
Evaluating Role Mining Algorithms

Ian Molloy, Ninghui Li, Tiancheng Li,
Ziqing Mao, Qihua Wang

CERIAS Research Center
Department of Computer Science, Purdue

University
West Lafayette, Indiana, USA

{imolloy,ninghui,li83,zmao,wangq}@cs.purdue.edu

Jorge Lobo
IBM T.J. Watson Research Center

Hawthorne, NY, USA
lobo@us.ibm.com

ABSTRACT
While many role mining algorithms have been proposed in
recent years, there lacks a comprehensive study to compare
these algorithms. These role mining algorithms have been
evaluated when they were proposed, but the evaluations
were using different datasets and evaluation criteria. In this
paper, we introduce a comprehensive framework for eval-
uating role mining algorithms. We categorize role mining
algorithms into two classes based on their outputs; Class 1
algorithms output a sequence of prioritized roles while Class
2 algorithms output complete RBAC states. We then de-
velop techniques that enable us to compare these algorithms
directly. We also introduce a new role mining algorithm
and two new ways for algorithmically generating datasets
for evaluation. Using synthetic as well as real datasets, we
compared nine role mining algorithms. Our results illustrate
the strengths and weaknesses of these algorithms.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess Controls; H.2.8 [Database Management]: Database
Applications—Data mining

General Terms
Security, Management, Experimentation

Keywords
RBAC, role engineering, role mining, evaluation

1. INTRODUCTION
Recently, there has been increasing interest in role mining,

which uses data mining techniques to discover roles from
existing system configuration data. Because role mining
uses automated techniques, it has the potential to acceler-
ate the role engineering process, which is the costliest part
of migrating to an RBAC system. While many role min-
ing algorithms have been proposed in recent years, including

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’09, June 3–5, 2009, Stresa, Italy.
Copyright 2009 ACM 978-1-60558-537-6/09/06 ...$5.00.

ORCA [13], CompleteMiner and FastMiner [19], graph opti-
mization [20], role and edge minimization algorithms [2], and
HierarchicalMiner [10], there lacks a comprehensive study
to compare these algorithms. These role mining algorithms
have been evaluated when they were proposed, but the eval-
uations were using different datasets and evaluation criteria.

In this paper, we introduce an evaluation framework for
comparing different role mining algorithms. We catego-
rize role mining algorithms into two classes based on their
outputs; Class 1 algorithms output a sequence of priori-
tized roles while Class 2 algorithms output complete RBAC
states. We discuss how to convert Class 1 output into Class
2 and vice versa.

We propose two new algorithms for generating user-
permission data with role hierarchies: tree-based data gen-
erator and ERBAC data generator. The tree-based data
generator outputs a tree-based role hierarchy while ERBAC
data generator outputs a two-level layer role hierarchy in the
Enterprise RBAC model. The data generators are param-
eterized. These data generators are useful for the research
community in role mining and other RBAC problems.

Finally, we compare all nine role mining algorithms within
our evaluation platform. We found that some algorithms
perform well on a wider range of tests than others, imply-
ing some algorithms are more flexible at role mining, while
others are more specialized.

The rest of this paper is organized as follows. Section 2
presents an overview of our approach for evaluating role
mining algorithms. Section 3 describes the nine role min-
ing algorithms that we evaluate. We also analyze the time
complexity of these algorithms and discuss their similarity
and differences. This helps understand the landscape of role
mining algorithms. Evaluation results are presented in Sec-
tion 4. In Section 5, we discuss related work. We conclude
and discuss future directions in Section 6.

2. OVERVIEW
To evaluate role mining algorithms, we must answer three

key questions:

1. What does a role mining algorithm output?
2. What criteria should be used to compare the outputs

from different role mining algorithms?
3. What input datasets should be used?

In this section, we answer these three questions.

2.1 Output of Role Mining Algorithms

Existing role mining algorithms in the literature can be
divided into two classes based on their output.

Class 1 Algorithms: Outputting prioritized roles
Algorithms in the first class output a prioritized list of can-
didate roles, each of which is a set of permissions. These
algorithms output a vector of candidate roles ~C ordered by
their priority. Examples include CompleteMiner and Fast-
Miner in [19].

These algorithms can be divided into two phases: candi-
date role generation and candidate role prioritization. The
candidate role generation phase identifies a set of candidate
roles from the user-permission assignment data. This phase
usually outputs a large number of candidate roles. The can-
didate role prioritization phase assigns a priority value to
each candidate role; roles with a larger priority value are
more important and useful.

Class 2 Algorithms: Outputting RBAC states
Algorithms in the second class output a complete RBAC
state. Examples include ORCA [13], graph optimiza-
tion [20], role/edge minimization algorithms [2], and Hier-
archicalMiner [10].

These algorithms take as input a configura-
tion ρ = 〈U,P,UP〉 and output an RBAC state
γ = 〈R,UA,PA,RH ,DUPA〉 that is consistent with
ρ. In the state, R is a set of roles, UA ⊆ U ×R is the user-
role assignment relation, PA ⊆ R×P is the role-permission
assignment relation, RH ⊆ R × R is a partial order over
R, which is called a role hierarchy, and DUPA ⊆ U × P is
the direct user-permission assignment relation. The RBAC
state is consistent with 〈U,P,UP〉, if every user in U has
the same set of authorized permissions in the RBAC state
as in UP .

These algorithms often aim at generating an RBAC state
that minimizes some cost measure, such as minimizing the
number of roles or the number of user-assignments and
permission-assignments. Molloy et al. [10] introduced the
notion of weighted structural complexity as a way to pa-
rameterize the desired optimization objective.

Weighted Structural Complexity (WSC) sums up the num-
ber of relationships in an RBAC state, with possibly differ-
ent weights for each relationship.

Definition 1. Given a weight vector W =
〈wr, wu, wp, wh, wd〉, where wr, wu, wp, wh, wd ∈
Q+ ∪ {∞},1, the Weighted Structural Complexity (WSC)
of an RBAC state γ, which is denoted as wsc(γ,W), is
computed as follow.

wsc(γ,W) = wr ∗ |R|+ wu ∗ |UA|+ wp ∗ |PA|+
wh ∗ |t reduce(RH)|+ wd ∗ |DUPA| (1)

where | · | denotes the size of the set or relation (the L1

norm if the relations are represented as matrices), and
t reduce(RH) denotes the transitive reduction of the role-
hierarchy.

A transitive reduction is the minimal set of relation-
ships that encodes the same hierarchy. For example,
t reduce ({(r1, r2), (r2, r3), (r1, r3)}) = {(r1, r2), (r2, r3)}, as
(r1, r3) can be inferred.

1Q+ is the set of all non-negative rational numbers.

Arithmetics involving ∞ is defined as follows: 0 ∗∞ = 0,
∀x∈Q+ x ∗∞ =∞, ∀x∈Q+∪{∞} x+∞ =∞,

Different weight vectors encode different mining objec-
tives and minimization goals. For example, by setting
W = 〈1, 0, 0, 0,∞〉 one can minimize the number of roles.
HierarchicalMiner [10] takes both a configuration ρ and a
weight vector 〈wr, wu, wp, wh, wd〉 and aims at outputting
an RBAC state with low WSC. Other algorithms, such as
graph optimization [20], while often designed to minimize a
specific metric, such as the number of edges, can easily be
generalized to take a weight vector as input. We modify all
algorithms when appropriate to minimize WSC.

