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ABSTRACT

With the advances in web service techniques, new collabo-
rative applications have emerged like supply chain arrange-
ments and coalition in government agencies. In such applica-
tions, the collaborating parties are responsible for managing
and protecting resources entrusted to them. Access con-
trol decisions thus become a collaborative activity in which
a global policy must be enforced by a set of collaborating
parties without compromising the autonomy or confidential-
ity requirements of these parties. Unfortunately, none of
the conventional access control systems meets these new re-
quirements. To support collaborative access control, in this
paper, we propose a novel policy-based access control model.
Our main idea is based on the notion of policy decomposition
and we propose an extension to the reference architecture for
XACML. We present algorithms for decomposing a global
policy and efficiently evaluating requests.

Categories and Subject Descriptors

K.4.1 [Computers and Society]: Public Policy Issues;
K.6.4 [Management of Computing and Information
Systems|: System Management

General Terms

security
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1. INTRODUCTION

Today a second generation of web-based communities and
hosted services are emerging which facilitate collaboration
among users and organizations. The term Web 2.0 has been
coined to embrace all those new collaborative applications
and also to indicate a new “social” approach to share re-
souces, characterized by resource sharing and decentraliza-
tion of authority. For example, commercial coalitions may
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implement supply chain arrangements, subcontracting rela-
tionships, or joint marketing campaigns [6]. In the pub-
lic sector, governments have taken various initiatives to in-
crease collaboration among government agencies and non-
government organizations in order to provide better public
service to citizens. Main goals in such collaborations are
resource sharing and joint tasks and activities. As such a
critical issue is represented by access control systems able to
support selective access to sensitive resources.

One key requirement in access control approaches for col-
laborative applications is the notion of collaborative access
control by which we mean that several parties participate to
make access control decisions. There are several motivations
for collaborative access control. A first motivation is privacy
and confidentiality. Modern attribute-based access control
models, such as XACML [3], require as input information
about subjects requiring access to protected resources. Such
information may be sensitive and owned by different parties,
that may not be willing or able to share it. In some cases,
there may not be a unique party having all the necessary in-
formation to take an access control decision. A second moti-
vation is represented by organizational and business process
requirements. Decisions concerning authorizations to exe-
cute tasks often require approval from multiple-independent
parties, especially in the case of complex tasks. A third
motivation is represented by the fact that parties may have
applications already in place supporting access control func-
tions and it may not be feasible requiring them to adopt
other mechanisms or protocols for access control. Such re-
quirement is crucial for dynamically formed coalitions with
temporal constraints; in such case, the collaborative access
control decisions have to be taken as soon as possible and
thus the parties have to leverage on whichever access control
system they have in place.

As an example focusing mainly on the first motivation,
consider a large enterprise with several departments, includ-
ing a classified project management department, L;, and
financial department, L. Each department is responsible
for managing access to its resources and each department
stores confidential data concerning its specific operations
and mission. Consider a global policy stating that no one
can acquire crypto equipments if he works for a classified
project for the US government and he has not enough funds
in his/her budget. Suppose that information about the man-
agers of the classified projects is managed by L, and the in-
formation about the funds is managed by L2 and that each
department is not able, for confidentiality reasons, to re-
lease its own information to others. Suppose moreover that



the global policy requires that the requests be approved by
the head of each department and the approval be recorded,
through the execution of obligation actions. In such sce-
nario a centralized enforcement of the policy is not feasible.
Rather a more suitable approach would consist of “distribut-
ing” the policy to the two departments asking each of them
to return its own “local” decision. The local decisions are
then combined to generate the global decision.

Several access control models [6, 7, 12, 14, 16] have
been proposed to address some of the unique access con-
trol requirements in collaborative applications. But none
of those approaches address issues related to decomposing
global policies into local policies and strategies for protecting
sensitive information of each party involved in collaborative
access control. Works in the area of privacy preserving ac-
cess control [9, 11] have focussed on techniques that prevent
request owner from knowing the exact policy being evaluated
for his request and also prevent policy owners from know-
ing the sensitive credentials of the request owner. These
works however, are not applicable in the context of a col-
laborative access control application where multiple parties
have to not only co-operate in making an access control de-
cision but also have to ensure that no sensitive information
stored at a collaborating party is divulged in the process
of making this decision. Recognizing the need for a policy-
based access control model that can enforce a global policy
among collaborating parties without compromising the au-
tonomy or confidentiality requirements of the involved par-
ties, we propose a novel policy-based access control model
for collaborative environments based on the notion of pol-
icy decomposition. The main idea is that in a collaborative
environment, a global access control policy is decomposed
to local policies so that the policies local to a party only
need the information available at that party and that the
decisions obtained from the local policies can be combined
to derive the access control decision for the collaboration as
a whole.

We cast our solution in the context of the eXtensible Ac-
cess Control Mark-up Language (XACML) [3] framework.
XACML is a general purpose access control policy language
which defines a request/response language and framework
to enforce authorization decisions. We have chosen XACML
because of its widespread adoption as a language of choice
for enforcing access control in traditional and distributed
environments [13]. In a typical XACML framework, there
is a policy enforcement point (PEP) and a policy decision
point (PDP). The PEP is responsible for issuing requests
and enforcing the access control decisions. The PDP receives
requests from the PEP and evaluates policies applicable to
the requests and sends a decision back to the PEP. To sup-
port collaborative access control, we extend the XACML
reference architecture by introducing multiple PDPs that
communicate with a centralized PEP through a request dis-
patcher/decision coordinator. A global policy is thus decom-
posed into local policies for each PDP according to availabil-
ity /sensitivity requirements of each party and user specified
constraints. Given a request, the central PEP modifies the
request and dispatches it to corresponding PDPs, and then
combines the decisions.

