
A Logic-based Knowledge Representation for
Authorization with Delegation

�

Ninghui Li
Computer Science

New York University
251 Mercer Street

New York, NY 10012, USA
ninghui@cs.nyu.edu

Benjamin N. Grosof
IBM T.J. Watson Research Center

P.O.Box 704,
Yorktown Heights, NY 10598, USA

grosof@us.ibm.com
http://www.research.ibm.com/people/g/grosof

Joan Feigenbaum
AT&T Labs – Research

Room C203
180 Park Avenue

Florham Park, NJ 07932, USA
jf@research.att.com

http://www.research.att.com/˜jf

Abstract

We introduce Delegation Logic (DL), a logic-based
knowledge representation (i.e., language) that deals with
authorization in large-scale, open, distributed systems. Of
central importance in any system for deciding whether re-
quests should be authorized in such a system are delegation
of authority, negation of authority, and conflicts between
authorities. DL’s approach to these issues and to the inter-
play among them borrows from previous work on delega-
tion and trust management in the computer-security liter-
ature and previous work on negation and conflict handling
in the logic-programming and non-monotonic reasoning lit-
erature, but it departs from previous work in some crucial
ways. In this introductory paper, we present the syntax and
semantics of DL and explain our novel design choices. This
first paper focuses on delegation, including explicit treat-
ment of delegation depth and delegation to complex princi-
pals; a forthcoming companion paper focuses on negation.

Compared to previous logic-based approaches to autho-
rization, DL provides a novel combination of features: it is
based on logic programs, expresses delegation depth explic-
itly, and supports a wide variety of complex principals (in-
cluding but not limited to

�
-out-of- � thresholds). Compared

to previous approaches to trust management, DL provides

�
An extended abstract of this paper appeared in the Proceedings of the

12th IEEE Computer Security Foundations Workshop, June 1999.

another novel feature: a concept of proof-of-compliance
that is not entirely ad-hoc and that is based on model-
theoretic semantics (just as usual logic programs have a
model-theoretic semantics). DL’s approach is also novel in
that it combines the above features with smooth extensibility
to non-monotonicity, negation, and prioritized conflict han-
dling. This extensibility is accomplished by building on the
well-understood foundation of DL’s logic-program knowl-
edge representation.

Keywords: Authorization, delegation, trust manage-
ment, security policy, non-monotonicity, conflict handling,
knowledge representation, logic programs.

1 Introduction

In today’s Internet, there are a large and growing num-
ber of scenarios that require authorization decisions. By
an authorization decision, we mean one in which one party
submits a request, possibly supported by one or more cre-
dentials, that must comply with another party’s policy if it is
to be granted. Scenarios that require authorization decisions
include content advising [25], mobile-code execution [11],
public-key infrastructure [6, 29, 18, 9, 26], and privacy pro-
tection [22, 20].

Electronic commerce is one class of services in which
authorization decisions play a prominent role. Merchants

1

and customers both have valuable resources at risk and must
have appropriate policies in place before authorizing access
to these resources. An interesting aspect of e-commerce is
that security policies and business policies are not always
clearly separable. If a merchant requires that electronic
checks for more than a certain amount be signed by at least
two members of a set of trusted parties, is that a “security
policy” or a “business policy”? It would be desirable for
one authorization mechanism to be able to handle both.

Authorization in Internet services is significantly differ-
ent from authorization in centralized systems or even in
distributed systems that are closed or relatively small. In
these older settings, authorization of a request is tradition-
ally divided into two tasks: authentication and access con-
trol. Authentication answers the question “who made the
request?,” and access control answers the question “is the
requester authorized to perform the requested action?” Fol-
lowing the “trust-management approach,” first put forth by
Blaze et al. [4, 5], we argue that this traditional view of au-
thorization is inadequate. Reasons include:

� What to protect?: In a traditional client/server com-
puting environment, valuable resources usually belong
to servers, and it is when a client requests access to a
valuable resource that the server uses an authorization
procedure to decide whether or not to trust the client.
In today’s Internet (or any large, open, distributed sys-
tem), users access many servers, make many different
types of requests, and have valuable resources of their
own (e.g., personal information, electronic cash); in-
deed “client” is no longer the right metaphor. Such a
user cannot trust all of the servers it interacts with, and
authorization mechanisms have to protect the users’ re-
sources as well as those of the servers.

� Whom to protect against?: In a large, far-flung net-
work, there are many more potential requesters than
there are in a smaller, more homogeneous (albeit dis-
tributed) system. Some services, e.g., Internet mer-
chants, cannot know in advance who the potential re-
questers are. Similarly, users cannot know in advance
which services they will want to use and which re-
quests they will make. Thus, authorization mech-
anisms must rely on delegation and on third-party
credential-issuers more than ever before.

� Who stores authorization information?: Tradition-
ally, authorization information, e.g., an access control
list, is stored and managed by the service. Internet
services evolve rapidly, and thus the set of potential
actions and the users who may request them are not
known in advance; this implies that authorization in-
formation will be created, stored, and managed in a dy-
namic, distributed fashion. Users are often expected to

gather all credentials needed to authorize an action and
present them along with the request. Since these cre-
dentials are not always under the control of the service
that makes the authorization decision, there is a danger
that they could be altered or stolen. Thus, public-key
signatures (or, more generally, mechanisms for verify-
ing the provenance of credentials) must be part of the
authorization framework.

For these and other reasons, dividing authorization into
authentication and access control is no longer appropriate.
“Who made this request?” may not be a meaningful ques-
tion – the authorizer may not even know the requester, and
thus the identity or name of the requester may not help in
the authorization decision. The goal of a growing body of
work on trust management [4, 5, 9, 7, 3] is to find a more
flexible, more “distributed” approach to authorization. The
trust-management literature approaches the basic authoriza-
tion question directly: “Does the set

�
of credentials prove

that the request � complies with the set of local security
policies � ?” The trust-management engine is a separate
system component that takes ����� � ���
	 as input and outputs
a decision about whether compliance with policy has been
proven.

Furthermore, trust-management adopts a “peer model”
of authorization. Every entity can be both a requester and
an authorizer. To be an authorizer, it maintains policies and
is the ultimate source of authority for its authorization de-
cisions. As a requester, it must maintain credentials (e.g.,
public-key certificates, credit card numbers, and member-
ship certificates) or be prepared to retrieve or obtain them
when it wants access to a protected resource. When submit-
ting a request to an authorizer, the requester also submits a
set of credentials that purport to justify that the requested
action is permissible. An authorizer may directly autho-
rize certain requesters to take certain actions (and may not
even try to “authenticate” these requesters by resolving their
“identities”), but more typically it will delegate this respon-
sibility to credential issuers that it trusts to have the required
domain expertise as well as relationships with potential re-
questers.

Basic issues that must be addressed in the design of a
trust-management engine include the definition of “proof of
compliance,” the extent to which policies and credentials
should be programmable, and the language or notation in
which they should be expressed.

In this paper, we propose the authorization language Del-
egation Logic (DL) as a trust-management engine. Its no-
table features include:

� A definition of “proof of compliance” that is founded
on well-understood principles of logic programming
and knowledge representation. Specifically, DL starts
with the notion of proof embodied in Datalog definite

2

ordinary logic programs [19].1 DL then extends this
with several features tailored to authorization.

� A rigorous and expressive treatment of delegation, in-
cluding explicit linguistic support for delegation depth
and for a wide variety of complex principals.

� The ability to handle “non-monotonic” policies. These
are policies that deal explicitly with “negative evi-
dence” and specify types of requests that do not com-
ply. Important examples include hot-lists of “revoked”
credentials and resolution of conflicting advice from
different, but apparently both trustworthy, sources.

“Non-monotonic” here means in the sense of logic-based
knowledge representation (KR).2

In combining both of these properties, DL departs
sharply from earlier trust-management engines, some key
points of which we now review. PolicyMaker, which was
introduced in [4] and was the first system to call itself a
“trust-management engine,” uses an ad-hoc (albeit rigor-
ously analyzed [5]) notion of “proof of compliance” and
handles only monotonic policies. KeyNote [3] is a second-
generation system based on most, but not all, of the same
design principles as PolicyMaker; in particular, KeyNote
uses an ad-hoc notion of proof of compliance (derived from
the one used in PolicyMaker), and it does not handle non-
monotonic policies. Unlike PolicyMaker, KeyNote takes
an integrated approach to the design of the compliance-
checking algorithm and the design of the programming lan-
guage in which credentials and policies are expressed. DL
also takes an integrated approach to these two aspects of au-
thorization. REFEREE [7] handles nomonotonic policies,
but it uses an ad hoc proof system that was never rigor-
ously analyzed. SPKI [9] handles limited forms of non-
monotonicity, but the “proof of compliance” notion (to the
extent that one is specified in [9]) is ad-hoc.

