
Distributed Credential Chain Discovery in Trust
Management (Extended Abstract) ∗

Ninghui Li
Department of Computer

Science, Gates 4B
Stanford University

Stanford, CA 94305-9045

ninghui.li@cs.stanford.edu

William H. Winsborough
NAI Labs

Network Associates, Inc.
3060 Washington Road
Glenwood, MD 21738

William Winsborough@NAI.com

John C. Mitchell
Department of Computer

Science, Gates 4B
Stanford University

Stanford, CA 94305-9045

mitchell@cs.stanford.edu

ABSTRACT
We give goal-oriented algorithms for discovering credential
chains in RT0, a role-based trust-management language in-
troduced in this paper. The algorithms search credential
graphs, a representation of RT0 credentials. We prove that
evaluation based on reachability in credential graphs is sound
and complete with respect to the set-theoretic semantics
of RT0. RT0 is more expressive than SDSI 2.0, so our
algorithms can perform chain discovery in SDSI 2.0, for
which existing algorithms in the literature either are not
goal-oriented or require using specialized logic-programming
inferencing engines. Being goal-oriented enables our algo-
rithms to be used when credential storage is distributed. We
introduce a type system for credential storage that guaran-
tees well-typed, distributed credential chains can be discov-
ered.

1. INTRODUCTION
Several trust-management systems have been proposed

in recent years, e.g., SPKI/SDSI [10], PolicyMaker [3, 4],
KeyNote [2], Delegation Logic [15]. These systems are based
on the notion of delegation, whereby one entity gives some
of its authority to other entities. The process of making
access control decisions involves finding a delegation chain
from the source of authority to the requester. Thus, a cen-
tral problem in trust management is to determine whether
such a chain exists and, if so, to find it. We call this the cre-
dential chain discovery problem, by contrast with the certifi-
cate chain discovery problem, which is concerned with X.509
certificates [9]. Credentials in trust management generally
have more complex meanings than simply binding names to
public keys, and a credential chain is often a graph, rather
than a linear path. The goal of this paper is to address the

∗This work is supported by DARPA through
SPAWAR contracts N66001-00-C-8015 and N66001-
01-C-8005, and AFRL/IF contract F30602-97-C-
0336. A full version of this paper is available at:
http://crypto.stanford.edu/~ninghui/papers/disc.pdf

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
CCS’01, November 5-8, 2001, Philadelphia, Pennsylvania, USA.
Copyright 2001 ACM 1-58113-385-5/01/0011 ...$5.00.

credential chain discovery problem (the discovery problem
for short) in such systems.
Almost all existing work addressing the discovery problem

assumes that potentially relevant credentials are all gath-
ered in one place. This is at odds with the tenet of trust
management—decentralized control; systems that use trust
management typically issue and often store credentials in a
distributed manner. This raises some nontrivial questions.

Example 1. A fictitious Web publishing service, EPub,
offers a discount to preferred customers of its parent orga-
nization, EOrg. EOrg issues a credential to the ACM stat-
ing that ACM members are preferred customers. Combin-
ing it with Alice’s ACM membership credential yields a two-
credential chain that proves Alice is a preferred customer.
This is a linear chain; the subject of the credential issued by
EOrg, ACM, is the issuer of the credential issued to Alice.

These two credentials must be collected to construct the
chain. The question we take up is where they should be
stored to enable that collection. We say an entity A stores
a credential if we can find the credential once we know A.
Some other entity, such as a directory, may actually house
the credential on A’s behalf. Also, by storing a credential,
we mean storing and providing access to the credential.
Given this definition of storing, to be useful, a credential

must be stored with its issuer or with its subject. If both
credentials in example 1 are stored with their subject, we
can find them by obtaining the first credential from Alice,
and using the issuer of that credential, ACM, to obtain the
second. A disadvantage of this strategy is that it requires the
ACM to store all the credentials authorizing ACM members.
This makes the ACM a bottleneck. Also, some issuers may
not entrust credentials to their subjects. If instead both
credentials are stored with their issuers, the ACM has to
store and provide all membership ids, again making it a
bottle neck, and potentially causing broad search fan-out.
In the example, the ideal arrangement is to store one cre-

dential with EOrg and the other with Alice. The chain can
then be discovered by working from these two ends towards
the chain’s middle. No prior credential discovery system
supports this, probably because subject- and issuer-storage
cannot be intermixed arbitrarily: in our example, if both
credentials are stored exclusively by the ACM, the chain
cannot be found. This is because in many decentralized
systems, it is impossible or prohibitively expensive for one
entity to enumerate all other entities in the systems. For
all practical purposes, in such a system, if one can’t find a



credential chain without contacting every entity, one can’t
find it at all. In this paper, we introduce a credential typing
system that constrains storage enough to ensure chains can
be found by starting at their two ends and working inward.
The credential chain introduced in example 1 illustrates

only the simplest case that we address. Some trust man-
agement systems, such as SDSI and Delegation Logic, allow
what we call attribute-based delegation, that is the delegation
of attribute authority to entities having certain attributes.

Example 2. EPub offers another discount to university
students, and delegates the authority over the identification
of students to entities that are accredited universities.

Attribute-based delegation is achieved in SDSI through
linked names, and in Delegation Logic through dynamic
threshold structures and through conditional delegations.
Systems that support attribute-based delegation promise
high flexibility and scalability. However they significantly
complicate the structure and discovery of credential chains.
Beyond storing credentials where they can be found, dis-

tributed discovery also requires an evaluation procedure that
can drive credential collection. Such a procedure must be
goal-oriented in the sense of expending effort only on chains
that involve the requester and the access mediator, or its
trusted authorities. In the Internet, with distributed stor-
age of millions of credentials, most of them unrelated to one
another, goal-oriented techniques will be crucial. The proce-
dure must also be able to suspend evaluation, issue a request
for credentials that could extend partial chains, and then
resume evaluation when additional credentials are obtained.
Existing evaluation procedures for SDSI and for Delegation
Logic are either not goal-oriented, or do not support this
alternation between collection and evaluation steps.
As a concrete foundation for discussing the discovery prob-

lem, we introduce a trust-management language, RT0, which
supports attribute-based delegation and subsumes SDSI 2.0
(the “SDSI” part of SPKI/SDSI 2.0 [10]). We provide goal-
oriented evaluation algorithms based on a graphical repre-
sentation of RT0 credentials. This representation is ideal for
driving credential collection because it makes it easy to sus-
pend and resume, and to schedule work flexibly. Even in the
centralized case, goal-orientation is an advantage when the
credential pool is very large and contains many credentials
that are unrelated. We also show how to use our algorithms
to perform goal-oriented chain discovery for SDSI 2.0.
The rest of this paper is organized as follows. In sec-

tion 2, we present the syntax and a set-theoretic semantics
for RT0. In section 3, we present goal-oriented, graph-based
algorithms for centralized chain discovery in RT0, and show
how to apply them to SDSI as well. We prove that the graph-
based notion of credential chains is sound and complete with
respect to the semantics for RT0. In section 4, we study
chain discovery in the distributed case. We present a notion
of well-typed credentials and prove that chains of well-typed
credentials can always be discovered. In section 5, we dis-
cuss future directions and some related work. We conclude
in section 6.

