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Abstract

Comparing the expressive power of access control models is recognized as a fundamental problem in
computer security. While such comparisons are generally based on simulations between different access
control schemes, the definitions for simulations that are used in the literature are informal, and make it im-
possible to put results and claims about the expressive power of access control models into a single context.
Furthermore, some definitions for simulations used in the literature such as those used for comparing RBAC
(Role-Based Access Control) with other models, are too weak to distinguish access control models from one
another in a meaningful way. We propose a theory for comparing the expressive power of access control
models. We perceive access control systems as state-transition systems and require simulations to preserve
security properties. We discuss the rationale behind such a theory, apply the theory to reexamine some ex-
isting work on the expressive power of access control models in the literature, and present four results. We
show that: (1) the well known HRU scheme is limited in its expressive power when compared to a rather
simple trust-management scheme, thereby formally establishing a conjecture from the literature; (2) RBAC
with a particular administrative scheme from the literature (ARBAC97) is limited in its expressive power,
countering claims in the literature that RBAC is more expressive than DAC (Discretionary Access Control)
schemes; (3) the ability to check for the absence of rights (in addition to the presence of rights) causes
ATAM (Augmented Typed Access Matrix) to be more expressive than TAM (Typed Access Matrix); and (4)

a trust-management scheme is at least as expressive as RBAC with a particular administrative scheme (the
URA97 component of ARBAC97).

1 Introduction

An access control system enforces a policy on who may access a resource in a certain manner (e.g., “Alice
may read the filef”). The protection statdor simply, state) of the system represents all the accesses that are
allowed at a given time. Policies are generally expressed in terms of the current state of the system, and states
that may result from prospective changes (e.g., “Alice should always have read access to ffig filus,
when an access control system is perceived as a state-transition system, it consists of a set of states, rules on
how state-transitions may occur and a set of properties or queries that are of interest in a given state (e.g., “Does
Alice have read access to the filg?") Policies may then be expressed in terms of these components, and such
policies may be verified to hold notwithstanding the fact that state-transitions occur.

An access control modéd generally associated with how the state is represented. An example of an access
control model is the access matrix model [7, 5, 6], in which a state is represented by a matrix in which each
cell, indexed by dsubject, object) pair, contains a set of rights. Formally, an access control model is a set of

*A preliminary version of this paper appears in the proceedings of the 2004 ACM Conference on Computer and Communications
Security (CCS) [22]



access control schemes scheme specifies a set of states, and a set of state-transition rules. An example of a
scheme based on the access matrix model is the HRU scheme [6] for which a state is an access matrix, and a
state-transition rule is a set of commands, each of which is of a particular formc@ass control systeisan

instance of an access control scheme. A specific set of HRU commands together with a start state is an example
of an access control system. The expressive power of an access control model captures the notion of whether
different policies can be represented in systems based on schemes from that model.

Comparing the expressive power of access control models is recognized as a fundamental problem in com-
puter security and is studied extensively in the literature [1, 3, 4, 17, 21, 18, 20]. The expressive power of a
model is tied to the expressive power of the schemes from the model. In comparing schemes based on expres-
sive power, we ask what types of policies can be represented by systems based on a scheme. If all policies that
can be represented in scherBecan be represented in schemethen schemel is at least as expressive as
schemeB.

A common methodology used for comparing access control modsimiglation When a schemel is
simulated in a schemB, each system inl is mapped to a corresponding systenBinif every scheme in one
model can be simulated by some scheme in another model, then the latter model is considered to be at least as
expressive as the former. Furthermore, if there exists a scheme in the latter model that cannot be simulated by
any scheme in the former, then the latter model is strictly more expressive than the former. Different definitions
for simulations are used in the literature on comparing access control models. We identify three axes along
which these definitions differ.

e The first axis is whether the simulation maps only the state, or also the state-change rule. The approach of
Bertino et al. [2] is to map only the states of two access control models to a common language based on
mathematical logic, and to compare the results to determine whether one model is at least as expressive
as the other, or whether the two models are incomparable. Other work, such as [1, 3, 4, 18, 20] however,
require both the state and the state-change rule to be mapped under the simulation.

An advantage with an approach such as the one that is adopted by Bertino et al. [2] is that it captures
“structural” differences in how the protection state is represented in a system based on an access control
model. For instance, it is observed in [2] that the existence of an indirection (the notion of a role)
between users and permissions in RBAC gives it more expressive power than an access matrix model.
Such “structural” differences are not captured by our theory, or other approaches that consider both the
state and the state-change rule.

We point out, however, that the state-change rule is an important component of an access control system,
and therefore assert that a meaningful theory for expressive power must consider it as well. In fact, it is
often the case that it is the state-change rule that endows considerable power to an access control system.
Consider, for example, the access matrix schemes proposed by Graham and Denning [5] and by Harrison
et al. [6]. In both schemes, the state is represented by an access matrix. However, the state-change rules
are quite different: in the Graham-Denning scheme [5], there are only specific ways in which rights may
be transferred, while in the HRU scheme [6], one may define arbitrary commands in a state-change rule.
It has also been demonstrated [12] that safety is decidable in polynomial time in the Graham-Denning
scheme, while it is known to be undecidable [6] in the HRU scheme. Such differences cannot be captured
by an approach that does not consider both the state and the state-change rule.

e The second axis is whether a simulation is required to preserve safety properties. In the comparison of
different schemes based on the access matrix model [1, 4, 18, 20], the preservation of safety properties is
required. If a schemd is simulated in a schem@, then a system in schemereaches an unsafe state
if and only if the image of the system under the simulation (which is a system in scBgmeaches an
unsafe state.



On the other hand, the preservation of safety properties is not required in the simulations used for com-
paring MAC (Mandatary Access Control), DAC (Discretionary Access Control), and RBAC (Role-Based
Access Control) [17, 21, 15]. Nor is it required in the simulations used for the comparison of Access
Control Lists (ACL), Capabilities, and Trust Management (TM) systems [3]. In these comparisons, the
requirement for a simulation ot in B is that it should be possible to use an implementation of the
schemeB to implement the schem#. We call this themplementation paradigraf simulations.

e The third axis is whether to restrict the number of state-transitions that the simulating scheme needs to
make in order to simulate one state-transition in the scheme being simulated. [3] define the notions of
strong and weak simulations. A strong simulationdoin B requires thatB makes one state-transition
when A makes one state-transition. A weak simulation requireshiatakes a bounded (by a constant)
number of state-transitions to simulate one state-transitiof. i\ main result in [3] is that a specific
TM scheme considered there is more expressive than ACL because there exists no (strong or weak)
simulation of the TM scheme in ACL. The proof is based on the observation that an unbounded (but still
finite) number of state-transitions in ACL is required to simulate one state-transition in the TM scheme.

On the other hand, an unbounded number of state-transitions is allowed by [20]. They use a simulation
that involves an unbounded number of state-transitions to prove that ATAM (Augmented Typed Access
Matrix) is equivalent in expressive power to TAM (Typed Access Matrix).

Although significant progress has been made in comparing access control models, this current state of art
is unsatisfactory for the following reasons. First, different definitions of simulations make it impossible to
put different results and claims about expressive power of access control models into a single context. For
example, the result that RBAC is at least as expressive as DAC [17, 15] is qualitatively different from the result
that TAM is at least as expressive as ATAM [20], as the former does not require the preservation of safety
properties. These results are again qualitatively different from the result that ACL is less expressive than Trust
Management [3], as the latter requires a bounded number of state-transitions in simulations.

Second, some definitions of simulations that are used in the literature are too weak to distinguish access
control models from one another in a meaningful way. Sandhu et al. [15, 17, 21] show that various forms of
DAC (including ATAM, in which simple safety is undecidable) can be simulated in RBAC, using the notion of
simulations derived from the implementation paradigm. We show in this paper that using the same notion of
simulations, RBAC can be simulated in strict DAC, one of the most basic forms of DAC where simple safety
is trivially decidable. This suggests that using such a notion of simulations, it is likely that one can show that
almost all access control models have the same expressive power. Thus, this notion of simulations is not useful
in differentiating between models based on expressive power.

Finally, the rationale for some choices made in existing definitions of simulations is often not clearly stated
and justified. It is unclear why certain requirements are made or not made for simulations when comparing the
expressive power of access control models. For instance, when a simulation involves an unbounded number of
state-transitions, [4] considers this to be a “weak” simulation, while [3] do not consider this to be a simulation
at all. Neither decision was justified in [4] and [3].

In this paper, we build on existing work and seek to construct uniform bases for comparing access control
models. To determine the requirements on simulations in a systematic and justifiable manner, we start from the
rationales and intuitions underlying different definitions for simulations. Our approach is to first identify the
desirable and intuitive properties one would like simulations to have and then come up with the conditions on
simulations that are both sufficient and necessary to satisfy those properties. Informally, what is desired is that
when one scheme can represent all types of policies that another can, then the former is deemed to be at least
as expressive as the latter.

Our theory is based on definitions of simulations that preserve security properties. Examples of such se-
curity properties are availability, mutual exclusion and bounded safety. Intuitively, such security properties are



the sorts of policies one would want to represent in an access control sy&tenrity analysiss used to verify

that desired security properties are indeed maintained across state-transitions in an access control system. It
was introduced by [13, 10], and generalizes the notion of safety analysis [6]. In this paper, we introduce com-
positional security analysis, which generalizes security analysis to consider logical combinations of queries in
security analysis.

We introduce two notions of simulations callsthte-matching reductiorsnd reductions We show that
state-matching reductions are necessary and sufficient for preserving compositional security properties and that
reductions are necessary and sufficient for preserving security properties. A state-matching reduction reduces
the compositional security analysis problem in one scheme to that in another scheme. A reduction reduces the
security analysis problem in one scheme to that in another scheme.

To summarize, the contributions of this paper are as follows.

e We introduce a theory for comparing access control models based on the notions of state-matching re-
ductions and reductions, together with detailed justifications for the design decisions.

e We analyze the deficiency of using the implementation paradigm to compare access control models and
show that it leads to a weak notion of simulations and cannot be used to differentiate access control
models from one another based on expressive power.

e We apply our theory in four cases. We show that:

— there exists no state-matching reduction from a rather simple trust-management Sthighie0],
to the HRU scheme [6]. To our knowledge, this is the first formal evidence of the limited expressive
power of the HRU scheme. In [10], Li et al. showed that, contrary to the undecidability result of
safety analysis in the HRU scheme, safety analysis and more sophisticated security analysis in the
trust management scheni&T [«, N, is decidable. Li et al. conjectured that these schemes cannot
be encoded in the HRU scheme and that the expressive powers of the HRU schemB &hdaoé
incomparable. In this paper, we present formal proof and this.