The outline of the rest of the paper is as follows. In sec-
tion 2, we give an overview of DL. In section 3, we give the
syntax and semantics of the monotonic case of DL, called
D1LP. In section 4, we give an example of D1LP’s usage. In
section 5, we give an overview of our expressive extension

1For review of standard concepts and results in logic programming,
see [2], for example. “Ordinary” logic programs (LP’s) correspond es-
sentially to pure Prolog, but without the limitation to Prolog’s particular
inferencing procedure. These are also known as “general” LP’s (a mis-
leading name, since there are many further generalizations of them) and
as “normal” LP’s. “Definite” means without negation. “Datalog” means
without function symbols of more than zero arity. “Arity” means number
of parameters.

2A KR � is (logically) monotonic when its entailment relationship (i.e.,
what it sanctions as conclusions) has the following property: if the set
of premises (e.g., rules) ��� is a superset of the set of premises ��� , then
the set of conclusions entailed by ��� according to � is a superset of the
set of conclusions entailed by ��� . If a KR is not monotonic, it is called
non-monotonic. Non-monotonicity means that adding premises can lead
to retracting previously-sanctioned conclusions.

to handle negation and prioritized conflict, called D2LP. A
forthcoming companion paper gives details about D2LP. In
section 6, we briefly discuss related work and future work.

2 Overview of DL

Our use of a logic-program knowledge representation as
the foundation of our authorization language (a.k.a. “trust-
management engine”) offers several attractions: compu-
tational tractability3, wide practical deployment, seman-
tics shared with other practically important rule systems,
relative algorithmic simplicity, yet considerable expressive
power.

We chose Datalog definite ordinary logic programs
(OLP’s) as the starting point for DL. (More generally, how-
ever, we could started from other variants of logic-based
knowledge representation, e.g., OLP’s without the Datalog
restriction.) DL extends Datalog definite OLP’s along two
dimensions that are crucial to authorization: delegation and
non-monotonic reasoning. The resulting notion of “proof of
compliance” is easier to justify than the ad-hoc notions used
in PolicyMaker, KeyNote, REFEREE, and SPKI, because
it is an extension of the well-studied, logic-programming
framework.

As in much of the related literature, e.g., [1, 21, 27], we
use the term principal to mean an “entity” or “party” to an
authorization decision. For example, a principal may make
a request, issue a credential, or make a decision. Each au-
thorization decision must involve a distinguished principal
that functions as the “trust root” of the decision; this prin-
cipal is referred to as Local.4 DL supports the specifica-
tion of sets of principals, via thresholds and lists, as well as
dynamic sets of the form “all principals that satisfy the fol-
lowing predicate.” DL principals express beliefs by making
direct statements and delegation statements.

The DL framework provides a uniform representation for
requests, policies, and credentials. Information in DL is
represented as rules and facts that are built out of statement
expressions. A request in DL corresponds to a query. E.g., a
simple query might be to ask whether the ground statement
"Local says is key(12345,Bob)" is true. More
generally, a request can be a complex expression of state-
ments; these expressions are called statement formulas and
are defined in the next section. All of the policies and cre-
dentials that the receiving principal uses in evaluating the
request form a DL program � . The DL semantics defines
a unique minimal model for � , and the request is autho-
rized if and only if it is in this model. The DL semantics

3Under commonly met restrictions (e.g., no logical functions of non-
zero arity, a bounded number of logical variables per rule), inferencing,
i.e., rule-set execution, in LPs can be computed in worst-case polynomial-
time. By contrast, classical logic (e.g., first-order logic), is NP-complete
under these restrictions and semi-decidable without these restrictions.

4Local plays the role that POLICY plays in PolicyMaker.

3

provide the definition of “proof of compliance.” This use
of model-theoretic semantics is a novel feature of DL and
a clear departure from the approaches taken by other trust-
management engines.

Delegation is one of the two major concepts with which
we extended Datalog definite OLP’s to form DL, and it is
the main technical focus of this paper. Distinguishing fea-
tures of DL’s approach to delegation include:

� Delegations have arbitrary but specified depth. For ex-
ample, by using a depth-2 delegation statement, a prin-
cipal � may delegate trust about a certain class of ac-
tions to principal � and allow � to delegate to others
but not allow these others to delegate further.

� Delegations to complex principal structures are al-
lowed. For example, a principal � may delegate trust
about a certain class of purchases to all principals that
satisfy the predicate GoodTaste().

The other major concept that we added to Datalog def-
inite OLP’s to form DL is non-monotonicity. DL uses ex-
plicit negation to allow a policy to say what is forbidden,
negation-as-failure to allow a policy to draw conclusions
when there is no information about something, and prior-
ities to handle conflicts among policies.

We use DL to denote our general approach to trust man-
agement. The monotonic version of DL (i.e., Datalog defi-
nite OLP’s plus our delegation mechanism) is called D1LP,
and the non-monotonic version (i.e., with negation and pri-
oritized conflict handling) is called D2LP. This first paper
focuses on D1LP, and only gives an overview of D2LP; a
forthcoming companion paper focuses on D2LP.

Compared to previous logic-based approaches to autho-
rization, DL provides a novel combination of features: it is
based on logic programs, expresses delegation depth explic-
itly, and supports a wide variety of complex principals (in-
cluding but not limited to

�
-out-of- � thresholds). Compared

to previous approaches to trust management, DL provides
another novel feature: a concept of proof-of-compliance
that is not entirely ad-hoc and that is based on model-
theoretic semantics (just as usual logic programs have a
model-theoretic semantics). DL’s approach is also novel in
that it combines the above features with smooth extensibil-
ity to non-monotonicity, negation, and prioritized conflict
handling. This extensibility is accomplished by building
on the well-understood foundation of DL’s logic-program
knowledge representation.

3 Syntax and Semantics of D1LP

In this section, we formally define D1LP’s syntax and
semantics.

3.1 Syntax

1. The alphabet of D1LP consists of three disjoint sets,
the constants, the variables, and the predicate symbols.
The set of principals is a subset of the constants and the
set of principal variables is a subset of the variables.
Variables start with ‘ ’ (“underscore”).5 The special
variable symbol ‘ ’ means a new variable whose name
doesn’t matter. A term is either a variable or a constant.
Note that we prohibit function symbols with non-zero
arity: this is the Datalog restriction. This restriction
helps enable finiteness of the semantics and of com-
puting inferences (a.k.a. entailments).

2. A base atom is an expression of the form

� ����� ���
	 ������� ���� 	
where � ����� is a predicate symbol and each ��� is a term.

3. A direct statement is an expression of the form

�
says �

where
�

is either a principal or a principal variable,
“says” is a keyword, and � is a base atom.

�
is

called the subject of this direct statement. A base atom
encodes a trust belief or a security action, and a direct
statement represents a belief of the subject.

4. A threshold structure takes one of the following forms:

� threshold(
�

, � ��� 	 ��� 	 	 ��������� ��� � ��� � 	��)

where “threshold” is a keyword,
�

and
the � � ’s are positive integers, the � � ’s are
principals, and � ���� ��� for � ���� . The � � ’s are
called weights. The set

� � ��	 ���!	�	 ������� � ���"� ����� 	��
is called a principal-weight pair set (abbreviated
P-W set). If ��� �$# , then ���!� ������	 can be written
as �!� . A threshold structure supports something
if the sum of all the weights of those principals
that support it is greater than or equal to

�
.

� threshold(
�

, �
��� � says � �����&%(')

where “threshold” and
�

are the same
as above, �
��� � is a principal, � ����� is a predicate
symbol, and ' is the arity (number of parame-
ters) of � ����� . The arity ' must be either # or)

. (' is not a logical variable.) When ' �*# ,
“ �
��� � says � �����+% # ” defines a P-W set that

5In Prolog, variables can also start with upper-case letters, and all con-
stants start with lower-case letters. We want to allow constants to start with
upper-case letters, and we restrict variables to start with underscore.

