oγ and
r ∈ Mγ [s, o]. Otherwise,γ 6` q, or equivalentlyγ ` ¬q. Let q̂ be the queryr 6∈ M [s, o]. Thenγ ` q̂ if and
only if r ∈ Rγ , s ∈ Sγ ,O ∈ Oγ andr 6∈Mγ [s, o]. Otherwise,γ 6` q̂, or equivalentlyγ ` ¬q̂.

Observe that one should view bothr ∈ Mγ [s, o] andr 6∈ Mγ [s, o] as atomic queries. In particular¬(r ∈
Mγ [s, o]) is not equivalent tor 6∈ Mγ [s, o]. It is possible thatγ 6` r ∈ Mγ [s, o] andγ 6` r 6∈ Mγ [s, o]; this
happens when eithers or o does not exist inγ. Even though it is not possible thatγ ` ((r ∈ Mγ [s, o]) ∧ (r 6∈
Mγ [s, o])).

The RT[ ] Scheme

Γ We assume the existence of countably infinite sets of principals (e.g.,A,B,C) and role names (e.g.,
r, s, t, u). A role is formed by a principal and a role name, separated by a dot (e.g.,A.r,X.u). An RT[ ]
state consists of statements which are assertions made by principals about membership in their roles. Two
types of assertions are supported. These are simple member (e.g.,A.r ←− B) and simple inclusion (e.g.,
A.r ←− B.r1). One reads the←− symbol as “includes”. The example for the first kind of statement asserts
thatB is a member ofA’s r role. The example for the second kind of statement asserts that every member of
B.r1 is a member ofA.r. The portion of a statement that appears to the left of the←− symbol is called its
head, and the portion that appears to the right is called the body. We refer the reader to [9] for more details on
the syntax and semantics ofRT[ ] statements.

Ψ A state-change rule in a system based on theRT[ ] scheme consists of two sets,G andS. Both consist of
RT[ ] roles.G is the set of growth-restricted roles, i.e., ifA.r ∈ G, then statements withA.r at the head cannot
be added in future states.S is the set of shrink-restricted roles, i.e., ifA.r ∈ S, then roles withA.r at the head
cannot be removed in future states. We refer the reader to [13, 10] for more details on the two sets, and the
intuition behind them.

Q [13] define three kinds of queries inRT[ ]. (1) {B1, . . . , Bn} w A.r – this kind of query asks whether the
roleA.r is bounded by the set of pricipals{B1, . . . , Bn}; (2) A.r w {B1, . . . , Bn} – this kind of query asks
whether each principalB1, . . . , Bn is a member ofA.r; (3)X.u w A.r – this kind of query asks whether the
set of member ofA.r is included in the set of members ofX.u.

` Given a state, we check if a query is entailed by first evaluating the set of members of eachRT[ ] role in the
query. This is done using credential chain discovery [14]. We then compare the two sets and check if the set to
the left includes the set to the right. The first two kinds of queries are called semi-static queries as one of the
sides in the query is a set of users that is independent of the state, and needs no further evaluation. We refer the
reader to [14] for more details on query-entailment inRT[ ].

Theorem 3 There exists no state-matching reduction from theRT[ ] scheme to the HRU scheme.

Proof. By contradiction. Assume that there exists a state-matching reduction,σ, from theRT[ ] scheme to the
HRU scheme. We denote components of aRT[ ] system with the superscriptR and the HRU scheme with the
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superscriptH. We now consider a system based on theRT[ ] scheme. LetγR be the start-state in ourRT[ ]
system such thatγR has no statements. The state-change rule in ourRT[ ] system isG = S = ∅. We now
consider the start-state in the corresponding HRU systemσ(γR) = γH and the state-change ruleσ(ψR) = ψH .
Let k be the number of objects inγH , i.e.,k = |OγH |. Let l be the maximum number of primitive operations of
the form “enter right” in any of the commands inψH . Letm be the maximum number of primitive operations
of the form “remove right” in any of the commands inψH .

Choose somen >
(
k2 + l +m

)
+ 1. Our choice ofn is such that for anyγH1 such thatγH 7→ γH1 , fewer

thann − 1 queries that are true inγH (i.e., are entailed byγH ) are false inγH1 (i.e., are not entailed byγH1 ).
The reason is that: (1) asγH has at mostk objects (some or all of which may be subjects), a command may
contain statements to destroy all these objects. Consequently, these statements can cause up tok2 queries of the
form r 6∈M [s, o] to be false inγH1 when they are true inγH ; (2) as a command inψH has at mostl statements
to enter rights in to cells, these statements can cause up tol queries of the formr 6∈ M [s, o] to be false inγH1
when they are true inγH ; (3) as a command inψH has at mostm statements to remove rights from cells, these
statements can cause up tom queries of the formr ∈ M [s, o] to be false inγH1 when they are true inγH .
We emphasize that these are the only possibilities for queries to become false in a state-change fromγH ; the
number of queries that are entailed byγH , but notγH1 is fewer thann− 1.

Consider queriesqRi for each integeri such that1 ≤ i ≤ n in theRT[ ] system whereqRi is of the form
{Bi} w A.r for some principalsA,B1, . . . , Bn and some roleA.r. We make two observations about these
queries. The first is thatγR ` qR1 ∧ . . . ∧ qRn . The reason is thatA.r is empty inγR and therefore is a subset
of every set of the form{Bi}. The second observation is that in all states reachable fromγR, either all queries
of the formqRi such that1 ≤ i ≤ n are entailed, or at most one of those queries is entailed. The reason is that
for the set of users in the roleA.r to be a subset of{Bi} for a particulari, it must be either empty, or contain
exactly one element,Bi. Now consider the stateγRt such thatγR

∗7→ψ γ
R
t andγRt ` qR1 ∧ ¬qR2 ∧ . . . ∧ ¬qRn .