Class 1 Versus Class 2 Algorithms
RBAC states are easy to compare, however it is important to
compare role sequences too. Outputting a list of candidate
roles can be more useful in practice. A typical role engineer-
ing process is not completely automatic, because the input
data is often noisy or incomplete. It is unlikely that one will
adopt a complete RBAC state outputted by a role mining
program. The most likely usage scenario of a role mining
tool is as follows: the administrator examines the role min-
ing results and determine whether to adopt some part of it.
Outputting a sequence of candidate roles will allow the ad-
ministrator to examine the sequence of candidate roles one
by one and determine whether these roles should be created.
In short, we believe that an important metric that is rele-
vant in practice for role mining algorithms is whether they
can suggest the best candidate roles.

Converting Class 1 Algorithms to Class 2 Algorithms
Because we aim to compare both Class 1 algorithms and
Class 2 algorithms together, we propose a way to convert
outputs of one kind into the other.

Given a sequence of candidate roles ~C generated by a
Class 1 algorithm and a weight vector W , we use these roles
to construct an RBAC state that tries to minimize the WSC.
For each k from 1 to some suitable upperbound, our algo-
rithm considers the optimal RBAC state using the top k
roles in the sequence, denoted γ∗

[ρ,~C,k,W]
, and chooses the

best among them.
When we know exactly which roles are to be created, the

optimal RBAC state can be obtained by finding the optimal
way to cover each user and each role with the created roles
and permissions. Each user and each role can be considered
separately from how other users and roles are covered. Note
that the resulting RBAC state will often be hierarchical.

For each user and each role, we need to solve an instance
of the set cover problem: given a permission set Pi and a
familyR of roles that are subsets of Pi, a cover is a subfamily
Ri ⊆ R whose union is Pi; the set cover optimizing problem
is to find a cover which uses the fewest roles. An optimal
set cover algorithm is to consider all subfamilies of R, check
whether they cover Pi, and select the subfamily that uses
the fewest sets. We can also assign individual items from
Pi, adding to PA when Pi is a role, and DUPA when Pi is
a user. As the optimal set cover algorithm runs in expo-
nential time, we use a dynamic combination of the optimal
algorithm and a heuristic algorithm in our experiments. If
the size of R is at most 15, we apply the optimal algorithm
to cover Pi; otherwise, we use the following heuristic algo-
rithm. At step j, the algorithm chooses rj ∈ R such that
rj covers the most elements that haven’t been covered in Pi

yet with minimal cost (from W). This procedure terminates
when all elements in Pi have been covered in at least one
of the steps and Ri is the union of all the rjs. Since the
same dynamic combination is used for all algorithms, the
comparison of different algorithms remains fair.

We note that this is a quite expensive procedure. How-
ever, this is not part of any role mining algorithm, but rather
a step used to compare different algorithms.

Converting Class 2 Algorithms to Class 1 Algorithms
Given an RBAC state, we output a prioritized sequence of
roles as follows. First, compute a score for each role. The
score of a role r is the difference in the WSC of the mined
RBAC state and the WSC when r is removed. Roles are
ordered in decreasing order. The intuition is that if a role
is important, removing the role would result in an RBAC
system with a large structural complexity.

To calculate the score of a role r, we need to compute the
structural complexity of the resulting RBAC system when
r is removed. When role r is removed from the role hier-
archy, all of r’s children are assigned to all of r’s parents.
There are some permissions in r that do not appear in any
of its children. We add these permissions to all of role r’s
parents. Finally, we cover all users of role r by applying an
optimal set cover algorithm using the other roles and direct
user-permission assignment and weights W . We have now
constructed the RBAC system with role r removed and can
compute the structural complexity difference.

2.2 Metrics for Comparing Algorithms
We will compare the role mining algorithms both on the

complexity of the RBAC state and on the quality of roles
that they output. We will not attempt to evaluate the algo-
rithms based on their efficiency, however we will comment
on the running time and efficiency when necessary.

2.2.1 Quality of RBAC States
Using WSC, we can evaluate how well each algorithm per-

forms under a variety of mining objectives. For each al-
gorithm and dataset, we mine the data using a variety of
weight vectors that tune the algorithms for each objective,
such as role minimization or edge minimization. Algorithms
that do not accept WSC inputs, such as CompleteMiner, are
mined only once. If an algorithm outputs a complete RBAC
state, it is first converted into a prioritized sequence of roles.

Weights Used
There is an unlimited number of possible WSC weights we
could use to evaluate the role mining algorithms. We chose
to use a small set that depicts what is commonly used in the
literature.

1. wr = 1, wd = ∞, and everything else costs 0. This is
the basic-RMP. It will minimize the number of roles k.

2. wu = wp = wh = 1, wr = 0, wd = c. When c = ∞,
this is the edge-RMP, and when wd = 1, this is δ-
consistent edge-RMP. We only handle δ-approximate
under-assignment of permissions in this work.

3. wr = wu = wp = wh = 1 and wd = ∞. This is the
Zhang-variant of edge-RMP with a role hierarchy. It
will minimize the number of roles and edges without
direct assignments.

4. Everything costs 1. This will minimize the size of
the RBAC state representation allowing direct assign-
ments.

We should note that when wd = ∞, our set cover solution
will maximize coverage of UP . We have tried other weight
vectors, such as increasing the weight for permission related
assignments, however the results did not significantly devi-
ate from the above and we omit them from this paper.

2.2.2 Prioritized Role Quality
As discussed in Section 2.1, outputting a prioritized se-

quence of roles can be more useful in practice, and we need
a way to compare the quality of this sequence generated by
different role mining algorithms. This is not an easy task.
While one can define the quality of a set of roles using some
measures, the order in which the roles are output is impor-
tant to consider. For example, when there are 100 roles, out-
putting the most useful roles early in the sequence is much
better than outputting them last, as the administrators are
likely to consider only the roles output earlier. To address
this challenge, we use the following approach. Once we have
obtained prioritized roles for each algorithm, dataset, and
weight vector tuple, we compute the optimal RBAC state
using the top k roles for k = 1 to some upper-bound com-
mensurate with the size of the dataset (possibly exhausting
the set of candidate roles). We can then evaluate the roles
using some criterion.

This analysis allows us to generate simple k-criteria plots,
such as k-cost and k-coverage.

1. Among the top k roles, how quickly do the mined roles
reduce the complexity of γ (compared to UP)? For
each weight vector W , we evaluate the complexity of
the optimal RBAC state using only the top k roles.

2. Among the top k roles, how quickly do the mined roles
cover the UP relation?

3. Among the top k roles, how well do they “resemble”
the original roles? In [19], Vaidya et al. consider the
number of original roles recovered as an evaluation cri-
teria. It was shown in [10] that one advantage of role-
mining is to improve the RBAC state by finding better
roles, a problem directly addressed in [18]. Vaidya et
al. [18] use the Jaccard coefficient as a similarity metric
between two roles r1 and r2

Jaccard(r1, r2) =
| r1 ∩ r2 |
| r1 ∪ r2 |

and define the similarity between two sets of roles R1

and R2 as the average maximum Jaccard between each
role ri ∈ R1 and all roles rj ∈ R2

sim(R1, R2) = avgri∈R1
max
rj∈R2

Jaccard(ri, rj). (2)

We define R1 as the set of mined roles in γ and R2 as
the set of roles in the original data.
When we have original roles, such as in generated data,
we can calculate the similarity between original and
mined role sets.