4

gives weight # to all principals � such that
“ � ��� � says � ����� � � 	 ” is true. When ' �)

,
“ � ��� � says � �����&%)

” defines a P-W set, where
the corresponding weight for any principal � is
the greatest positive integer � such that “ �
��� �

says � ����� ��� ��� 	 ” is true. These are called
dynamic threshold structures.

5. A principal structure takes one of the following forms:

� � where � is a principal
����� where ��� is a threshold structure
� � � 	 � � ��� where � � 	 and � ��� are principal

structures. This is the conjunction
of two principal structures. If both
� � 	 and � � � support a base atom� , then � � 	 � � � � also supports � .

� � � 	�� � ��� where � � 	 and � ��� are principal
structures. This is the disjunction
of two principal structures. If
either � � 	 or � ��� supports a
base atom � , then � � 		� � ��� also
supports � .

� � � � � where � � is a principal structure

In a principal structure, conjunction(‘,’) takes prece-
dence over disjunction(‘;’). A principal list is the
special case of a principal structure that has the form
��� 	 ��������� �"� � , where each �!� is a principal. A prin-
cipal set is the special case of a principal list in which
there are no repetitions, i.e., in which � � �� � � for
� �� � .

6. A delegation statement takes the form
�
delegates � ˆ � to � �

where X is either a principal or a principal variable,
delegates and to are keywords, � is a base atom,
� is either a positive integer or the asterisk symbol ‘ � ’,
and � � is a principal structure.

�
is called the sub-

ject, � is called the delegation depth, and � � is called
the delegatee. For example,
Alice delegates is key(,)ˆ2 to Bob

is a delegation statement. Intuitively, it means:
Alice says is key(Key X, X)

if Bob says is key(Key X, X).
In this example, Alice trusts Bob in making direct
statements about the predicate is key. Alice may
also trust Bob in judging other people’s ability to make
direct statements about is key, i.e., Alice trusts any-
one Bob trusts. In this case, the delegation depth is

)
.

Similarly, delegation depth can also be greater than
)
.

A

delegation depth ‘ � ’ means unlimited depth.

7. A statement is either a direct statement or a delegation

statement. In the semantics of D1LP, the role of “state-
ment” is similar to the role of “atom” in ordinary LP’s.

8. A statement formula takes one of the following forms:

�
� where � is a statement.
�
� 	 � ��� meaning (� 	 and ���), where � 	 and ���

are statement formulas,
�
� 	 � � � meaning (� 	 or � �), where � 	 and � �

are statement formulas,
� � � 	 where � is a statement formula.

In a statement formula, the operator ’,’ (and) takes
precedence over the operator ’;’ (or).

9. A clause, also known as a rule, takes the form:

� if � �

where � is a statement and � is a statement formula
in which no dynamic threshold structures appear. � is
called the head of the clause, and � is called the body
of the clause. The body may be empty; if it is, the “if”
part of the clause may be omitted. A clause with an
empty body is also called a fact. Permitting dynamic
threshold structures in the body in effect introduces
logical non-monotonicity, which is why we prohibit
it in D1LP. However, when we introduce negation-as-
failure in D2LP, this restriction will be dropped.

There are two special principals that can be used in
the body of a clause: “I” and “Local”. “I” refers to
the subject of the head. It is the default subject for all
statements in the body and may optionally be omitted.
For example, when Alice believes

Bob says p if q, I says r.
this is shorthand for Alice believing

Bob says p
if Bob says q, Bob says r.

“Local” refers to the principal that is using this state-
ment and trying to make an authorization decision, i.e.,
the current trust root. For example, when Alice be-
lieves “Bob says p if Local says q.”, and
Alice believes (that Alice says) “q”, then Alice
can conclude that “Bob says p.”

Multi-agent logics of belief (or of knowledge) express
beliefs from the viewpoints of multiple agents. DL can
be viewed as expressing beliefs from the viewpoints
of multiple agents. However, in DL, there is a single,
distinguished viewpoint: that of the principal Local.
Every DL rule or statement is implicitly regarded as a
belief of Local. In other words, DL is used from one
principal’s viewpoint: i.e., Local’s. Let Local be

5

the agent Alice. When Alice believes
Bob says is key(Key M, M)

if CA says is key(Key M, M).
this means that “If I (Alice) believe that CA says
is key(Key M, M), then I (Alice) can believe
that Bob says is key(Key M, M).” The direct
statements “CA says is key(Key M, M)” and
“Bob says is key(Key M, M)” actually mean
“Alice believes CA says is key(Key M, M)”
and “Alice believes Bob says is key(Key M,
M).” It doesn’t matter whether “Bob says
is key(Key M, M)” is believed by other princi-
pals, even Bob himself.

10. A program is a finite set of clauses. This is also known
as a logic program (LP) or as a rule set.

As usual, an expression (e.g., term, base atom, statement,
clause, or program) is called ground if it does not contain
any variables.

3.2 Semantics

In this subsection, we define the set of statements that are
sanctioned as conclusions by a D1LP. Formally, this set of
conclusions is defined as the minimal model of the D1LP.
This model assigns a truth value (����� � or

������� �) to each
ground statement. The value ����� � means that the statement
is an entailed conclusion;

���	�
� � means that it is not an en-
tailed conclusion. These conclusions represent the beliefs
of the principal that is the trust root, i.e., Local.

Let � be a given D1LP.
Our semantics is defined via a series of steps. First, we

define a language ���� that expresses definite OLP’s (defi-
nite logic programs [19]). By contrast, we write the original
input (D1LP) language of � as ����� . Second, we define a
translation that maps � to a ground definite OLP in ���� .
Third, we define the minimal model of � as the correspon-
dent (under this translation) of ’s minimal model in the
usual OLP semantics [19].

We begin by defining ���� . Let � be the number of all
principals in � , � � '�� � � ��� be the greatest integer used as
a delegation depth in � , and � � ' � ������� be the maximum
arity of any predicate in � . The language �� � has two
predicates: ��� � � � and �&� � ��� � ��� � . The predicate ��� � � � takes
four parameters:

��� � � � � � �� � �"! � � � ����� �"# � � � �%$&��' � � � �(� ��� 	
Here, the domain of

� �� � �)! � is the set of all principals ap-
pearing in � , which we write as �
��� �*!
� � ����� . The domain
of � ����� is the set of all the predicate symbols appearing in
� . The domain of # � � � �%$+�,' is all the length-

�
lists of con-

stants that appear in � , where -/. � .0� � ' � ��� ��� . The
domain of

� � �(�(��� is integers # # ���1� ' .

A ground atom of the predicate ��� � � � represents a
ground direct statement

� �� � �)! � says � ����� � � � � �%$+� 	
Intuitively,

� � �(� ��� represents the number of delegation
steps that is enough to derive the corresponding direct state-
ment. When

� � �(� ��� � # , it means this direct statement can
be derived directly without the use of delegation. We need
not consider cases in which this length exceeds the number
� of principals.

The predicate �&� � �,� � ��� � takes six parameters:

�&� � ��� � ��� � � � �� � �)! � � � ����� �)# � � � �%$+�,' �
�&� � ��� ���&� � ��� � ����� � � � �(� ��� 	

Here,
� �� � �)! � , � ����� , � � � �%$&� , and

� � �(�(��� are as above.
The domain of �&� � ��� is # # ���1� � '�� � � ��� '�2 � � � . The domain
of �&� � ��� � ����� is the set of all principal sets, which we write
as

)43*5 ���	6�17�8�9;: . Recall that there are � principals altogether,
and thus

)43*5 ���	6�17�8�9;: is finite. Notice that only principal sets,
rather than more general principal structures, are permitted
as �&� � �,� � ����� here. The reason this suffices to represent �
will become clear soon.

A ground atom of the predicate �&� � �,� � ��� � represents a
delegation statement

� �� � �)! � delegates � ����� � � � � �%$&� 	 ˆ �+� � ���
to �&� � ��� � �����

The Herbrand base of ���� is the set of all ground atoms
in ��<� . Because all the domains used above are finite, the
Herbrand base of ���� is also finite. An interpretation of
��<� is an assignment of truth values (����� � and

���	�
� �) to
the Herbrand base of �� � . Such an interpretation can also
be viewed as a set of true ground atoms, i.e., as a conclusion
set.