That is,qR1 is true inγRt , but none of the other queries of the formqRi is true. We use the subscriptt only to
demarcate the state and not as a count of the number of state-changes needed to reach it. In fact,γRt can be
reached fromγR with a single state-change: we simply add the statementA.r ←− B1 to ourRT[ ] system.

Now consider the corresponding states and queries in the HRU system produced as output byσ. Let γH =
σ(γR), γHt = σ(γRt ), andqHi = σ(γRi ) for 1 ≤ i ≤ n. As we assume thatσ is a state-matching reduction,
γH ` qH1 ∧ . . .∧ qHn , and there existsγHt such thatγH

∗7→ψ γ
H
t andγHt ` qH1 ∧¬qH2 ∧ . . .∧¬qHn . Consider any

sequence of state-changes fromγH to γHt . Pick the first state in the sequenceγHc in which at least one of the
queriesqHi is false. Consider the stateγHc−1 immediately preceding it. Then,γHc−1 ` qH1 ∧ . . . ∧ qHn . Because
one step of change cannot maken − 1 queries to go from true to false, inγHc , some queriesq1, q2, q3, · · · , qn
are false but at least2 queries in them are true. As we argued in the previous paragraph, there cannot exist
a matching state inA for γHc . We now have the desired contradiction to the existence of a state-matching
reduction from theRT[ ] scheme to the HRU scheme.

4.2 Examining comparisons of RBAC and DAC

[15] present a simulation of ATAM in RBAC and conclude that RBAC is at least as expressive as ATAM.
[17, 16, 21] give simulations of various MAC and DAC schemes in RBAC. The main conclusion of [17, 16, 21]
is that as MAC and DAC can be simulated in RBAC, a Trusted Computing Based (TCB) needs to include an
implementation of RBAC only, and DAC and MAC policies can be successfully represented and enforced by
the TCB.

In the simulations used in [15, 17, 16, 21], the preservation of safety (or other security) properties is not
identified as an objective. From the above conclusion in [17, 16, 21], it seems that they follow the implementa-
tion paradigm. As discussed in Section 3, this paradigm leads to a weak notion of simulations, as exemplified
by the simulation of RBAC in strict DAC in Appendix A.
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We observe also that the problem of comparing RBAC with DAC as stated by [17, 21] is ill-defined (or at
least not clearly defined). RBAC by itself only specifies the structures to store access control information, but
not how to manipulate these structures, which are specified by administrative models. In other words, only the
setΓ of states is precisely defined, the setΨ of state-transition rules is not. The counterpart of RBAC is the
access matrix model, instead of DAC (or MAC). In DAC, we specify that access control information is stored
in a matrix, and we also specify rules on how to change the access matrix. The statement that RBAC is at least
as expressive as DAC (or MAC) is similar to saying that the access matrix model is at least as expressive as
DAC or MAC. Comparing the RBAC model with the access matrix model is not fruitful either, as both models
can include arbitrary state-transition rules.

4.3 Comparing ARBAC97 with a form of DAC

To compare any RBAC-based model with DAC, one needs to specify the administrative model (state-transition
rules) for RBAC. In existing comparisons of RBAC and DAC [15, 17, 21], new and rather complicated ad-
ministrative models are introduced “on the fly” to simulate the effects in DAC. In this section, we compare
the expressive power of RBAC with ARBAC97 [19] as the administrative model to that of SDCO, a rather
simple form of DAC. We first present precise characterizations of SDCO and the ARBAC97 scheme. We then
assert that while there does exist a reduction, there does not exist a state-matching reduction from SDCO to the
ARBAC97 scheme, given a natural query set for each scheme.

This result is significant as it shows that we cannot assert that RBAC is more expressive than DAC without
qualifying the assertion; a strongly security-preserving mapping does not exist from SDCO to ARBAC97.
Our conclusion provides the first evidence that the expressive power of RBAC (or at least some reasonable
incarnation of it) is limited.

The SDCO Scheme

Γ SDCO is a scheme based on the access matrix model and is a special case of the HRU scheme (see Sec-
tion 2.1). Each stateγ ∈ Γ is 〈Sγ , Oγ ,Mγ [ ], Rγ〉whereSγ ,Oγ andRγ are finite, strict subsets of the countably
infinite setsS (subjects),O (objects) andR (rights) respectively. The set of rights for the scheme isRγ =
{own, r1, . . . , rn}, whereown is the distinguished right indicating ownership of the object.Mγ [ ] is the access
matrix.

Ψ The state-transition rules are the commandscreateObject , destroyObject andgrantOwn, and for each
ri ∈ Rγ − {own}, a commandgrant ri .

command createObject(s, o) command destroyObject(s, o)
create object o if own ∈ [s, o]
enter own into [s, o] destroy o

command grantOwn(s, s′, o) command grant ri(s, s′, o)
if own ∈ [s, o] if own ∈ [s, o]

enter own into [s′, o] enter ri into [s′, o]
remove own from [s, o]

Q Each query is of one the following forms: (1) Iss ∈ S?; (2) Iso ∈ O?; and (3) Isr ∈M [s, o]?

` The entailment relation is defined as follows for each type of query from above. In each of the following,
γ ∈ Γ is a state. (1)γ ` s ∈ S if and only if s ∈ Sγ ; (2) γ ` o ∈ O if and only if o ∈ Oγ ; (3) γ ` r ∈M [s, o]
if and only if r ∈ Rγ ∧ s ∈ Sγ ∧ o ∈ Oγ ∧ r ∈Mγ [s, o].