Our contributions are summarized as follows.

e We propose a novel access control model in multi-party
collaborative environments. An important feature of
our model is that we can protect sensitive information

of one party from being known by the other parties. It
is the first time that privacy issues are considered in
policy decomposition.

e We develop an extension to the reference architecture
for XACML to support collaborative access control.

e We propose a method to optimize the evaluation of
requests.

e We present complexity analysis of our proposed ap-
proach.

The rest of the paper is organized as follows. Section 2
briefly introduces the structure of XACML policies. Section
3 presents details of our proposed policy decomposition ap-
proach. Section 4 analyzes the complexity of our approach.
Section 5 reviews related work and Section 6 concludes the
paper and outlines future research directions.

2. XACML POLICIES

XACML [3] is the OASIS standard language for the spec-
ification of access control policies. It is an XML language
able to express a large variety of policies, taking into ac-
count properties of subjects and protected objects as well
as context information. In general, a subject can request an
action to be executed on a resource and the policy decides
whether to deny or allow the execution of that action. Sev-
eral profiles, such as a role profile and a privacy profile, have
been defined for XACML. Commercial implementations of
XACML are also available [1, 2].

XACML policies include three main components: a Tar-
get, a Rule set and a Rule combining algorithm. The Target
identifies the set of subjects, resources, actions and enviro-
nents to which the policy is applicable. Each Rule in turn
consists of another optional Target, a Condition and an Ef-
fect element. The Condition specifies restrictions on the at-
tribute values in a request that must hold in order for the
request to be permitted or denied as specified by the Effect.
The Effect specifies whether the requested actions should
be allowed (Permit) or denied (Deny). The Rule combin-
ing algorithm is used to resolve conflicts among applicable
rules with different effects. An XACML policy may also con-
tain one or more Obligations, which represent functions to
be executed in conjunction with the enforcement of an au-
thorization decision. An XACML request consists of a list
of attributes characterizing a subject and its environment
along with the attributes of the action and resource.

3. POLICY DECOMPOSITION

As aforementioned, policy decomposition is considered in
a multi-party collaborative environment. Such a multi-party
collaborative environment can either be a group of individ-
ual organizations or a large enterprise with several depart-
ments. In our paper, we assume all collaborative parties to
be peers.

Our collaborative access control system is based on the
architecture shown in Figure 1 which also highlights the rel-
evant information flows. The basic idea is to decompose a
global policy in such a way that each participating party
does not need to have any sensitive information belonging
to other parties to make an access control decision, and to
combine decisions made by each participating party to ob-
tain the decision for the global policy. In our system, there
are a central policy enforcement point (PEP) and multiple
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policy decision points (PDP). The central PEP and PDPs
are connected by a request dispatcher/ decision coordina- gets. If there is a match, the coordinator will check the
policy table and distribute the request to the corresponding
local PDPs. A local policy may contain predicates on both
sensitive and non sensitive attributes. For non sensitive at-
tributes, the local PDP looks for the attribute values in the
request. For sensitive attributes, the local PDP accesses its
local database and resolves the attribute values regardless
of whether the request includes such values or not. In some
situations, additional information like the requester ID may
be needed to help local PDPs to resolve values of the sen-
sitive attributes. The responses of local PDPs are collected
and returned to the coordinator where the final decision is

tor(RDDC) and local context handlers.

The PEP, RDDC, policy decomposition module, global
policy repository reside at one party called coordinator; each
PDP and associated local policy repository reside at each
collaborating party. The system implements two key func-
tions: policy decomposition and request evaluation.

The policy decomposition function takes a global policy
and policy decomposition constraints as input. The global
policy is decomposed into local policies according to the con-
straints and then sent to the local policy repositories of cor-
responding PDPs. This function is performed by the trusted
coordinator. After the decomposition, the global policy is made.
encrypted and stored in a secure store. That means that
the global policy will no longer be used for the subsequent
request evaluation. Instead, only the non sensitive informa-
tion of each global policy is kept as plain text in a policy ta-
ble maintained by the coordinator. In particular, every row
contains: policy targets, a list of participating local PDPs,
and corresponding effect combining functions (details can be
found in Section 3.2). Since the policy targets are kept pub-
lic in the record we must ensure that no sensitive attributes
are present in the policy targets. Any sensitive attributes
that appear in a policy target are removed from the policy
target and appended to the rule targets. The rules of the
global policy which contain conditions that must be satisfied
for a request to be permitted or denied is often more sensi-
tive because it can involve the comparison of highly classi-
fied values. These rules are decomposed into local policies
and sent to corresponding PDPs. In short, the coordinator
is responsible for coordination and does not maintain any Financial Project Human
sensitive information; sensitive information is stored at each Management  Resource

When a request is issued, the coordinator will first check

Figure 1: Data Flow Diagram

3.1 An lllustrative Example

Figure 2: Hierarchy

whether information in the request matches the policy tar-

In the rest of this section, we first discuss a running exam-
ple in order to present an overview of the entire mechanism.
Then we present a security analysis of our approach. After
that we introduce a basic algorithm for policy decomposi-
tion and discuss how to integrate user defined decomposition
constraints into the basic algorithm. Finally, we present an
optimized approach for request evaluation in our system.