2. A ROLE-BASED TRUST-MANAGEMENT
LANGUAGE

This section introduces RT0, the first (and the simplest)
in a series of role-based trust-management languages we are
developing. We present RT0’s syntax, discuss its intended

meaning, and compare it to SDSI. Then we give a formal
semantics.

2.1 The Language RT0

The constructs of RT0 include entities, role names, and
roles. Typically, an entity is a public key, but could also be,
say, a user account. Entities can issue credentials and make
requests. RT0 requires that each entity can be uniquely
identified and that one can determine which entity issued a
particular credential or a request. In this paper, we use A,
B, and D to denote entities. A role name is an identifier,
say, a string. We use r, r1, r2, etc., to denote role names.
A role takes the form of an entity followed by a role name,
separated by a dot, e.g., A.r and B.r1. The notion of roles
is central in RT0. A role has a value that is a set of enti-
ties who are members of this role. Each entity A has the
authority to define who are the members of each role of the
form A.r. A role can also be viewed as an attribute. An en-
tity is a member of a role if and only if it has the attribute
identified by the role. In RT0, an access control permission
is represented as a role as well. For example, the permis-
sion to shut down a computer can be represented by a role
OS.shutdown.
There are four kinds of credentials in RT0, each corre-

sponding to a different way of defining role membership:

• Type-1 : A.r←−B

A and B are (possibly the same) entities, and r is a
role name.

This means that A defines B to be a member of A’s r

role. In the attribute-based view, this credential can
be read as B has the attribute A.r, or equivalently, A

says that B has the attribute r.

• Type-2 : A.r←−B.r1

A and B are (possibly the same) entities, and r and
r1 are (possibly the same) role names.

This means that A defines its r role to include all
members of B’s r1 role. In other words, A defines the
role B.r1 to be more powerful than A.r, in the sense
that a member of B.r1 can do anything that the role
A.r is authorized to do. Such credentials can be used
to define role-hierarchy in Role-Based Access Control
(RBAC) [16]. The attribute-based reading of this cre-
dential is: if B says that an entity has the attribute r1,
then A says that it has the attribute r. In particular,
if r and r1 are the same, this is a delegation from A to
B of authority over r.

• Type-3 : A.r←−A.r1.r2

A is an entity, and r, r1, and r2 are role names. We
call A.r1.r2 a linked role.

This means that members(A.r) ⊇ members(A.r1.r2) =
⋃

B∈members(A.r1)
members(B.r2), wheremembers(e)

represents the set of entities that are members of e.
The attribute-based reading of this credential is: if A

says that an entity B has the attribute r1, and B says
that an entity D has the attribute r2, then A says that
D has the attribute r. This is attribute-based delega-
tion: A identifies B as an authority on r2 not by using
(or knowing) B’s identity, but by another attribute of
B (viz., r1). If r and r2 are the same, A is delegating



its authority over r to anyone that A believes to have
the attribute r1.

• Type-4 : A.r←−f1 ∩ f2 ∩ · · · ∩ fk

A is an entity, k is an integer greater than 1, and each
fj , 1 ≤ j ≤ k, is an entity, a role, or a linked role
starting with A. We call f1∩f2∩· · ·∩fk an intersection.

This means that members(A.r) ⊇ (members(f1)∩· · ·∩
members(fk)). The attribute-based reading of this cre-
dential is: anyone who has all the attributes f1, . . . , fk

also has the attribute A.r.

A role expression is an entity, a role, a linked role, or an
intersection. We use e, e1, e2, etc, to denote role expressions.
By contrast, we use f1, . . . , fk to denote the intersection-free
expressions occurring in intersections. All credentials in RT0

take the form, A.r←−e, where e is a role expression. Such
a credential means that members(A.r) ⊇ members(e), as we
formalize in section 2.2 below. We say that this credential
defines the role A.r. (This choice of terminology is moti-
vated by analogy to name definitions in SDSI, as well as
to predicate definitions in logic programming.) We call A

the issuer, e the right-hand side, and each entity in base(e) a
subject of this credential, where base(e) is defined as follows:
base(A) = {A}, base(A.r) = {A}, base(A.r1.r2) = {A},
base(f1 ∩ · · · ∩ fk) = base(f1) ∪ · · · ∪ base(fk).

Example 3. Combining examples 1 and 2, EPub offers
a special discount to anyone who is both a preferred cus-
tomer of EOrg and a student. To identify legitimate uni-
versities, EPub accepts accrediting credentials issued by the
fictitious Accrediting Board for Universities (ABU). The fol-
lowing credentials prove Alice is eligible for the special dis-
count:


































EPub.spdiscount←−EOrg.preferred ∩ EPub.student,
EOrg.preferred←−ACM.member,

ACM.member←−Alice,
EPub.student←−EPub.university.stuID,

EPub.university←−ABU.accredited,
ABU.accredited←−StateU,

StateU.stuID←−Alice



































Readers familiar with Simple Distributed Security Infras-
tructure (SDSI) [8, 10] may notice the similarity between
RT0 and SDSI’s name certificates. Indeed, our design is
heavily influenced by existing trust-management systems,
especially SDSI and Delegation Logic (DL) [15]. RT0 can be
viewed as an extension to SDSI 2.0 or a syntactically sugared
version of a subset of DL. The arrows in RT0 credentials are
the reverse direction of those in SPKI/SDSI. We choose to
use this direction to be consistent with an underlying logic
programming reading of credentials and with directed edges
in credential graphs, introduced below in section 3. In addi-
tion, RT0 differs from SDSI 2.0 in the following two aspects.
First, SDSI allows arbitrarily long linked names, while

we allow only length-2 linked roles. There are a couple of
reasons for this design. We are not losing any expressive
power; one can always break up a long chain by introducing
additional roles and credentials. Moreover, it often makes
sense to break long chains up, as doing so creates more
modular policies. If A wants to use B.r1.r2. · · · .rk in its
credential, then B.r1.r2. · · · .rk−1 must mean something to
A; otherwise, why would A delegate power to members of
B.r1.r2. · · · .rk−1? Having to create a new role makes A

think about what B.r1.r2. · · · .rk−1 means. Finally, restrict-
ing lengths of linked roles simplifies the design of algorithms
for chain discovery.
Second, SDSI doesn’t have RT0’s type-4 credentials, and

so RT0 is more expressive than the current version of SDSI
2.0. Intersections and threshold structures (e.g., those in
[10]) can be used to implement one another. Threshold
structures may appear in name certificates according to [10]
and earlier versions of [11]. This is disallowed in [8] and the
most up-to-date version of [11], because threshold structures
are viewed as too complex [8]. Intersections provide similar
functionality with simple and clear semantics.