The ARBAC97 Scheme
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Γ We assume the existence of the countably infinite setsU (users),P (permissions) andR (roles). An
ARBAC97 state is〈UA,PA,RH ,AR〉 whereUA is the user-role assignment relation that contains a pair
〈u, r〉 for every useru ∈ U that is assigned to a roler ∈ R. PA is the permissions-role assignment relation that
contains a pair〈p, r〉 for every permissionp ∈ P that is assigned to the roler ∈ R. RH is the role-hierarchy,
and forr1, r2 ∈ R, r1 � r2 ∈ RH means that all users that are members ofr1 are also members ofr2, and
all permissions that are assigned tor2 are authorized to users that are members ofr1. AR ⊂ R is a set of
administrative roles. In ARBAC97 [19], changes toAR may be made only by a central System Security Officer
(SSO) who is trusted not to leave the system in an undesirable state; if the SSO effects a state-transition, then
she does security analysis to ensure that the resulting state is acceptable. Therefore, in our analysis, we assume
thatAR does not change.

Ψ State-transitions in the ARBAC97 scheme are predicated on the relations that are part of theURA97 (user-
roles assignment),PRA97 (permission-role assignment) andRRA97 (role-role assignment) components. We
introduce the notion of a role range that is used in the definition of the state-transitions. A role range,ξ is written
as(r1, r2), wherer1 andr2 are roles, and every roler that satisfiesr1 � r ∧ r � r2 ∧ r 6= r1 ∧ r 6= r2 is in the
role rangeξ. We writer ∈ ξ whenr is in the role rangeξ. We represent asΞ the set of all role ranges. Role
ranges in ARBAC97 satisfy some other properties, and we refer the reader to [19] for those. Those properties
are not relevant to our discussion here.

URA97
{

can assign ⊆ AR × CR × Ξ
can revoke ⊆ AR × Ξ

PRA97
{

can assignp ⊆ AR × CR × Ξ
can revokep ⊆ AR × Ξ

RRA97
{

can modify ⊆ AR × Ξ

CR is a set of pre-requisite conditions. A pre-requisite condition is a propositional logic formula over regular
roles. For instance,c = r1 ∧ r2 is a pre-requisite condition that indicates: “roler1 and not roler2,” where
r1, r2 ∈ R.

We postulate that a state-transition is the successful execution one of the following operations.

assignUser(a, u, r) revokeUser(a, u, r)
if ∃ 〈ar , c, ξ〉 ∈ can assign such that if ∃ 〈ar , ξ〉 ∈ can revoke such
a is a member of ar ∧ u satisfies c ∧ that a is a member of ar ∧
r ∈ ξ then r ∈ ξ then

add 〈u, r〉 to UA remove 〈u, r〉 from UA

assignPermission(a, p, r) revokePermission(a, p, r)
if ∃ 〈ar , c, ξ〉 ∈ can assignp such that if ∃ 〈ar , ξ〉 ∈ can revokep such
a is a member of ar ∧ p satisfies c ∧ that a is a member of ar ∧
r ∈ ξ then r ∈ ξ then

add 〈p, r〉 to PA remove 〈p, r〉 from PA

addToRange(a, ξ, r) removeFromRange(a, ξ, r)
if ∃〈ar , ξ〉 ∈ can modify such that if ∃〈ar , ξ〉 ∈ can modify such that
a is a member of ar then a is a member of ar then

add r1 � r to RH remove r1 � r from RH
add r � r2 to RH remove r � r2 from RH
where ξ = (r1, r2) ∧ r 6= r1 ∧ r 6= r2 where ξ = (r1, r2) ∧ r 6= r1 ∧ r 6= r2
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addAsSenior(a, r, s) removeAsSenior(a, r, s)
if ∃〈ar , ξ〉 ∈ can modify such that if ∃〈ar , ξ〉 ∈ can modify such that
a is a member of ar ∧ r, s ∈ ξ then a is a member of ar ∧ r, s ∈ ξ then

add r � s to RH remove r � s from RH

Q,` We allow queries of the following forms that are all natural for the ARBAC97 scheme: (1) given a
role r, does there exist a useru such that〈u, r〉 ∈ UA?, (2) given useru, does there exist a roler such that
〈u, r〉 ∈ UA?, (3) given useru and roler, is 〈u, r〉 ∈ UA?, (4) given a permissionp, does there exist a
role r such that〈p, r〉 ∈ PA? (5) given permissionp, does there exist a roler such that〈p, r〉 ∈ PA?, (6)
given permissionp and roler, is 〈p, r〉 ∈ PA?, (7) given rolesr1, r2, is r1 � r2 ∈ RH?, and (8) give user
u and permissionp, is u authorized to have the permissionp? That is, do there exist rolesr1, r2 such that
〈u, r1〉 ∈ UA ∧ 〈p, r2〉 ∈ PA ∧ r1 � r2 ∈ RH ? The entailment relation,̀ is based simply on whether the
conditions checked in a query hold in the given state.

Theorem 4 There exists a reduction from SDCO to ARBAC97.

Proof. By construction. We present the mappingsReduce andReduceQuery and show that they satisfy the
properties for a reduction from SDCO to ARBAC97.Reduce takes as input the start-state and state-transition
rules of an SDCO system and produces as output the start-state and state-transition rules of an ARBAC97
system. ReduceQuery takes as input a query in the SDCO system and produces as output a query in the
ARBAC97 system. We assume, without loss of generality, that there is a one-to-one correspondence between
the set of usersU in ARBAC97 and the set of subjectsS in SDCO, and between the set of rolesR in ARBAC97
and the set(O ×Rγ)∪{subjectExists, A, top, bottom}, whereO is the set of objects, andRγ is the set of rights
in the SDCO system, andsubjectExists,A, top andbottom are specific roles that are used in the mapping.