— there exists a reduction, but no state-matching reduction from a rather simple DAC scheme, Strict
DAC with Change of Ownership (SDCO), to RBAC with ARBAC97 [19] as the administrative
model. Several authors [17, 21] have argued that RBAC is more expressive than various forms of
DAC, including SDCO. To our knowledge, this is the first evidence of the limited expressive power
of an RBAC scheme in comparison to DAC.

— there exists a state-matching reduction from RBAC with an administrative scheme that is a compo-
nent of ARBAC97 [19] tcRT[N] [8, 9], a trust-management scheme. This shows that state-matching
reductions can be constructed for powerful access control schemes in the literature.

— there exists no state-matching reduction from ATAM to TAM, when we permit queries in ATAM
that check for both the absence and the presence of a right in a cell. This revisits the issue addressed
by Sandhu and Ganta [20] and formalizes the benefit from the ability to check for the absence of
rights in addition to the ability to check for the presence of rights.

The remainder of this paper is organized as follows. We present our theory for comparing access control
models in Section 2. In Section 3, we analyze the implementation paradigm for simulations. In Section 4,
we apply our theory to compare the expressive power of schemes in four cases. We conclude with Section 5.
Appendix A presents a “simulation” of RBAC in strict DAC.



2 Comparisons Based on Security Analysis

A requirement used in the literature for simulations is the preservation of simple safety properties. Indeed, this
is the only requirement on simulations in [1, 18, 20]. If a simulation of schdnie schemeB satisfies this
requirement, then a system ihreaches an unsafe state if and only if the system’s mappitig) i@aches an
unsafe state. In other words, the result of simple safety anhiggiseserved by the simulation.

Simple safety analysis, i.e., determining whether an access control system can reach a state in which an
unsafe access is allowed, was first formalized by [6] in the context of the well-known access matrix model [7, 5].
In the HRU scheme [6], a protection system has a finite set of rights and a finite set of commands. A state of a
protection system is an access control matrix, with rows corresponding to subjects, and columns corresponding
to objects; each cell in the matrix is a set of rights. A command takes the form of “if the given conditions hold
in the current state, execute a sequence of primitive operations.” Each condition tests whether a right exists in
a cell in the matrix. There are six kinds of primitive operations: enter a right into a specific cell in the matrix,
delete a right from a cell in the matrix, create a new subject, create a new object, destroy an existing subject,
and destroy an existing object. The following is an example command that allows the owner of a file to grant
the read right to another user.

command grantRead(ul,u2,f)
if ‘own’ in (ul,f)

then enter ‘read’ into (u2,f)
end

In the exampleul, u2 andf are formal parameters to the command. They are instantiated by objects (or
subjects) when the command is executed. [6] prove that in the HRU scheme, the safety question is undecidable,
by showing that any Turing machine can be simulated by a protection system.

Treating the preservation of simple safety properties as the sole requirement of simulations is based on the
implicit assumption that simple safety is thelyinteresting property in access control schemes, an assumption
that is not valid. When originally introduced by [6], simple safety was described as just one class of queries
one can consider. Recently, [13, 10] introduced the notion of security analysis, which generalizes simple safety
to other properties such as bounded safety, simple availability, mutual exclusion and containment.

In this section, we present a theory for comparing access control models based on the preservation of
security properties.

2.1 Access Control Schemes and Security Analysis

Definition 1 (Access Control Schemean access control scheniga state-transition syste(l, Q,+, ¥), in
which T is a set of states) is a set of queries;: I' x Q — {true, false} is called the entailment relation, and
U is a set of state-transition rules.

A state v € T, contains all the information necessary for making access control decisions at a given time.
The entailment relationt, determines whether@ueryis true or not in a given state. When a queng Q,
arises from an access request; ¢ means that the access reques allowed in the state, andy ¥ ¢ means
that ¢ is not allowed. Some access control schemes also allow queries other than those corresponding to a
specific request, e.g., whether every subject that has access to a resource is an employee of the organization.
Such queries can be useful for understanding the properties of complex access control systems.

A state-transition ruley € W, determines how the access control system changes state. More precisely,
1 defines a binary relation (denoted by,) onI'. Given~y,~; € I', we writey —, 71 if the change of state

lWhat we call simple safety analysis is called safety analysis in the literature. In [13], more general notions of safety analysis, for
which the traditional safety analysis is just a special case, were introduced. Here we follow the terminology in [13].



from ~ to ~; is allowed by, andy iw ~1 if a sequence of zero or more allowed changes leads froomy .
In other words;iw is the reflexive and transitive closureef,,. If v .iw ~1, we say thaty is ¢-reachable
from ~, or simply~; is reachable when~ and are clear from the context.

An access control modés a set of access control schemes. asgess control system an access control
schemeT’, Q,F, V) is given by a paif~, 1), wherey € I' is the current state the system is in ahd ¥ the
state-transition rule that governs the system’s state changes.

Similar definitions for access control schemes appear in [1, 3]; our definition from above also appears
in [11], and is different from the definitions in [1, 3] in the following two respects. First, our definition is more
abstract in that it does not refer to subjects, objects, and rights and that the details of a state-transition rule
are not specified. We find such an abstract definition more suitable to capture the notion of expressive power
especially when the models or schemes that are compared are “structurally” different (e.g., a scheme based on
RBAC that has a notion of roles that is an indirection between users and permissions, and a scheme based on
the access-matrix model in which rights are assigned to subjects directly). Second, our definition makes the
set of queries that can be asked an explicit part of the specification of an access control scheme. In existing
definitions in the literature, the set of queries is often not explicitly specified. Sometimes, the implicit set of
queries is clear from context; other times, it is not clear.

The HRU Scheme We now show an example access control scheme, the HRU scheme, that is derived from
the work by [6]. We assume the existence of three countably infinite Set8, andR, which are the sets of

all possible subjects, objects, and rights. We further assumethat), i.e., all subjects are also objects. In

the HRU scheme:

e ' is the set of all possible access matrices. Formally, eaehl is identified by three setsy, C S,
O, C 0,andR, C R, and a function\,[] : S, x O, — 2f, whereM, [s, o] gives the set of rights
that are in the cell.

e (Qis the set of all queries having the forme [s, o], wherer € R is aright,s € S is a subjectp € O is
an object. This query asks whether the riglexists in the cell corresponding to subjecnd objecb.

e The entailment relation is defined as follows:- r € [s, o] if and only if s € S, 0 € O,, andr €
M,[s,0].

e Each state-transition rulke is given by a set of command schemas. Giverthe change fromy to ~; is
allowed if there exists an instance of a command schengetlivat when applied te getsy;.

The set of queries is not explicitly specified in [6]. It is conceivable to consider other classes of queries,
e.g., comparing the set of all subjects that have a given right over a given object with another set of subjects. In
our framework, HRU with different classes of queries can be viewed as different schemes in the access matrix
model.

Definition 2 (Security Analysiy Given an access control systein @, +, ¥), asecurity analysis instandeas
the form(~y, ¢, ¥, II), wherey € I is a stateq € Q is a queryy € V¥ is a state-transition rule, add € {3,V}
is a quantifier.

An instance(v, ¢, v, 3) is said to beexistentia] it asks whether there existg such thaty i>¢ v, and
~v1 F ¢? If so, we say; is possible(giveny andi).

An instance(v, ¢, ¢, V) is said to beuniversal it asks whether for every; such thaty .iw, Y1,v1 F ¢? If
S0, we sayj is hecessarygiven-~y andq)).

Simple safety analysis is a special case of security analysis. A simple safety analysis instance that asks
whether a systenfy, ¢)) in the HRU scheme can reach a state in which the subjéets the right- over the
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objecto is represented as the following instange; » € [s, o], %, 3). The universal version of this instance,

(v, € [s,0],9,V), asks whethes always has the right over the objecb in every reachable state. Thus it

refers to the availability property and asks whether a particular access right is always available to the subject
We now introduce a generalized notion of security analysis.

Definition 3 (Compositional Security Analysi&iven a schemél’, @, F, ), acompositional security analy-
sisinstance has the formy, ¢, ¢, IT), wherew, ¢, andII are the same as in a security analysis instancegand
is a propositional formula ovey, i.e., ¢ is constructed from queries @ using propositional logic connectives
such as\, v, —.

For example, the compositional security analysis instahcér, € [s,01]) A (r2 € [s,02]),,3) asks
whether the systen(ry, ) can reach a state in whichhas both the right; overo; and the rightry over
02. We allow the formulay to have infinite size. For example, suppose tBathe set of all subjects, is
{s1, s2, 83, 84, ...}, then the formula~(r € [s2,0] V 7 € [s3,0] Vr € [s4,0] V ---) is true when no subject
other thans; has the right- over object.

Whether we should use security analysis or compositional security analysis is related to what types of
policies we want to represent, and what types of policies we want to use as bases to compare the expressive
power of different access control models or schemes. With compositional security analysis, we would be
comparing models or schemes based on types of policies that are broader than with security analysis. For
instance, if our set of querig contains queries related to users’ access to files, then with compositional
security analysis we can consider policies such as “Bob should never have write access to a particular file so
long as his wife, Alice has a user account (and thus has some type of access to some file).”

2.2 Two Types of Reductions

In this section, we introduce the notions of reductions and state-matching reductions that we believe are ade-
guate for comparing the expressive power of access control models. Before we introduce reductions, we discuss
mappings between access control schemes.

Definition 4 (Mapping Given two access control schemes4 = (T'4,Q4,-4,¥4) and B =
(TB, QBB wB), Amappingrom A to B is a functions that maps each paiy4, /1) in A to a pair(yZ, 5)
in B and maps each quegy’ in A to a queryg”® in B. Formally,o : (T4 x ¥4)u Q4 — (I'B x ¥B) U QPB.

Definition 5 (Security-Preserving Mappifié\ mappingo is said to besecurity-preservinghen every security
analysis instance id is true if and only if th@mageof the instance is true. Given a mapping (I'* x U4) U
QA — (B x UB)uQ?P, theimageof a security analysis instanég”, ¢4, 14, IT) undero is (v2, ¢%, 45, 11),
where(y?, ) = o((r4,44)) andg” = a(¢?).

The notion of security-preserving mappings captures the intuition that simulations should preserve security
properties. Given a security-preserving mapping fréto B and an algorithm for solving the security analysis
problem inB, one can construct an algorithm for solving the security analysis problehusing the mapping.

Also, security analysis itB is at least as hard as security analysiglimmodulo the efficiency of the mapping.

If an efficient (polynomial-time) mapping from to B exists, and security analysis i is intractable (or
undecidable), then security analysishnis also intractable (undecidable). Security preserving mappings are

not powerful enough for comparisons of access control schemes based on compositional security analysis. We
need the notion of a strongly security-preserving mapping for that purpose.