Policyld=P, RuleCombiningAlgorithm = deny-override
(Ruleld=r1 Effect=Permit)
(Target)
(Subject ProjectName = “SecretCrypto” )
(Action Action= "Buy”)
(/Target)
(Condition ProjectRole = “PI” and
ProjectLevel = “High”)
(/Rule)
(Ruleld=r2 Effect=Deny)
(Target)
(Subject ProjectName = “SecretCrypto”)
(Action Action= “Buy”)
(/Target)
(Condition ProjectLevel = “High” and
Funding < 100000 )
(/Rule)

Figure 3: Global Policy P

To illustrate the discussion we consider an enterprise with
several departments, like financial department, project man-
agement department and human resource department as
shown in Figure 2. Suppose there is a global policy P writ-
ten in a simplified format as shown in Figure 3. The policy P
contains two rules: P.r1 and P.ro. The rule P.r; states that
a principal investigator (PI) of project called “SecretCrypto”
with level “High” can buy advanced equipments. While the
rule P.ry denies the right to buy advanced equipments to
any subject with funding less than 100,000 dollars in the
project called “SecretCrypto” with level “High”.

We further assume that “ProjectName” and “Action” are
public information and known by any department, while in-
formation about “ProjectRole” and “ProjectLevel” is only
stored in the project management department and informa-
tion about “Funding” is only stored in the financial depart-
ment.

According to the available information at each depart-
ment, we can decompose the policy P into Pi, P> and Ps as
follows, where policy P; and P> only contains project infor-
mation and policy Ps only contains financial information.

Py (Project Management Department): A principal inves-
tigator (PI) of project called “SecretCrypto” with level “High”
can buy advanced equipments.

P, (Project Management Department): No one can buy
advanced equipments for the project called “SecretCrypto”
with level “High”.

Ps (Financial Department): No one can buy advanced
equipments for the project called “SecretCrypto” with funding
less than 100,000 dollars.

After the decomposition, the coordinator stores the policy
targets in P together with a record stating that the policy
P needs to be evaluated by policy Pi and P> at project
management department(PDP;) and policy Ps at financial
department(PDPs). Note that the coordinator only records
the IDs of local policies but not the content of the local
policies. The coordinator also stores functions stating that
P.r; has the same decision as P;; P.r2 can be evaluated to
true if both P, and P5 are evaluated true. A record stored
by the coordinator for this example is shown in Table 1.

Next, we show an example of a request evaluation based

Global {PDP, Local Policy IDs} | Rule Effect
Policy ID Combination function
P {PDP:, P, P>} Pry: f1(P1)

{PDP,, P3} P.ry : fa(Pa, P3)

Table 1: Decomposition record for global policy P

on decomposed local policies. Suppose Bob working on the
project “SecretCrypto” wants to buy some equipment. A
corresponding request ( Bob, ProjectName=“SecretCrypto”,
Action=“Buy” ) is received by the coordinator. The coor-
dinator checks the policy table and finds that this request
matches the policy targets of policy P. Then it sends the
request to the project management department and the fi-
nancial department. The project management department
knows Bob is a PI and the corresponding ProjectLevel is
“High”, and hence a permit decision regarding P; and a
deny decision regarding P» are returned to the coordinator.
Similarly, Ps is evaluated in the financial department and
we assume a permit decision is returned to the coordinator.
Finally, the coordinator combines the decision and permit
Bob’s request.

In the above example, we observe that both P; and P
need to check whether the ProjectLevel is “High”. Alterna-
tively, we can modify policy P; as follows.

P{ (Project Management Department): A principal in-
vestigator (PI) of project called “SecretCrypto” can buy ad-
vanced equipments.

Correspondingly, we need to revise the effect combination
functions stored in the coordinator. Now P.r; is evaluated
to true only when both P/ and P, are true. This alternative
solution is more efficient since it reduces redundant evalua-
tion at local PDPs.

3.2 Security Analysis

In our approach, we assume that each participating party
is not willing to share sensitive information; each participat-
ing party is trusted and local PDPs will correctly enforce the
portions of the global policy that have been sent to them.
Based on these assumptions, we proceed to analyze possible
attacks to our system.

First, consider the situation when several parties other
than the coordinator have been hacked. The information
stored at these parties would be leaked while the information
stored at other parties is still safe. Similarly, only the request
evaluation involving the hacked parties may not be carried
out properly.