1 Subroutine Reduce( γ, ψ)
2 / * inputs: γ - an SDCO state, ψ - SDCO state-transition rules * /
3 / * outputs: γA - an ARBAC97 state,
4 ψA - ARBAC97 state-transition rules * /
5 initialize γA, ψA as follows:
6 UA = PA = RH = AR = can assign = can revoke = can assignp = can revokep = can modify = ∅
7 add top � bottom to RH ; let ξ be the role range (top, bottom)
8 let the set of administrative roles AR = A; add (a, A) to UA
9 can assign = {〈A, true, ξ〉}, can revoke = can modify = {〈A, ξ〉}
10 execute addToRange (a, ξ, subjectExists) where subjectExists is a role
11 foreach s ∈ Sγ execute assignUser (a, s, subjectExists)
12 execute removeFromRange (a, ξ, subjectExists)
13 foreach 〈o, r〉 ∈ Oγ ×Rγ execute addToRange (a, ξ, or)
14 foreach r ∈Mγ [s, o] execute assignUser (a, s, or)
15 return γA, ψA

16
17 Subroutine ReduceQuery( q)
18 / * input: q - an SDCO query * /
19 / * output: qA - an ARBAC97 query * /
20 if q == s ∈ S then qA = 〈s, subjectExists〉 ∈ UA
21 if q == o ∈ O then qA = ∃ u such that 〈u, oown〉 ∈ UA
22 if q == r ∈M [s, o] then qA = 〈s, or〉 ∈ UA
23 return qA
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We now show that property (1) for a reduction is satisfied by the above mapping. Letγ0 be a start-state
in SDCO. We produce the corresponding start-stateγA0 in ARBAC97 using theReduce subroutine above.
Given a stateγk and queryq such thatγ0

∗7→ψ γk, we show that there existsγAk and queryqA such that

γA0
∗7→ψA γAk whereγAk ` qA if and only if γk ` q. If γk = γ0, thenγAk = γA0 . If q is s ∈ S, thenqA is

〈s, subjectExists〉 ∈ UA. By line 11 inReduce qA is true if and only ifq is true. Ifq is o ∈ O, thenqA is ∃ u
such that〈u, oown〉 ∈ UA. By line 14 inReduce , and the property that every object that exists in SDCO has
an owner associated with it (that is,own ∈ M [s, o] for some subjects), qA is true if and only ifq is true. And
if q is r ∈M [s, o], qA is 〈s, or〉 ∈ UA, and by line 14 ofReduce , q is true if and only ifqA is true.

Consider someγk reachable fromγ0 and a queryq. We show the existence ofγAk that is reachable from
γA0 and that answersqA the same way by construction. Ifq is of types ∈ S, we letγAk = γA0 . if q is of
type o ∈ O or r ∈ M [s, o], we do the following. We consider each state-transition in SDCOγ0 7→ψ γ1 7→
. . . 7→ γk. If the state-transition is the execution ofcreateObject(s, o), we executeaddToRange (a, ξ, oown)
and assignUser (a, s, oown). If the state-transition in SDCO is the execution ofdestroyObject(s, o), we
executerevokeUser (a, u, or) for every 〈u, or〉 ∈ UA for every r, andremoveFromRange (a, ξ, oown). If
the state-transition in SDCO is the execution ofgrantOwn (s, s′, o), we executerevokeUser (a, s, oown) and
assignUser (a, s′, oown). If the state-transition in SDCO is the execution ofgrant ri (s, s′, o), we execute
assignUser (a, s′, ori). Now, consider each possible queryq. If q is s ∈ S, thenγAk = γA0 . In our SDCO
scheme, the subjects are fixed at the start and never change. SoγAk ` qA if and only if γ0 ` q. If q is o ∈ O,
thenγk ` q if and only if o exists in the stateγk. This is the case if and only if some subjects has theown right
overo. This is the case if and only if we have the roleoown in the rangeξ and the user corresponding tos is a
member of that role. Therefore,γk ` q if and only if γAk ` qA. And finally, if q is r ∈ M [s, o], thenγk ` q
if and only if r has been granted tos by the owner ofo. This is true if and only if we have assigned the user
corresponding tos to the roleor. Thus, again,γk ` q if and only if γAk ` qA.

We prove that property (2) for a reduction is satisfied by our mapping also by construction. LetγA0 be the
start-state in ARBAC97 corresponding toγ0, the start-state in SDCO. Then, ifγAk is a state reachable fromγA0
andqA is a query in ARBAC97 whose corresponding query in SDCO isq, we constructγk, a state in SDCO
reachable fromγ0 as follows. Ifq is s ∈ S, we letγk = γ0. Otherwise, for each roleoown that has a member
s, we executecreateObject (s, o). For each roleor that has a members′, if the roleoown has a members,
we executegrant r (s, s′, o). If q is s ∈ S, thenqA is 〈s, subjectExists〉 ∈ UA, and clearlyγAk ` qA if and
only if γk ` q, as the subjects that exist do not change from the start-state in SDCO, and the members of
subjectExists do not change from the start-state in ARBAC97. Ifq is o ∈ O, γAk ` qA if and only if ∃ s such
that 〈s, oown〉 ∈ UA. And if qA is true, we would have added theown right toMγk

[s, o], which means that
γk ` q if and only if γAk ` qA. And finally, if q is r ∈ M [s, o], γAk ` qA if and only if 〈s, or〉 ∈ UA. The
condition thatqA is true is the only one in which we would have added the rightr toMγk

[s, o], and therefore
γk ` q if and only if γAk ` qA.

Before we introduce Theorem 6, we introduce the following lemma as an intermediate result on the state-
change rules in ARBAC97. The intermediate result aids in the proof of the theorem.