Definition 6 (Strongly Security-Preserving MappinGiven a mappings from schemeA to schemeB, the
image of a compositional analysis instan¢e;, o4, ¢4, 1), in A is (v5, o8, ¢P 1I), where (5, ¢P) =
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o((v4,44)) and B is obtained by replacing every quegy in 4 with o(¢*); we abuse the terminology
slightly and writep? = o(p4). A mappingo from A to B is said to bestrongly security-preservinghen
every compositional security analysis instanceliis true if and only if the image of the instance is true.

While the notions of security-preserving and strongly security-preserving mappings capture the intuition
that simulations should preserve security properties, they are not convenient for us to use directly. Using
the definition for either type of mapping to directly prove that the mapping is (strongly) security preserving
involves performing security analysis, which is expensive. We now introduce the notions of reductions, which
state structural requirements on mappings for them to be security preserving. We start with a form of reduction
appropriate for compositional security analysis and then discuss weaker forms.

Definition 7 (State-Matching ReductigrGiven a mapping fromd to B, o : (I'* x ¥4) U Q4 — (I'B x
UB)uQP, we say that the two states' and~? areequivalentunder the mapping when for every;4 € Q4,
vA FA ¢4 if and only if vZ B o(¢?). A mappinge from A to B is said to be @tate-matching reductioif
for everyy? € I'4 and every)? € U4, (vB 4B) = 5((y4,44)) has the following two properties:

1. For every state{' in schemeA such thaty =, +{!, there exists a statg’ such thaty® -z v and
v{* and~P are equivalent under.

2. For every state? in schemeB such thaty? .,z £, there exists a statg such thaty +> +{' and
v{* and~P are equivalent under.

Property 1 says that for every statg that is reachable from“, there exists a reachable state in schéime
that is equivalent, i.e., answers all queries in the same way. Property 2 says the reverse, for every reachable state
in B, there exists an equivalent statedAn The goal of these two properties is to guarantee that compositional
security analysis results are preserved across the mapping. With the following theorem, we justify Definition 7.

Theorem 1 Given two schemed and B, a mappingr from A to B is strongly security-preserving if and only
if o is a state-matching reduction.

Proof.

The “if” direction. Wheno is a state-matching reduction, given a compositional security analysis instance
(v, o4, A TI) in schemeA, let (v2,4B) = o((v4,44)) andp? = o(p?), we show thaly4, o4, 4, TI)
is true if and only if(y5, B B TI) is true.

First consider the case that the instafeé, ¢, 4, 1) is existential, i.e. JTis 3. If the instance is true, i.e.,
there exists a reachable staté in which ¢ is true. Property 1 in Definition 7 guarantees that there exists a
reachable statg? that is equivalent ta{'; thusy? is true inyf; therefore, the instance B, (y2, o2, 47, 3),
is also true. On the other hand(if?, & 4B, 3) is true, then there exists a reachable stgtén which 7 is
true. Property 2 in Definition 7 guarantees that there exists a stata@rirwhich the analysis instance i is
true.

Now consider the case that the instarigé, o4, v, II) is universal, i.e.JT is V. If the instance is false,
i.e., there exists a reachable staféin which o4 is false. Property 1 guarantees that the instand® is also
false. Similarly, if the instance iR is false, then the instance inis also false.

The “only if” direction. Wheno is not a state-matching reduction, then there exjsts= I'4 andy? €
U4 such thaty2, ¢ B) = o((y4,44)) violates one of the two properties in Definition 7.

First consider the case that Property 1 is violated. There exists a reachable;s&ieh that no state
reachable fromy? is equivalent toy;*. Construct a formulg* as follows: p* is a conjunction of queries in
Q or their complement. For every query queryin Q4, ¢ includesg? if v{* 4 ¢4 and—q¢? if v{* F4 ¢4,
(Note that the length ap“ may be infinite, as the total number of queries may be infinite.) Cleaflys true
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in v{, buto(¢?) is false in all states reachable fropf. Thus, the existential compositional analysis instance
involving ¢ has different answers, amdis not strongly security preserving.

Then consider the case that Property 2 is violated. There exists ay$tatachable fromy”® such that
no state reachable from is equivalent toy?. Construct a formulg* as follows: ¢ is a conjunction of
queries inQ or their complement. For every query queryin Q4, ¢4 includesq? if vZ F2 o(¢4) and—¢*
if /& -8 o(¢?). Clearly, o is false in in all states reachable fropt, but o () is true in+f; thus, the
existential compositional analysis instance involving has different answers, andis not strongly security
preserving. |

Note that the proof uses a compositional analysis instance that contains a potentially infinite-length formula.
If one chooses to restrict the formulas in analysis instances to be finite length, then state-matching reduction
may not be necessary for being strongly security-preserving. Also, a state-matching reduction preserves com-
positional security properties. If we only need queries fi@rto represent our policies and not compositions
of those queries, then the following weaker notion of reductions is more suitable. However, we believe that
the notion of state-matching reductions is quite natural by itself; it is certainly necessary when compositional
queries are of interest.

Definition 8 (Reductiop Given two access control schemes = (I'4, Q44,94 and B =
(TB, QB -5 whB). A mapping fromA to B, o, is said to be aeductionfrom A to B if for everyy4 € I'* and
everyyp? € U4, (vB 4B) = o((y4,44)) has the following two properties:

1. For every state/{‘ and every query” in schemed, if v4 ni>¢ 7{‘, then in schemé there exists a state

78 such thaty® 5 v andy{ -4 ¢ if and only if 12 -2 o (g).

2. For every state? in scheme’3 and every query”! in schemed, if 12 +5 » 7f, there exists a statg!
such thaty* %, v{* and~i* F4 ¢4 if and only if v 2 o(¢?).

Definition 7 differs from Definition 8 in that the former requires that for every reachable stade(i,
resp.) there exist a matching stateBn(A, resp.) that gives the same answer dgery query Definition 8
requires the existence of a matching state for every query; however, the matching states may be different for
different queries. Property 1 in Definition 8 says that for every reachable stdtaril every query i, there
exists a reachable state ihthat gives the same answer to (the image of) the query. Property 2 says the reverse
direction. The goal of these two properties is to guarantee that security analysis results are preserved across
the mapping. The fact that a reduction, as defined in Definition 8, is adequate for preserving security analysis
results is formally captured by the following theorem.

Theorem 2 Given two schemed and B, a mappingg, from A to B is security preserving if and only df is
a reduction.

Proof. The “if” direction. Wheno is a reduction, given a security analysis instarigé, ¢, x4, 1I) in
schemed, let (v5,48) = o((v4,44)) and¢® = o(¢?), we show thaty4, ¢*, 44, 1I) is true if and only if
(vB,qB,¢B 11) is true.

First consider the case that the instamé,qA, A, I1) is existential, i.e.JT is 3. If the instance is true,
i.e., there exists a reachable stafein which ¢# is true. Property 1 in Definition 8 guarantees that there exists
a reachable state® in which ¢ is true. Therefore, the instance By (v, ¢? 45, 3), is also true. On the
other hand, if(y?, ¢®,+5, 3) is true, then there exists a reachable stdtén which ¢” is true. Property 2 in
Definition 8 guarantees that there exists a staté in which ¢4 is true; thus the analysis instancedris true.

Now consider the case that the instarieé, ¢, )4, II) is universal, i.e.JT is V. If the instance is false,
i.e., there exists a reachable stafein which ¢* is false. Property 1 guarantees that the instandg is also
false. Similarly, if the instance if8 is false, then the instance is also false.
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The “only if” direction. Wheno is not a reduction, then there existé € T4 andy” € ¥4 such that
(vB B = o ((y4,44)) violates one of the two properties in Definition 8.

First consider the case that Property 1 is violated. There exists a reachabig'stata query such that
for every state reachable fronf the answer for the query(¢!) under the state is different from the answer
for ¢ undery{'. If v 4 ¢4, then this means that’® is false in every state reachable froyi. Thus the
security analysis instangg?, ¢, 14, 3) is true, but its image under is false. Thus, the mapping is not
security-preserving. W' /4 ¢*, then this means that® is true in every state reachable froyff. Thus the
security analysis instande, ¢, 14, V) is false, but its image underis true.

Then consider the case that Property 2 is violated. There exists ayStaéachable from/” and a query
¢“ such that for every state reachable frorhthe answer for the query* under the state is different from the
answer forr(¢?) underyZ. If vP -8 o(¢?), then this means that' is false in every state reachable fror.
Thus the security analysis instangg?, ¢, 4, 3) is false, but its image underis true. Ifyf /2 ¢, then
this means thag is true in every state reachable from. Thus the security analysis instangg?, ¢4, ¥4, V)
is true, but its mapping i is false. |

Comparisons of two access control models are based on comparisons among access control schemes in
those models.

Definition 9 (Comparing the Expressive Power of Access Control Mgd8algen two access control models
M andM’, we say thaiM’ is at least as expressive &4 (or M’ has at least as much expressive powek 83

if for every scheme in\ there exists a state-matching reduction (or a reduction) from it to a schefé.im
addition, if for every scheme in’, there exists a state-matching reduction (reduction) from it to a scheme in
M, then we say that/ and M’ are equivalent in expressive power. M’ is at least as expressive as thé,

and there exists a schemein M’ such that for any schem@ in M, no state-matching reduction (reduction)
from A to B exists, we say that1’ is strictly more expressive thak.

We compare the expressive power of two schemes based on state-matching reductions when compositional
gueries are needed to represent the policies of interest. Otherwise, reductions suffice. Observe that we can use
the above definition to compare the expressive power of two access control schemes, by viewing each
scheme as an access control model consists of just that scheme.

2.3 Discussions of alterative definitions for reduction

In this section, we discuss alternative definitions that differ slightly from the ones discussed in the previous
section. The first of these definitions is used by [18, 20] for simulations.

Definition 10 (Form-1 Weak ReductigrA mapping fromA to B, given byo : (I'4 x ¥4) u Q4 — (I'P x
UP) U @B, is aform-1 weak reductioif for every v € I'A and everyy? € U4, (B 4Py = o((v4,44))
has the following two properties:

1. For every query, if there exists a state;* in schemed such thaty 4 +{* and~{' =4 ¢4, then
there exists a statg? such thaty? 5 v2 andyf FZ o(¢?).

2. For every query, if there existsyf in schemeB such thaty” =z v and+f 7 5(¢*), then there
exists a state{* such thaty? =, v{* andy{* F4 ¢# if and only if v 8 o(¢?).

The intuition underlying Definition 10, as stated by [18] is, “systems are equivalent if they have equivalent

worst case behavior”. Therefore, simulations only need to preserve the worst-case access. Definition 10 is
weaker than Definition 8 in that it requires the existence of a matching state when a query is true in the state,
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but does not require so when the query is false. Therefore, it is possible that aydustyue in all states that
are reachable from, but the queryr(¢) is false in some states that are reachable fiéhfthe queryo(¢?)
needs to be true in at least one state reachable ff8m This indicates that Definition 10 does not preserve
answers to universal security analysis instances. Definition 10 is adequate for the purposes in [18, 20] as only
simple safety analysis (which is existential) was considered there.