Next, suppose the coordinator has been attacked. In this
case, it is hard for the attacker to know the original global
policies as they are encrypted. In order to guess policies
that are stored at each local PDP, the attacker may send
out fake requests as in the polling attack. However, since
the attacker does not know based on what criteria (sensi-
tive information) a request is evaluated, it needs to try a
lot of combinations of attributes. Even it generates a set
of requests like “Bob wants to buy equipments and he has
10,000 dollar funding”, “Bob wants to buy equipments and
he has 20,000 dollar funding”, ..., “Bob wants to buy equip-
ments and he has 90,000 dollar funding”, in order to infer
the funding requirements stated in the local policy, it still
will not succeed. The reason is that if funding information
is considered sensitive, the values regarding this funding in-
formation will be resolved at the local PDP, which means



Bob’s funding amount in the request will be replaced by the
real value at the local PDP and hence the above set of re-
quests is essentially the same. At the end, the attacker will
only know whether Bob can buy the equipments or not.

To sum up, our approach can prevent the attackers from
knowing predicates on sensitive attributes in local policies
as well as sensitive information stored at local PDPs.

3.3 Basic Decomposition

The decomposition consists of four main steps (outlined in
Figure 4). First, we convert the global policy into compound

Algorithm 1. Policy_Decomposition(P)
Input : P is a global policy

//— step 1—//
for each rule r; in P
2. By, + a compound Boolean expression of r;
//— step 2 —//
identify unique atomic Boolean expressions in all By,
label each unique atomic Boolean expression
//— step 3 —//
C1,...,Cy <+ Decomposition_Plan_Search
for j— 1tok
convert every C; into a local policy P;
distribute P; to the destination PDP
//— step 4 —])

9. construct effect combination table for each rule at PEP

W =

» oo

Figure 4: Policy Decomposition Algorithm

Boolean expressions over policy attributes [4]. A compound
Boolean expression is composed of atomic Boolean expres-
sions combined using the logical operations V and A. Atomic
Boolean expressions that appear in most policies belong to
one of the following two categories: (i) one-variable equality
Boolean expressions, a > ¢, where a is an attribute name,
c is a constant, and > € {=, #}; (ii) one-variable inequality
Boolean expressions, c¢i <da>cz, where a is an attribute name,
c1 and ¢z are constants, and <,> € {<,<,>,>}. Given a
policy, we represent each rule together with the policy tar-
get as a compound Boolean expression. An example is given
below.

ExAMPLE 1. Consider policy P in Figure 3. The Boolean
expression of rule P.ri is

{(ProjectName = “SecretCrypto” )A(Action = “Buy”)}r
A(ProjectRole = “PI”) N(ProjectLevel = “High”)

The Boolean expression for rule P.ra is
{(ProjectName = “SecretCrypto”) A (Action = “Buy”)}r
A(ProjectLevel = “High”) A (Funding < 100000)

The notation {..}r indicates that all atomic Boolean ez-
pressions appearing within it correspond to targets.

The second step is to decide what portion of the policy
needs to be assigned to which PDP. We first identify unique
atomic Boolean expressions in the policy. We cluster all
syntactically equal atomic Boolean expressions into a group.
Each such group corresponds to a unique atomic Boolean
expression.

The values of certain attributes or a decision involving cer-
tain attributes may have to be provided by specific PDPs(and
associated context handlers) in the collaboration. For ex-
ample, the value of and the decision involving the Fund-
ing attribute must be provided by the financial department.
Therefore we categorize and label the unique atomic Boolean

expressions with the corresponding PDP’s ID. Typically each
atomic Boolean expression contains an attribute associated
with a single PDP. However, for attributes in policy targets
which are known by every party, we refer to them as com-
mon attributes and give them a special label for distinction,
denoted as L.

EXAMPLE 2. Consider policy P in Figure 3 again. As-
sume that the PDP’s IDs with respect to the project manage-
ment and financial departments are L1 and Lo respectively.
Table 2 shows the unique atomic Boolean expressions in rule
P.r1 and the labels of each Boolean expression.

ID | Unique atomic Boolean expression | Label
B;1 | ProjectRole = “PI” L1
Bg | ProjectLevel = “High” Ly
B3 | Funding < 100,000 Lo
By | ProjectName = “SecretCrypto” Ls
Bs | Action = “Buy” Ls

Table 2: Atomic Boolean Expressions and Labelling

The third step is to generate the actual local policies ac-
cording to the labels attached to the atomic Boolean ex-
pressions. The basic idea is to replace a group of correlated
atomic Boolean expressions with a local policy. We convert
the compound Boolean expression of a policy into a disjunc-
tive normal form (DNF) expression. The definition below
introduces the notion of correlated atomic Boolean expres-
sions.

DEFINITION 1. Let F be a Boolean expression in DNF.
Let B; and Bj be two atomic Boolean expressions in F. We
say that B; and Bj are correlated iff they satisfy one of the
following two conditions.

(i) B; and B; have the same label and appear in the same
disjunct of F'.

(i) B; and B; have the same label L and appear in two
different disjuncts in which every atomic Boolean expression
has the same label L.

For example, consider the DNF Boolean expression F' =
(BfY A BEY)Y Vv (BEY A BY2 ABE3) v (BEY). By and B, are
correlated according to condition (i) and Bs is correlated
with both By and Bz according to condition (ii). Based
on the above definition, we define the notion of cluster of
correlated Boolean expressions.

DEFINITION 2. Let F be a Boolean expression in DNF.
Let Bq, ..., By be atomic Boolean expressions in F'. We say
that B1, ..., Bn form a cluster of correlated Boolean expres-
sions iff B; is correlated with B;11 for every 1 <i <n —1.
The cluster is maximum if B1 and B, are not correlated
with any other atomic Boolean expressions that are in F' but
not in this cluster.