Given an interpretation = of �� � and a principal struc-
ture � � , we define � �?> , the normal form of a principal
structure under (i.e., relative to) = , as follows. A prin-
cipal structure � �?> is in normal form when it is of the
form: “ � �@>	 � � �@>� ������� ��� �A>5 ,” where each � �@>� is a prin-
cipal set and, for any � �� � , � �?>� �B � �@>� . One can
view � � as a negation-free formula in propositional logic;
� � ’s normal form � �?> is then the result of converting that
propositional-logic formula into its reduced disjunctive nor-
mal form (DNF). Here, the reduced DNF is logically equiv-
alent (in propositional logic) to � � given = . “Reduced”
means that there is no subsumption: neither within a con-
junct (i.e., no repetitions of principals) nor between con-
juncts (i.e., no conjunct is a subset of another conjunct). For
dynamic threshold structures like “threshold(

�
, �
��� �

says � �����&%('),” the interpretation = determines the P-W
set defined by � ��� � and � ����� . A threshold structure

threshold(
�

, � � � 	 ���!	�	 � � � � ��� � 	 ������� � ���"� ����� 	��)

6

is converted to the disjunction of all minimal subsets of
��� 	 ������� � � � � whose corresponding weights sum to be
greater than or equal to

�
. For example,

�����������
	��� ��� �
� ��� �) 	 � � � � # 	 � � � � # 	 � �
� � # 	 � 	
is converted to

��� ��� � � ��� � � � � ��� ��� � � � � � � � � �&�
After two principal structures have been transformed, their
conjunction and disjunction are convertible to normal form
using methods similar to the usual ones used in proposi-
tional logic.

Equipped with the definitions of �� � and � �@> , we are
ready next to give the main definition of the translation.
Given an interpretation = of �� � , the translation � � � �

� >
maps � into a definite OLP > in the language ���� , i.e.,
 > � � � � �

� > � � 	 . We define � � � �
� > via four steps.

Semantically, we treat a rule containing variables as
shorthand for the set of all its ground instances. This is
standard in the logic programming literature. We write
� ���%:���� to stand for the LP that results when each rule � in
� is replaced by the set of all its possible ground instantia-
tions, i.e., by all of the ground clauses that can be obtained
by replacing � ’s variables with constants (or “instantiating”
them).

The first step of � � � �
� > is to replace � by � � �%:���� .

The second step of � � � �
� > is to replace all the delega-

tion statements in � ��� :���� by those that delegate to principal
sets, as follows. Let � �?> be written as � �?>	 � � �@>� ������� � � �@>5 ;
each � �@>� is a principal set.

� Rewrite head delegation statements.
Replace every clause of the form
� delegates

�
ˆ � to � � if � �

by the � clauses:
�"� delegates

�
ˆ � to � �?>� if � ��� � �$# ��� �!� .

� Rewrite body delegation statements.
Replace every delegation statement

� delegates
�
ˆ � to � �

that occurs in the body of a clause, by the conjunction
of the � delegation statements:

� delegates
�
ˆ � to � �?>	 ,

� delegates
�
ˆ � to � �?>� ,

����� �
� delegates

�
ˆ � to � �?>5 .

Let � >� denote the program after the above transformations.
The third step of � � � �

� > takes � >� as input and translates
it to an OLP � >� in the language �� � , as follows.

� For any direct statement
� says � ����� � � � � �%$+� 	

in the body of a clause, change it to:
��� � � � ��� � � ����� �)# � � � �%$+�,' ��� 	 .

� For any direct statement
� says � ����� � � � � �%$&� 	

in the head of a clause, change it to:
��� � � � � � � � ����� �)# � � � �%$+�,' � # 	 .

� For any delegation statement
� delegates � ����� � � � � �%$+� 	 ˆ � to � �

in the body of a clause, change it to:
�&� � ��� � ��� � ��� � � ����� �"# � � � �%$&��' ��� � � � ��� 	

� For any delegation statement
� delegates � ����� � � � � �%$+� 	 ˆ � to � �

in the head of a clause, change it to:
�&� � ��� � ��� � ��� � � ����� �"# � � � �%$&��' ��� � � � � # 	 .

Here, as before, � is the number of principals in � . In-
tuitively, if a statement in the head is deduced, then it is
deduced directly (length #); if a statement can be deduced
within any length, it is true.

The result of these changes is � >� .
The fourth step of � � � �

� > is to add a further collection
of clauses to ��>� ; the resulting OLP program is > in the
language ��<� . Intuitively, these additional clauses rep-
resent all instances of several meta-rules of deduction in-
volving delegation. Because the relevant domains are finite,
there are a finite number of such instances.

Let � be a principal; � � be a principal set
� � 	 ������� ��� � � ;

� � be another principal set; � , �
� , and � 	
be delegation depths (i.e., elements of # # ���1� � '�� � � ��� ' 2
� � �); and,

�
,
� � , and

� 	 be lengths (i.e., elements of # # ���1� ').
Let � ����� and # � � � �%$+�,' be as above (recall the definition
of ��� � � �). Below, “length” means delegation-path length.
The relations � , . , � , � , � , and the functions � , � , and���! , are defined on the domain # # ��� $+� ' ��� ��� � '�� � � ��� 	 '2 � � � . The predicates

B
and " are defined on the domain of

principal sets
)43*5 ����6� 7�8�9;: . The behavior of “*” is similar to# , e.g., for any integer

�
in # # ����� � � $+� ' ��� ��� � '(� � � ��� 	 ' :� � � , � � � � � , � � � , and �$�% � � � � 	 � �

.
The additional clauses are as follows.6

1. Every ground clause that has the form:
��� � � � � � � � ����� �)# � � � �%$+�,' � � 	
if ��� � � � � � � � ����� �)# � � � �%$+�,' � � � 	
�

and satisfies
� � � � �

Intuitively, this represents the deduction meta-rule
that: If a direct statement is deducible within length� � , then the direct statement is deducible within any
longer length

� � � � .
2. Every ground clause that has the form:

�&� � ��� � ��� � ��� � � ����� �"# � � � �%$&��' ��� � � � � � 	
if �&� � �,� � ��� � ��� � � ����� �)# � � � �%$+�,' ����� ��� � � � � 	
�

6These clauses are slightly different from the ones in the extended
abstract version that appeared in CSFW-12. However, they are virtually
equivalent.

7

and satisfies � . � � , � � � � , and
� � " � � �

Intuitively, this represents the deduction meta-rule
that: If a delegation statement is deducible, then any
weaker delegation statement is deducible within any
longer length. Smaller depth and larger conjunctive
delegatee set each weaken a delegation statement.

3. Every ground clause that has the form:
��� � � � ��� � � ����� �)# � � � �%$+�,' � � 	

if �&� � ��� � ��� � ��� � � ����� �)# � � � � $&��' � # ��� � � � � 	 �
��� � � � � � 	 � � ����� �)# � � � �%$+�,' � # 	 �
��� � � � � � � � � ����� �)# � � � �%$+�,' � # 	 �
����� �
��� � � � � � � � � ����� �)# � � � �%$+�,' � # 	
�

and satisfies
� � � � � # and

� � � � .
Intuitively, this represents the deduction meta-rule that
enforces the effect of depth- # delegations.

4. Every ground clause that has the form:
�&� � �,� � ��� � � � � � ����� �"# � � � �%$+�,' ��� � � � � � 	

if �&� � �,� � ��� � � � � � ����� �"# � � � �%$+�,' ��� � ��� � � � � 	 �
�&� � ��� � ��� � � � 	 � � ����� �"# � � � �%$&��' ��� 	 � � � � � 	�	 �
�&� � ��� � ��� � � � � � � ����� �"# � � � �%$&��' ��� 	 � � � � � 	�	 �
����� �
�&� � �,� � ��� � � � � � � ����� �"# � � � �%$+�,' ��� 	 � � � � � 	 	 �

and satisfies � � ���! � � 	 ����� � � 	 	 , � � � � � � # ,� 	 � ��� , and
� 	 . �
� � � � 	
�

Intuitively, this represents the deduction meta-rule
that enforces the effect of chaining of delegations.
The depth of the deduced (head) delegation of � is
bounded both by the depth of the delegation from � to
� � and by the depth of the delegations from ��� ’s to� � . The depth of the delegation from � to � � has to
cover the path lengths that have already been used in
deriving delegations from ��� ’s to

� � .