We still have not addressed the issue of measuring “how
quickly,” or “how well” the candidate roles satisfy the eval-
uation criteria. For example, consider the goal of reducing
the WSC of γ and the task of comparing two sets of candi-
date roles A and B. Set A has only one role that greatly

Dataset | Users | | Perm | | UP | Density
University 493 56 3955 0.143
Healthcare 46 46 1486 0.702
Domino 79 231 730 0.040
EMEA 35 3046 7220 0.068
APJ 2044 1146 6841 0.003
Firewall 1 365 709 31951 0.123
Firewall 2 325 590 36428 0.190
Americas 3477 1587 105205 0.019

Table 1: Sizes of the real-world datasets presented

reduces the complexity while set B requires more roles but
converges to a less costly solution. From an administrative
point of view, set A may to easier to understand (fewer roles)
while set B may be easier to manage (lower cost).

To balance these two criteria (localized and global im-
provements), we integrate the evaluation criteria over the
number of roles, creating quality metrics. For example, the
quality of the candidate roles ~C at reducing the WSC of ρ is

Qwsc(ρ, ~C, k,W) =

∫ k

0

wsc(γ∗
[ρ,~C,x,W]

,W) dx. (3)

We define similar quality metrics for coverage and similarity.
This strategy is useful for evaluating any utility measure
that we wish to minimize or maximize.

2.3 Input Data Type
The majority of role mining algorithms use user permis-

sion information as the input data. That is, the input to
a role mining algorithm is an access control configuration,
defined as follows.

Definition 2. An access control configuration ρ is given
by a tuple 〈U,P,UP〉, where U is a set of all users, P is a set
of all permissions, and UP ⊆ U × P is the user-permission
relation.

The only exception is AttributeMiner in [10], which also
uses user attribute information such as a user’s job title, de-
partment, and location. There is no other algorithm that we
can compare AttributeMiner with for role mining with user
attribute information. Because our goal is to evaluate and
compare different role mining algorithms, we choose to use
only user-permission information in this paper. Evaluating
algorithms that also use user attribute information is in-
teresting future work when more algorithms using attribute
information are released.

2.3.1 Datasets from the Literature
We use both datasets that have been used in previous role

mining papers as well as newly generated data. Datasets
that have been used in the literature are shown in Table 1.

The university data was generated based on a template
used in a recent paper2 [15]. Researchers from Stony Brook
University generated a template for an RBAC system in
a university setting, presumably through a process similar
to top-down role engineering. They created this template
for the purpose of studying security analysis in role based
access control, rather than role engineering. Thus, the main
consideration was to make the RBAC system as realistic as
possible. Molloy et al. [10] used this template to generate a
dataset for evaluation; we use that dataset.

2http://www.cs.sunysb.edu/~stoller/ccs2007/
university-policy.txt

The other seven datasets were obtained from researchers
at HP Labs and used for evaluation in [2]. The health-
care data was from the US Veteran’s Administration; the
domino data was from a Lotus Domino server; americas
(referring to americas small in [2]), emea, and apj data
were from Cisco firewalls used to provide external users ac-
cess to HP resources. We also use their firewall1 and fire-
wall2 policies.

2.3.2 Generated Data
In addition to real-world and top-down datasets, we use

synthetic datasets generated from three test data genera-
tors. The first data generator is the random data generator
from Vaidya et al. [19]. We propose two other data genera-
tors, tree-based data generator and ERBAC data generator,
that we believe produce more realistic RBAC datasets. Due
to the difficulty in obtaining real-world data, especially con-
taining complete RBAC states, synthetic data generation is
still a useful tool for role-mining evaluation.

Random Data Generator The random data gen-
erator was used in [19]; it takes five parameters
{nu, nr, np,mr,mp} where nu, nr, np are the number of
users, roles, and permissions, respectively, and mr,mp are
the maximum number of roles a user can have and the maxi-
mum number of permissions a role can have. The algorithm
consists of three steps. First, for each role, a random num-
ber of permissions up to mp are chosen to form the role.
Second, for each user, a random number of roles up to mr

are assigned to the user. Finally, for each user, the user-
permission assignments are computed based on user-role as-
signments and role-permission assignments.

The data generated by the random data generator does
not contain any structure and treats each user, role, and per-
mission as statistically independent. We present two data
generation algorithms that consider different structures and
role hierarchies.

Tree-Based Data Generator The tree-based data gen-
erator assumes the following scenario. A company consists
of a number of departments and each department has sev-
eral offices. There are company-wide permissions that are
shared by all employees. Different departments have their
own department-wide permissions, which are assigned only
to employees within the department. Also, different offices
in a department have different job functions and thus each
office has certain permissions that are assigned only to em-
ployees in that office. For example, an employee working
in the Business Office of Department A may have certain
company-wide permissions, some permissions associated to
Department A, and a number of permissions specific to the
office she is working in. In general, department-wide permis-
sions are never shared by users from different departments,
while permissions specific to an office are never shared by
users from different offices.

The tree-based data generator takes five parameters
{nu, np, h, b0, b1}, where nu, np are the number of users and
permissions respectively, h is the height of the tree, and
b0 and b1 are the lower-bound and upper-bound of the
number of children for each internal node of the tree re-
spectively. The data generation algorithm consists of three
steps. First, randomly generate a tree T of height h such
that each internal node has b ∈ [b0, b1] children. Let m
be the number of nodes in T . Second, divide the set of
permissions {p1, · · · , pnp} into m disjoint sets P1, · · · , Pm.

For every node ni (i ∈ [1,m]) in T , associate Pi with ni.
Let {nj , · · · , nm} be the set of leaf-nodes in T . For every
i ∈ [j,m], compute P ′i such that P ′i contains all permissions
associated with ni or ni’s ancestors in T . Finally, divide
the set of users {u1, · · · , unu} into (m+ 1− j) disjoint sets
Uj , · · · , Um. For every i ∈ [j,m], use the random data gen-
erator to generate user-permission assignment UP i between
Ui and P ′i . Return UP =

⋃m
i=j UP i.

ERBAC Data Generator Experiences from deploying
RBAC systems in the real world suggested the Enterprise
RBAC model, which uses a two-level layered role hierar-
chy [6]. In such a role hierarchy, there are two types of
roles: functional roles and business roles. Permissions are
only assigned to functional roles. Business roles are con-
nected to functional roles and inherit all permissions from
the connected functional roles. Finally, users are only as-
signed business roles and inherit all permissions from the
assigned business roles.

The ERBAC data generator takes seven parameters:
{nu, nbr, nfr, np,mbr,mfr,mp} where nu, nbr, nfr, np are
the number of users, business roles, functional roles, and
permissions, respectively, and mbr,mfr,mp are the maxi-
mum number of business roles a user can have, the maximum
number of functional roles a business role can have, and the
maximum number of permissions a functional role can have,
respectively. The algorithm consists of four steps. First, for
each functional role, a random number of permissions, up to
mp, are chosen to form the functional role. Second, for each
business role, a random number of functional roles, up to
mfr, are assigned to the business role. Third, for each user,
a random number of business roles, up to mbr, are assigned
to the user. Finally, for each user, the user-permission as-
signments are computed.