For each rule, it is easy to find all maximal clusters of corre-
lated atomic Boolean expressions. Each cluster corresponds
to a candidate local policy. Note that we do not create a
separate local policy for a cluster with the special label. In-
stead, such a special cluster is appended to every cluster
with label other than Ls to create local policies. The reason
we call them candidate local policies is that maximal clus-
ters are not always the best choice. We also need to consider
the problem from the view of an entire global policy. This



is because some rules may share same Boolean expressions
which are not the maximal cluster in all rules, but the cre-
ation of a local policy regarding this set of shared atomic
Boolean expressions can improve the system performance.
From now on, we will refer to a decomposition of a policy
as a policy decomposition plan. An example is given below.

ExXAMPLE 3. Consider the rules P.r1 and P.r2 of the global
policy P in Figure 8. Let B1, B2, Bs and B4 be atomic
Boolean expressions, and let L1 and Lo be the labels refer-
ring to the project management and financial department
PDPs. Using Example 1 and table 2 we derive :

Py : BPY A BYY A {BEs ABE ) r

Py : BY* A BE2 A{BEs A BE<}r

In P.ory, {BF, BE} is a mazimal cluster of atomic Boolean
expressions; in Pro, {By'} {B5?} are mazimal clusters re-
spectively. The cluster {By® A BE=}r denotes the target.
Two decomposition plans for policy P are shown in Table 3.

Plan A Plan B

Pi:BIY ABIUA(BEs ABEY | Pl BIY A(BE A Bé“)
Py :Bil A(BEs A BE#) P} Bil A(By® ABy®)
P3: By2 A (By® ABE?) P} : By2 A (By® ABE?)

Table 3: Decomposition Plans

Plan A creates local policies by always using maximal clus-
ters. Compared to Plan A, Plan B has the same number of
policies. However policies in Plan B have smaller sizes (we
define policy size as the number of Boolean expressions in
the policy). From the performance aspect, Plan B would be
more efficient than Plan A since Plan B needs to evaluate
fewer attributes.

Therefore, to guide the search of decomposition plans, we
propose the following cost function which estimates the total
workload for evaluating all local policies.

Np

COSt(Pl,...,PNP):ZSPi+Oé~NP (1)

i=1

In equation 1, Np is the total number of local policies, Sp,
is the size of policy P; which is estimated by using the num-
ber of atomic Boolean expression in P;. « is the overhead
introduced at evaluation time due to the increased number
of policies. Specifically, instead of evaluating a single large
policy, evaluating a number of smaller policies may require
a little bit more time. The smaller the value of cost, more
efficient the policy decomposition plan will be. It is worth
noting that we also need to check if the decomposed policy
is consistent with the original rule. We present more details
about determing a consistent decomposition plan in Section
3.3.1.

So far we have obtained a decomposition plan where each
local policy is represented as a Boolean expression. We pro-
ceed to introduce the procedure for converting these Boolean
expressions into actual XACML policies. As we know, a
Boolean expression in a policy corresponds to one of policy
components, like target and condition. Boolean expressions
in a certain type of component of a global policy are placed
in the same type of component in local policies. For exam-
ple, if a Boolean expression belongs to a resource element
in the target of the global policy, this Boolean expression
will also be in the resource element in the target of the local

policy. Second, in XACML, there are structures which can
represent the meaning of V and A. Next, we set the effect
of all local policies to permit. Then the constructed local
policies are distributed to the PDPs indicated by the labels.

The last step is to compute the effects of original rules
from the corresponding local policies. To achieve this, we
propose an effect combination table maintained by the re-
quest dispatcher/decision coordinator. Each row in such ta-
ble has the form of (RID, F'), where RID is arule ID and F’
is a Boolean expression on the decisions (denoted as e(P))
returned by local policies associated with rule RID. F' is
constructed based on the Boolean expression representing
the rule. Specifically, given a request, if the decision of P is
permit, the value of e(P) will be true. Otherwise, the value
of e(P) will be false. If F is evaluated true, the decision
of the corresponding rule will be determined by the rule ef-
fect. If F' is evaluated false, the decision of the rule will be
NotApplicable. Below is an example.

EXAMPLE 4. Table 8 is an effect combination table for
the policy decomposed using Plan B in Example 3.

RID F
Pri | e(P]) Ne(Py)
Pry | e(P3) Ae(Ps)

Table 4: An Effect Combination Table

The effects of P.r1 and P.ro are permit and deny re-
spectively. Consider a request q applicable to local policies
P} and P;. Suppose that the decisions returned by Py and P}
are both permit. Correspondingly, we have e(P]) = false,
e(Py) = true, e(P3) = true. The Boolean expression F of
P.ro is then evaluated true, and hence the decision of the
request q is deny.

After the effects of the original rules are obtained, the rule
combining algorithm is applied to generate the final decision.

Finally, we briefly discuss the situation when there is an
update on the global policy. An update can be seen as a
deletion followed by an insertion. If almost every rule has
been modified, we remove all related information about the
old global policy and decompose the new policy. If there is
only minor modification to several rules in the global policy,
we only need to re-decompose the rules sharing the same
local policies with the updated rules.