The > that results (from adding these further clauses
to ��>�) is a ground definite OLP. It thus has one or more
OLP-models, i.e., models in the usual OLP semantics [19].
In particular, it has a model � � �

��� � � ���&� � �� > 	 that is
minimal in the sense of the usual OLP semantics.

Proposition 1 Given two interpretations = B�� of �� � , if
an interpretation � of �� � is an OLP-model of �� , then
� is also an OLP-model of > .
Proof. The dependence of > upon = is due solely to prin-
cipal structures that depend upon = . Furthermore, such
affected principal structures depend upon = solely via the
dynamic threshold structures that those principal structures
contain. The differences that may exist between > and
	� can thus only be caused by dynamic threshold struc-
tures. Note also that such dynamic threshold structures are
only allowed to appear in heads of clauses, not their bodies,
and moreover only in heads that are delegation statements.

More precisely, for a given principal structure � � , such
a difference can be viewed as the difference between the
normal form � �?> and the normal form � � � . We say that
� �@> is dominated by � � � when for each � , there exists a� such that � � �� B � �@>� . Next, we will show that such
domination holds.

Let � �@> and � � � be viewed as propositional formulas
in reduced DNF form. Let
 be material implication. Then,
tautologically, � �?>
 � � � is true if and only if � �?> is
dominated by � � � .

Consider a dynamic threshold structure

��� � threshold � � ���
��� � says � �����&%) 	
�

Let � > and ��� be the P-W sets defined in ��� under =
and

�
, respectively. Since = B��

, any direct statement
“ �
��� � says � ����� � � ��� 	 ” that is true in = is also true in�

. Thus the weight of each principal in �� is greater
than or equal to its weight in � > . Now consider the nor-
mal forms of ��� under = and

�
, i.e., ����> and ��� � . Let

���@> � ���@> 	 ������� � ���A>� and ��� � � ��� �	 ������� � ��� �� . Each
���@>� is a minimal subset of principals in � > such that the
sum of these principals’ weights is greater than or equal to
the threshold

�
.

Since the weight of each principal in ��� is greater than
or equal to its weight in � > , for each ���@>� (i.e., for each
� , given =) there must exist a ��� �� such that ��� �� B ���A>� .
In short, ���?> is dominated by ��� � . When principal struc-
tures are viewed as DNF propositional formulas, they are
nonnegative. Since domination is equivalent to material im-
plication, therefore, for any principal structure � � that con-
tains dynamic threshold structures, � ��> is dominated by
� � � .

Next, we compare the rules in > to the rules in � . The
essence of the transform � � � �

� > ’s dependence on = is in
the step two (of the four steps in the definition of � � � �

� >),
where a principal structure � � is replaced by its normal
form � �@> . Consider a rule � in > . If � is added in step four
of � � � �

� > , it also appears in �� , since step four actually
does not depend upon = . Otherwise, � must result from step
three of � � � �

� > . If � results from step three of � � � �
� > , we

can view it in terms of the corresponding rule ��� that resulted
from step two. Let �&� � be a rule in � ��� :���� . We call �+� � a
dynamic delegation rule when �&� � ’s head is a delegation
statement that contains dynamic threshold structures. If ���
is not a rule that results from translating in step two from
a dynamic delegation rule, then ��� is not dependent upon =
and � also appears in �� .

Thus, the rules in > and �� differ only in regard to the
results of applying step two of � � � �

� > to dynamic delega-
tion rules. Consider such a dynamic delegation rule �&� � . It
has the form

� delegates � ˆ � to � � if � �

8

where � is a principal, � is an instantiated statement for-
mula in which no dynamic threshold structures appear, and
� � is a principal structure that contains one or more dy-
namic threshold structures. Observe that every principal
structure (in �) does not contain logical variables, and thus
is unaffected by step one of � � � �

� > . Step two transforms
�+� � into a set of one or more rules in each of which � � is
replaced by a disjunct � �?>� of its normal form � �?> . Con-
sider the � ��� such resulting rule:

� delegates � ˆ � to � � >� if � �

If � � results from translating in step two from a dynamic
delegation rule, then it must have this form. Next comes a
crucial point of our argument. By the domination property
shown above, there exists in � a corresponding rule

� delegates � ˆ � to � � �� if � �

such that � � �� B � �@>� .
We say that delegating to a smaller (in the sense of sub-

set) principal set is more undemanding. Therefore, for ev-
ery rule � in > , there is a corresponding rule in � that is
either identical or is at least as undemanding as � .

Intuitively, more undemanding delegations result in
more (in the sense of superset) conclusions inferred via del-
egation. Formally, this property is implied by the rules
added in step four of the transform. We say that a ruleset
is stronger in deduction power when it entails more (in the
sense of superset) conclusions.

	� is thus at least as strong (in deduction power) as > .
So any model of �� is also a model of > .

Definition 2 An interpretation = of ��<� is an O-model of
a D1LP program � if and only if = is an OLP-model of
 > � � � � �

� > � �
	 .

We observe this definition’s flavor in that we use the in-
terpretation itself in reducing principal structures This is
similar to It turns out that every D1LP program � has at
least one O-model, as we will show below in Theorem 7.

Theorem 3 The intersection of any two O-models of � is
also an O-model of � .

Proof. Given two O-models = and
�

of � , one can conclude
by the definition of O-models that = is an OLP-model of >
and that

�
is an OLP-model of � . Let � � =�� � . Because

� B = and � B �
, Proposition 1 implies that = and

�
are

both OLP-models of �
. Because definite ordinary logic

programs have the property that two models’ intersection
is still a model [19], � is an OLP-model of �

. By the
definition of O-models, � is thus an O-model of P.

Definition 4 The minimal O-model of � is the in-
tersection of all of its O-models. We write this as
� � �

� � ���+� � � � 	 .

It turns out that every D1LP � has a minimal O-model;
below, in Theorem 7, we show how to construct it.

Ultimately, we are interested in models expressed in
�?��� , the original D1LP language of � . We define a sim-
ple reverse translation � ���(� � � � � � � �

�
that maps each O-

model = of � to its corresponding D1LP-model in �?� � , as
follows.

� For each O-conclusion of the form
��� � � � � � � � ����� �)# � � � �%$+�,' � � � �(�(��� 	 ,

include the D1LP-conclusion
� says � ����� � � � � �%$&� 	 .

� For each O-conclusion of the form
�&� � ��� � ��� � ��� � � ����� �"# � � � �%$&��' ���+� � ��� �
� � � ��� � ����� � � � �(� ��� 	 , include the D1LP-conclusion

� delegates � ����� � � � � �%$+� 	 ˆ �&� � ���
to � � � ��� � ����� .

Notice here that (delegation path) length is ignored after the
OLP conclusions are drawn.

We define the Herbrand base of � , in �?� � , as the set of
all ground statements of � , restricted to require that every
principal structure be a principal set. We define an interpre-
tation of � to be an assignment of truth values (����� � and������� �) to the Herbrand base of � . Such an interpretation
can also be viewed as a set of true ground statements, i.e.,
as a conclusion set.

Definition 5 An interpretation � of ����� is a model of a
D1LP program � if and only if � � � ���(� � � � � � � �

� �
= 	
and = is an O-model of � . The minimal model of � is
� ��� � � � � � � � �

� ��� � �
� � ���&� � ���
	 	 . We write this as

� � �*� ���&� � � � 	 .

Sometimes, for the sake of explicitness, we will also
speak of these as (minimal) D1LP-models.

Next, we show that � � �
� � ���&� � � � 	 and thus its cor-

responding � � �*� ���&� � � � 	 actually exist, by showing how
to construct � � �

� � ���&� � � � 	 .

Definition 6 Given � , we define an operator 	 � that
takes an interpretation = of �� � and returns another one:
	 � ��= 	 � � � �

� � � � ���&� � �� > 	 , where � � �
� � � � ���&� �

is the standard minimal model operator for OLP.

Theorem 7 (Construct Minimal Model)
� � �

� � ���+� � � � 	 is the least fixpoint of 	 � . This
fixpoint is obtained by iterating 	 � a finite number of
times, starting from
 . � � �*� ���&� � � � 	 thus exists, for
every D1LP � .