2.2 The Semantics of RT0

This section presents a non-operational semantics of RT0.
Given a set C of RT0 credentials, we define a map SC :
Roles → ℘(Entities), where ℘(Entities) is the power set of
Entities. SC is given by the least solution to a system of
set inequalities that is parameterized by a finite, set-valued
function, rmem : Roles→ ℘(Entities). That is, the semantics
is the least such function that satisfies the system, where
the ordering is pointwise subset. We use a least fixpoint so
as to resolve circular role dependencies. To help construct
the system of inequalities, we extend rmem to arbitrary role
expressions (whose domain we denote by RoleExpressions)
through the use of an auxiliary semantic function, exprrmem :
RoleExpressions→ ℘(Entities) defined as follows:

exprrmem(B) = {B}

exprrmem(A.r) = rmem(A.r)

exprrmem(A.r1.r2) =
⋃

B∈rmem(A.r1)

rmem(B.r2)

exprrmem(f1 ∩ · · · ∩ fk) =
⋂

1≤j≤k

exprrmem(fj)

We now define SC to be the least value of rmem satisfying
the following system of inequalities:

{

exprrmem(e) ⊆ rmem(A.r)
∣

∣ A.r←−e ∈ C
}

.

As with rmem, we use expr to extend SC to role expressions,
writing exprSC (e) for the members of role expression e.
The least solution to such a system can be constructed

as the limit of a sequence {rmemi}i∈N , where N is the set
of natural numbers, and where for each i, rmemi : Roles →
℘(Entities). The sequence is defined inductively by taking
rmem0(A.r) = ∅ for each role A.r and by defining rmemi+1

so that for each role A.r,

rmemi+1(A.r) =
⋃

A.r←−e ∈ C

exprrmemi
(e).

The function that relates the values of {rmemi}i∈N is mono-
tonic, because the operators used to construct it (∩ and ∪)
are monotonic. Furthermore, Roles → ℘(Entities) is a com-
plete lattice. So this sequence is known to converge to the
function’s least fixpoint, which is clearly also the least solu-
tion to the inequalities. (As the lattice is finite, convergence
takes place finitely.) Thus, the least solution exists and is
easily constructed. For instance, referring to example 3 and
showing only changes in the function’s value, successive val-
ues of rmemi have: for i = 1, ABU.accredited = {StateU},
StateU.stuID = {Alice}, ACM.member = {Alice}; for i = 2,
EPub.university = {StateU}, EOrg.preferred = {Alice}; for
i = 3, EPub.student = {Alice}; for i = 4, EPub.spdiscount =
{Alice}, where they stabilize.



3. CENTRALIZED CHAIN DISCOVERY
Given a set of credentials C in RT0, three important kinds

of queries are:

1. Given a role A.r, determine its member set, SC(A.r);

2. Given an entity D, determine all the roles it belongs
to, i.e., all role A.r’s such that D ∈ SC(A.r);

3. Given a role A.r and an entity D, determine whether
D ∈ SC(A.r).

In this section, we study credential chain discovery for
RT0 when credentials are centralized. We give goal-oriented
algorithms for answering the above three kinds of queries.

3.1 Algorithm Requirements
Chain discovery in RT0 shares two key problem charac-

teristics with discovery in SDSI: linked names give creden-
tial chains a non-linear structure and role definitions can be
cyclic. Cyclic dependencies must be managed to avoid non-
termination. Clarke et al. [8] have given an algorithm for
chain discovery in SPKI/SDSI 2.0. Their algorithm views
each certificate as a rewriting rule and views discovery as a
term-rewriting problem. It manages cyclic dependency by
using a bottom-up approach—it performs a closure opera-
tion over the set of all credentials before it finds one chain.
This may be suitable when large numbers of queries are
made about a slowly changing credential pool of modest
size. However, as the frequency of changes to the credential
pool (particularly deletions, such as credential expirations or
revocations) approaches the frequency of queries against the
pool, the efficiency of the bottom-up approach deteriorates
rapidly, particularly when pool size is large.
Li [14] gave a 4-rule logic program to calculate mean-

ings of SDSI credentials. Cyclic dependencies are managed
by using XSB [17] to evaluate the program. XSB’s exten-
sion table mechanism avoids non-termination problems to
which other Prolog engines succumb. Yet, for many trust-
management applications, this solution is excessively heavy-
weight. Moreover, in its current form, the resulting evalua-
tion mechanism cannot be used to drive credential collection.
As discussed in section 1, because we seek techniques

that work well when the credential pool is distributed or
changes frequently, we require chain discovery algorithms
that are goal-directed and that can drive the collection pro-
cess. They also must support interleaving credential collec-
tion and chain construction (i.e., evaluation) steps.
We meet these requirements by providing graph-based

evaluation algorithms. Credentials are represented by edges.
Chain discovery is performed by starting at the node rep-
resenting the requester, or the node representing the role
(permission) to be proven, or both, and then traversing
paths in the graph trying to build an appropriate chain.
In addition to being goal-directed, this approach allows the
elaboration of the graph to be scheduled flexibly. Also, the
graphical representation of the evaluation state makes it rel-
atively straightforward to manage cyclic dependencies. To
our knowledge, our algorithms are the first to use a graphical
representation to handle linked roles.

3.2 A Graph Representation of Credentials
We define a directed graph, which we call a credential

graph, to represent a set of credentials and their meanings.
Each node in the graph represents a role expression occur-
ring in a credential in C. Every credential A.r ←− e ∈ C

contributes an edge e→A.r.1 (This holds for credentials of
all types.) The destinations of these edges are roles. Edges
are also added whose destinations are linked roles and inter-
sections. We call these derived edges because their inclusion
come from the existence of other, semantically related, paths
in the graph.

Definition 1 (Credential Graph). For a set of cre-
dentials C, the corresponding credential graph is given by
GC = 〈NC, EC〉 where NC and EC are defined as follows.

NC =
⋃

A.r←−e ∈ C

{A.r, e}.

EC is the least set of edges over NC that satisfies the follow-
ing three closure properties:

Closure Property 1: If A.r←−e ∈ C, then e→A.r ∈ EC.

Closure Property 2: If B.r2, A.r1.r2 ∈ NC and there is a

path B
∗
→ A.r1 in EC, then B.r2→A.r1.r2 ∈ EC; we

say that this edge is derived from the path B
∗
→ A.r1.

Closure Property 3: If D, f1∩· · ·∩fk ∈ NC and for each

j ∈ [1..k] there is a path D
∗
→ fj , then D→f1 ∩ · · · ∩

fk ∈ EC; we say that this edge is derived from the paths

D
∗
→ fj, for j ∈ [1..k].

This definition can be made effective by inductively con-
structing a sequence of edge sets {EC

i}i∈N whose limit is
EC . We take EC

0 = {e→ A.r | A.r ←− e ∈ C} and con-
struct EC

i+1 from EC
i by adding one edge according to ei-

ther closure property 2 or 3. Since C is finite, we do not
have to worry about scheduling these additions. At some
finite stage, no more edges will be added, and the sequence
converges to EC.

Theorem 1 (Soundness). Given an entity D and a

role expression e, if there is a path D
∗
→ e in EC, then

D ∈ exprSC (e).