3.3.1 Decomposition Plan

In the previous section, we have mentioned that the de-
composition is based on finding the clusters of atomic Boolean
expressions. An important requirement is to ensure that
the decomposed policies are consistent with the original one.
The following definition introduces our notion of consistency.

DEFINITION 3. Let r be a rule in a policy, let Pi, Pa, ...,
Pr be local policies with respect to r, and let F' be the effect
combination function of r. If for any request q, the decision
yielded by F is the same as the decision yielded by r, we say
the decomposition from r to P1, P2, ..., Py is consistent.

In what follows, we first introduce an algorithm for the
search of a decomposition plan and then prove that the ob-
tained decomposition plan is consistent.

The algorithm consists of two main steps. First, we re-
order the atomic Boolean expressions in the DNF Boolean



expression of each rule. In particular, we rearrange the
atomic Boolean expressions in the same clause by moving
together the atomic Boolean expressions with the same la-
bel, i.e. atomic Boolean expressions belonging to the same
PDP. It is now easy to find the maximal clusters of corre-
lated Boolean expressions in each clause. Next, we move
together the clauses with the same single label.

The maximal clusters of correlated Boolean expressions
found in previous step are treated as candidate local policies.
We can compute the evaluation cost of this set of candidate
local policies according to Equation 1. The next step is to
find out if other alternative local policies exist. As discussed
in Example 3 when one local policy is included by another,
we need to split the bigger candidate local policy to reduce
the total evaluation cost. This only happens to policies that
are local to the same PDP. Based on the observation, we
propose the following heuristic to guide the decomposition
plan search.

HEuRrIsTIC 1. Let P, P> be two policies local to the same
PDP, and let f1 and fa2 be the corresponding Boolean expres-
sions of P1 and P respectively. If there exists a Boolean
expression fi such that f1 = fa A fi or f1 = fa V fi, then
we split Py into two local policies Py and P{ where P{ cor-
responds to f1.

Pi(f2 A f1), P2(f2) <= Pi(f1), P2(f2)

Pi(f2V f1), P2(f2) <= Pi(f1), P2(f2)

In the above heuristics, it is obvious that evaluating P; and
P> costs less than evaluating P; and Ps.

The situation becomes complicated when two local poli-
cies have an intersection rather than one being included by
the other. In such case, we need to use the cost function to
decide if we need to separate the intersection part from the
candidate local policies. In particular, we have the following
heuristic.

HEURISTIC 2. Let Pi, P> be two policies at the same PDP,
and let f1 and f2 be the corresponding Boolean expressions
of P1 and P> respectively. If the following two conditions are
satisfied, we replace Py and Py with Py, P12, P5 which cor-
respond to Boolean expressions fi, fi2 and f4 respectively.

(i) 31, frz, f2, fr = fl O, fi2 and f2 = f12 O, f2, where
O, O, € (A V).

(ii) cost(Pr, P2) > cost(Py, P12, Ps).

‘We now proceed to describe how to use these two heuris-
tics. We insert policies local at the same PDP into a list.
For each list { P1, Ps, ..., Py }, we start with the first two local
policies. First, we apply Heuristic 1 to P and P». With-
out loss of generality, suppose P> can be split into two local
policies P, and P5. We replace P, with P; and the list be-
comes {Pi, P, ..., P,}. We then consider policies P; and
Ps. Suppose Heuristic 2 can be applied to them so that P;
is split into P{ and P;3 while P; is split into P4 and Pi3.
We remove P; and P; from the list and insert P, Pi3 and
P3 after Py. The list is then changed to {P3, Py, P13, P,
Py, ..., Py}. Since the first policy in the list, i.e. Pi, has
been removed, we start a new round by selecting policies P
and P{ and keep applying two heuristics. The same proce-
dure continues until we reach the end of the list. The last
step is to eliminate any duplicate Boolean expression cre-
ated during the decomposition. The final result is a list of
local policies represented as Boolean expressions. Figure 5
summarizes the algorithm for decomposition plan search.

Algorithm 2. Decomposition Plan_Search(f1, ..., fn)
Input : fi, ..., fn are Boolean expressions of rule ri,...,
//—step 1 —//

1. for each rule r;

2. f! « cluster atomic Boolean expressions
with the same label in f;

3. append maximal clusters of atomic Boolean

expressions to a list C
//—step 2 —//

4. take every maximal cluster in C as a local policy

5. for each PDP

6. L < a list of local policies P, ..., Py, at this PDP

7. P; < the first policy in L

8. while P; is not the last second policy in L

9. Pj « the policy following P;

10. while P; is not the last policy in L

11. apply Heuristic 1 to P; and P;

12. if P; can be split into P/ and P;

13. P; — Pil

14. else if P; can be split into P; and P;

15. Pj — PJ{

16. else

17. apply Heuristic 2 to P; and P;

18. if P; and P; can be split into P/, P;; and PJ’-

19. insert P/, P;; and P} after P;

20. delete P; and P; from LL

21. P; « the first policy in LL

22. Pj « the policy following P;

23. else P; < the policy following P;

24. P; «— the policy following P;

25. eliminate duplicate policies from L

26. return L

Figure 5: Decomposition Plan Search

3.3.2 Consistency

THEOREM 1. Let r be a rule in a global policy P, and
let P, Ps, ..., Py be local policies generated by Algorithm 2
(Figure 5). P1,Ps, ..., Py are consistent with r.