9

Proof. Let = � �
 , and, for � � - , let = � � 	 � ��=���� 	 	 �
� � �

� � � � ���&� � �
 > ����� 	 . We first show that the sequence
= � ��= 	 ������� is increasing. Clearly, = � B = 	 . Suppose that
=�� � 	 B =�� . Now consider =	��
 	 . It is a model of >� . From
Proposition 1, =	��
 	 is also a model of >� ��� . By definition
of the operator 	 � , =�� is the minimal OLP-model of >� ��� .
Thus = � B = ��
 	 . So the sequence = � ��=�	 ������� is increasing.

Since the Herbrand base of �� � is finite, there are only
finite number of interpretations of �� � . Therefore, there
must exist a first ordinal

�
such that =�� � =��
 	 . And =�� is

the least fixpoint of 	 � .
We now prove that =�� � � � �

� � ���&� � � � 	 . By def-
inition of the operator 	 � , =�� is an O-model of � . Let� � � � �

� � ���+� � � � 	 . Then
� B =�� . Suppose, by con-

tradiction, that =�� �B �
. Since = � B �

, there must exist
an ordinal - ��� � �

such that =�� B �
but =��
 	 �B �

.
Because

�
is an OLP-model of � , Proposition 1 implies

that
�

is also an OLP-model of >�� . However, =��
 	 is the
minimal OLP-model of >�� . Thus =��
 	 B �

, which is a
contradiction.

Inferencing: Because of the finiteness properties men-
tioned above, computing � � �*� ���&� � � � 	 is decidable.
Given the minimal model � � �*� ���&� � � � 	 , queries in D1LP
can be translated as we did for the body of a clause, then an-
swered using the model. We have a current implementation
of restricted D1LP. It is written in Prolog and uses a top-
down query-answering method.

4 Use of D1LP

In this section, we use the public-key infrastructure prob-
lem to demonstrate the use of D1LP. The trust-management
approach views the PKI problem from one user’s point of
view. The user has trust beliefs and certificates from other
principals, and it needs to decide whether a particular bind-
ing is valid according to its information. All of these beliefs,
certificates, and decisions can be represented uniformly in
D1LP.

D1LP can also be used to represent authorizations. Au-
thorizing a principal to do something can be represented as
a delegation to that principal. Whether to allow this princi-
pal to further grant this authorization to other principals can
be controlled by delegation depth. An authorization request
can be answered by deciding whether a delegation state-
ment is true or false. Moreover, separation of duty [8] can
be achieved by delegations to threshold structures.

We first show how certificates from different PKI pro-
posals can be represented in D1LP. Pretty Good Privacy
(PGP)’s certificates only establish key bindings; they have
no delegation semantics. The delegations in PGP are ex-
pressed by trust degrees that are stored in local key rings.
They all have depth # . In PGP, a user can also specify

threshold values for accepting a key binding. In D1LP,
this can be achieved through dynamic threshold struc-
tures. One way is to use several predicates to denote
different trust levels, for example, fully trusted and
partly trusted. A user Alice may have the following
policies:

Alice says fully_trusted(Bob).
Alice says fully_trusted(Sue).
Alice says partly_trusted(Carl).
Alice says partly_trusted(Joe).
Alice says partly_trusted(Peg).
Alice delegates is_key(_Key,_User)ˆ1

to threshold(1,fully_trusted/1).
Alice delegates is_key(_Key,_User)ˆ1

to threshold(2,partly_trusted/1).

Of course, one can also use weighted dynamic threshold
structures.

In X.509 [6], certification authorities (CAs)’ certificates
are chained together to establish a key binding. For such
delegation chains to be really meaningful, the certificates
on such chains must also imply delegations. Since there is
no limit on the length of delegation chains, all such delega-
tions have depth ‘ � ’. Privacy Enhanced Mail (PEM) uses
X.509’s certificates but limits the CA hierarchy to three lev-
els: IPRA, PCAs, and CAs. Thus PEM’s trust model re-
quires that every user give a depth-three delegation to IPRA.

A SPKI certificate does not establish key binding; it is a
delegation from the issuer to the subject of the certificate.
It has one field that controls whether a delegation can be
further delegated or not; this means that every delegation
has depth # or ‘ � ’.

There are other proposals to use lengths of delegation
paths as a metric for public-key bindings. The difference
between these path lengths and our delegation depths is that,
in the former, there is only one length, and it is specified
by the trust root. However, every DL delegation statement
can have a delegation depth limit. This has the effect of
allowing every principal on the delegation path to specify
how much further this path can go. Together, the set of
delegation depths along the path determine whether the path
is invalidly deep.

Next, we give an extended example of public key
authorization with delegation. Consider a user Alice
who wants to decide whether a public key M Key is web
site M Site’s public key. There are many certification
systems that may be relevant. In particular, Alice trusts
three of them: systems

�
, � , and � . System

�
has three

levels: XRCA, XPCA’s, and XCA’s, where XRCA is the root,
XCA’s are CA’s that certify users’ public keys directly,
and XPCA’s certify XCA’s public keys and are in turn

10

certified by XRCA.7 System � has two levels: YRCA and
YCA’s. System � has only one level: ZRCA, which certifies
users’ keys directly. Alice first translates (i.e., represents)
certificates of these systems into statements using the pred-
icates Xcertificate(

� � � �
� ��� ��� � �)� , � �� � �)! � , ...),

Ycertificate(...), Zcertificate(...).8

Then Alice asserts some rules that translate these into
statements of a common certificate predicate, say,
is site key(Key, Site). For example:

_Issuer says is_site_key(_Key,_Site)
if Xcertificate(_Issuer,_Key,_Site).

Next, Alice specifies the sense in which she trusts the
three systems, by asserting the rule:

Alice delegates is_site_key(_K,_S)ˆ3
to {XRCA,{YRCA;ZRCA}}.

This means that Alice requires system
�

and one of sys-
tem � and system � to certify a website public key. She
does this with delegation depth 3 because she knows that
3 is the maximum number of levels in those certification
systems. (Note that, for other purposes, Alice can use pred-
icates other than is site key and trust these systems dif-
ferently.) Suppose that M Key is certified by both system �
and system � , i.e., there are certificates that translate into:

YRCA delegates is_site_key(_K,_S)ˆ1
to YCA1.

YCA1 says is_site_key(M_Key,M_Site).
ZRCA says is_site_key(M_Key,M_Site).

Then the given information is not enough to deduce (i.e.,
entail) that “Alice says is key(M Key,M Site).”,
because there is no certification of that key from XRCA.

Now suppose that, in addition to these systems above,
Alice has a friend Bob. For whatever reasons, Alice trusts
Bob unconditionally to certify websites’ public keys, i.e.,

Alice delegates is_site_key(_K,_S)ˆ*
to Bob.

Bob thinks that certification by system � is itself enough for
those sites that belong to association assoc, and he trusts
ASSOC in deciding which sites belong to assoc, i.e.,

Bob delegates is_site_key(_K,_S)ˆ1
to ZRCA

if I says belongs_to(_S,assoc).
Bob delegates belongs_to(_S,assoc)ˆ1

to ASSOC.
7In Privacy Enhanced Mail (PEM)[18], the three levels of CA’s are In-

ternet Policy Registration Authority (IPRA), Policy Certification Authority
(PCA), and Certification Authority (CA).

8The exact fields of these predicates are determined by Alice. They
should be whichever elements of the certificates are relevant to Alice’s
policies.

Alice stores these policies that she got from Bob earlier.
Suppose that site M Site also sent the following certificate
issued by ASSOC:

ASSOC says belongs_to(M_Site,assoc).

With the above additional information, Alice can deduce the
following:

Bob says belongs_to(M_Site,assoc).
Bob delegates
is_site_key(M_Key,M_Site)ˆ1
to ZRCA.

Alice delegates
is_site_key(M_Key,M_Site)ˆ1
to ZRCA.

Finally, Alice can deduce:

Alice says is_site_key(M_Key,M_Site).

5 Extension: Negations and Priorities

D1LP is (logically) monotonic. It cannot express nega-
tion or negative knowledge.