The decision of defining a mapping to be a function fraitt x ¥4) U Q4 to (T8 x ¥B) U QP also
warrants some discussion. One alternative is to define a mapping4nmn® to be a function that maps each
state inA to a state inB, each state-transition rule i to a state-transition rule iB, and each query i to
a query inB. Such a function would be denotedas I'* U ¥4 U Q4 — I'B U U8B U QB. One can verify
any such function is also a mapping according to Definition 4, which gives maore flexibility in terms of mapping
states and state-transition rules frofrto B. By Definition 4, the state corresponding to a stafemay also
depends upon the state-transition being considered.

Another alternative is to define a mapping fretito B to be a functiow : TAx ¥4 x Q4 — T'BExUExQB,
in other words, the mapping of states, state-transition rules, and queries may depend on each other. This
definition will also leads to a weaker notion of reduction:

Definition 11 (Form-2 Weak ReductigrA form-2 weak reduction fromd to B is a functiono : I'4 x ¥4 x
QA — I'B x U8 x QP such that for every? € T4, everyy? € ¥4, and every? € Q4, (v5, 45, ¢B) =
o((v4,4, ¢)) has the following two properties:

1. For every state{' in schemeA such thaty =, 71!, there exists a statg® such thaty” -z 7 and
{4 ¢4 if and only if v B ¢5.

2. For every state? in schemeB such thaty” +,» f, there exists a statg" such thaty! =, ~{* and
{4 ¢4 if and only if v 2 ¢P.

It is not difficult to prove that a Form-2 weak reduction is also security preserving, in the sense that any
security analysis instande”, ¢4, 4, II) in A can be mapped to a security analysiginHowever, it is not a
mapping, as the mapping of states and state-transition rules may depend on the query.

Definition 11 is used implicitly in Theorems 2 and 3 in [11] for reductions from security analysis in two
RBAC schemes to that in the RT Role-based Trust-management framework [9, 13]. As we state in Theorem 7
in this paper, a form-2 weak reduction used in [11] for one of the RBAC schemes can be changed to a security-
preserving mapping in a straightforward manner.

We choose not to adopt this weaker notion of reduction for the following reason. Under this definition,
given an access control systént, 1)), to answem analysis instances involving different queries, one has to
don translations of states and state-transitions, which are often time consuming. While using Definition 4 and
Definition 8, one can do the mapping @f*, ) once and use it to answer allanalysis instances.

A third weak form of reduction is introduced by [1]. That work discusses the expressive power of multi-
parent creation when compared to single-parent creation.

Definition 12 (Form-3 Weak ReductigmA mapping fromA to B, given byo : (I'4 x ¥4) U Q4 — (I'P x
UB) U QP, is aform-3 weak reductioff for everyy* € T4 and everyy? € ¥4, (vB 4B) = o((v4,94))
has the following two properties:

1. For every state{® and every query” in schemed, if 4 +,, 41!, then in schemé there exists a state
vP such thaty® = 5 v andy{! =4 ¢4 ifand only if v -2 o (¢).

2. For every statef in schemeB and every query” in schemed4, if 1% 5,5 77, then either (a) there
exists a state;' such thaty? >, 7{' and~{! -4 ¢ if and only if £ -8 o(g?), or (b) there exists
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A

a statey? such thaty? 5 v2 and a state/{* such thaty? =, {!, and~{' -4 ¢* if and only if

v P a(ah).

As pointed out by [1], this form of reduction suffices for preserving simple safety properties in monotonic
schemes — those schemes in which once a state is reached in which a query is true, in all reachable states from
that state, the query remains true. Therefore, this form of reduction cannot be used to compare schemes when
gueries can become false after being true. As with the reduction from Definition 10, this form of reduction
cannot be used for universal queries.

3 The Implementation Paradigm for Simulation: An Examination

Several authors use the implementation paradigm for simulations, e.g., [17] state that “a positive answer [to the
qguestion whether LBAC (lattice-based access control) can be simulated in RBAC] is also practically significant,
because it implies that the same Trust Computing Base can be configured to enforce RBAC in general and
LBAC in particular.” However, in these papers [15, 17, 21], a precise definition for simulations is not given.
This makes the significance of such results unclear, at least in terms of comparing the expressive power of
different access control models.

In this section, we analyze the implementation paradigm and argue that this does not lead to a notion of
simulations that is meaningful for comparing the expressive power of different access control models. More
precisely, the notions of simulations derived from this paradigm are so weak that almost all access control
schemes are equivalent.

To formalize the implementation paradigm for simulation, a natural goal is to use an implementation of an
access control scheme for another scheme. Intuitively, if a schecan be simulated in a schenig then
there exists aimulatorthat, when given access to the interface to (an implementatioB ofan provide an
interface that is exactly the same as the interface to (an implementatidn of)

When considering the interface of an access control scheme, we have to consider how state-transitions
occur. Intuitively, an access control system changes its state because some actors (subjects, principals, users,
etc.) initiate certain actions. An implementation of an access control scheme thus has an interface consisting of
at least the following functions:

e init(y): set the current state to
e query(q): ask the query and receives a yes/no response.
e apply(a): apply the actiorm on the system, which may result in a state-transition in the system.

e functions providing other capabilities, e.g., traversing the subjects and objects in the system.

A simulator of A in B is thus a program that takes an interface3oind provides an interface df that is
indistinguishable from an implementation fdr In other words, the simulator is a blackbox that when given
access to a backbox implementationffgives an implementation of. This intuition seems to make sense if
the goal is to use an implementation®fto implementA.

It is tempting to start formalizing the above intuition; however, there are several subtle issues that need to
be resolved first.

As can be easily seen, for any two schemeand B, a trivial simulator exists. The simulator implements
all the functionalities ofd by itself, without interacting with the implementation Bf Clearly, one would like
to rule out these trivial simulators. One natural way to do so is to restrict the amount of space used by the
simulator to be sub-linear in the size of the state of the scheme it is simulatisgerttdo be a reasonable
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requirement that the simulator takes constant space on its own, i.e., the space used by the simulator does not
depend on the size of the state. (The space used by the implementaliae nbt considered here.)

Another issue is whether to further restrict a simulator’s internal behavior. When the simulator receives a
guery in the schemd, it may issue multiple queries to the blackbox implementatiofs dfefore answering
the query; it may even perform some state-transitiomdrefore answering the query. Similarly, the simulator
may perform multiple queries and state-transitiongbto simulate one state-transition ih

If no restriction is placed, then the notion of simulation is too weak to separate different access control
models. For example, [15] constructed a simulation of ATAM in RBAC. In Appendix A, we give a simulation
of RBAC in strict DAC, a discretionary model that allows only the owner of an object to grant rights over the
object to another subject and ownership cannot be transferred. According to these results, the simplest DAC
(in which security analysis is efficiently decidable) has the same expressive power as ATAM (in which simple
safety analysis is undecidable). This illustrates the point that, without precise requirements, simulation is not a
very useful concept for comparing access control models.

If one places restrictions on the simulator, then the question is what restrictions are reasonable. Our con-
clusion is that it is very difficult to justify such requirements. In the following, we elaborate on this.

One possibility that we now argue to be inadequate is to restrict the internal behavior of the simulator, e.g.,
to restrict it to issue only one query 18 in order to answer one query ih and to make bounded number of
state-transitions i3 to simulate one state-transition i Under these restrictions, one can prove that RBAC
cannot be simulated in the HRU model. The assignment of a user to a role in RBAC results in the user gaining
all the accesses to objects implied by the permissions associated with that role; therefore, it changes the answers
to an unbounded number of queries (queries involving those permissions.) One may argue that the assignment
of a user to a role is a single “action” in RBAC, and therefore, the acquiring of those permissions by that user is
accomplished in a single “action.” The corresponding assignment of rights in the HRU access matrix cannot be
accomplished by a single command, or a bounded number of command for that matter, as each command only
changes a bounded number of cells in the matrix. Thus, any mapping of the user-assignment in RBAC involves
an unbounded number of commands being executed in HRU. Nonetheless, one can argue that this is balanced
by the efficiency of checking whether a user has a particular right in the two models. A naive implementation
of an RBAC model may involve having to collect all roles to which that user is assigned, and then collecting
all permissions associated with those roles, and then checking whether one of those permissions corresponds
to the object and access right for which we are checking. The time this process takes depends on the size of
the current state and is unbounded. The corresponding check in HRU is simpler: we simply check whether the
corresponding access right exists in the cell in the matrix. Thus, we can argue that there is a trade-off between
time-to-update, and time-to-check-access between the two schemes. Therefore, we argue that it does not make
sense to restrict the number of steps involved in the simulation.

Another possibility that we now argue to be inadequate is to measure how much time the simulator takes
to perform a state-transition and to answer one query in the worst case and require that there cannot be a
significant slowdown. This possibility is complicated by the fact that the efficiency of these operations are not
predetermined in any access control scheme, the implementation can make trade-offs between time complexity
and space complexity and between query answering and state-transitions. Any comparison must involve at least
three axes, query time, state-transition time, and space. Furthermore, the best ways to implement an access
control scheme is not always known. Finally, these implementation-level details do not seem to belong in the
comparison of access control models; as such models by themselves are abstract models to study properties
other than efficiency.

In summary, when no restriction is placed on the simulations, the “implementation paradigm” does not
separate different access control schemes. On the other hand, it seems difficult to justify the restrictions that
have been considered in the literature. Therefore, our analysis in this section suggests that the “implementation
paradigm” does not seem to yield effective definitions of simulations that are useful to compare access control
models. This also suggests that expressive power results proved under this paradigm should be reexamined.
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4 Applying the Theory

In this section, we apply our theory from Section 2 to compare the expressive power of different access control
schemes. In the following section, we show that the HRU access matrix scheme is not as expressive as a
relatively simple trust management scheR&| |. We then examine two particular results from literature using

our theory: (1) that RBAC is at least as expressive as DAC (Sections 4.2 and 4.3), and (2) that TAM is at
least as expressive as ATAM (Section 4.5), and in each case, assert the opposite. We show also that the trust
management schenR [N] is at least as expressive as an RBAC scheme (Section 4.4).