Parameters Used in this Work For each data genera-
tor, we fix the number of users nu = 500 and permissions
np = 1000. Other parameters were chosen such that the
density of the resulting datasets is around 0.05 to 0.10 (the
parameters used in [19] create datasets with densities around
0.07 to 0.08). For the given parameters, we generate five sets
for each algorithm and average the results for all reported
statistics over all five datasets.

3. ROLE MINING ALGORITHMS
We evaluate nine role mining algorithms in this paper.

For complexities, we assume n users and m permissions.
The evaluation results will be presented in Section 4.

3.1 Class 1 Algorithms From The Literature
CompleteMiner (CM) and FastMiner (FM) Com-
pleteMiner (CM) was proposed by Vaidya et al. [19] in
2006. It starts by creating an initial set of roles Rinitial

from the distinct user permission sets. It then computes
all possible intersection sets of the initial roles. Specifically,
the set of candidate roles generated by CompleteMiner is⋃

Rset⊆Rinitial

{ ⋂
R∈Rset R

}
.

Vaidya et al. [19] proposed a role prioritization method of
a candidate role r as

| e(r) | ∗ α+ | n(r) | ,

where e(r) denotes the set of users that have exactly the
permissions in r, n(r) is the number of users whose permis-

sions are a superset of r, and α is a tunable parameter to
favor initial roles.

The time complexity of CompleteMiner is exponential in
the size of Rinitial . To reduce the computation complexity of
the algorithm, [19] presented FastMiner, which is similar to
CompleteMiner except that FastMiner computes only inter-
section sets between pairs of initial roles. This reduces the
computational complexity of the algorithm to O(n2m).

DynamicMiner (DM) DynamicMiner [?] introduces a
new idea for prioritizing candidate roles. For role genera-
tion one can use FastMiner or a new method based on the
FP-Tree algorithm [5]. We evaluate their algorithm using
FastMiner for role generation, allowing us to more directly
compare prioritization methods.

The main observation behind DynamicMiner is the static
prioritization used in CompleteMiner and FastMiner does
not consider candidate roles that have already been chosen,
i.e., given two roles r1 and r2, the priority of r2 does not
depend on the creation of r1.

DynamicMiner ’s prioritization identifies the candidate
role with the highest priority ri first, and then updates all
subsequent roles under the assumption that ri is created.
For example, consider two roles ri and rj such that ri ⊂ rj .
If rj is created and no users have permissions Pi ⊂ rj , it
may not be beneficial to create ri once rj is created.

DynamicMiner takes at most min{m,n} iterations since
each iteration creates a role and there are at most min{m,n}
roles. Each iteration takes at most n ∗ | C | operations to
update the “benefit” values, where C is the set of candi-
date roles. Therefore, the total time complexity of Dynam-
icMiner is O(n ∗ | C | ∗min{m,n}).
PairCount (PC) We also propose a new role mining al-
gorithm and compare it with the algorithms from the liter-
ature. The PairCount algorithm is based on a new idea for
prioritizing roles and is presented as an alternative prioriti-
zation method for FastMiner. It is based on the following
observation. In CompleteMiner ’s static prioritization [19],
the priority of a permission set P depends on the number
of exact matches, and assignable users. However, in all data
generation algorithms, multiple roles are assigned to a user.
If almost every user is assigned more than one role, then
the exact count for any original role is 0, and only using
the number of assignable users does not perform well. Even
when multiple roles are assigned to any user, it is possible
that among all the users that share a role, there are many
pairs of users that share only that role, but no other. Hence
if we compute how many pairs of users share exactly P , we
would obtain a high count for original roles.

Specifically, given a candidate role P , its pair count is

PC(P) = | { (ui, uj) | ui 6= uj ∧ P (ui) ∩ P (uj) = P } |

In the above equation, P (u) is the permission set of a user
u. We note that if a candidate roles has an exact count of
n, then this will contribute n(n−1)

2
to its pair count. PC

also has the same time complexity as FastMiner, and can
naturally be extended to large tuples (triples, quads, etc.).

3.2 Existing Class 2 Algorithms
ORCA The ORCA algorithm was proposed by
Schlegelmilch and Steffens [13] in 2005. It does hierarchical
clustering on permissions. Initially, each permission forms
a cluster by itself. That is, one starts with the set of clus-

ters S = {{p1}, {p2}, · · · , {pm}}, where p1, p2, · · · , pm are
all the permissions. Iteratively, one finds a pair si, sj ∈ S
such that the number of users having both si and sj is the
largest among all such pairs, and update S by adding si∪sj
and removing si and sj . The process continues until |S | = 1
or until no user has the permissions in any two clusters in
S.

A straightforward implementation of ORCA has time
complexity O(m2n). The initial step of computing the num-
ber of users shared by two permissions take O(m2n). After
that, the algorithm iterates for O(m) steps, each step adds
a new cluster, requiring the computation of the number of
common users for the O(m) new pairs, taking O(n) each.

Graph Optimization (GO) The Graph Optimization
(GO) algorithm was proposed by Zhang et al. [20] in 2007;
it views the role mining problem as a graph optimization
problem. Initially, the permission set for each user forms
a role (note that, ORCA on the contrary defines each per-
mission as an initial role). Then, the algorithm iteratively
finds two roles such that a local restructuring (defining a role
inheritance relationship, creating a new role that is their in-
tersection, etc.) results in an improvement in terms of the
optimization objective. In [20], the optimization objective is
to minimize the sum of the number of roles and the number
of edges. It is straightforward to adapt the algorithm to min-
imize the WSC using other weight vectors using techniques
from [10].

The initial iteration checks all pairs of initial roles, which
takes O(n2m) time where n is the number of users and m is
the number of permissions. It is unclear how many iterations
the algorithm would need before stopping; but one can set a
limit on the number of iterations to limit the running time.
Suppose that one limits the number of iterations to k, then
the algorithm takes O((k+n)km) time to process the roles.
For each new role r, one needs to evaluate O(n+k) pairs at
a cost of O(m) each.

HP Role Minimization (HPr) A group of researchers
from HP Labs [2] proposed an algorithm for finding a min-
imal set of roles to cover the user-permission assignment
relation; we call this algorithm HPr. In this setting, direct
user-permission assignments are not allowed. For simplicity,
a user u’s permission set is denoted as P (u). All users that
have all of u’s permissions form the set U(u). Similarly for
each permission p, the set of users that have p is denoted
as U(p) and the set of permissions that are assigned to all
users in U(p) is denoted as P (p).

In each step, the algorithm selects a user u (or a permis-
sion p) and finds a pair 〈U(u), P (u)〉 (or 〈U(p), P (p)〉) which
forms a role. All user-permission assignments between U(u)
(or U(p)) and P (u) (or P (p)) are then removed and the re-
maining user-permission assignments will be considered in
subsequent iterations.

The authors of [2] experimented with several criteria for
selecting the next user (or permission), and found that
choosing the user (or permission) with the fewest (but non-
zero) uncovered permissions (or users) turns out to work the
best. Our evaluation hence uses this selection criteria too.

The HPr algorithm takes at mostO(min{m,n}) iterations
because the number of roles is at most min{m,n}. Each
iteration takes O(m + n) to scan all users and permissions
and select the next user (or permission). The total running

time of HPr is O(mn).