However, many security policies are non-monotonic or
more easily specified as non-monotonic ones, e.g., certifi-
cate revocation. In many applications, a natural policy is to
make a decision in one direction, e.g., in favor of authoriz-
ing � , if there is no information/evidence to the contrary,
e.g., no known revocation. Using negation-as-failure (a.k.a.
default negation or weak negation) is often an easy and in-
tuitive way to do this. Also useful in representation of many
policies is classical negation (a.k.a. explicit negation or
strong negation), which allows policies that explicitly for-
bid something. Classical negation in rules, especially in the
consequents (heads) of rules, enables one to specify both the
positive and negative sides of a policy, (i.e., both permis-
sion and prohibition) using the expressive power of rules,
e.g., using inferential chaining. As argued in [16, 17], this
allows more flexible security policies. Classical negation
is particularly desirable for authorization in Internet scenar-
ios, where the number of potential requesters is huge. For
low-value transactions, users sometimes have security poli-
cies that give access to all except a few requesters. Without
negations, it would be effectively impossible to do this.

Introducing classical negation leads to the potential for
conflict: Two rules for opposing sides may both apply to
a given situation. Care must be taken to avoid producing
inconsistency. Priorities, which specify that one rule over-
rides another, are an important tool for specifying how to
handle such conflict. E.g., a known revocation overrides a
general rule to presume trustworthiness. E.g., one principal
overrides another’s decision/recommendation. Some form

11

of prioritization is generally present in many rule-based sys-
tems; prioritization has also received a great deal of atten-
tion in the non-monotonic reasoning literature (see, e.g.,
[12] for some literature review and pointers).

Prioritization information is naturally available. One
common basis for prioritization is specificity: Often it is
desirable to specify that more specific-case rules should
override more general-case rules. Another basis is re-
cency, in which more recent rules override less recent
rules. A third common basis is relative authority, in
which rules from a more authoritative source override
rules from a less authoritative one. For example, a supe-
rior legal/bureaucratic/organizational jurisdiction or a more
knowledgeable/expert source may be given higher priority.
It is often useful to reason about prioritization, e.g., to rea-
son from organization roles or timestamps to deduce priori-
ties. Reasoning about prioritization may itself involve con-
flict, e.g., a less recent rule may be more specific or more
authoritative.

To allow users to express non-monotonic policies in
a natural and powerful fashion, we define D2LP, which
stands for version 2 of Delegation Logic Programs. D2LP
is (logically) non-monotonic. D2LP expressively extends
D1LP to include negation-as-failure, classical negation, and
partially-ordered priorities. Just as D1LP bases its syntax
and semantics on definite ordinary LP’s, D2LP bases its
syntax and semantics on Courteous LP’s [14, 15]. The ver-
sion of Courteous LP’s we use is expressively generalized
as compared to the previous version in [12, 13].

In the rest of this section, we give an overview of D2LP.
Full details will be given in a forthcoming companion paper.

Syntactically, each D2LP rule (clause) is generalized
to permit each statement to be negated in two ways: by
classical negation � and/or by negation-as-failure (NAF)� . Each rule also is generalized to permit an op-
tional rule label, which is a handle for specifying prior-
ity. Prioritization is specified via the predicate � �(� � ��� �&� � .
� �(� � ��� �&� � � ���
� � 	 � ���
� � � 	 means that every rule having rule
label

���
� � 	 has strictly higher priority than every rule hav-
ing rule label

�
� � � � . � � � � ��� �&� � is treated specially in the
semantics to generate the prioritization used by all rules.
Otherwise, however, � �(� � ��� �&� � is treated as an ordinary
predicate.

A D2LP direct statement has the form:

� says # � ' #�� ' �
A D2LP delegation statement has the form:

� # � ' #�� ' delegates � ˆ � to � �

Here, as when we described D1LP, � is a principal, � is
a base atom, � is a depth, and � � is a principal structure.
Square brackets (“[...]”) indicate the optionality of what
they enclose. � stands for classical negation and is read in

English as “not”. � stands for negation-as-failure and is
read in English as “fail”.

When a statement does not contain � , we say it is clas-
sical; when it contains neither � nor � , we say it is atomic.

Semantically, the negations’ scope can be viewed as ap-
plying to the whole statement. Intuitively, � � means that

�
is believed to be false. By contrast, � ! � means that ! � is
not believed to be true, i.e., either ! � is believed to be false,
or ! � is unknown. “Unknown” here means in the sense that
there is no belief one way or the other about whether ! � is
true versus false.

A D2LP statement formula is defined as the result of
conjunctions and disjunctions applied to D2LP statements,
similarly to the way in which a D1LP statement formula is
defined as the result of conjunctions and disjunctions ap-
plied to D1LP statements (i.e., atomic statements). A D2LP
rule (clause) is defined as:� ��� �� � if � �
Here, � is a classical statement. � is a statement formula.
The rule label

�
� is an ordinary logical term (e.g., the con-
stant

� � � � below)
in the D2LP language. The rule label may optionally be

omitted. Note that D2LP relaxes the D1LP prohibition on
dynamic threshold structures in the body. Syntactically, a
D1LP rule is a special case of a D2LP rule.

We say that ! is a base classical literal when ! has the
form

�
or � � , where

�
is a base atom. Here, � stands for

classical negation, and is read in English as “not”. We say
that

�
is a base literal when

�
has the form ! or � ! , where

! is a classical literal. � stands for negation-as-failure and
is read in English as “fail”. Intuitively, � � means that

�
is

believed to be false. By contrast, � � means that
�

is not
believed to be true, i.e.:

�
is either believed to be false, or

�
is unknown. Unknown here means in the sense that there is
no belief one way or the other about whether

�
is true versus

false.
Next, we give a simple example that illustrates the use of

classical negation and priorities. Let D2LP program � 	 be
the following set of rules:� ! ������� � says ��� � � � � � � 	

if � says ! �����&� � � � ��� �(� � � � � ����� 	
�� � � � ��� � says ����� � � � � � � 	
if

�
says

� � � � �%� � � � � � � 	 �
� says

� � � � ��	�' � � � � � � 	 �
� says � �(� � ��� �+� � � � � � � ��! ����� 	 �
� says ! �����+� � � � ��� �(� � � ��� � � ����� 	 �
� says

� � � � �
	 ' � � � � � � 	
�
� 	 entails the conclusion: � says ��� � � � � � � ��� 	 .
Continuing the example, suppose the following statement is
added to � 	 to form � � .�

says
� � � � �%� � � � � � � ��� 	
�

� � instead entails the conclusion:
� says � ��� � � � � � � ��� 	 .

12

The semantics of a D2LP are defined via a translation
� � � �

�)
to a ground courteous LP that is roughly similar

to D1LP’s translation � � � �
�

to a ground OLP. Courteous
LP’s expressively extend OLP’s to include � and � , as well
as prioritization represented via an � �(� � ��� �&� � predicate on
rule labels.

We impose some further expressive restrictions in D2LP,
related especially to cyclicity of dependency between pred-
icates, to ensure D2LP’s well-behavior semantically and
computationally. The generalized version of Courteous
LP’s relies on the well-founded semantics [10], which is
computationally tractable (worst-case polynomial-time) for
the ground case.

Courteous LP’s semantic well-behavior includes having
a unique (minimal) model that is consistent (

�
and � � are

never both sanctioned as conclusions). D2LP inherits this
same well-behavior. D2LP inferencing remains decidable;
its finiteness properties are similar to those of D1LP.

In a forthcoming paper, we cover DL’s treatment of nega-
tion in detail, as we have covered delegation in detail in this
paper.

6 Discussion and Future Work

As explained in previous sections, our design of DL was
primarily influenced by earlier work on trust management
and on logic programming and knowledge representation.
There is other, more tenuously related work in the computer
security literature, which we now review.

In [1, 21, 27], Abadi, Burrows, Lampson, Wobber, and
Plotkin developed a logic for authentication and access con-
trol in distributed systems. Their logic is similar to DL in
one respect: It focuses on delegation, which it expresses via
the “speaks for” relation. In all other respects, the logic of
[1, 21, 27] is quite different from DL in its ends and means.
Its approach to delegation does not include delegation-depth
or threshold structures; in this respect, DL’s notion of dele-
gation is more powerful. The treatment of authorization in
[1, 21, 27] is considerably less general than DL’s; all of their
“policies” are expressed as access-control lists, whereas DL
(which takes the “trust-management approach”) is a general
authorization language. The work in [1, 21, 27] also dif-
fers from from DL in the way it uses logic: It is not based
on logic programming and knowledge representation, and
hence it does not have a model-theoretic semantics. Finally,
[1, 21, 27] does not incorporate negation.