Proof. The proof is by induction on the steps of the con-
struction of {EC

i}i∈N shown above. We prove an induction
hypothesis that is slightly stronger than the theorem: For
each i ∈ N and for any role expressions e1 and e, if there is

a path e1
∗
→ e in EC

i, then exprSC (e1) ⊆ exprSC (e).
We show the base case by using a second, inner induction

on the length of the path e1
∗
→ e in EC

0. The inner base
case, in which e1 = e, is trivial; we consider the step. Sup-

pose (e1
∗
→ e) = (e1

∗
→ e2→ e). Because each edge in EC

0

corresponds to a credential, we have e←− e2 ∈ C. It fol-
lows that exprSC (e2) ⊆ exprSC (e), by definition of SC. The
induction assumption gives us exprSC (e1) ⊆ exprSC (e2), so
exprSC (e1) ⊆ exprSC (e).
We prove the step by again using an inner induction on the

length of e1
∗
→ e, which we now assume is in EC

i+1. Again

the basis is trivial. For the step, we decompose e1
∗
→ e into

e1
∗
→ e2 → e. There are three cases, depending on which

closure property introduced the edge e2→e.
case 1: When e2→ e is introduced by closure property 1,
the argument proceeds along the same lines as the base case,

using the inner induction hypothesis on e1
∗
→ e2 to derive

exprSC (e1) ⊆ exprSC (e2).

1While long, lefthand arrows (←−) represent credentials,
short, righthand arrows (→) represent edges, and short,

righthand arrows with stars (
∗
→) represent paths, which con-

sist of zero or more edges.



case 2: When e2→e is introduced by closure property 2, e
has the form A.r1.r2, e2 has the form B.r2, and there is a

path B
∗
→ A.r1 in EC

i. The outer induction hypothesis gives
us exprSC (B) ⊆ exprSC (A.r1), i.e., B ∈ SC(A.r1). The inner
induction hypothesis gives us exprSC (e1) ⊆ exprSC (B.r2).
Together with the definition of expr for A.r1.r2, these imply
exprSC (e1) ⊆ exprSC (e), as required.
case 3: When e2→e is introduced by closure property 3, e
has the form f1 ∩ · · · ∩ fk, e2 = e1 is an entity D (because
entity nodes have no incoming edges), and there are paths

D
∗
→ fj in EC

i for each j ∈ [1..k]. The outer induction
hypothesis gives us D ∈ exprSC (fj) for j ∈ [1..k]; therefore,
exprSC (e1) ⊆ exprSC (e).

Theorem 2 (Completness). For any role, A.r, D ∈

SC(A.r) implies there exists a path D
∗
→ A.r in EC.

The proofs for this and other theorems are omitted due to
space limitation; they can be found in the full version of this
paper.
Together, Theorems 1 and 2 tell us that we can answer

each of the queries enumerated at the top of this section
by consulting the credential graph. The rest of this section
gives algorithms for constructing subgraphs that enable us
to answer such questions without constructing the entire

graph. As we have seen, constructing the path D
∗
→ A.r

alone proves D is in role A.r. However, where D
∗
→ A.r

contains derived edges, the paths they are derived from must
be constructed first. The portion of the credential graph
that must be constructed is what we call a credential chain:
chain(D

∗
→ A.r) is the least set of edges in EC containing

D
∗
→ A.r and also containing all the paths that the derived

edges in the set are derived from.

3.3 The Backward Search Algorithm
The backward search algorithm determines the member

set of a given role expression e0. In terms of the creden-
tial graph, it finds all the entity nodes that can reach the
node e0. We call it backward because it follows edges in the
reverse direction. This name is consistent with the terminol-
ogy in X.509 [5, 9], in which forward means going from sub-
jects to issuers and reverse means from issuers to subjects.
This algorithm works by constructing proof graphs, which
are equivalent to, but slightly different from, subgraphs of
a credential graph. The minor difference is discussed after
the presentation of the algorithm.
The backward search algorithm constructs a proof graph,

maintaining a queue of nodes to be processed; both initially
contain just one node, e0. Nodes are processed one by one
until the queue is empty.
To process a role node A.r, the algorithm finds all creden-

tials that define A.r. For each credential A.r←−e, it creates
a node for e, if none exists, and adds the edge e→A.r. In the
proof graph, there is only one node corresponding to each
role expression and each edge is added only once. Each time
the algorithm tries to create a node for a role expression e,
it first checks whether such a node already exists; if not, it
creates a new node, adds it into the queue, and returns it.
Otherwise, it returns the existing node.
On each node e, the algorithm stores a children set, which

is a set of nodes, e1, that e can reach directly (i.e., e→e1),
and a solution set, which is the set of entity nodes, D, that

can reach e (i.e., D
∗
→ e). Solutions are propagated from e

to e’s children in the following ways. When a node is notified
to add a solution, it checks whether the solution exists in its
solution set; if not, it adds the solution and then notifies all
its children about this new solution. When a node e1 is first
added as a child of e2 (as the result of adding e2→ e1), all
existing solutions on e2 are copied to e1.
To process an entity node, the algorithm notifies the node

to add itself to its own solution set.
To process a linked role node A.r1.r2, the algorithm cre-

ates a node for A.r1 and creates a linking monitor to observe
the node. The monitor, on observing that A.r1 has received
a new solution B, creates a node for B.r2 and adds the edge
B.r2→A.r1.r2, which we call a link-containment edge.
To process an intersection node e = f1∩· · ·∩fk, the algo-

rithm creates one intersection monitor, for e, and k nodes,
one for each fj , then makes the monitor observe each node
fj . This monitor counts how many times it observes that an
entity D is added. For a given entity D, each fj notifies e

at most once. If the count reaches k, then the monitor adds
the edge D→e. So, to summarize, in addition to the nodes
and edges in the credential graph, the algorithm constructs
monitors that implement closure properties 2 and 3.
Given a set of credentials C, the proof graph, Gb(e0, C), con-

structed by the backward search algorithm starting from e0,
is closely related to the credential graph, GC. Gb(e0, C) is
almost identical to the smallest subgraph of GC whose node
set, N0

C , satisfies the following four closure properties and
whose edge set consists of all edges of EC over nodes of N0

C :
(i) e0 ∈ N0

C ; (ii) e2 ∈ N0
C & e1 → e2 ∈ EC =⇒ e1 ∈ N0

C ;
(iii) A.r1.r2 ∈ N0

C =⇒ A.r1 ∈ N0
C ; and (iv) f1 ∩ · · · ∩ fk ∈

N0
C & j ∈ [1..k] =⇒ fj ∈ N0

C . The only difference be-
tween Gb(e0, C) and such a subgraph of GC is this: Gb(e0, C)

contains role nodes, created during the processing of linked
roles, that don’t appear in C. Specifically, when the algo-
rithm processes a linked-role node A.r1.r2, the node B.r2

and the link-containment edge, B.r2→A.r1.r2, are added,
even when B.r2 does not appear in C, and will therefore re-
ceive no incoming edges and no solutions. It is not difficult

to see that Gb(e0, C) contains chain(D
∗
→ e0) for every D

that can reach e0.

Theorem 3. Given a set of credentials C, let N be the
number of credentials in C, and M be the total size of C:
∑

A.r←−e∈C |e|, where |A| = |A.r| = |A.r1.r2| = 1 and
|f1 ∩ · · · ∩ fk| = k. Assuming that finding all credentials
that define a role takes time linear in the number of such
credentials (e.g., by using hashing), then the worst-case time
complexity of the backward search algorithm is O(N 3+NM),
and the space complexity is O(NM). If each intersection in
C has size O(N), then the time complexity is O(N 3).