Lemma 5 Letψ be a state-transition rule, andγ andγ′ be states in theARBAC97 scheme. Then, for any two
queriesq1 andq2, there exists noγ′ such thatγ′ ` (¬q1 ∧ q2) whenγ ` (q1 ∧ ¬q2) andγ 7→ γ′.

Proof. We observe that the operationsassignUser , assignPermission, addToRange andaddAsSenior can
cause queries to become only true, and not false. Similarly, the operationsrevokeUser , revokePermission,
removeFromRange and removeAsSenior cannot cause a query to become true. Therefore, given a state-
transition in the ARBAC97 scheme, it cannot cause a query that is true to become false and another query that
is false to become true in the new state.

Theorem 6 There exists no state-matching reduction from SDCO to ARBAC97.
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Proof. By contradiction. Assume that there exists a state-matching reduction from SDCO to AR-
BAC97. Let S = {s1, s2, s3, . . .}. In SDCO, adopt asγ a state with the following properties. Let
s1 ∈ Sγ , o ∈ Oγ and own ∈ M [s1, o]. Let qi be the query “own ∈ [si, o]” for each i = 1, 2, . . .,
and qo be the query “o ∈ Oγ”. These queries are mapped toqAi and qAo respectively in the AR-
BAC97 scheme. We observe thatγ ` (q1 ∧ ¬q2 ∧ ¬q3 ∧ . . . ∧ qo). There exists a statẽγ reachable
from γ such thatγ̃ ` (¬q1 ∧ q2 ∧ ¬q3 ∧ . . . ∧ qo). And, there exists no reachable stateγ̂ such thatγ̂ `
(q1 ∧ ¬q2 ∧ . . . ∧ qj ∧ . . . ∧ qo) or γ̂ ` (¬q1 ∧ ¬q2 ∧ . . . ∧ ¬qj ∧ . . . ∧ qo) for any j 6= 1. (if o ∈ Oγ ,
then there must be exactly one subject that ownso). Consider the stateγA in ARBAC97 that corre-
sponds toγ (if there does not exist one, then we have the desired contradiction). We know thatγA `(
qA1 ∧ ¬qA2 ∧ ¬qA3 ∧ . . . ∧ qAo

)
. There must also exist a reachable stateγ̃A that corresponds tõγ (if there does

not exist one, then we have the desired contradiction). By Lemma 5, we know thatγ̃A is not reachable from
γA is a single state-transition. Therefore, there must exist some stateγ̂A that is reachable fromγA such that

γ̂A `
(
qA1 ∧ ¬qA2 ∧ . . . ∧ qj ∧ . . . ∧ qAo

)
or γ̂A `

(
¬qA1 ∧ ¬qA2 ∧ . . . ∧ ¬qAj ∧ . . . ∧ qAo

)
for at least onej 6= 1.

As there exists no corresponding state in the SDCO scheme that is reachable fromγ, we have a contradiction
to the assumption that there exists a state-matching reduction from SDCO to ARBAC97.

One may ask whether there are other schemes based on RBAC for which there is indeed a state-matching
reduction from SDCO. An approach may be to adopt a different query set for ARBAC97. We observe that for
certain other query sets as well, the non-existence of a state-matching reduction holds. As an example, suppose
we map the query for the presence of a right in SDCO to a query for the absence of a permission in RBAC. In
this case as well, there exists no state-matching reduction from SDCO. Whether there exists a meaningful set
of state-transition rules (an administrative model) for RBAC for which there is a state-matching reduction from
SDCO is an open problem.

4.4 Comparing an RBAC scheme with a Trust Management Language

In this section, we compare a particular RBAC scheme to the trust management scheme,RT[∩]. The RBAC
scheme we consider is called Assignment And Revocation (AAR) [11]. In AAR, the state is an RBAC state,
and state-transition rules are those from the URA97 component of the ARBAC97 [19]; users may be assigned
to and revoked from roles.

RT[∩] is a trust management scheme in which a state is a set of credentials issued by the principals involved
in the system. A credential denotes membership in a principal’s role. A credential is one of three types: (1)
A principal is asserted to be a member of another principal’s role, (2) All the principals that are members of a
principal’s role are asserted to also be members of another principal’s role, and (3) All the principals that are
members of two roles (the intersection of the members of the roles) are also members of another principal’s
role.

We first present precise characterizations of the AAR scheme andRT[∩]. [11] present a form-2 weak
reduction (see Definition 11) from AAR toRT[∩]. We assert with the following theorem that the result can be
made stronger.

The AAR Scheme

Γ In AAR, a state is the RBAC state〈UA,PA,RH 〉, as discussed in the previous section for ARBAC97.

Ψ The state-transitions allowed are the operationsassignUser andrevokeUser from the previous section,
with the exception that negation is not allowed in pre-requisite conditions. In addition, in AAR, we require that
for every role for which there is acan assign entry, there is also acan revoke entry. That is, if∃ 〈ar , c, ξ〉 ∈
can assign such thatar has at least one member andc may evaluate totrue, then∀ r ∈ ξ, ∃ 〈ar ′, ξ′〉 ∈
can revoke such thatr ∈ ξ′ andar ′ has at least one member.
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Q,` Queries are of the forms1 w s2, wheres1 and s2 are user-sets. A user-set is an expression that
evaluates to a set of users. A set of roles, a set of permissions and a set of users are user-sets, as are unions
and intersections of user-sets. We refer the reader to [11] for more details on user-sets. Entailment involves
evaluating the user-setss1 ands2 to the sets of usersS1 andS2 respectively, and determining whetherS1 ⊇
S2. Several interesting queries related to safety, availability, liveness and mutual-exclusion can be posed as
comparisons of user-sets.