HP Edge Minimization (HPe) In [2], researchers from
HP Labs also proposed a heuristic algorithm for finding a flat
RBAC state with minimal number of edges, called edge con-
centration; we call this algorithm HPe. Edge concentration
is equivalent to WSC where wd = wh = ∞ (direct assign-
ments and role hierarchies are not allowed) and wr = 0 and
wu = wp = c. The algorithm starts by using the role mini-
mizing algorithm HPr to find a set of roles. The algorithm
then greedily improves the objective function using several
transformations until no further improvement is possible.

If two roles have considerable overlap in the permission or
user sets, HPe performs restructuring that is similar to the
Graph Optimization algorithm, except it does not create a
role hierarchy. These two algorithms are also distinguished
by their initial set of candidate roles. Similar to Graph Op-
timization, the time complexity depends on the number of
iterations it takes the algorithm to terminate. If one set
the limit on the number of iterations to k, then the time
complexity of the algorithm is O(k2m).

HierarchicalMiner (HM) HierarchicalMiner (HM) was
proposed by Molloy et al. [10] and is based on the ontology
of formal concept analysis. In the context of role mining, a
concept is a pair 〈P,U〉 such that U contains all the users
that have all permissions in P , and P contains all the per-
missions that are shared by all users in U , and both U and
P are maximal.

The family of these concepts obeys the mathematical ax-
ioms defining a lattice, and is called a concept lattice or
Galois lattice. The reduced concept lattice (obtained by re-
moving redundancies caused by inheritance in the concept
lattice) can be viewed as an RBAC state. The subconcept
relation corresponds to the role inheritance relation.

HierarchicalMiner uses the reduced concept lattice as the
initial role hierarchy, and heuristically prunes it. HM iter-
ates over the role hierarchy and considers improvements to
the RBAC state if a given role is removed. Removing a role
r results in the minimal redistribution of users down the hi-
erarchy and permissions up the hierarchy. To maintain the
transitive role-inheritance, the hierarchy must be augmented
by adding adding role-role relations between roles senior to
r to roles junior to r. Each restructuring is done only if it lo-
cally decreases the WSC. While HM begins with an RBAC
state where each user and permission is assigned to a single
role, after restructuring this property may no longer hold.

The running time of HierarchicalMiner is determined by
two parts: computing the reduced concept lattice and prun-
ing. Computing the reduced concept lattice has been stud-
ied extensively in the literature and can be done in time
linear in the size of the lattice and has been found to take
less time than HPr and HPe on some datasets (and more
on others) using the timing data from [2]. The running time
of pruning is directly related to the size of the reduced lat-
tice. Each pruning step takes a constant amount of time for
all restructuring except the role-hierarchy, which requires a
small localized traversal of the lattice (linear in the size of
the lattice in the worst case), but much smaller in practice.

HierarchicalMiner is similar in spirit to Graph Optimiza-
tion in that both algorithms start from some RBAC state
and then performs local optimizations. The former starts
from the permission sets of users, which are easily obtained
from the input data, while the latter starts from the reduced

PC DM HM ORCA HPr HPe GO CM
University 31 42 21 56 17 18 18 32
Healthcare 24 27 17 46 14 15 16 31
Domino 64 31 31 231 20 27 20 62
EMEA 242 37 115 3046 34 176 34 674
APJ 779 655 549 1164 455 477 475 764
Firewall 1 248 219 111 709 65 78 71 278
Firewall 2 14 13 11 590 10 12 10 21
Americas 1778 829 428 1587 206 317 225 2672

Average 397 231 160 928 102 140 108 566
Ranking 6.12 5.06 3.94 7.75 1.19 3.19 2.00 6.75

Table 2: Minimal Number of Roles W = 〈1, 0, 0, 0,∞〉
PC DM HM ORCA HPr HPe GO CM

University 595 638 588 1823 887 627 593 595
Healthcare 189 390 144 225 288 185 162 230
Domino 573 733 411 703 741 402 517 549
EMEA 9439 7264 4120 7468 7246 3930 8118 12025
APJ 5674 5349 3794 5152 4876 3910 13029 5971
Firewall 1 2558 4490 1411 13295 3037 1611 3172 1919
Firewall 2 986 1075 952 29232 1554 1053 1008 1000
Americas 17657 18783 6779 41264 16235 8143 10459 19276

Average 4708 4840 2274 12395 4358 2482 4632 5195
Ranking 4.56 6.12 1.25 6.50 5.50 2.62 4.25 5.19

Table 3: Minimal Cost for W = 〈0, 1, 1, 1,∞〉
concept lattice which may be expensive to compute.

4. EVALUATION RESULTS
In this section we present the results from evaluating the

nine algorithms listed in Section 3. We will evaluate how
well each algorithm performs using our metrics from Sec-
tion 2.2 and present some of the most relevant results.

We will attempt to assign a simple ranking to the perfor-
mance of each algorithm over all datasets. The ranking is
computed as follows. For each dataset, we rank the perfor-
mance of the algorithms by sorting them by their ability to
optimize the evaluation criteria (e.g., cost, coverage, etc.) 1
through n, where n is the number of algorithms compared,
and lower is better. If two or more algorithms produce a tie,
they will be given the same ranking such that the sum of
the ranking of all n algorithms remain constant (i.e.,

∑n
1 i).

For example, if three algorithms are tied for third place,
they will all be given the rank 4 = (3 + 4 + 5)/3. The final
ranking is the average over all datasets.

Due to space limits, we only present a subset of our re-
sults. We omit the results from FM in favor of PC. Our
experiments indicate that PC outperforms FM by a small
amount and including both does not add significantly to the
discussion. We now presents our results for the remaining
algorithms.

4.1 Comparing Complexity of RBAC States
We will first consider the performance of the role mining

algorithms in terms of the optimal RBAC state from ~C.
Plots for optimal cost and coverage for varying values of k
are shown in Figure 1.

4.1.1 Real-World Data

Role Minimization Table 2 gives the results when we
want to minimize the number of roles (note we must dis-
allow direct user-permission assignments). The data shows
that HPr performs the best for minimizing number of roles,
confirming the results from [2]. The GO algorithm also per-
formed very well, using only 5.8% more roles on average

PC DM HM ORCA HPr HPe GO CM
University 619 683 604 1773 894 643 615 620
Healthcare 148 325 146 223 298 210 136 164
Domino 501 553 376 659 723 389 476 495
EMEA 5811 7105 4482 6915 7214 4508 4926 6364
APJ 4733 4207 3904 4608 4867 3951 3987 4985
Firewall 1 2258 4689 1456 22101 2932 1723 2554 2678
Firewall 2 992 998 959 30789 1562 1067 981 995
Americas 16647 18557 6756 43156 16376 8394 9721 29926

Average 3963 4639 2335 13778 4358 2610 2924 5778
Ranking 4.00 6.12 1.12 7.00 6.75 3.25 2.62 5.12

Table 4: Minimal Cost for W = 〈1, 1, 1, 1, 1〉

PC DM HM ORCA HPr HPe GO CM
University 0.00 0.00 0.00 0.34 0.04 0.01 0.01 0.00
Healthcare 0.02 0.00 0.01 0.00 0.04 0.04 0.01 0.02
Domino 0.18 0.61 0.26 0.60 0.97 0.25 0.24 0.22
EMEA 0.75 0.97 0.34 0.94 1.00 0.40 0.33 0.86
APJ 0.36 0.36 0.32 0.45 0.41 0.31 0.33 0.66
Firewall 1 0.03 0.12 0.01 0.48 0.02 0.00 0.01 0.03
Firewall 2 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00
Americas 0.08 0.12 0.00 0.36 0.00 0.00 0.01 0.22

Average 0.18 0.27 0.12 0.49 0.31 0.13 0.12 0.25
Ranking 4.25 4.88 2.88 6.62 6.00 3.38 3.31 4.69

Table 5: |DUPA ||UP | for W = 〈1, 1, 1, 1, 1〉

than HPr, while ORCA consistently performed poorly.