Proof Methodology In this section, we prove the existence of reductions and state-matching reductions as
well as the nonexistence of state-matching reductions. To prove that there exists a reduction or state-matching
reduction from a schemd to a scheme3, we constructively give a mapping and show that the mapping
satisfies the requirements. To prove that there does not exist a state-matching reduction from aistcthame
schemeB is more difficult, as we have to show that no mapping satisfies the requirements for a state-matching
reduction. Our strategy is to use proof by contradiction. We find in schéraestatey*, a state-transition

rule 4, as well as a statg{ that is reachable. Suppose, for the sake of contradiction, that a state-matching
reduction exists, then there exist statésand~ such thaty” is equivalent toy4, vf is equivalent tey{', and

~¥ is reachable from”. We show that among the sequence of states leadingffbemd~¥, there exists one

for which there is no matching state that is reachablé.in

4.1 Comparing the HRU scheme to a trust management scheme

The HRU scheme [6] is based on the access matrix model, and has generally been believed to have considerable
expressive power, partly because it has been shown that one can simulate a Turing Machine in the HRU scheme.
In this section, we show that there does not exist a state-matching reduction from a relatively simple trust
management schemRT[] [13, 10], to the HRU scheme. ThRIT[] cannot be encoded in the HRU scheme

is informally discussed and conjectured in [13, 10]. Using the theory presented in Section 2, we are able to
formally prove this. As safety analysis is efficiently decidabldrif] | but undecidable in the HRU scheme,

there does not exist a state-matching reduction from the HRU scheme Rd thescheme either. This shows

that the expressive powers of the HRU scheme an@Tdf] are incomparable. To our knowledge, this Is the

first formal evidence of the limited expressive power of the HRU scheme.

The fact that the HRU scheme can simulate Turing Machine shows that it can compute any computable
function when used as a computation device. When used as an access control scheme, the HRU scheme may
nonetheless be limited in expressive power. For example, it cannot encode an access control system where in
one state a subject has no right over any object and in the next state the subject obtains rights over a potentially
unbounded number of objects.

The HRU Scheme

" We assume the existence of countably infinite sets of subjgctdyjectsO and rightsk, with S ¢ O. Each
statey is characterized byS.,, O,, R, M,[]) whereS,, C S is a finite set of subjects that exist in the state
O, C O is afinite set of objects that exist in the state?, C R is a finite set of rights that exist in the state
andM/, [ | is the access matrix, i.e}/,[s, o] C R, gives the set of rights € S, has ovew € O, in the statey.
M, [s, o] is defined only when € S, ando € O,t. It may appear that we alloi, to differ across states. The
definition for state-change rules precludes this possibility.

¥ A state-change rulej, in the HRU scheme is a command schema, i.e., a set of commands. Each command
takes a sequence of parameters, each of which may be instantiated by an object, Each command has also an
optional condition, which is a conjunction of clauses. Each clause checks whether a right is in a particular
cell of M, [ ]. Following the (optional) conditions in a command is a sequence of primitive operations. The

14



primitive operations are one of the following: (1) create an object; (2) create a subject; (3) enter a right into a
cell of the access matrix; (4) remove a right from a cell of the access matrix; (5) destroy a subject; (6) destroy an
object. We refer the reader to [6] for more details on the syntax of commands. A state-change is the successful
execution of a command.

@ We allow queries of the following two forms: (¥t)e M]s, o], and (2)r ¢ M]s,o]. In the queriesy € R,
s € S ando € O. To our knowledge, these are the only kinds of queries that have been considered in the
context of the HRU scheme in the literature. In particular, these are the queries that are pertinent to the safety

property [6].

- Letgq be the query- € M]s,o]. Then, given a state, v - ¢ ifand only ifr € R,, s € S,, O € O, and
r € M,[s,o]. Otherwise;y I/ ¢, or equivalentlyy - —¢. Letq be the query- ¢ M|s,o]. Theny F ¢ if and
onlyifre R,,s € S,,0 € O, andr ¢ M,[s, o]. Otherwise;y I/ g, or equivalentlyy - —g.

Observe that one should view bathe M, [s, o] andr ¢ M, [s, o] as atomic queries. In particulat(r €
M, [s,0]) is not equivalent to- & M, [s,0]. Itis possible thaty I/ » € M, [s,o] andy I/ r & M, s, o]; this
happens when eitheror o does not exist iny. Even though it is not possible that— ((r € M, [s,0]) A (r ¢
M5, 0]).

The RT[] Scheme

I'  We assume the existence of countably infinite sets of principals (&,d3, C) and role names (e.g.,
r,s,t,u). A role is formed by a principal and a role name, separated by a dot (exg.X.u). An RT[]

state consists of statements which are assertions made by principals about membership in their roles. Two
types of assertions are supported. These are simple member4e.g-— B) and simple inclusion (e.g.,

A.r «— B.r1). One reads the— symbol as “includes”. The example for the first kind of statement asserts
that B is a member ofd’s r role. The example for the second kind of statement asserts that every member of
B.r1 is a member ofd.r. The portion of a statement that appears to the left of-the symbol is called its

head, and the portion that appears to the right is called the body. We refer the reader to [9] for more details on
the syntax and semantics RT [ | statements.

U A state-change rule in a system based onRfi¢| scheme consists of two sets,andS. Both consist of

RT][ ] roles.G is the set of growth-restricted roles, i.e. Afr € G, then statements with.r at the head cannot

be added in future stateS.is the set of shrink-restricted roles, i.e. Afr € S, then roles with4.r at the head

cannot be removed in future states. We refer the reader to [13, 10] for more details on the two sets, and the
intuition behind them.

@ [13] define three kinds of queries RIT[]. (1) {B1,..., By} 3 A.r —this kind of query asks whether the
role A.r is bounded by the set of pricipa{31, ..., B, }; (2) A.r 3 {By,..., B,} — this kind of query asks
whether each principaBy, . .., B, is a member ofd.r; (3) X.u J A.r — this kind of query asks whether the
set of member ofd.r is included in the set of members &f.u.

+ Given a state, we check if a query is entailed by first evaluating the set of members &ldable in the

guery. This is done using credential chain discovery [14]. We then compare the two sets and check if the set to
the left includes the set to the right. The first two kinds of queries are called semi-static queries as one of the
sides in the query is a set of users that is independent of the state, and needs no further evaluation. We refer the
reader to [14] for more details on query-entailmenRiR[ ].

Theorem 3 There exists no state-matching reduction fromRfié | scheme to the HRU scheme.
Proof. By contradiction. Assume that there exists a state-matching reduetitnom theRT|[ | scheme to the

HRU scheme. We denote components & | system with the superscript and the HRU scheme with the
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superscriptd. We now consider a system based on R | scheme. Let/ be the start-state in OlRT]]
system such that” has no statements. The state-change rule inrRAUr] system isG' = S = ). We now
consider the start-state in the corresponding HRU systerff) = v and the state-change rutéy ) = 1.
Let k be the number of objects in”, i.e.,.k = |O,u|. Letl be the maximum number of primitive operations of
the form “enter right” in any of the commandsdr’. Letm be the maximum number of primitive operations
of the form “remove right” in any of the commandsqr’ .

Choose some > (k? + 1+ m) + 1. Our choice ofn is such that for any{’ such thaty’ — ~{7, fewer
thann — 1 queries that are true in (i.e., are entailed by*’) are false im#* (i.e., are not entailed by).

The reason is that: (1) ag” has at mosk objects (some or all of which may be subjects), a command may
contain statements to destroy all these objects. Consequently, these statements can cadspiepiés of the
formr ¢ M[s, o] to be false iny/’ when they are true in’’; (2) as a command i’ has at most statements

to enter rights in to cells, these statements can cause gueries of the formr ¢ M[s, o] to be false im!
when they are true in’’; (3) as a command ir’’ has at mostn statements to remove rights from cells, these
statements can cause upstoqueries of the form € M[s, o] to be false iy’ when they are true in*.

We emphasize that these are the only possibilities for queries to become false in a state-chande them
number of queries that are entailedY, but noty{ is fewer tham — 1.

Consider querieg/® for each integei such thatl < i < n in the RT[] system wherg? is of the form
{B;} J A.r for some principal#4, By, ..., B, and some roled.r. We make two observations about these
queries. The firstis that’ - ¢f* A ... A ¢ft. The reason is that.r is empty iny* and therefore is a subset
of every set of the forn{ B;}. The second observation is that in all states reachable {féneither all queries
of the formqiR such thatl < ¢ < n are entailed, or at most one of those queries is entailed. The reason is that
for the set of users in the rolé.r to be a subset of B;} for a particulari, it must be either empty, or contain
exactly one element3;. Now consider the statg such thaty® +,, 7/ andyf* F ¢ft A —gdt A ... A —gE.

That is,¢f is true in~/%, but none of the other queries of the for# is true. We use the subscripbnly to
demarcate the state and not as a count of the number of state-changes needed to reach it;/Iicdache
reached fromy* with a single state-change: we simply add the statement— B; to ourRT[] system.

Now consider the corresponding states and queries in the HRU system produced as outpLetby’ =
o(vR), vl = o(vF), andg! = o() for 1 < i < n. As we assume that is a state-matching reduction,
YA =gl AL AgH, and there exists/ such thaty” s v andy = ¢ff A—g8! A...A—gH. Consider any
sequence of state-changes frgth to 4/7. Pick the first state in the sequengg in which at least one of the
queriesg/’ is false. Consider the staté’ ;, immediately preceding it. Then/Z; - ¢ff A ... A ¢il. Because
one step of change cannot make- 1 queries to go from true to false, iff’, some queries:, ¢2,¢3, - - , ¢
are false but at leagt queries in them are true. As we argued in the previous paragraph, there cannot exist
a matching state i for v2. We now have the desired contradiction to the existence of a state-matching
reduction from theRT[ ] scheme to the HRU scheme. [

4.2 Examining comparisons of RBAC and DAC

[15] present a simulation of ATAM in RBAC and conclude that RBAC is at least as expressive as ATAM.
[17, 16, 21] give simulations of various MAC and DAC schemes in RBAC. The main conclusion of [17, 16, 21]
is that as MAC and DAC can be simulated in RBAC, a Trusted Computing Based (TCB) needs to include an
implementation of RBAC only, and DAC and MAC policies can be successfully represented and enforced by
the TCB.

In the simulations used in [15, 17, 16, 21], the preservation of safety (or other security) properties is not
identified as an objective. From the above conclusion in [17, 16, 21], it seems that they follow the implementa-
tion paradigm. As discussed in Section 3, this paradigm leads to a weak notion of simulations, as exemplified
by the simulation of RBAC in strict DAC in Appendix A.
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We observe also that the problem of comparing RBAC with DAC as stated by [17, 21] is ill-defined (or at
least not clearly defined). RBAC by itself only specifies the structures to store access control information, but
not how to manipulate these structures, which are specified by administrative models. In other words, only the
setl’ of states is precisely defined, the debf state-transition rules is not. The counterpart of RBAC is the
access matrix model, instead of DAC (or MAC). In DAC, we specify that access control information is stored
in a matrix, and we also specify rules on how to change the access matrix. The statement that RBAC is at least
as expressive as DAC (or MAC) is similar to saying that the access matrix model is at least as expressive as
DAC or MAC. Comparing the RBAC model with the access matrix model is not fruitful either, as both models
can include arbitrary state-transition rules.