The RT[∩] Scheme

Γ An RT[∩] state is a set of credentials, each of which is one of the following types: (1)A.r ←− U , (2)
A.r←− B.r1, and (3)A.r←− B.r1 ∩ C.r2. Each ofA,B,C,U is a principal,r, r1, r2 is a role name, and
A.r,B.r1, C.r2 is a role. The symbol←− is read as “includes”. Statement (1) asserts thatU is a member of
A’s r role. Statement (2) asserts that all members of the roleB.r1 are members of the roleA.r. Statement (3)
asserts that anyone that is a member of bothB.r1 andC.r2 is a member ofA.r.

Ψ A state-transition inRT[∩] is either the removal of a credential, or the addition of one. State-transitions are
controlled bygrowthandshrink-restricted sets of roles —G andS respectively. A role that is in the growth-
restricted set may not have any assertions added with that role at the head of the assertion, and a role that is in
the shrink-restricted may not have any assertions removed. Thus, the state-transition rules are represented as
〈G,S〉.

Q,` We allow queries of the formc1 w c2 where eachc1 andc2 is either anRT[∩] role, a credential, or
credentials joined by union,∪ or intersection,∩. We observe that this is slightly different from the definition for
queries in [11]. The reason is that in that work, only a form-2 weak reduction (see Definition 11) is presented,
and therefore queries are processed in conjunction with each state and state-transition rule in the mapping.
We seek to map queries independently of states and state-transition rules. Entailment inRT[∩] is done using
credential chain discovery [14]: we find a chain of credentials that proves a (portion of a) query, if one exists.

Theorem 7 There exists a state-matching reduction from the AAR scheme toRT[∩].

Proof. By construction. We show that the mapping from [11] from AAR toRT[∩] is a state-matching re-
duction. We consider each assertion from Definition 7 in turn. Each roler in AAR is associated with the
roleSys.r in RT[∩]. We show that after a series of state-transitions, the role-memberships in AAR match the
role-memberships in the corresponding state ofRT[∩].

Assertion 1: Let γ be the given AAR state, andγ
∗7→ψ γ′. Then,γ = γ0 7→ψ γ1 . . . 7→ψ γm = γ′.

Each state-transition is either the assignment of a user to a role usingassignUser or revocation of a user’s
membership in a role usingrevokeUser . Let the corresponding states inRT[∩] beγT = γT0 , γ

T
1 , . . . γ

T
m = γT

′
.

The users that are members of any roler in γ are the same as the users that are members of the corresponding
role Sys.r in γT . If the state-transition fromγi to γi+1 is the result of the assignment of the useru to the
role r, then we effect the following changes to transition from the stateγTi to γTi+1: we add the two statements
ASys.r←−u andBSys.r←−u. If the state-transition is the result of the revocation of the useru from the role
r, then we remove all statements that exist of the following two forms:ASys.r←− u andRSys.r←− u. We
observe that inγT

′
, anyHSys.r has as members all users that were ever members of the roler. Consequently,

in γT
′
, eachSys.r has as members those users that are members ofr in γ′. Therefore, we can assert thatγ′ ` q

iff γT
′ ` qT .

Assertion 2: In RT[∩], the only roles that can grow are theASys andBSys roles. The only roles that
can shrink are theASys andRSys roles. GivenγT = σ(γ) whereγ is a given AAR state andγT

′
is the

correspondingRT[∩] state, letγT
∗7→ψ γ

T ′. We construct the AAR stateγ′ that corresponds toγT
′
as follows.

For each statement of the formBSys.r←− u or of the formASys.r←− u, we assign the useru to the roler.
Now, we compare the user-role memberships of each user to the rolesr andSys.r. There cannot be any users
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in Sys.r that are not inr: the reason is that we have not revoked any user membership inr (starting from the
user-role membership in the stateγ). There may be users inr that are not inSys.r. Given the requirement
that every role for which there is acan assign, we also have acan revoke, the only way for these extra users
to be inr and notSys.r is that there exists acan assign that permits those users to be assigned tor (starting
at the stateγ). We revoke such users’ membership fromr using the relevantcan revoke entries. Now, the
memberships inr andSys.r are identical, and we can assert that for all queriesq, γT

′ ` σ(q) iff γ′ ` q.

4.5 Comparing ATAM with TAM

TAM is a scheme based on the access matrix model and is similar to the HRU scheme [6] (see Section 2.1).
Every object is typed, and the type cannot change once the object is created. State-transitions occur via the exe-
cution of commands that are similar to HRU commands. We specify a type for every parameter to a command.
ATAM is the same as TAM, except that in a condition in an ATAM command, the absence of a right in a cell of
the access matrix may be checked (and not just the presence of a right). Below, we present characterizations of
the two schemes.

[20] present a mapping from the ATAM to TAM. Based on the mapping, one may conclude that TAM is
at least as expressive as ATAM. As the converse is trivially true (TAM is a special case of ATAM), one may
conclude that ATAM and TAM have the same expressive power; we gain nothing from the ability to check for
the absence of rights in the condition of an ATAM command. [20] make the observation that the simulation of
a command in ATAM may require the execution of an unbounded number of commands in TAM, and conclude
with the following comment: “. . . practically testing for the absence of rights appears to be useful. It is an open
question whether this claim can be formalized. . . ” In this section, we formalize this claim by asserting that
there is no state-matching reduction from ATAM to TAM.