Edge Concentration One common minimization problem
is edge concentration, reducing the size of the RBAC state
as measured by the number of edges in the graph that rep-
resents it. This is typically |PA | + |UA |, but we include
|RH | (W = 〈0, 1, 1, 1,∞〉). Table 3 gives the results for
edge minimization.

Here we see HM performs extremely well at reducing the
number of edges compared to role minimization, moving to
first place (from fourth), while HPr drops to sixth. HPe
also performs well, not surprising considering it is designed
for edge minimization. We believe HM has an advantage in
this test because its roles are designed for a role-hierarchy,
while HPe’s are not; here the average cost is more indicative
of their performance than their ranking. GO placed third in
our ranking, but on average was outperformed by HPr due
in particular to poor performance on the apj dataset.

Allowing Noise—Direct Assignments Next we con-
sider how well the algorithms perform when direct user-
permission assignments are allowed. These model the sit-
uation where the input dataset contains errors that should
not be covered by roles; the results are shown in Table 4.

HM performs the best and HPe is capable of optimizing
the RBAC state given the more complex evaluation criteria.
The GO and HPe algorithms produce a close tie; GO out-
ranks HPe, while HPe performs better on average, making
these algorithms comparable.

In addition we consider the percentage of the assignments
that are obtained via direct user-permission assignments,
i.e., 1 − coverage, in Table 5. If this measure is high, it in-
dicates the mined roles do a poor job at reducing the com-
plexity of the data and will produce RBAC states that are
ill suited to replace ρ. Consider the emea dataset; the HPr,
DM, CM, and PC datasets use direct user-permission as-
signments to cover over 75–100% of UP , while HM, GO,
and HPe use significantly less (33% and 34% for HM and
GO). These results largely mirror the cost analysis.

PC DM HM HPr HPe GO
Tree 4598 5924 2359 3740 3089 4431
ERBAC 1453 3322 1372 2907 1765 4016
Random 1058 1015 1015 1238 1018 1428

Average 2370 3420 1582 2628 1957 3292
Ranking 3.67 4.33 1.00 4.00 2.67 5.33

Table 6: Minimal Cost for W = 〈1, 1, 1, 1, 1〉

k PC DM HM ORCA HPr HPe GO CM
University 15 1.23 1.10 1.04 1.91 1.15 1.00 1.08 1.29
Healthcare 15 1.14 2.24 1.00 4.03 1.82 1.31 1.22 1.22
Domino 35 5.22 4.20 1.00 5.09 3.25 3.04 3.19 5.31
EMEA 34 1.24 1.44 1.00 1.41 1.46 1.09 1.15 1.33
APJ 150 1.13 1.03 1.00 1.12 1.17 1.01 1.02 1.18
Firewall 1 30 1.46 1.37 1.00 6.30 1.32 1.07 1.43 1.92
Firewall 2 10 2.28 1.00 1.00 5.63 1.36 1.20 1.04 2.65
Americas 150 1.73 1.46 1.00 3.41 1.58 1.07 1.30 2.29

Average 1.93 1.73 1.01 3.61 1.64 1.35 1.43 2.15
Ranking 5.38 4.50 1.25 7.12 5.38 2.50 3.25 6.62

Table 7: Normalized Qwsc for W = 〈1, 1, 1, 1, 1〉

4.1.2 Synthetic Data
The above analysis was performed on real world data. We

now turn our attention to synthetically generated data. We
consider datasets generated by the three data generation
algorithms: tree, ERBAC, and random.

Minimizing Cost of Generated Data In Table 6 we
present the average minimal cost for each type of generated
data for k ≤ 150 roles. These results largely echo our previ-
ous results with a few exceptions, however we omit ORCA,
due to its poor performance in previous tests, and CM, due
to its time complexity and previously poor results. HM still
performs the best, followed by HPe while GO slips, pro-
ducing surprisingly poor results compared to the real-world
data. DM shows improved results, especially compared to
GO, but still does not perform was well as HM or HPe.

Discovering Original Roles Next we evaluate the simi-
larity of the mined roles to the original data. The average
maximal Jaccard is shown in Figure ??. We believe a good
role mining algorithm will select roles with a high Jaccard
first (these should be the most meaningful). If the original
roles were created by a top-down or similar method, roles
with a low Jaccard are likely to have little semantic meaning.

From the figures, we actually see two pictures. We found
the ERBAC and random datasets produce similar results
that are distinct from the tree based data. In the ERBAC
data for HM, we can see that the top 40+ roles have a Jac-
card close to one, and the Jaccard quickly begins to fall
for subsequent roles. This means that the top 40+ roles
are more or less the ones generated. From the previous
figure, we can see this drop correlates to around 98% cover-
age. While GO does not select as many roles that so closely
approximate the original RBAC data, it more consistently
selects roles with a high Jaccard compared to the other role-
mining algorithms. Excluding PC (and the related algo-
rithms), HPr performed the worst, generating roles farthest
from the original data. By comparing the Jaccard for DM
and PC, it appears that PC does a poor job at prioritizing
familiar roles. For ERBAC, each user was assigned at most
two business roles, and each business role was assigned at
most three functional roles. This implicitly assigns each user
from one to six roles, and likely indicates why PC performs
so poorly in this test.

k PC DM HM ORCA HPr HPe GO CM
University 15 0.91 0.99 0.97 0.51 1.00 0.92 0.95 0.87
Healthcare 15 0.99 0.84 1.00 0.16 0.88 0.92 0.94 0.98
Domino 35 0.22 1.00 0.87 0.21 0.95 1.00 0.96 0.19
EMEA 34 0.23 1.00 0.60 0.06 1.00 0.76 0.84 0.16
APJ 150 0.98 1.00 0.68 0.48 0.91 0.69 0.88 0.65
Firewall 1 30 0.90 1.00 0.87 0.05 0.91 0.90 0.75 0.89
Firewall 2 10 0.75 1.00 1.00 0.04 0.93 0.96 0.99 0.67
Americas 150 0.88 1.00 0.88 0.18 0.88 0.96 0.89 0.85

Average 0.73 0.98 0.86 0.21 0.93 0.89 0.90 0.66
Ranking 4.38 2.06 4.12 7.88 3.56 3.75 3.88 6.38

Table 8: Normalized Qcoverage for W = 〈1, 1, 1, 1,∞〉

The results for the tree data are very different. HM still
performs slightly better than GO, but they are among the
worst performers. Somewhat surprisingly, HPr and HPe
perform the best. It should be noted than none of the al-
gorithms produced roles on tree-based data that as closely
resembled the original roles compared to the ERBAC or
random tests. There are many possible explanations. The
algorithms may not perform well at mining this type of ac-
cess control model. Alternatively, the tree based model may
produce RBAC states that are more complex than neces-
sary, causing the role-mining algorithms to discover simpler
and vastly different roles.