4.3 Comparing ARBAC97 with a form of DAC

To compare any RBAC-based model with DAC, one needs to specify the administrative model (state-transition
rules) for RBAC. In existing comparisons of RBAC and DAC [15, 17, 21], new and rather complicated ad-
ministrative models are introduced “on the fly” to simulate the effects in DAC. In this section, we compare
the expressive power of RBAC with ARBAC97 [19] as the administrative model to that of SDCO, a rather
simple form of DAC. We first present precise characterizations of SDCO and the ARBAC97 scheme. We then
assert that while there does exist a reduction, there does not exist a state-matching reduction from SDCO to the
ARBAC97 scheme, given a natural query set for each scheme.

This result is significant as it shows that we cannot assert that RBAC is more expressive than DAC without
qualifying the assertion; a strongly security-preserving mapping does not exist from SDCO to ARBAC97.
Our conclusion provides the first evidence that the expressive power of RBAC (or at least some reasonable
incarnation of it) is limited.

The SDCO Scheme

' SDCO is a scheme based on the access matrix model and is a special case of the HRU scheme (see Sec-
tion 2.1). Each statg € I'is (S, O+, M, [], R,) whereS,, O, andR, are finite, strict subsets of the countably

infinite setsS (subjects),0 (objects) andR (rights) respectively. The set of rights for the scheméis=
{own,ry,...,r,}, whereown is the distinguished right indicating ownership of the objddt,| | is the access

matrix.

¥ The state-transition rules are the commangsiteObject, destroyObject and grantOwn, and for each
ri € R, — {own}, a commandyrant_r;.

command createObject(s, o) command destroyObject(s, o)
create object o if own € [s, 0]
enter own into [s, o] destroy o
command grantOwn(s, s, 0) command grant_ri(s,s’,0)
if own € [s, 0] if own € [s, 0]
enter own into [s', o enter r; into s, 0]

remove own from [s, o]

@ Each query is of one the following forms: (1)d4sc S?; (2) Iso € O?; and (3) Is- € M|s,0]?

- The entailment relation is defined as follows for each type of query from above. In each of the following,
veTlisastate. (1) s e Sifandonlyifs € S,; (2)yFoe Oifandonlyifo € O,; (3)yFr € M[s, 0]
ifandonly ifr € Ry As€ Sy Noe€ Oy Ar € My[s, o]

The ARBAC97 Scheme
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I' We assume the existence of the countably infinite &etsisers),P (permissions) andr (roles). An
ARBAC97 state is(UA, PA, RH, AR) where UA is the user-role assignment relation that contains a pair

(u,r) for every usen € U that is assigned to a rolec R. PA is the permissions-role assignment relation that
contains a paitp, r) for every permissiomp € P that is assigned to the rolec R. RH is the role-hierarchy,

and forr{,r9 € R, r1 = ro € RH means that all users that are members;ofre also members of, and

all permissions that are assignedrtoare authorized to users that are members,0f AR C R is a set of
administrative roles. In ARBAC97 [19], changesA® may be made only by a central System Security Officer

(SSO) who is trusted not to leave the system in an undesirable state; if the SSO effects a state-transition, then
she does security analysis to ensure that the resulting state is acceptable. Therefore, in our analysis, we assume
that AR does not change.

¥ State-transitions in the ARBAC97 scheme are predicated on the relations that are pat/ Bf4la& (user-

roles assignmentPRA 97 (permission-role assignment) aik A 97 (role-role assignment) components. We
introduce the notion of arole range that is used in the definition of the state-transitions. A rolefrangetten
as(r1,72), wherer; andr; are roles, and every rotethat satisfies; = r Ar = ro A7 #ri Ar # reisinthe

role ranget. We writer € £ whenr is in the role rangé. We represent as the set of all role ranges. Role
ranges in ARBAC97 satisfy some other properties, and we refer the reader to [19] for those. Those properties
are not relevant to our discussion here.

can_assign C AR x CR X E
can_revoke C AR X =

can_assignp C AR x CR x 2

URA97 { can_revokep C AR X E

PRA97 {

RRA97 { can_modify C AR x =

CR is a set of pre-requisite conditions. A pre-requisite condition is a propositional logic formula over regular
roles. For instance; = r1 A 73 is a pre-requisite condition that indicates: “releand not rolers,” where
r1, o € R.

We postulate that a state-transition is the successful execution one of the following operations.

assignUser(a, u, ) revokeUser(a,u,r)

if 3{ar,c,&) € can_assign such that if 3 (ar,&) € can_revoke such
a is a member of ar A u satisfies ¢ N that a is a member of ar A

r € & then r € & then

add (u,r) to UA remove (u,r) from UA

assignPermission(a, p,r)
if A(ar,c,&) € can_assignp such that
a s @ member of ar A p satisfies ¢ A

revokePermission(a,p, )
if A(ar,&) € can_revokep such
that a is a member of ar A

r € £ then
add (p,r) to PA

addToRange(a,&,r)
if I(ar,&) € can_modify such that
a is a member of ar then
addry = rto RH
add r = ro to RH
where € = (r1,m2) AT £ 11 AT # 719

r € £ then
remove (p,r) from PA

removeFromRange(a, &, )
if Iar,&) € can_modify such that
a is a member of ar then
remove r1 = 1 from RH
remove r = ro from RH
where & = (r1,m2) A7 £ 11 AT # 719



addAsSenior(a,r,s) removeAsSenior(a,r, s)

if I(ar,&) € can_modify such that if Iar,&) € can_modify such that
a is a member of ar Ar,s € £ then a is a member of ar ANr,s € & then
addr > sto RH remove r = s from RH

Q,F We allow queries of the following forms that are all natural for the ARBAC97 scheme: (1) given a
role r, does there exist a usersuch that(u,r) € UA?, (2) given user, does there exist a rolesuch that
(u,r) € UA?, (3) given usew and roler, is (u,r) € UA?, (4) given a permissiop, does there exist a
role r such that(p,r) € PA? (5) given permissiop, does there exist a role such that(p,r) € PA?, (6)
given permissiorp and roler, is (p,r) € PA?, (7) given roles, o, isT; = ro € RH?, and (8) give user

u and permissiom, is u authorized to have the permissip That is, do there exist roles, r» such that
(u,m) € UA N (p,r2) € PANT1 = ry € RH? The entailment relatiort;, is based simply on whether the
conditions checked in a query hold in the given state.

Theorem 4 There exists a reduction from SDCO to ARBAC97.

Proof. By construction. We present the mappiftesduce andReduceQuery and show that they satisfy the
properties for a reduction from SDCO to ARBAC®Reduce takes as input the start-state and state-transition

rules of an SDCO system and produces as output the start-state and state-transition rules of an ARBAC97

system. ReduceQuery takes as input a query in the SDCO system and produces as output a query in the

ARBAC97 system. We assume, without loss of generality, that there is a one-to-one correspondence between

the set of user® in ARBAC97 and the set of subjecfsin SDCO, and between the set of rofesn ARBAC97
and the setO x R, )U{subjectErists, A, top, bottom }, whereQ is the set of objects, anfl, is the set of rights
in the SDCO system, arwdibject Ezists, A, top andbottom are specific roles that are used in the mapping.

1 Subroutine Reduce( v, v)

/ * inputs: v - an SDCO state, 1 - SDCO state-transition rules */
[ outputs: ~4 - an ARBAC97 state,

¥4 - ARBAC97 state-transition rules * |
initialize 4, 4 as follows:

UA=PA=RH = AR = can_assign = can_revoke = can_assignp = can_revokep = can_modify = ()
add top = bottom to RH; let ¢ be the role range (top, bottom)

let the set of administrative roles AR = A; add (a, A) to UA
can_assign = {(A, true, &)}, can_revoke = can_modify = {(A, &)}

10 execute addToRange (a, &, subjectExists) where subjectExists iS a role

11 foreach s € S, execute assignUser(a, s, subjectExists)

12 execute removeFromRange (a, &, subjectExists)

13 foreach  (o,r) € Oy x R, execute addToRange (a, &, o)

14 foreach r € M,[s,0] execute assignUser(a, s, o)

15 return  ~4, 4

©oOoO~NOULAWN

17 Subroutine ReduceQuery( q)

18 [/ * input: g - an SDCO query =/

19 /* output: ¢4 - an ARBAC97 query =*/

20 if ¢ == sc S then ¢4 = (s,subjectErists) € UA

21 if ¢ ==0€0 then ¢4 = 3 u such that (u,0mu) € UA
22 if ¢ == recMi[s,o then ¢* = (s,0,) € UA

23 return ¢4
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We now show that property (1) for a reduction is satisfied by the above mappingy, bet a start-state
in SDCO. We produce the corresponding start-sﬁ@‘fein ARBAC97 using theReduce subroutine above.
Given a statey, and queryq such thaty, ~, 7, we show that there existg' and queryg” such that
74 fi)wA 7,’3 wherey,f ¢4 ifand only if v, F ¢. If v = o, then'y,j‘ = If giss € S, theng? is
(s, subjectEzists) € UA. By line 11 inReduce ¢* is true if and only ifg is true. lfgiso € O, theng? is 3 u
such thatu, o,,,) € UA. By line 14 inReduce, and the property that every object that exists in SDCO has
an owner associated with it (that isyn € M[s, o] for some subject), ¢* is true if and only ifq is true. And
if gisr € M|s, o], ¢ is (s,0,) € UA, and by line 14 oReduce, ¢ is true if and only ifg* is true.