Maurer [23] modeled public-key infrastructure via rec-
ommendations with levels and confidence values. “Dele-
gation” in DL is very similar to “recommendation” in [23],
but there are several differences. One is that Maurer’s model
supports direct statements and delegation statements but not
clauses (rules). A second is that Maurer’s model supports
reasoning about the delegations and beliefs of what DL calls

“Local,” but it does not allow, say, Local A to reason about
the beliefs of B (e.g., about whether, in A’s view, B dele-
gates to C or B believes a particular statement). Thus, one
cannot express, in Maurer’s model, that “A says

�
if B says

� .” This restriction permits delegation chaining to be much
simpler in [23] than it is in DL and eliminates the need to
maintain “lengths.” Thirdly, Maurer’s model does not sup-
port delegation to lists, threshold structures, etc.. Finally,
DL does not use numerical confidence values, because it
is our view that users would have little if any factual basis
for choosing specific numbers; in many scenarios, thresh-
old structures can provide similar functionality. Like Abadi
et al. [1, 21, 27], Maurer [23] does not treat negation and
does not use logic programming or knowledge representa-
tion (and hence does not provide a model-theoretic seman-
tics).

Previous work on authorization languages that incorpo-
rate negation includes that of Woo and Lam [28] and Ja-
jodia et al. [16, 17]. The main difference between these
works and DL is that they do not deal with delegation; it
particular, they have no complex principal structures such as
thresholds. Furthermore, the way in which [28, 16, 17] han-
dles negation is different from the way it is handled D2LP.
Although we have not fully specified D2LP in this paper,
the discussion in Section 5 above suffices to allow us to
explain how our approach to negation differs from that of
[28, 16, 17].

The language of Woo and Lam [28], which is based on
Default Logic [24], does not guarantee that every program
(or, in their terms, every “policy base”) has a model; fur-
thermore, when a model exists, it might not have a meaning-
ful interpretation, because of potential inconsistency. Well-
founded semantics and prioritized conflict handling allow
D2LP to support a more expressive set of non-monotonic
policies and give a unique and meaningful model to every
program.

Jajodia et al. [16, 17] proposed a logical authorization
language that is based on Datalog extended with two nega-
tions. They have only limited support for non-monotonic
policies, however, via syntactic restrictions that ensure that
policies are conflict-free and stratified. By contrast, D2LP
is more expressive, via well-founded semantics and conflict
handling. Programs written in Jajodia et al.’s language are
syntactically restricted and delegation-free special cases of
D2LP, and D2LP would give the same model for them.

Future work will address the computational complex-
ity of compliance checking in DL, syntactically restricted
classes of DL programs for which compliance can be
checked very efficiently, implementation of the DL inter-
preter (for which we now have only a preliminary ver-
sion for restricted D1LP), and deployment of DL in an e-
commerce platform.

13

References

[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin, “A
Calculus for Access Control in Distributed Systems,” ACM
Transactions on Programming Languages and Systems, 15
(1993), pp. 706–734.

[2] C. Baral and M. Gelfond, “Logic Programming and Knowl-
edge Representation”, Journal of Logic Programming,
19,20(1994), pp. 73–148. Includes extensive review of litera-
ture.

[3] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis,
“The KeyNote Trust-Management System,” submitted for
publication as an Internet RFC, March 1998.
http://www.cis.upenn.edu/˜angelos/Papers/
draft-keynote.txt.

[4] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized Trust
Management,” in Proceedings of the Symposium on Security
and Privacy, IEEE Computer Society Press, Los Alamitos,
1996, pp. 164–173.

[5] M. Blaze, J. Feigenbaum, and M. Strauss, “Compliance-
Checking in the PolicyMaker Trust Management System,” in
Proceedings of Financial Crypto ’98, Lecture Notes in Com-
puter Science, vol. 1465, Springer, Berlin, 1998, pp. 254–
274.

[6] ITU-T Rec. X.509 (revised), The Directory - Authentication
Framework, International Telecommunication Union, 1993.

[7] Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and
M. Strauss, “REFEREE: Trust Management for Web Appli-
cations,” World Wide Web Journal, 2 (1997), pp. 706–734.

[8] D. Clark and D. Wilson, “A Comparison of Commercial and
Military Computer Security Policies,” In Proceedings of the
IEEE Symposium on Security and Privacy, IEEE Computer
Society Press, Los Alamitos, 1987.

[9] C. Ellison, “SPKI Certificate Documentation,”
http://www.pobox.com/˜cme/html/spki.html.

[10] A. Van Gelder, K. A. Ross, and J. S. Schlipf, “The Well-
founded Semantics for Logic Programming,” Journal of the
ACM, 38 (1991), pp. 620-650.

[11] J. Gosling and H. McGilton, The Java Language Environ-
ment, A White Paper, Sun Microsystems, Inc., Mountain
View, 1995.

[12] B. Grosof, “Courteous Logic Programs: Prioritized Conflict
Handling for Rules,” IBM Research Report RC20836, May
1997. This is an extended version of [13].

[13] B. Grosof, “Prioritized Conflict Handling for Logic Pro-
grams,” in Proceedings of the International Symposium on
Logic Programming, MIT Press, Cambridge, 1997, pp. 197–
212.

[14] B. Grosof, “Compiling Prioritized Default Rules Into Ordi-
nary Logic Programs,” IBM Reseach Report , April 1999.

[15] B. Grosof, “DIPLOMAT: Compiling Prioritized Default
Rules Into Ordinary Logic Programs, for E-Commerce Appli-
cations (extended abstract of Intelligent Systems Demonstra-
tion),” in Proceedings of AAAI-99, Morgan Kaufmann, 1999.

[16] S. Jajodia, P. Samarati, and V. S. Subrahmanian, “A Logi-
cal Language for Expressing Authorizations,” in Proceedings
of the Symposium on Security and Privacy, IEEE Computer
Society Press, Los Alamitos, 1997, pp. 31–42.

[17] S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino,
“A Unified Framework for Enforcing Multiple Access Con-
trol Policies,” in Proceedings ACM SIGMOD Conference on
Management of Data, 1997.

[18] S. T. Kent, “Internet Privacy Enhanced Mail,” Communica-
tions of the ACM, 8 (1993), pp. 48–60.

[19] J. W. Lloyd, Foundations of Logic Programming, second edi-
tion, Springer, Berlin, 1987.

[20] M. Longhair (editor), “A P3P Preference Exchange Lan-
guage (APPEL) Working Draft,” W3C Working Draft 9, Oc-
tober 1998,
http://www.w3.org/P3P/Group/Preferences/
Drafts/WD-P3P-preferences-19981009.

[21] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Au-
thentication in Distributed Systems: Theory and Practice,”
ACM Transactionson Computer Systems, 10 (1992), pp. 265–
310.

[22] M. Marchiori, J. Reagle, and D. Jaye (editors), “Platform for
Privacy Preferences (P3P1.0) Specification,” W3C Working
Draft 9 November 1998,
http://www.w3.org/TR/WD-P3P/.

[23] U. Maurer, “Modelling a Public-Key Infrastructure,” in Pro-
ceedings of the 1996 European Symposium on Research
in Computer Security, Lecture Notes in Computer Science,
vol. 1146, Springer, Berlin, 1997, pp. 325–350.

[24] R. Reiter, “A Logic for Default Reasoning,” Artificial Intelli-
gence, 13 (1980), pp. 81–132.

[25] P. Resnick and J. Miller, “PICS: Internet access controls
without censorship,” Communications of the ACM, 39 (1996),
pp. 87–93.

[26] R. Rivest and B. Lampson, “Cryptography and Information
Security Group Research Project: A Simple Distributed Se-
curity Infrastructure,”
http://theory.lcs.mit.edu/˜cis/sdsi.html.

[27] E. Wobber, M. Abadi, M. Burrows, and B. Lampson, “Au-
thentication in the TAOS Operating System,” ACM Transac-
tions on Computer Systems, 12 (1994), pp. 3–32.

[28] T. Woo and S. Lam, “Authorization in Distributed Systems:
A New Approach,” Journal of Computer Security, 2 (1993),
pp. 107–136.

[29] P. Zimmermann, The Official PGP User’s Guide, MIT Press,
Cambridge, 1995.

14