To see that O(N3) is a tight bound for the algorithm, con-
sider the following example:
C = {A0.r0 ←− Ai, A0.ri ←− A0.ri−1 mod n, Ai.r0 ←−

Ai−1 mod n.r0, A0.r
′←−A0.ri.r0 | 0 ≤ i < n}

There are N = 4n credentials. When using backward search
algorithm from A0.r

′, there are edges from each Aj .r0 to
each A0.ri.r0, where 0 ≤ i, j < n, so there are n2 such edges.
Each Aj .r0 gets n solutions, so the time complexity is n3.
We can see that intersections do not increase the worst-case
time complexity of this algorithm. O(NM) is a tight space
bound. Following is an example that reaches the bound: C =
{A0.r0←−Ai, A0.ri←−A0.ri−1 mod n, A0.r

′←−A0.ri.r0 ∩
A0.ri.r1 ∩ · · · ∩A0.ri.rK−1 | 0 ≤ i < n}



(0) Alice

1 StateU.stuID

7 EPub.student

-0
(1) StateU.stuID

1 StateU.stuID

7 EPub.student

-5

©
©
©¼ 3

(4) ABU.accredited.stuID

(6) EPub.university.stuID

7 EPub.student -6
(7) EPub.student

7 EPub.student

(2) StateU

3 ABU.accredited

5 EPub.university

-2

1

(3) ABU.accredited

3 ABU.accredited

5 EPub.university

-3
(5) EPub.university

5 EPub.university

Figure 1: Gf(Alice, C), the proof graph constructed by doing forward search from Alice with C =
{EPub.student ←− EPub.university.student, EPub.university ←− ABU.accredited, ABU.accredited ←−
StateU, StateU.stuID ←− Alice}. The first line of each node gives the node number in order of creation

and the role expression represented by the node. The second part of a node lists each solution eventually

associated with this node. Each of those solutions and each graph edge is labeled by the number of the node

that was being processed when the solution or edge was added. The edge labeled with 1 is a linking monitor.

3.4 The Forward Search Algorithm
The forward search algorithm finds all roles that an entity

is a member of. The direction of the search moves from the
subject of a credential towards its issuer.
The forward algorithm has the same overall structure as

the backward algorithm; however, there are some differ-
ences. First, each node stores its parents instead of its chil-
dren. Second, each node e stores two kinds of solutions: full
solutions and partial solutions. Each full solution on e is a
role that e is a member of, i.e., a role node that is reachable
from e. Each partial solution has the form (f1 ∩ · · · ∩ fk, j),
where 1 ≤ j ≤ k. The node e gets the solution (f1∩· · ·∩fk, j)
when fj is reachable from e. Such a partial solution is just
one piece of a proof that e can reach f1∩· · ·∩fk. It is passed
through edges in the same way as is a full solution. When
an entity node D gets the partial solution, it checks whether
it has all k pieces; if it does, it creates a node for f1∩· · ·∩fk,
if none exists, and adds the edge D→f1 ∩ · · · ∩ fk.
The processing of each node is also different from that in

the backward algorithm. For any role expression e, forward
processing involves the following three steps. First, if e is
a role B.r2, add itself as a solution to itself, then add a
linking monitor observing B. This monitor, when B gets
a full solution A.r1, creates the node A.r1.r2 and adds the
edge B.r2→A.r1.r2. The addition of such an edge results
in B.r2 being added as a parent of A.r1.r2. Second, find all
credentials of the form A.r←− e; for each such credential,
create a node for A.r, if none exists, and add the edge e→
A.r. Third, if e is not an intersection, find all credentials of
the form A.r←− f1 ∩ · · · ∩ fk such that some fj = e; then
add (f1 ∩ · · · ∩ fk, j) as a partial solution on e.
Figure 1 shows the result of doing forward search using a

subset of the credentials in example 3.

Theorem 4. Under the same assumptions as in theo-
rem 3, the time complexity for the forward search algorithm
is O(N2M), and the space complexity is O(NM).

3.5 Bi-direction Search Algorithms
When answering queries about whether a given entity, D,

is a member of a given role, A.r, we have the flexibility of
combining forward and backward algorithms into a search
that proceeds from both D and A.r at once. In this bi-
directional algorithm, a node e stores both its parents and
its children, as well as both backward solutions (entities that

are members of e) and forward solutions (roles that e is a
member of).
In the centralized case, doing either forward search from

D or backward search from A.r suffices to answer the query.
However, using bi-directional search could improve search
efficiency (where search space size is sometimes exponential
in path length) by finding two shorter intersecting paths,
rather than one longer one. A variety of search strategies
bear consideration, and different algorithms can be devel-
oped based on them. The algorithms described above use
queues to organize node processing, resulting in breadth-first
search. If they used stacks, they would perform depth-first
search. In general, when there are several nodes that can
be explored (from either direction), they can be placed in
a priority queue according to some heuristic criteria, e.g.,
fan-out. Note that these remarks also apply to the forward
and backward algorithms.
In the distributed case, the ability to locate credentials

can become a limiting factor. This is the main issue we
address in section 4.

3.6 Implementation, Generalization, and Ap-
plication to SDSI

We have implemented the above algorithms in Java. Our
program can be configured to store the parent or child node
from which each solution arrives. Using this information,
one can easily trace paths, and compute the set of credentials
being used in any proof graph.
Our algorithms can be generalized to search for paths be-

tween two arbitrary role expressions. One way to do this is
to generalize the solution set to collect all reachable nodes,
not just entity and role nodes. Then, one knows that a path

e1
∗
→ e2 exists when e1 is added as a backward solution on e2

or when e2 is added as a forward solution on e1. Of course,
such a change would affect the algorithm’s complexity.
Our algorithms can also be used to do chain discovery in

SDSI. To allow their construction in RT0, long linked names
can be broken up. Instead of using A.r←−B.r1.r2. · · · .rk,
one can use {A.r←−A.r′k−1.rk, A.r′k−1←−A.r′k−2.rk−1, · · · ,
A.r′2←−A.r′1.r2, A.r′1←−B.r1}, in which the r′i’s are newly
introduced role names. Then one can use any of the algo-
rithms to do goal-oriented chain discovery.

Theorem 5. Given a set of “SDSI” credentials C, which
have arbitrarily long linked roles and no intersection, let



C′ be the result of breaking up long linked roles. Then the
time complexity of the backward algorithm, applied to C ′, is
O(N3L), where N is the number of credentials in C, and L

is the length of the longest linked role in C.

This O(N3L) worst-case complexity is the same as that
of the algorithm in Clarke et al. [8].
Instead of breaking up long linked names, one can extend

our algorithms to handle them directly. It is also not dif-
ficult to extend our algorithms to handle SPKI delegation
certificates. In particular, it is straightforward to extend
our techniques for handling intersections to handle thresh-
old structures as well.

4. DISTRIBUTED CHAIN DISCOVERY
The algorithms given in the previous section can be used

when credential storage is not centralized, but distributed
among credentials’ subjects and issuers. As discussed in sec-
tion 1, it is impractical to require either that all credentials
be stored by their issuers or that all be stored by their sub-
jects. Yet if no constraint is imposed on where credentials
are stored, some chains cannot be found without broadcast,
which we assume is unavailable.