Consider somey, reachable fromy, and a query;. We show the existence o/g‘ that is reachable from
v4' and that answerg”? the same way by construction. dfis of types € S, we lety{! = . if g is of
typeo € O orr € M(s, 0], we do the following. We consider each state-transition in SDG®-, y1 —

. — 7. If the state-transition is the execution @feate Object (s, 0), we executerddToRange (a, &, 0ouwn)
and assignUser (a, s, 00un). If the state-transition in SDCO is the execution ddstroyObject(s, o), we
executerevoke User (a,u, o,) for every (u,o,) € UA for everyr, and removeFromRange (a,&, 0own). If
the state-transition in SDCO is the executiongeintOwn (s, s',0), we executerevokeUser (a, S, 0oun) and
assignUser (a, s', 00w ). If the state-transition in SDCO is the executiong@fint_r; (s, s’,0), we execute
assignUser (a,s',0,,). Now, consider each possible query If ¢ is s € S, theny;! = ~'. In our SDCO
scheme, the subjects are fixed at the start and never chang)%“. S@” if and only if v - ¢. If giso € O,
theny; = ¢ if and only if o exists in the state,. This is the case if and only if some subjedtas theown right
overo. This is the case if and only if we have the rolg,, in the range and the user corresponding4as a
member of that role. Thereforey, I ¢ if and only if 4! - ¢, And finally, if g isr € M[s, o], thenv, I ¢
if and only if » has been granted toby the owner ob. This is true if and only if we have assigned the user
corresponding ta to the roleo,.. Thus, againy; - ¢ if and only if ’y,? - g4,

We prove that property (2) for a reduction is satisfied by our mapping also by constructiofy' betthe
start-state in ARBAC97 corresponding1g, the start-state in SDCO. Then,qig‘ is a state reachable frong'
andg” is a query in ARBAC97 whose corresponding query in SDC@, iwe constructy;,, a state in SDCO
reachable fromy, as follows. Ifgis s € S, we lety, = 7. Otherwise, for each role,.,, that has a member
s, we executecreateObject (s, 0). For each role, that has a membeY, if the role o,,,, has a membes,
we executegrant 1 (s, s',0). If gis s € S, theng” is (s, subjectEvists) € UA, and clearlyy! I- ¢* if and
only if v, F ¢, as the subjects that exist do not change from the start-state in SDCO, and the members of
subjectExists do not change from the start-state in ARBAC97¢ i 0 € O, 7{* - ¢ if and only if 3 s such
that (s, 0,un) € UA. And if ¢ is true, we would have added thesn right to M., [s, o], which means that
v, F g if and only if 4! - ¢#. And finally, if g is € Ms, o], vi' - ¢” if and only if (s,0,) € UA. The
condition thatg” is true is the only one in which we would have added the rigtat M., [s, o], and therefore
vk, F g if and only if 4 - ¢4, |

Before we introduce Theorem 6, we introduce the following lemma as an intermediate result on the state-
change rules in ARBAC97. The intermediate result aids in the proof of the theorem.

Lemma 5 Letey be a state-transition rule, angland~’ be states in thel RBA(C97 scheme. Then, for any two
queriesq; andge, there exists ng’ such thaty’ - (—¢; A ¢2) wheny = (g1 A —g2) and~y — +'.

Proof. We observe that the operationssignUser, assignPermission, addToRange and addAsSenior can

cause queries to become only true, and not false. Similarly, the operatiaris User, revokePermission,
removeFromRange and removeAsSenior cannot cause a query to become true. Therefore, given a state-
transition in the ARBAC97 scheme, it cannot cause a query that is true to become false and another query that
is false to become true in the new state. [

Theorem 6 There exists no state-matching reduction from SDCO to ARBAC97.
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Proof. By contradiction. Assume that there exists a state-matching reduction from SDCO to AR-
BAC97. LetS = {si,s2,s3,...}. In SDCO, adopt asy a state with the following properties. Let
s1 € Sy, 0 € Oy andown € MJsi,0]. Letg; be the query dwn € [s;,0]” for eachi = 1,2,...,
and g, be the query 6 € O,”. These queries are mapped q(;? and ¢4 respectively in the AR-
BAC97 scheme. We observe that - (q1 A —g2 A —g3 A...Aq,). There exists a staté reachable
from ~ such thaty F (—¢1 Aga A g3 A ... Ag,). And, there exists no reachable statesuch thaty +
(@ A=A ANGAN...Ng) OFry F (mqr A Ao A=gi AL Ngo) Toranyj # 1. (if o € O,,
then there must be exactly one subject that owps Consider the state* in ARBAC97 that corre-
sponds toy (if there does not exist one, then we have the desired contradiction). We know-that
(gt A =g A—=g4t A ... AgZt). There must also exist a reachable sfatethat corresponds 9 (if there does
not exist one, then we have the desired contradiction). By Lemma 5, we knowhatnot reachable from
~4 is a single state-transition. Therefore, there must exist some~“statieat is reachable from# such that

AYE (G A= NG AL N gl) orAt (—\qf‘/\—\q?/\.../\—\qf/\.../\q;q) for at least ong # 1.
As there exists no corresponding state in the SDCO scheme that is reachabtg fsenmave a contradiction
to the assumption that there exists a state-matching reduction from SDCO to ARBAC97. [ |

One may ask whether there are other schemes based on RBAC for which there is indeed a state-matching
reduction from SDCO. An approach may be to adopt a different query set for ARBAC97. We observe that for
certain other query sets as well, the non-existence of a state-matching reduction holds. As an example, suppose
we map the query for the presence of a right in SDCO to a query for the absence of a permission in RBAC. In
this case as well, there exists no state-matching reduction from SDCO. Whether there exists a meaningful set
of state-transition rules (an administrative model) for RBAC for which there is a state-matching reduction from
SDCO is an open problem.

4.4 Comparing an RBAC scheme with a Trust Management Language

In this section, we compare a particular RBAC scheme to the trust management sBiéme, The RBAC
scheme we consider is called Assignment And Revocation (AAR) [11]. In AAR, the state is an RBAC state,
and state-transition rules are those from the URA97 component of the ARBAC97 [19]; users may be assigned
to and revoked from roles.

RT[N] is a trust management scheme in which a state is a set of credentials issued by the principals involved
in the system. A credential denotes membership in a principal’s role. A credential is one of three types: (1)
A principal is asserted to be a member of another principal’s role, (2) All the principals that are members of a
principal’s role are asserted to also be members of another principal’s role, and (3) All the principals that are
members of two roles (the intersection of the members of the roles) are also members of another principal’s
role.

We first present precise characterizations of the AAR schemeRdnd]. [11] present a form-2 weak
reduction (see Definition 11) from AAR tRT[N]. We assert with the following theorem that the result can be
made stronger.

The AAR Scheme
I' In AAR, a state is the RBAC statd/A, PA, RH ), as discussed in the previous section for ARBAC97.

¥ The state-transitions allowed are the operatiofisgn User and revokeUser from the previous section,

with the exception that negation is not allowed in pre-requisite conditions. In addition, in AAR, we require that
for every role for which there is aun_assign entry, there is also an_revoke entry. That is, if3 (ar,c, &) €
can_assign such thatar has at least one member andnay evaluate tdrue, thenV r € &, 3 (ar’, &) €
can_revoke such that € ¢ andar’ has at least one member.
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Q,F  Queries are of the form; O sy, wheres; and sy are user-sets A user-set is an expression that
evaluates to a set of users. A set of roles, a set of permissions and a set of users are user-sets, as are unions
and intersections of user-sets. We refer the reader to [11] for more details on user-sets. Entailment involves
evaluating the user-sets andss to the sets of userS; andS; respectively, and determining whethgr ©

So. Several interesting queries related to safety, availability, liveness and mutual-exclusion can be posed as

comparisons of user-sets.
The RT[N] Scheme

I' An RT[N] state is a set of credentials, each of which is one of the following typesA.¢1}— U, (2)
A.r —— B.ry, and (3)A.r — B.r; N C.ry. Each ofA, B, C, U is a principal,r,r1,r, is a role name, and
A.r,B.r;,C.rg is arole. The symbol— is read as “includes”. Statement (1) asserts thas a member of
A’s r role. Statement (2) asserts that all members of theBole are members of the rold.r. Statement (3)
asserts that anyone that is a member of ®th, andC.r, is a member ofd.r.

U A state-transition iRT[N] is either the removal of a credential, or the addition of one. State-transitions are
controlled bygrowth andshrink-restricted sets of roles -& and S respectively. A role that is in the growth-
restricted set may not have any assertions added with that role at the head of the assertion, and a role that is in
the shrink-restricted may not have any assertions removed. Thus, the state-transition rules are represented as
(G,S).

Q,- We allow queries of the form; J ¢2 where each; andc; is either anRT|[N] role, a credential, or
credentials joined by unionj or intersection). We observe that this is slightly different from the definition for
queries in [11]. The reason is that in that work, only a form-2 weak reduction (see Definition 11) is presented,
and therefore queries are processed in conjunction with each state and state-transition rule in the mapping.
We seek to map queries independently of states and state-transition rules. EntailR€frtjins done using
credential chain discovery [14]: we find a chain of credentials that proves a (portion of a) query, if one exists.

Theorem 7 There exists a state-matching reduction from the AAR scheR&[.

Proof. By construction. We show that the mapping from [11] from AARR®|N] is a state-matching re-
duction. We consider each assertion from Definition 7 in turn. EachmateAAR is associated with the
role Sys.r in RT[N]. We show that after a series of state-transitions, the role-memberships in AAR match the
role-memberships in the corresponding statBfN].

Assertion 1:Let v be the given AAR state, angl +5, /. Then,y = v0 =y Y1.-. =y Ym = 7
Each state-transition is either the assignment of a user to a role asifyg User or revocation of a user’s
membership in a role usingvoke User. Let the corresponding statesR [N] bey? = 7,47, ... 4L = ~T",
The users that are members of any roia v are the same as the users that are members of the corresponding
role Sys.r in 7. If the state-transition fromy; to ;. is the result of the assignment of the useto the
role r, then we effect the following changes to transition from the statéo . ,: we add the two statements
ASys.r «—— u andBSys.r —— u. If the state-transition is the result of the revocation of the useom the role
r, then we remove all statements that exist of the following two forAtys.r «—— u andRSys.r «— u. We
observe that inyT', anyHSys.r has as members all users that were ever members of the. rGlensequently,
in fyT', eachSys.r has as members those users that are memberisof . Therefore, we can assert that- ¢
iff ’yT/ Fqr.

Assertion 2:In RT[N], the only roles that can grow are ti&ys and BSys roles. The only roles that
can shrink are théSys and RSys roles. Givemy” = o () where~ is a given AAR state and/T' is the
correspondindR T[N state, lety” +i>¢ wT’. We construct the AAR statg that corresponds t@T' as follows.
For each statement of the foBbys.r «—— u or of the formASys.r «—— u, we assign the user to the roler.
Now, we compare the user-role memberships of each user to the-ratetSys.r. There cannot be any users
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in Sys.r that are not in": the reason is that we have not revoked any user membershifstarting from the
user-role membership in the statg There may be users inthat are not ifSys.r. Given the requirement
that every role for which there is@n _assign, we also have aan_revoke, the only way for these extra users
to be inr and notSys.r is that there exists aan_assign that permits those users to be assigned ¢starting
at the statey). We revoke such users’ membership frenusing the relevantan_revoke entries. Now, the
memberships im andSys.r are identical, and we can assert that for all queyie;sT’ Fo(q)iff v/ Fq. |

4.5 Comparing ATAM with TAM

TAM is a scheme based on the access matrix model and is similar to the HRU scheme [6] (see Section 2.1).
Every object is typed, and the type cannot change once the object is created. State-transitions occur via the exe-
cution of commands that are similar to HRU commands. We specify a type for every parameter to a command.
ATAM is the same as TAM, except that in a condition in an ATAM command, the absence of a right in a cell of
the access matrix may be checked (and not just the presence of a right). Below, we present characterizations of
the two schemes.