The TAM Scheme

Γ TAM is similar to the HRU scheme (see Section 2.1). Each stateγ ∈ Γ is 〈Sγ , Oγ ,Mγ [ ], Rγ , Tγ , typeOf 〉
whereSγ , Oγ , Rγ andTγ are finite, strict subsets of the countably infinite setsS (subjects),O (objects),R
(rights) andT (types of objects and subjects) respectively. The functiontypeOf : (Sγ ∪Oγ)→ Tγ , maps each
subject and object to a type that cannot change once the subject or object is created.Mγ [ ] is the access matrix.

Ψ A state-transition rule is a set of commands. Each command has an optional list of conditions that are
joined by conjunction. A command then consists of primitive operations. Each parameter to the command is
associated with a type. Each condition may check only for the presence of a right in a cell.

Q,` We allow queries of the form “isr ∈ M [s, o]?” Entailment is defined as follows. Given a state
γ ∈ Γ, γ ` r ∈M [s, o] if and only if s ∈ Sγ ∧ o ∈ Oγ ∧ r ∈ Rγ ∧ r ∈Mγ [s, o].

The ATAM Scheme

Γ,Ψ, Q,` An ATAM state is the same as a TAM state. State-transition rules are the same as for TAM,
except that a condition in a command may check for the absence of a right (as opposed to only the presence
of a right). In ATAM, we allowQ to contain queries of the following two forms: (1) Isr ∈ M [s, o]?, and
(2) Is r 6∈ M [s, o]? This is consistent with the intent of [20] to determine whether the ability to check for the
absence of rights does indeed add more expressive power.` is defined the same as in TAM for a query of type
(1). For a query of the type (2),̀ is defined as follows. Given a stateγ ∈ Γ, γ ` r 6∈ M [s, o] if and only if
s ∈ Sγ ∧ o ∈ Oγ ∧ r ∈ Rγ ∧ r 6∈Mγ [s, o].

Theorem 8 There exists no state-matching reduction from ATAM to TAM.

Proof. By contradiction. Assume that there exists a state-matching reductionσ from ATAM to TAM. Consider
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an ATAM scheme in whichψ (the state-transition rule) consists of the following commands.

command createSubject(X: t) command addRight(Y : t, Z: t)
create subject X of type t enter r into [Y, Z]

Adopt asγ0 (the start state) in ATAM a state with no subjects or objects. (that is,Sγ0 = Oγ0 = ∅). The set
of rights,Rγ0 = {r}, and there is a single typet for all subjects (no objects other than subjects exist or can
be created in our ATAM system). We denote components of the TAM system under the mappingσ with a
superscriptT . For example,σ(γ0) = γT0 andσ(ψ) = ψT .

We assume that the countably infinite set of subjectsS = {s1, s2, . . .}. In the ATAM system, we wish to
consider queries of the formqi,j = r ∈M [si, sj ] andq̂i,j = r 6∈M [si, sj ] for somesi, sj ∈ S. First, we make
the observation that any two distinct queriesp, q ∈ {qi,j |si, sj ∈ S}∪ {q̂i,j |si, sj ∈ S} are mapped to distinct
queries in TAM. That is,p 6= q ⇒ pT 6= qT . Otherwise, pick a pairp, q such thatp 6= q but pT = qT . For
any two such queriesp andq, there exists a stateγ in ATAM such thatγ0

∗7→ψ γ andγ ` p ∧ ¬q. Clearly, a
corresponding reachable state (that answers the queriesp andq the same way) does not exist in TAM, which
gives us the desired contradiction. We observe also that by the definition of a state-matching reduction, queries
are mapped independent of the start state and the state-change rules.

ConsiderψT , the command schema in TAM. As a query in TAM is of the formr ∈ M [s, o], we can
determine an upper bound,m, for the number of queries a command in the TAM system can change from false
to true when executed. These are queries of both typesqTi,j andq̂i,j

T . One way to determine a value form is to
count the number of “enter right” primitive operations in each command and take the maximum (even though
this maximum may not be a tight upper bound).m is constant, and may be dependant onγ andψ, but not the
set of queries. Choose somen > m.

Now, consider the state in ATAMγk such thatγ0
∗7→ψ γk andγk ` ¬q1,1 ∧ q̂1,1 ∧ ¬q1,2 ∧ q̂1,2 ∧ . . . ∧

¬qn,n ∧ q̂n,n (we use the subscriptk only to distinguish the state, and not as a count of the number of state-
changes needed to reach it). That is,γk does not entail any of the queries of the typeqi,j and entails all queries
of the typeq̂i,j for all integersi, j such that1 ≤ i, j ≤ n. The stateγk corresponds toSγk

= {s1, . . . , sn} with
no rightr in any of the cells. One way to reach this state fromγ0 is to execute the commandcreateSubject n
times with the parameter instantiated tosi in theith execution.

We assume that asσ, a state-matching reduction exists, there exists a corresponding rechable stateγTk in
TAM that answers the (mapped) queries the same way. Consider any sequenceγT0 7→ψT γT1 7→ψT . . . 7→ψT γTk .

Pick the first state,γTc in the sequence that satisfies the following condition:γTc ` qTi,j ∨ q̂i,j
T for all integers

i, j such that1 ≤ i, j ≤ n. Such a state exists:γTk is such a state, and may be the only state in the sequence that
meets the condition. We observe also thatγT0 does not satisfy the condition, thereby implying that the sequence
has at least one state-change.