Example 4. Consider the following credentials from ex-
ample 3: ABU .accredited←−StateU and StateU .stuID←−
Alice. If both of these are stored exclusively with StateU ,
none of our search procedures can find the chain that autho-
rizes Alice. Arriving at ABU and at Alice, the procedure is
unable to locate either of these two key credentials.

This section presents a type system for credential storage
that ensures chains of well-typed credentials can be found.

4.1 Traversability
We introduce notions of path traversability to formalize

the three different directions in which distributed chains can
be located and assembled, depending on the storage charac-
teristics of their constituent credentials. We call the three
notions, forward traversability, backward traversability, and
confluence, respectively. Working from one end or the other,
or from both simultaneously, a search agent needs to be able

to find the credential defining each edge in a path, D
∗
→ A.r,

as well as in the other paths of chain(D
∗
→ A.r), which prove

the existence of derived edges in D
∗
→ A.r.

Suppose that D
∗
→ A.r consists entirely of edges that

represent credentials that are stored by their subjects. (In

this case, (D
∗
→ A.r) = chain(D

∗
→ A.r).) We call D

∗
→ A.r

forward traversable because forward search can drive its dis-
tributed discovery, as follows. Obtain from D the first cre-
dential of the path and, with it, the identity (and hence
the location) of the issuer of that credential. That issuer is
the subject of the next credential. By visiting each succes-
sive entity in the path and requesting their credentials, each
credential in the path can be obtained, without broadcast.
A backward traversable path is analogous to a forward

traversable path, except the credentials involved are held

by issuers. A path D
∗
→ A.r that is backward traversable

can be discovered by doing backward search starting from
A.r. Credentials involved in the path can be collected from
entities starting with A and working from issuers to subjects.
Roughly speaking, a confluent path can be decomposed

into two subpaths, one forward traversable and the other

backward traversable. When both ends are known, a con-
fluent path can be collected and assembled by starting at
both ends and working inwards.
We define these notions of traversability for both edges

and paths in credential graphs. Following the definition, we
discuss the intuition behind traversability of derived edges.

Definition 2 (Traversibility and Confluence ).
Let GC = 〈NC, EC〉 be the credential graph for a given set of
credentials, C.
An edge added by closure property 1 is:

Forward traversable if the credential it represents
is held by each subject of the credential;

Backward traversable if the credential it repre-
sents is held by the issuer of the credential;

Confluent if it is forward or backward traversable.

A path e1
∗
→ e2 is:

Forward traversable if it is empty (e1 = e2), or it
consists entirely of forward traversable edges;

Backward traversable if it is empty, or it consists
entirely of backward traversable edges;

Confluent if it is empty, or it can be decomposed

into e1
∗
→ e′ → e′′

∗
→ e2 where e1

∗
→ e′

is forward traversable, e′′
∗
→ e2 is backward

traversable, and e′ → e′′ is confluent. Note
that paths that are forward traversable or back-
ward traversable are also confluent.

An edge added by closure property 2, B.r2→A.r1.r2 is:

Forward traversable if the path it is derived from,

B
∗
→ A.r1, is forward traversable;

Backward traversable if B
∗
→ A.r1 is backward

traversable;

Confluent if B
∗
→ A.r1 is confluent;

An edge added by closure property 3, D→f1 ∩ · · · ∩ fk is :

Forward traversable if (a) there exists an ` ∈

[1..k] with D
∗
→ f` forward traversable, and

(b) for each j ∈ [1..k], D
∗
→ fj is confluent;

Backward traversable if (a) there exists an ` ∈

[1..k] with D
∗
→ fj backward traversable, and

(b) for each j ∈ [1..k], D
∗
→ fj is confluent;

Confluent if for each j ∈ [1..k], D
∗
→ fj is con-

fluent;

Here is why a derived edge of the form B.r2→A.r1.r2 has
the same traversability as the path that it is derived from.

Suppose there is a forward traversable path D
∗
→ B.r2 →

A.r1.r2
∗
→ A.r. Starting at D, a search agent can traverse

to B.r2. From there, the agent knows B, which enables it

to continue searching, traversing B
∗
→ A.r1. Upon reaching

A.r1, the search agent has proven the existence of B.r2→
A.r1.r2. Additionally, it knows A, so it can continue forward
search from A.r1.r2.
Now suppose there is a forward traversable path D

∗
→ A.r

that can be decomposed into D→f1∩· · ·∩fk→B.r1
∗
→ A.r.

The edge f1 ∩ · · · ∩ fk→B.r1 is forward traversable, so it
is stored by the entity base(fj), for each j ∈ [1..k]. If there

is one f` with D
∗
→ f` forward traversable, a search agent

can use it to get from D to f`. From base(f`), the agent can
obtain the credential B.r1←−f1 ∩ · · · ∩ fk, thereby identify-
ing all other fj ’s. The search agent then finds a path from



D to each fj , and continues its forward search from B.r1.

Since both ends are known, each path D
∗
→ fj only needs

to be confluent. The rationale for backward traversability
of edges derived from backward traversible paths is similar.

4.2 A Credential Type System
If all credentials are stored by their issuers, all paths

are backward traversable. Similarly, if all credentials are
stored by their subjects, all paths are forward traversable.
As we argued in section 1, neither arrangement by itself is
satisfactory—greater flexibility is required in practice. Yet
some constraints must be imposed on credential storage, or
else many paths cannot be discovered. One way to organize
those constraints is by requiring that all credentials defin-
ing a given role name have the same storage characteristics.
Capitalizing on this observation to support distributed dis-
covery, we introduce a type system for credential storage, the
important feature of which is that, given a set of well-typed
credentials, every path in its credential graph is confluent.
In our type system, each role name has two types: an

issuer-side type specifies whether a search agent can trace
credentials that define the role name by starting from the
credentials’ issuers; the other, a subject-side type, specifies
these credentials’ traceability from their subjects.
The possible issuer-side type values are issuer-traces-none,

issuer-traces-def, and issuer-traces-all. If a role name r is
issuer-traces-def, then from any entity A one can find all
credentials defining A.r. In other words, A must store all
credentials defining A.r. However, this does not guarantee
that one can find all members of A.r. For instance, we
might have A.r←− B.r1, with r1 issuer-traces-none. This
motivates the stronger type: issuer-traces-all. A role name
r being issuer-traces-all implies not only that r is issuer-
traces-def, but also that, for any entity A, using backward
searching, one can find all the members of the role A.r.
The possible subject-side type values are subject-traces-

none and subject-traces-all. If a role name r is subject-
traces-all, then for any entity B, by using forward search,
one can find all roles A.r such that B is a member of A.r.
There are three values for the issuer-side type and two

values for the subject-side type, yielding six combinations;
however, a role name that is both issuer-traces-none and
subject-traces-none is useless, so it is forbidden. This is
captured by the notion of well-typedness.
We now extend this type system to role expressions and

then define the notion of well-typed credentials. As we show
in the next section, together these two definitions guaran-
tee that when credentials are well-typed, the following three
conditions hold. If a role expression e is issuer-traces-all, one
can find all members of e by doing backward search from e.
If e is subject-traces-all, then from any of its members, D,
one can find a chain to e by doing forward search. If e is
issuer-traces-def, then from any of its members, D, one can
find a chain from D to e by doing bi-directional search.