4.2 Prioritized Role Quality
In Section 2.2 we proposed a metric that integrates an

evaluation criteria over the number of roles selected, and
suggest using this for cost and coverage. From the plots in
Figure 1, this is the area under the WSC cost and coverage
curves.

Table 7 lists the Qwsc metric normalized by the best result
(minimal cost) for each dataset. That is, the best algorithm
is 1.0, and larger values represent the ratio between an algo-
rithm’s performance and the best observed for that dataset.
As usual, HM performs very well, followed by HPe and GO.
Compared to the other tests, we see DM performs better
than PC and CM (see Section 4.4 for our analysis).

Table 8 list the Qcoverage metric normalized by the best
result (maximal coverage) for each dataset. While HPr
performed well at quickly covering the UP relation as ex-
pected (this metric is consistent with role-minimization),
it was easily bested by DM (an algorithm that performed
poorly at role-minimization), producing the best results in
six of the eight datasets. GO and HPe each performed
consistently with previous tests where both algorithms have
proven capable at minimizing cost and the number of roles.
HM ’s performance was consistent with role-minimization
(respectable, but clearly not the best), while ORCA con-
sistently underperformed.

4.3 Analysis
We now analyze some of the observed trends. Our results

indicate that algorithms that strive to minimize the number
of role often generate RBAC states with a larger number of
edges, resulting in increased complexity and likely increased
administration costs. For example, in the domino dataset,
roles created by HPr had twice as many permission assign-
ments as HPe yet both produced a similar number of roles.
Considering GO performs very well at role minimization and
respectably at many other tasks, we believe that role mini-
mization is the wrong problem to consider for role mining.

We observed GO performed inconsistently, producing

0 20 40 60 80 100
Number of Top Roles

5000

10000

15000

20000

25000

30000

35000

40000

W
S
C

Weighted Structural Complexity

DM
CM
HM
GO
PC
HPe
ORCA

(a) EMEA Cost

0 20 40 60 80 100
Number of Top Roles

0

20

40

60

80

100

P
e
rc

e
n
t

Percentage of UP Covered

DM
CM
HPr
HM
GO
HPe

(b) EMEA Coverage

0 5 10 15 20 25 30 35
Number of Top Roles

0

500

1000

1500

2000

2500

3000

3500

4000

W
S
C

Weighted Structural Complexity

DM
CM
HM
GO
HPe

(c) Domino Cost

0 5 10 15 20 25 30 35
Number of Top Roles

0

20

40

60

80

100

P
e
rc

e
n
t

Percentage of UP Covered

DM
CM
HM
GO
HPe

(d) Domino Coverage

0 20 40 60 80 100 120 140 160
Number of Top Roles

0

2000

4000

6000

8000

10000

12000

14000

16000

W
S
C

Weighted Structural Complexity

DM
HPr
HM
GO
PC
HPe

(e) ERBAC Cost

0 20 40 60 80 100 120 140 160
Number of Top Roles

0

20

40

60

80

100

P
e
rc

e
n
t

Percentage of UP Covered

DM
HPr
HM
GO
PC
HPe

(f) ERBAC Coverage

0 20 40 60 80 100 120 140 160
Number of Top Roles

2000

4000

6000

8000

10000

12000

14000

W
S
C

Weighted Structural Complexity

DM
HPr
HM
GO
PC
HPe

(g) Tree Cost

0 20 40 60 80 100 120 140 160
Number of Top Roles

0

20

40

60

80

100

P
e
rc

e
n
t

Percentage of UP Covered

DM
HPr
HM
GO
PC
HPe

(h) Tree Coverage

Figure 1: Plots of the minimal WSC and maximal
coverage for several algorithms and datasets.

very good results in some tests and datasets, and poor
results in others. By analyzing the size of each relation,
we found that some datasets (such as apj) cause GO to
generate significantly more role inheritance relations, while
others, such as emea, shift the burden to permission-
assignments. We have observed a trend that GO generates
large role hierarchies when the number of users is greater
than the number of permissions (apj, americas) and large
PA relations otherwise. Our current testing sample is too
small to thoroughly validate this trend at this time, however
it does appear to be consistent with the structure of the GO
algorithm.

Next, DM did not perform as well as expected, especially
compared to PC and CM. We believe DM is over-fitting
some of the roles to cover users, and does not consider the
entire resulting RBAC state. To illustrate why, we con-
trast DM to HM. HierarchalMiner appropriately creates
roles that cover users, much as DM does, but also creates
roles for covering other roles. These roles significantly re-
duce the size of the permission-assignment relation by aggre-

0 20 40 60 80 100 120 140 160
Number of Top Roles

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ja
cc

a
rd

Jaccard Similarity

DM
HPr
HM
GO
PC
HPe

(a) ERBAC Jaccard

0 20 40 60 80 100 120 140 160
Number of Top Roles

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ja
cc

a
rd

Jaccard Similarity

DM
HPr
HM
GO
PC
HPe

(b) Tree Jaccard

Figure 2: Role similarity for generated datasets.

gating commonly used sets of permissions that are a subset
of user-assigned roles. In addition, DM has difficulty “com-
pleting” the task of covering the UP relation. It performs
well at generating a few roles that cover most of the UP re-
lation, but struggles at prioritizing roles that complete the
task. This is observable using our quality metrics (Tables 7-
8 from Section 2.2.2), and indicates small changes may be
necessary.

HM is computationally and memory intensive; luckily the
algorithm is based on formal concept analysis (FCA), and
a large amount of research has been dedicated to fast and
efficient FCA algorithms. We found the performance of our
base FCA code was acceptable, consistently outperformed
CM, and was even faster than HPe when compared to the
times reported in [2].

We did have some difficulties with HM in our randomly
generated tests that are worth mentioning. In several tests
Colibri3 exhausted its memory heap. We identified the pa-
rameters we used for data generation created test sets ten-
times denser than presented here. The parameters we use
create data with densities that more closely resemble the
real-world data available and used in [19].

5. RELATED WORK
Coyne [1] was the first to propose the role engineering

problem and the top-down approach to role engineering.
Several subsequent papers [11, 12, 14] focused on the top-
down approach. The top-down approach is generally very
expensive as it is human-intensive and requires the collabo-
ration of security experts and domain experts to extract the
knowledge of business process descriptions.

The role mining approach was first proposed by
Kuhlmann et al. [7] in 2003. Since then, there have been
a number of papers on role mining in the literature.

Several evaluation criteria or metrics have been used in
the literature. Vaidya et al. [19] randomly generate RBAC
states and mine the flattened UP relationship. To evaluate
a set of candidate roles, they count the number of original
roles that are recovered.

In [17], Vaidya et al. define three criteria. First, known
as the basic role-mining problem, minimize the number of
roles required to cover UP (i.e., W = 〈1, 0, 0, 0,∞〉). Second,
δ-RMP minimizes the number of roles while relaxing basic-
RMP by allowing at most δ errors (over- and under-assigned
permissions compared to UP). Finally, in Min-Noise-RMP
the goal is to minimize the number of errors using at most
k roles.