ProoFr. To prove this theorem, we only need to prove
that the combination of Boolean expressions regarding local
policies Pi, ..., Pj is the same as the original Boolean ex-
pression F' regarding r. We examine the decomposition plan
search algorithm step by step.

First, we look at the reordering step. Suppose F’ is the
Boolean expression obtained after changing the order of the
atomic Boolean expressions in the same clause in F. Ac-
cording to the commutative property, i.e. a(Db=0bHa
where () € {A,V}, and a, b are Boolean expressions, F’
is equivalent to F. Suppose F” is the Boolean expression
obtained after changing the order of clauses in F’. Again,
according to the commutative property, F” is equivalent to
F’, and hence equivalent to F.

Let fi, ..., fi be the maximal clusters of atomic Boolean
expressions found in F”’. According to the associative prop-
erty, i.e.,, (a®Ob) Oec=aOOBO c) where O € {A,V}, and
a, b, ¢ are Boolean expressions, the combination of fi, ...,
f1 is equivalent to F”. By using the associative property, it
is also easy to prove that the Boolean expressions obtained
by applying any of the two heuristics is equivalent to the
original Boolean expression.

To sum up, the local policies Pi, ..., Px generated by the
decomposition plan search algorithm are consistent with rule

r. O



3.4 Constraint-based Decomposition

In some cases, policy owners have specific requirements
when their policies are decomposed, which we refer to as
decomposition constraints. For example, a party only trusts
some specific PDPs for the evaluation of its policies and
hence it requires that its policies can only be stored in these
sites that it trusts.

To support such a function, we keep a profile for each
PDP. The profile contains the PDP ID and a set of at-
tribute and value pairs in the form of ( (PDP_ID, wvali),
(Attra, val2), -+, (Attrg, valg)). These attributes can be
trust levels (TRUST'), average response time taken to evalu-
ate a request (AVG_RESP), etc. Decomposition constraints
are then specified as Boolean expressions on some attributes
listed in profiles, denoted as f.(Attri, ..., Attr;).

Given a policy and a decomposition constraint, we carry
out a filtering phase before the normal policy decomposi-
tion as described in previous section. In this filtering phase,
we evaluate every PDP and leave out PDPs whose profile
cannot satisfy the decomposition constraint. The decompo-
sition is executed only among the qualified PDPs. Below is
an example.

EXAMPLE 5. Suppose there are three PDPs, whose ID are
PDPy, PDP; and PDPs. Their profiles are as follows:

e ((PDP_ID, PDPy), (TRUST, 3), (AVG-RESP, 0.1s)).
e ((PDP.ID, PDP,), (TRUST, 1), (AVG_RESP, 0.03s)).
e ((PDP_ID, PDPs), (TRUST, 5), (AVG_RESP, 0.03s)).

A policy owner specifies his decomposition constraint f.
as: (PDP_ID = PDP;)V (TRUST > 2 N AVG-RESP< 0.05s),
which requires that the policy can only be handled by PDP; or
PDPs which has a TRUST higher than 2 and AVG_-RESP less
than 0.05s.

After evaluating profiles of the three PDPs against f., we ob-
tain two qualified PDPs, i.e. PDP; and PDPs. The decomposi-
tion procedure will then only consider these two qualified PDPs.

It is worth noting that some decomposition constraints
may render the policy decomposition unsatisfiable. For ex-
ample, if a policy contains information only maintained at
a PDP that does not satisfy the decomposition constraint,
this policy cannot be decomposed. In that case, the user
will be informed that his policy cannot be decomposed and
be advised to revise his policy constraints.

3.5 Request Evaluation Optimization

A straightforward way to evaluate a request consists of
three basic steps: (i) for each rule applicable to the request,
evaluate its local policies; (ii) combine the effects of local
policies based on the effect combination table; and (iii) ap-
ply the rule combining algorithm to obtain the final decision
of the request. However, this naive method may not be al-
ways efficient. First, different rules may share the same local
policies, and hence some policies may be repeatedly evalu-
ated. For example, in Table 4, rules 1 and r2 share the local
policy P». Second, the naive method evaluates all applicable
rules which may not be necessary for some rule combining
algorithms. Consider the permit-override combining algo-
rithm as an example. If a rule with the permit effect is
evaluated true, we do not need to check other rules, i.e., we
do not need to check corresponding local policies. Based on
these observations, we propose a novel method to generate

an evaluation plan for a global policy by carefully consider-
ing the relationships among local policies, the properties of
local PDPs, and the characteristics of rule combining algo-
rithms.

Two main data structures are used in our method. IRE
is an intermediate result table which stores the effects of
local policies on a given request. RS is a response time table
which keeps a record of evaluation time of each rule and each
local policy.

We now proceed to introduce how to generate an evalua-
tion plan for a global policy. The first step is to determine a
proper order for evaluating rules. The rule evaluation plan
consists of two levels: first-level plan and second-level plan.
The first-level plan decides the evaluating order of the rules.
For each rule, there is a second-level plan providing the eval-
uating order of local policies corresponding to this rule.