Definition 3 (Types of role expressions).

• A role expression is well-typed if it is not both issuer-
traces-none and subject-traces-none.

• An entity A is both issuer-traces-all and subject-traces-
all.

• A role A.r has the same type as r.

• A linked role A.r1.r2 is


































issuer-traces-all when both r1 and r2 are issuer-
traces-all

issuer-traces-def when r1 is issuer-traces-all and
r2 is issuer-traces-def, or r1 is
issuer-traces-def and r2 is
subject-traces-all

issuer-traces-none otherwise







subject-traces-all when both r1 and r2 are
subject-traces-all

subject-traces-none otherwise

• An intersection f1 ∩ · · · ∩ fk is



















issuer-traces-all when there exists an f` that
is issuer-traces-all, and all
fj’s are well-typed

issuer-traces-def when all fj ’s are well-typed
issuer-traces-none otherwise















subject-traces-all when there exists an f` that
is subject-traces-all, and all
fj’s are well-typed

subject-traces-none otherwise

The typing rule for a linked role A.r1.r2 may need some
explanation. If both r1 and r2 are issuer-traces-all, then
from A.r1.r2, one can find all members of A.r1, and then,
for each such member, B, find all members of B.r2. If both
r1 and r2 are subject-traces-all, then from any member, D,
of A.r1.r2, one can first find that D is a member of B.r2, and
then find that B is a member of A.r1, thereby determining
that D is a member of A.r1.r2. Knowing both ends, D and
A.r1.r2, one needs to find a middle point, B.r2, using for-
ward or backward search from one side. Then the other side
can be handled by bi-direction search. If r1 is issuer-traces-
all, one can find all members of A.r1, then r2 only needs
to be issuer-traces-def. Similarly, if r2 is subject-traces-all,
then one can trace to B.r2 from D, and so r1 only needs to
be issuer-traces-def.

Definition 4 (Well-typed Credentials). A cre-
dential A.r ←− e is well-typed if all of the following
conditions are satisfied:

1. Both A.r and e are well typed.

2. If A.r is issuer-traces-all, e must be issuer-traces-all.

3. If A.r is subject-traces-all, e must be subject-traces-all.

4. If A.r is issuer-traces-def or issuer-traces-all, A stores
this credential.

5. If A.r is subject-traces-all, every subject of this creden-
tial stores this credential.

Consider credentials in example 3. One possible typing
that makes all credentials well-typed is as follows: preferred,
spdiscount, student, and university are issuer-traces-def,
while accredited, stuID, and member are subject-traces-all.

4.3 Traversability with Well-typed Credentials
In this section we show that well-typed credentials whose

storage is distributed can be located as needed to perform
chain discovery.



Lemma 6. Assume C is a set of well-typed credentials and
GC = 〈NC, EC〉 is the credential graph for C. Let e be any

role expression and D any entity. If there is a path D
∗
→ e

in GC, then we have the following:

1. D
∗
→ e is confluent.

2. If e is issuer-traces-all, D
∗
→ e is backward traversable.

3. If e is subject-traces-all, D
∗
→ e is forward traversable.

From Lemma 6 and Theorems 1 and 2, we have the follow-
ing theorem, which says that if credentials are well typed,
then role membership queries can be solved efficiently, even
when credential storage is distributed. This is because con-
fluent paths support efficient chain discovery, as discussed
above in section 4.1. Furthermore, for roles of type issuer-
traces-all, all members can be found efficiently. Finally, from
any entity, it is possibly to find efficiently all subject-traces-
all roles to which the entity belongs.

Theorem 7. Assume that C is a set of well-typed creden-
tials and that GC = 〈NC, EC〉 is the credential graph for C.
Let A.r be any role and B any entity. Then we have the
following:

1. B ∈ SC(A.r) if and only if there exists a confluent path

B
∗
→ A.r in GC.

2. If A.r is issuer-traces-all, then B ∈ SC(A.r) if and only

if there exists a backward traversable path B
∗
→ A.r in

GC.

3. If A.r is subject-traces-all, then B ∈ SC(A.r) if and

only if there exists a forward traversable path B
∗
→ A.r

in GC.

Using a typing scheme such as the one presented here can
also help improve the efficiency of centralized search, where
type information can help choose nodes to be explored next.

4.4 Agreeing on Types and Role Meanings
Our type system begs the following question: How can

entities agree on the type of a role name? This is the prob-
lem of establishing a common ontology (vocabulary), and it
arises for RT0 whether or not typing is introduced. Consider
again the credentials in example 3. Given StateU.stuID←−
Alice, how does EPub know what StateU means by stuID?
Is it issued to students registered in any class, or only to
students enrolled in a degree program. This issue arises
in all trust-management systems. Different entities need a
common ontology before they can use each others’ creden-
tials. However, name agreement is particularly critical in
systems, like RT0, that support linked roles. For instance,
the expression EOrg.university.stuID only makes sense when
univeristies use stuID for the same purpose.
We achieve name agreement through a scheme inspired by

XML namespaces [7]. One creates what we call application
domain specification documents (ADSD), defining a suite of
related role names. An ADSD gives the types of the role
names it defines, as well as natural-language explanations
of these role names, including the conditions under which
credentials defining these role names should be issued. Cre-
dentials contain a preamble in which namespace identifiers
are defined to refer to a particular ADSD, e.g., by giving
its URI. Each use of a role name inside the credential then

incorporates such a namespace identifier as a prefix. Thus,
a relatively short role name specifies a globally unique role
name. Each ADSD defines a namespace. Note that this is a
different level of namespaces from the notion of namespaces
in SDSI. The latter concerns itself with who has the au-
thority to define the members of a role; the former is about
establishing common understandings of role names.

5. FUTURE AND RELATED WORK
In this section, we illustrate briefly the next step in our

role-based trust-management language work. We then dis-
cuss other future directions and related work.
As mentioned in section 2, RT0 is the first step in a series

of role-based trust-management languages. We are extend-
ing the algorithms presented here to RT1, where role names
are terms with internal structure, including logical variables
(whose notation starts with “?”, as in ?file). For example,
the credential OS.fileop(delete, ?file)←−OS.owner(?file) can
be used to express the policy that the operating system will
let a file’s owner delete the file. We are also working on
defining an XML representation for RT1 credentials and ap-
plication domain specification documents, as we discussed
in section 4.4. RT1 will be reported in a forthcoming paper.