Two variants of RMP were later introduced. In [20],
Zhang et al. suggest minimizing the size of each relation
(W = 〈0, 1, 1, 1,∞〉), and the size of the RBAC representa-

3An FCA implementation by Christin Lindig we use.

tion (W = 〈1, 1, 1, 1,∞〉). Lu et al. [9] also consider minimiz-
ing the size of the UA and PA relations (W = 〈0, 1, 1, 0,∞〉),
which they call edge-RMP and Ene et al. [2] call edge-
concentration.

Molloy et al. [10] propose the notion of weighted structural
complexity (WSC) that subsumes many the above metrics
and is used in this work. Colantonio et al. [?] describe a
measure similar to WSC with an additional abstract cost
function c : R → R, where R is the set of all possible roles,
that allows an administrator to increase or decrease the cost
associated with a role based on its desirability, such as un-
derlying business processes or semantic meaning. Without
domain knowledge, c maps all values to a constant.

Several works [3,9,17] allow for solutions that grant users
permissions not granted in UP . These are typically modeled
as δ-consistent solutions for δ > 0. We see several prob-
lems with δ-approximate role-mining, primarily stemming
from its treatment of over- and under-assignments identi-
cally. We believe it is safer to under-assign permissions
than over-assign permissions, and over-assignments are more
likely to exist in deployed systems by the same logic behind
the principle of least privilege [?].

In this work we allow under assignment only by allowing
direct user-permission assignments. These are additional
permission assignments that are required in addition to the
mined RBAC state to maintain 0-consistency with the input.

6. CONCLUSIONS AND FUTURE WORK
While many role mining algorithms have been proposed

in recent years, there lacks a comprehensive study to com-
pare these algorithms. We present an evaluation framework
for comparing different role mining algorithms, including al-
gorithms that output a sequence of prioritized roles (Class
1 algorithms) and algorithms that output complete RBAC
states (Class 2 algorithms). We also propose a new role min-
ing algorithm and two new ways for generating datasets for
evaluating role mining algorithms. We evaluate nine role
mining algorithms using real datasets as well as synthetic
datasets and our result demonstrate the strengths and weak-
nesses of these algorithms. There are still a few interesting
problems for future research:

• Handling data with attribute information. In addition
to the user-permission data, attribute information may
also be available. It is interesting to study how to mea-
sure the “goodness” of a role mining algorithm (e.g.,
AttributeMiner [10]) that uses both user-permission
data and attribute information.
• Handling noisy data. In some scenarios, the input

user-permission data may contain noises. In this con-
text, the goal of the role mining algorithm is to output
an optimal RBAC state that is allowed to have a few
deviations from the original user-permission data. We
use DUPA assignments as an incomplete approxima-
tion of noise.

7. REFERENCES
[1] Edward J. Coyne. Role engineering. In Proc. ACM

Workshop on Role-Based Access Control (RBAC),
1995.

[2] Alina Ene, William Horne, Nikola Milosavljevic,
Prasad Rao, Robert Schreiber, and Robert E. Tarjan.
Fast exact and heuristic methods for role

minimization problems. In Proc. ACM Symposium on
Access Control Models and Technologies (SACMAT),
pages 1–10, 2008.

[3] Mario Frank, David Basin, and Joachim M. Buhmann.
A class of probabilistic models for role engineering. In
Proc. ACM Conference on Computer and
Communications Security (CCS), 2008.

[4] Michael P. Gallaher, Alan C. O’Connor, and Brian
Kropp. The economic impact of role-based access
control. Planning Report 02-1, National Institute of
Standards and Technology, March 2002.

[5] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent
patterns without candidate generation. In Proc. ACM
SIGMOD International Conference on Management of
Data (SIGMOD), pages 1–12, 2000.

[6] Axel Kern, Andreas Schaad, and Jonathan Moffett.
An administration concept for the enterprise
role-based access control model. In Proc. ACM
Symposium on Access Control Models and
Technologies (SACMAT), pages 3–11, June 2003.

[7] Martin Kuhlmann, Dalia Shohat, and Gerhard
Schimpf. Role mining - revealing business roles for
security administration using data mining technology.
In Proc. ACM Symposium on Access Control Models
and Technologies (SACMAT), pages 179–186, New
York, NY, USA, 2003. ACM Press.

[8] Christian Lindig. Fast concept analysis. In Gerhard
Stumme, editor, Working with Conceptual Structures -
Contributions to ICCS 2000, 2000.

[9] Haibing Lu, Jaideep Vaidya, and Vijayalakshmi Atluri.
Optimal boolean matrix decomposition: Application
to role engineering. In Proc. International Conference
on Data Engineering (ICDE), pages 297–306, 2008.

[10] Ian Molloy, Hong Chen, Tiancheng Li, Qihua Wang,
Ninghui Li, Elisa Bertino, Seraphin Calo, and Jorge
Lobo. Mining roles with semantic meanings. In
Proc. ACM Symposium on Access Control Models and
Technologies (SACMAT), pages 21–30, 2008.

[11] Gustaf Neumann and Mark Strembeck. A
scenario-driven role engineering process for functional
rbac roles. In Proc. ACM Symposium on Access
Control Models and Technologies (SACMAT), pages
33–42, New York, NY, USA, 2002. ACM Press.

[12] Haio Roeckle, Gerhard Schimpf, and Rupert
Weidinger. Process-oriented approach for role-finding
to implement role-based security administration in a
large industrial organization. In Proc. ACM Workshop
on Role-Based Access Control (RBAC), pages
103–110, 2000.

[13] Jurgen Schlegelmilch and Ulrike Steffens. Role mining
with ORCA. In Proc. ACM Symposium on Access
Control Models and Technologies (SACMAT), pages
168–176, New York, NY, USA, 2005. ACM Press.

[14] Dongwan Shin, Gail-Joon Ahn, Sangrae Cho, and
Seunghun Jin. On modeling system-centric
information for role engineering. In Proc. ACM
Symposium on Access Control Models and
Technologies (SACMAT), pages 169–178, New York,
NY, USA, 2003. ACM Press.

[15] Scott D. Stoller, Ping Yang, C. R. Ramakrishnan, and
Mikhail I. Gofman. Efficient policy analysis for
administrative role based access control, October 2007.

[16] D. Thomsen, D. O’Brien, and J. Bogle. Role-based
access control framework for network enterprises. In
Proceedings of the Annual Computer Security
Applications Conference (ACSAC), page 50,
Washington, DC, USA, 1998. IEEE Computer Society.

[17] Jaideep Vaidya, Vijayalakshmi Atluri, and Qi Guo.
The role mining problem: Finding a minimal
descriptive set of roles. In Proc. ACM Symposium on
Access Control Models and Technologies (SACMAT),
New York, NY, USA, 2007. ACM Press.

[18] Jaideep Vaidya, Vijayalakshmi Atluri, Qi Guo, and
Nabil Adam. Migrating to optimal rbac with minimal
perturbation. In Proc. ACM Symposium on Access
Control Models and Technologies (SACMAT), pages
11–20, 2008.

[19] Jaideep Vaidya, Vijayalakshmi Atluri, and Janice
Warner. Roleminer: Mining roles using subset
enumeration. In Proc. ACM Conference on Computer
and Communications Security (CCS), pages 144–153,
New York, NY, USA, 2006. ACM Press.

[20] Dana Zhang, Kotagiri Ramamohanarao, and Tim
Ebringer. Role engineering using graph optimisation.
In Proc. ACM Symposium on Access Control Models
and Technologies (SACMAT), pages 139–144, 2007.