Consider the stateγTc−1 in the sequence just beforeγTc . γTc−1 has the following property: there exist integers

v, w with 1 ≤ v, w ≤ n, such thatγTc−1 ` ¬
(
qTv,w ∨ q̂v,w

T
)
⇒ γTc−1 ` ¬qv,w ∧ ¬q̂v,w

T . For every state in

the ATAM system that entails the corresponding formula of queries¬qv,w ∧¬q̂v,w, the state also entails at least
one of the following two formulae of queries: (1)Q1 = ¬qv,1 ∧ ¬q̂v,1 ∧ ¬qv,2 ∧ ¬q̂v,2 ∧ . . . ∧ ¬qv,n ∧ ¬q̂v,n ∧
¬q1,v ∧¬q̂1,v ∧ . . .∧¬qn,v ∧¬q̂n,v, or, (2)Q2 = ¬qw,1∧¬q̂w,1∧¬qw,2∧¬q̂w,2∧ . . .∧¬qw,n∧¬q̂w,n∧¬q1,w ∧
¬q̂1,w ∧ . . . ∧ ¬qn,w ∧ ¬q̂n,w.

The reason is that a state in ATAM that entails¬qv,w ∧ ¬q̂v,w is one in which either the subjectsv or sw,
or both do not exist (v = w is allowed, and does not affect our arguments). None of the queries of either type
qi,j or q̂i,j corresponding to a subject that does not exist in a state is entailed by the state. Therefore, in TAM,
γTc−1 ` QT1 ∨QT2 (whereQT1 andQT2 are obtained fromQ1 andQ2 respectively by adding the superscriptT to
each query in the formula).

Consider the state-change in TAM fromγTc−1 to γTc . It must change (at least)n queries that appear inQT1
or QT2 from false to true. This is not possible, as each state-change can change at mostm < n queries from
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false to true. We have the desired contradiction to the existence of a state-matching reduction from the ATAM
scheme to the TAM scheme.

Thus, the notion of state-matching reductions formalizes the difference in expressive power between ATAM
and TAM. One may ask whether there exists a reduction from ATAM to TAM. One may also ask whether
reductions or state-matching reductions exist from ATAM to TAM when we allow TAM to contain queries of
the type “isr 6∈Mγ [s, o]?” as well (but a command only allows checking for the presence of a right in a cell in
the condition). These are open questions.

5 Conclusions and Future Work

We have presented a theory to compare the expressive power of access control models. Our theory is based
on perceiving an access control system as a state-transition system, and asking whether there exist security-
preserving or strongly security-preserving mappings between two schemes. We have applied our theory in four
cases and show that: (1) the HRU scheme is limited in its expressive power in comparison with a simple trust
management scheme; (2) RBAC with ARBAC97 as its administrative model is limited in its expressive power
in comparison to a version of DAC; (3) the trust-management schemeRT[∩] is at least as expressive as RBAC
with the URA97 component of ARBAC97 as its administrative model; and (4) ATAM is more expressive than
TAM. To our knowledge, (1) is the evidence that the expressive of the HRU scheme is limited, (2) is the first
evidence that the expressive power of RBAC is limited, and (4) formally demonstrates the benefit from the
ability to check for the absence of a right in addition to the presence of a right.

As future work, we propose to use our theory to compare more models with each other. For instance, we
would like to compare various versions of DAC and “layer” these versions based on their relative expressive
power. Also, while our theory is based on capturing the notion of policies that can represented and verified in
an access control system, we do not believe that reductions and state-matching reductions capture all the types
of policies we would want to consider. For instance, a reasonable question to ask during a security audit may
be: “did Alice get her write access to a sensitive file only after her husband, Bob was given privileged access
to the system?” This can be perceived as a policy issue, and we may want to express this as some expression
involving queries. Neither reductions not state-matching reductions capture such query expressions. As part of
our future work, we propose to expand our theory to include such policies.
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A A “Simulation” of RBAC in Strict DAC

We now informally describe a simulation of RBAC in strict DAC, the simplest form of DAC. The point of this
simulation is to show that if precise requirements are not specified on simulations, then anything is possible.

The state of a strict DAC model is represented by an access matrix, which has one subject for each user and
each role and one object for each permission. There is also one special subjectadmin, who is the creator and
owner of every object in the system. All subjects are also objects. We use three rights, ‘own’, ‘ dc’, and ‘c’. We
assume that the implementation of the strict DAC model provides the following functionality, it internally sorts
all the objects and can return the first object, given an objecto, it return the object next too. The commands
implemented in the strict DAC are as follows:

command create(s, o)
create o;
enter own into (s,o);

end;
command delete(s, o)

if own ∈ (s,o)
destroy o;

end;
command grant-dc(s1, s2, o)

if own ∈ (s1,o)
enter dc into (s2,o);
enter c into (s2,o);

end;
command grant-c(s1, s2, o)

if own ∈ (s1,o)
enter c into (s2,o);

end;
command revoke-dc(s1, s2, o)

if own ∈ (s1,o)
remove c from (s2,o);

end;
command revoke-c(s1, s2, o)

if own ∈ (s1,o)
remove c from (s2,o);

end;

The addition of new users, roles, and permissions are carried out by the simulator in the straightforward
way, i.e., haveadmin executes a creation command;admin then becomes the owner of these objects. When
a new user-role assignment,(u, r), is added, the following procedure is executed, observe that only constant
space is needed for the simulation.

addUR(u,r) {
run command grant-dc( admin , u, r);
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while (propagate());
}
propagate() {

repeat = false;
for every s,o1,o2 in the matrix {

if c 6∈(s,o2) && c ∈(s,o1) && c ∈(o1,o2) {
run command grant-c( admin , s, o2);
repeat = true;

}}
return repeat;
}

The procedures for adding a role-permission assignment and a role-role inheritance relationship is similar.
Whenever a user-role assignment is removed, the simulator executes the following procedure, which first

clear all the propagated rights and redo the propagation.

removeUR(u,r) {
if ( dc ∈ (u,r)) {

run command revoke-dc( admin , u, r);
clear();
while (propagate());
}
}
clear() {

for every s,o in the matrix {
if c ∈(s,o) {

run command revoke-c( admin , s, o2);
}}
}
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