[20] present a mapping from the ATAM to TAM. Based on the mapping, one may conclude that TAM is
at least as expressive as ATAM. As the converse is trivially true (TAM is a special case of ATAM), one may
conclude that ATAM and TAM have the same expressive power; we gain nothing from the ability to check for
the absence of rights in the condition of an ATAM command. [20] make the observation that the simulation of
a command in ATAM may require the execution of an unbounded number of commands in TAM, and conclude
with the following comment: “. .. practically testing for the absence of rights appears to be useful. Itis an open
guestion whether this claim can be formalized...” In this section, we formalize this claim by asserting that
there is no state-matching reduction from ATAM to TAM.

The TAM Scheme

I' TAM is similar to the HRU scheme (see Section 2.1). Each statel’ is (S, O, M, [], R, T, typeOf )
whereS,, O,, R, andT, are finite, strict subsets of the countably infinite s€tésubjects),0 (objects),R
(rights) and7 (types of objects and subjects) respectively. The fundtipaOf: (S, U O,) — T’,, maps each
subject and object to a type that cannot change once the subject or object is ctédteih the access matrix.

¥ A state-transition rule is a set of commands. Each command has an optional list of conditions that are
joined by conjunction. A command then consists of primitive operations. Each parameter to the command is
associated with a type. Each condition may check only for the presence of a right in a cell.

Q,F We allow queries of the form “is € M]s, 0]?” Entailment is defined as follows. Given a state
yel',ykFre Mls,olifandonlyifs € Sy ANo€ Oy Ar € R, ANr € M,[s,o].

The ATAM Scheme

I'v,Q,+ An ATAM state is the same as a TAM state. State-transition rules are the same as for TAM,
except that a condition in a command may check for the absence of a right (as opposed to only the presence
of a right). In ATAM, we allow( to contain queries of the following two forms: (1) Is€ M]s, 0]?, and

(2) Isr ¢ M]Js,0]? This is consistent with the intent of [20] to determine whether the ability to check for the
absence of rights does indeed add more expressive pbvgdefined the same as in TAM for a query of type

(1). For a query of the type (2, is defined as follows. Given a statec T', v - r ¢ M][s, o] if and only if
seSyNo€eOy,ANre Ry AT & DM,s,o].

Theorem 8 There exists no state-matching reduction from ATAM to TAM.

Proof. By contradiction. Assume that there exists a state-matching reducfimm ATAM to TAM. Consider
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an ATAM scheme in which) (the state-transition rule) consists of the following commands.

command createSubject(X: t) command addRight(Y: t, Z: t)
create subject X of type t enter r into [Y, Z]

Adopt asyy (the start state) in ATAM a state with no subjects or objects. (thaijs= O,, = (). The set

of rights, R, = {r}, and there is a single typefor all subjects (no objects other than subjects exist or can
be created in our ATAM system). We denote components of the TAM system under the mapypitiga
superscripfl’. For exampleg (o) = 1¢ ando () = 7.

We assume that the countably infinite set of subjécts {si, s2,...}. In the ATAM system, we wish to
consider queries of the form ; = r € M][s;, s;] andg; ; = r & M]|s;, s;] for somes;, s; € S. First, we make
the observation that any two distinct querieg € {g¢; j|si,s; € S} U {q ;|si,s; € S} are mapped to distinct
queries in TAM. That isp # q = p’ # ¢*. Otherwise, pick a paip, ¢ such thaip # ¢ butp” = ¢ For
any two such queries andgq, there exists a statg in ATAM such thaty iw, ~andy F p A =g. Clearly, a
corresponding reachable state (that answers the quededq the same way) does not exist in TAM, which
gives us the desired contradiction. We observe also that by the definition of a state-matching reduction, queries
are mapped independent of the start state and the state-change rules.

Consideryy”, the command schema in TAM. As a query in TAM is of the forme M[s, o], we can
determine an upper bouna, for the number of queries a command in the TAM system can change from false
to true when executed. These are queries of both tyf)Jeand(ZTjT. One way to determine a value foris to
count the number ofénter right” primitive operations in each command and take the maximum (even though
this maximum may not be a tight upper bound).is constant, and may be dependantocands), but not the
set of queries. Choose some> m.

Now, consider the state in ATAM;, such thaty, »i>¢ veandy, B mqia Aqia Aqia A qie A A
—gnn N qn.n (We use the subscrigt only to distinguish the state, and not as a count of the number of state-
changes needed to reach it). Thatjigdoes not entail any of the queries of the type and entails all queries
of the typeg; ; for all integersi, j such thatl <, j < n. The statey, corresponds t&,, = {s1,..., s, } with
no rightr in any of the cells. One way to reach this state frgris to execute the commandeateSubject n
times with the parameter instantiatedstdn the ;** execution.

We assume that as, a state-matching reduction exists, there exists a corresponding rechabl@CTshate
TAM that answers the (mapped) queries the same way. Consider any seq@enqﬁ A P yT s T %3
Pick the first statey! in the sequence that satisfies the following conditigf:- qgj V @T for all integers
i,j suchthatl <i,j < n. Such a state exists/;{ is such a state, and may be the only state in the sequence that
meets the condition. We observe also thadoes not satisfy the condition, thereby implying that the sequence
has at least one state-change.

Consider the statg! ; in the sequence just beforé. v | has the following property: there exist integers

v,wwith 1 < v,w < n, such thap? | - - <q§£w Vv q/U,TuT) = 7L F “quw A o . For every state in
the ATAM system that entails the corresponding formula of quefigs, A —¢,..,, the state also entails at least
one of the following two formulae of queries: (@h = —gy,1 A —Go.1 A G2 A G2 A ... A =GQun A “Gyn A
1w A _‘@ AN qn,v A _‘(Z-L,\’LH or, (2)Q2 = Quw,1 A _‘q/’L-U\,l A quw,2 A _‘qqu/,\Q AN “quw,n A _‘q/w7L A —q1,w A
Gl N NG A -
The reason is that a state in ATAM that entailg, ,, A —q,,.» IS 0ne in which either the subjest or s,,,
or both do not exist{ = w is allowed, and does not affect our arguments). None of the queries of either type
,j Or ¢;; corresponding to a subject that does not exist in a state is entailed by the state. Therefore, in TAM,
vE QT v QY (whereQT and@? are obtained fron@); and@, respectively by adding the superscripto
each query in the formula).
Consider the state-change in TAM fromd, tovZ. It must change (at least) queries that appear i7"
or QT from false to true. This is not possible, as each state-change can change at mostqueries from
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false to true. We have the desired contradiction to the existence of a state-matching reduction from the ATAM
scheme to the TAM scheme. [

Thus, the notion of state-matching reductions formalizes the difference in expressive power between ATAM
and TAM. One may ask whether there exists a reduction from ATAM to TAM. One may also ask whether
reductions or state-matching reductions exist from ATAM to TAM when we allow TAM to contain queries of
the type “isr ¢ M, s, 0]?” as well (but a command only allows checking for the presence of a right in a cell in
the condition). These are open questions.

5 Conclusions and Future Work

We have presented a theory to compare the expressive power of access control models. Our theory is based
on perceiving an access control system as a state-transition system, and asking whether there exist security-
preserving or strongly security-preserving mappings between two schemes. We have applied our theory in four
cases and show that: (1) the HRU scheme is limited in its expressive power in comparison with a simple trust
management scheme; (2) RBAC with ARBAC97 as its administrative model is limited in its expressive power

in comparison to a version of DAC; (3) the trust-management scliehfiig] is at least as expressive as RBAC

with the URA97 component of ARBAC97 as its administrative model; and (4) ATAM is more expressive than
TAM. To our knowledge, (1) is the evidence that the expressive of the HRU scheme is limited, (2) is the first
evidence that the expressive power of RBAC is limited, and (4) formally demonstrates the benefit from the
ability to check for the absence of a right in addition to the presence of a right.

As future work, we propose to use our theory to compare more models with each other. For instance, we
would like to compare various versions of DAC and “layer” these versions based on their relative expressive
power. Also, while our theory is based on capturing the notion of policies that can represented and verified in
an access control system, we do not believe that reductions and state-matching reductions capture all the types
of policies we would want to consider. For instance, a reasonable question to ask during a security audit may
be: “did Alice get her write access to a sensitive file only after her husband, Bob was given privileged access
to the system?” This can be perceived as a policy issue, and we may want to express this as some expression
involving queries. Neither reductions not state-matching reductions capture such query expressions. As part of
our future work, we propose to expand our theory to include such policies.
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A A “Simulation” of RBAC in Strict DAC

We now informally describe a simulation of RBAC in strict DAC, the simplest form of DAC. The point of this

simulation is to show that if precise requirements are not specified on simulations, then anything is possible.
The state of a strict DAC model is represented by an access matrix, which has one subject for each user and

each role and one object for each permission. There is also one special adbjactwho is the creator and

owner of every object in the system. All subjects are also objects. We use three nghts, dc’, and ‘c’. We

assume that the implementation of the strict DAC model provides the following functionality, it internally sorts

all the objects and can return the first object, given an ohjeittreturn the object next toe. The commands

implemented in the strict DAC are as follows:

command create(s, 0)

create o;
enter own into (s,0);
end;

command delete(s, 0)
if own € (s,0)
destroy o;
end;
command grant-dc(sl, s2, 0)
if own € (s1,0)
enter dc into (s2,0);
enter c into (s2,0);
end;
command grant-c(sl, s2, o)
if own € (s1,0)
enter c into (s2,0);
end;
command revoke-dc(sl, s2, 0)
if own € (s1,0)
remove c from (s2,0);
end;
command revoke-c(sl, s2, 0)
if own € (s1,0)
remove c¢ from (s2,0);
end;

The addition of new users, roles, and permissions are carried out by the simulator in the straightforward
way, i.e., haveadmin executes a creation commarmdmin then becomes the owner of these objects. When
a new user-role assignmeltt, r), is added, the following procedure is executed, observe that only constant
space is needed for the simulation.

addUR(u,r) {
run command grant-dc( admin , u, I);

27



while (propagate());

¥

propagate() {

repeat = false;

for every s,01,02 in the matrix {
if c ¢(s,02) && ¢ €(s,01) && ¢ €(01,02) {
run command grant-c( admin , S, 02);
repeat = true;

1

return repeat;

}

The procedures for adding a role-permission assignment and a role-role inheritance relationship is similar.
Whenever a user-role assignment is removed, the simulator executes the following procedure, which first
clear all the propagated rights and redo the propagation.

removeUR(u,r) {

if ( dc € (u,n) {
run command revoke-dc(  admin , u, r);
clear();
while (propagate());

}

}

clear() {
for every s,0 in the matrix {
if c e(s,00 |
run command revoke-c( admin , s, 02);
1
¥
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