5.1 Typing and Complete Information
Inferencing based on distributed credentials is often lim-

ited by not knowing whether all relevant credentials are
present. The standard solution to this problem is to limit the
system to monotonic inference rules. This approach ensures
that, even without access to all credentials, if the credentials
that are present indicateD is a member of A.r, it is certainly
true. Missing credentials could make you unable to prove D

is a member of A.r, but cannot lead you to conclude D is a
member of A.r erroneously.
When credentials are well-typed, as defined here, this re-

striction to monotonic inference rules could be relaxed. The
type system ensures we know who to contact to request the
relevant credentials. So assuming they respond and we trust
that they give us the credentials we ask for, we can assume
that we obtain all the credentials that are relevant. In this
context, it may be safe to use non-monotonic inference rules.
This would allow, for instance, granting role membership
contingent on not already being a member of another role.
This could form a basis for supporting RBAC-style sepa-
ration of duties, as well as negation as failure. It will be
necessary to manage the trust issue. For instance, we may
trust that some issuers will give us all relevant credentials,
while not trusting some subjects to do the same.

5.2 Credential Sensitivity
Like most prior trust-management work, we assume here

that credentials are freely available to the agent responsi-
ble for making access control decisions. In general, creden-
tials may themselves be sensitive resources. Techniques have
been introduced [18] that support credential exchange in a
context where trust management is applied to credentials,
as well as to more typical resources. (See [19] for additional
references.) That work assumes that credential storage is
centralized in two locations: with the resource requester and
with the access mediator. It remains open to manage dis-
closure of sensitive credentials whose storage is distributed
among the credential issuers and subjects.



5.3 Other Related Work
In section 2.1, we compared RT0 credentials with name

definition certificates in SDSI 2.0. In section 3.1 we reviewed
existing work to chain discovery in SDSI. Now, we discuss
some other related work.
QCM (Query Certificate Managers) [12] and QCM’s vari-

ation SD3 [13] also address distributed credential discovery.
The approach in QCM and SD3 assumes that issuer stores
all credentials and every query is answered by doing back-
ward searching. As we discussed in the introduction, this is
impractical for many applications, including the one illus-
trated in example 3. Using backward search to determine
whether Alice should get the discount requires one to begin
by finding all ACM members and all university students.
Graph-based approaches to chain discovery have been used

before, e.g., by Aura [1] for SPKI delegation certificates and
by Clarke et al. [8] for SDSI name certificates without linked
names. Neither of them deals with linked names.

6. CONCLUSIONS
We have introduced a role-based trust-management lan-

guage RT0 and a set-theoretic semantics for it. We have also
introduced credential graphs as a searchable representation
of credentials in RT0 and have proven that reachability in
credential graphs is sound and complete with respect to the
semantics of RT0. Based on credential graphs, we have given
goal-oriented algorithms to do credential chain discovery in
RT0. Because RT0 is more expressive than SDSI, our algo-
rithms can be used for chain discovery in SDSI, where exist-
ing algorithms in the literature either are not goal-oriented
or require using specialized logic programming inferencing
engines. Because our algorithms are goal-oriented, they can
be used whether or not credentials are stored centrally. We
have also introduced a type system for credential storage
that guarantees distributed, well-typed credential chains can
be discovered. This typing approach can be used for other
trust-management systems as well.

7. ACKNOWLEDGEMENT
This work is supported by DARPA through AFRL/IF

contract F30602-97-C-0336 and SPAWAR contracts N66001-
00-C-8015 and N66001-01-C-8005. Sameer Ajmani made
some helpful comments on an earlier version of this paper.
We also thank anonymous reviewers for their helpful reports.

8. REFERENCES
[1] Tuomas Aura. Fast Access Control Decisions from
Delegation Certificate Databases. In Proceedings of 3rd
Australasian Conference on Information Security and
Privacy (ACISP ’98), volume 1438 of Lecture Note in
Computer Science, pages 284–295. Springer, 1998.

[2] Matt Blaze, Joan Feigenbaum, John Ioannidis, and
Angelos D. Keromytis. The KeyNote
Trust-Management System, Version 2. IETF RFC
2704, September 1999.

[3] Matt Blaze, Joan Feigenbaum, and Jack Lacy.
Decentralized Trust Management. In Proceedings of
the 1996 IEEE Symposium on Security and Privacy,
pages 164–173. IEEE Computer Society Press, 1996.

[4] Matt Blaze, Joan Feigenbaum, and Martin Strauss.
Compliance-Checking in the PolicyMaker Trust
Management System. In Proceedings of Second

International Conference on Financial Cryptography
(FC’98), volume 1465 of Lecture Note in Computer
Science, pages 254–274. Springer, 1998.

[5] Sharon Boeyen, Tim Howes, and Patrick Richard.
Internet X.509 Public Key Infrastructure LDAPc2
Schema. IETF RFC 2587, June 1999.

[6] Piero Bonatti and Pierangela Samarati. Regulating
service access and information release on the web. In
Proceedings of the 7th ACM Computer and
Communication Security, pages 134–143, 2000.

[7] Tim Bray, Dave Hollander, and Andrew Layman.
Namespaces in XML. W3C Recommendation, January
1999. http://www.w3.org/TR/REC-xml-names/.

[8] Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt
Fredette, Alexander Morcos, and Ronald L. Rivest.
Certificate Chain Discovery in SPKI/SDSI.
Manuscript submitted to Journal of Computer
Security, December 2000. Available from
http://theory.lcs.mit.edu/˜rivest/publications.html.

[9] Yassir Elley, Anne Anderson, Steve Hanna, Sean
Mullan, Radia Perlman, and Seth Proctor. Building
Certificate Paths: Forward vs. Reverse. In Proceedings
of the 2001 Network and Distributed System Security
Symposium (NDSS’01), pages 153–160. Internet
Society, 2001.

[10] Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest,
Brian Thomas, and Tatu Ylonen. SPKI Certificate
Theory. IETF RFC 2693, September 1999.

[11] Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest,
Brian Thomas, and Tatu Ylonen. Simple Public Key
Certificates. Internet Draft (Work in Progress), July
1999. http://world.std.com/˜cme/spki.txt.

[12] Carl A. Gunter and Trevor Jim. Policy-directed
certificate retrieval. Software: Practice & Experience,
30(15):1609–1640, September 2000.

[13] Trevor Jim. SD3: a trust management system with
certificate evaluation. In Proceedings of the 2001 IEEE
Symposium on Security and Privacy, pages 106–115.
IEEE Computer Society Press, 2001.

[14] Ninghui Li. Local Names in SPKI/SDSI. In
Proceedings of the 13th IEEE Computer Security
Foundations Workshop (CSFW-13), pages 2–15. IEEE
Computer Society Press, 2000.

[15] Ninghui Li, Benjamin N. Grosof, and Joan
Feigenbaum. A Practically Implementable and
Tractable Delegation Logic. In Proceedings of the 2000
IEEE Symposium on Security and Privacy, pages
27–42. IEEE Computer Society Press, 2000.

[16] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein,
and Charles E. Youman. Role-Based Access Control
Models. IEEE Computer, 29(2):38–47, February 1996.

[17] David S. Warren and et al. The XSB Programming
System (Version 2.2), April 2000.
http://www.cs.sunysb.edu/˜sbprolog/xsb-page.html.

[18] William H. Winsborough, Kent E. Seamons, and
Vicki E. Jones. Automated Trust Negotiation. In
DARPA Information Survivability Conference and
Exposition. IEEE Press, January 2000.

[19] T. Yu, M. Winslett, and K. E. Seamons. Interoperable
strategies in automated trust negotiation. In ACM
Conference on Computer and Communications
Security, 2001.