To obtain the first-level plan, we sort all the rules in an
ascending order according to estimated evaluation cost. We
use equation 1 to estimate the cost of evaluating a rule r
by replacing Np, Sp, with Np and Spr respectively, where
Np is the total number of local policies regarding rule r,
and Spr is the corresponding policy size. If we do not have
any knowledge about a rule-combining algorithm, like when
a user defined algorithm is used, we use the current ascend-
ing order as the first-level plan. Otherwise, we can further
customize the plan according to the types of rule-combining
algorithms used by the global policy. In the following, we
consider four common rule-combining algorithms.
Permit-overrides. The effect of the policy is “Permit” if a
rule is encountered that evaluates to “Permit”, regardless of
the evaluation result of the other rules.

This rule-combining algorithm gives precedence to the

rules with “Permit” effect. Thus, we reorder the rules which
are already in an ascending order according to the evalu-
ation cost, by first selecting rules with “Permit” effect and
then selecting rules with “Deny” effect. Thus, once a rule
returns a decision, the evaluation can stop and return the
decision as the final decision for the request. Also, we can
benefit from the ascending order as we always evaluate rules
with lower cost first.
Deny-overrides. The effect of the policy is “Deny” if any
rule is encountered that evaluates to “Deny”. The effect of
the policy is “Permit” if any policy evaluates to “Permit” and
all other rules evaluate to “NotApplicable”.

Deny-overrides is the opposite of permit-overrides. Thus,
this time we move the rules with “Deny” effects before the
rules with “Permit” effect. Similarly, once a rule returns a
decision, the evaluation stops and this decision is treated as
the final decision for the request.

First-one-applicable. The effect of the policy is the same
as the result of the first applicable rule.

In this case, the first-level plan is skipped and the original

order of rules is maintained.
Only-one-applicable. The effect of the policy corresponds
to the result of the unique rule in the policy which applies
to the request. Specifically, if no rule or more than one rules
are applicable to the request, the result of rule combination
should be “NotApplicable”; if only one rule is considered
applicable, the result should be the result of evaluating the
rule.

For this rule-combining algorithm, we do not need to make
any change to the previously obtained first-level plan. We
evaluate the rules in an ascending order of their estimated



evaluation cost. The evaluation will stop and return the
decision “NotApplicable” if two applicable rules are encoun-
tered.

The second-level plan is developed based on the assump-
tion that a rule is represented by a DNF Boolean expres-
sion of local policies. As we know DNF expressions have an
important property. That is when one clause of the DNF
expression is evaluated to true, the DNF expression is true.
This means that the evaluation can stop when a satisfied
clause is encountered. It would be beneficial to first eval-
uate the clauses with lower evaluation cost. Further, we
notice that if a request does not match the rule target, the
evaluation will also stop. Therefore, the second-level plan
will first evaluate clauses with respect to the rule target in
an ascending order of the evaluation cost and then evaluate
the remaining clauses also in an ascending order of the eval-
uation cost. We employ the equation 1 again to estimate
the cost of evaluating each clause. We replace Np and Sp,
in equation 1 with N, ., and SPfJ,ck respectively, where

N, ¢, is the number of local policies in the clause cx of rule
rj, and Spj-j,ck is the corresponding policy size.

The last Zstep is to actually evaluate local policies and rules
according to the orders given by the rule evaluation plans.
Each evaluation result returned by rules and local policies
is stored in the intermediate result table IRE. For another
rule containing the same local policies, we can directly use
the results in IRE. Figure 6 summarizes the algorithm. If
the global policy remains unchanged, we can adopt some
optimizations to reduce the time of composing rule evalua-
tion plans. First, the estimated evaluation cost of each rule
needs to be computed only once and all rules are sorted once
based on this cost. Second, the estimated evaluation cost of
local policies is also computed only once and the second-level
plans are the same for any request.

Finally a request issued to the system must be properly
routed to the appropriate PDPs.

It is worth noting that there is an alternative method to
estimate the evaluation cost of rules and local policies if we
log the response times for the evaluation of each rule and
each local policy. After the system has run some time and

Algorithm 3. Request_Evaluation(q, P)
Input : ¢ is a request regarding policy P
//—step 1 —//
Order rules in RuleSet based on estimated evaluation cost
2. Reorder rules in RuleSet based on
types of rule combining algorithms

—

3. for each rule r; in RuleSet
4. Order all local policies regarding r;
//— step 2 —//
5 for each local policy py regarding r;
6. Tailor the request ¢ for pg
7. if pi has been evaluated then
8. obtain the effect of py on r; from IRE table
9 else
10. evaluate py
11. store the effect of pg in the result table
12. store the evaluation time of p; in IRE table
13. store the evaluation time of r; in the RS table
14. if the final decision of the r; can be made then
15. return the final decision

Figure 6: Request Evaluation Algorithm

we have collected a history of the response time for each rule
and local policy, we can then use this historical information
as the measure to decide the order of the rule evaluation and
local policy evaluation instead of using the estimated cost.

4. COMPLEXITY ANALYSIS

The two main functions involved in our approach are Pol-
icy_Decomposition and Request_Evaluation.

Consider the Policy_Decomposition algorithm shown in
Figure 4. Let nr denote the number of rules in a policy to
be decomposed, np denote the maximum number of atomic
Boolean expressions for each rule in the policy and m denote
the maximum number of local policies for each rule in the
policy. Steps 2-4 can be executed in time O(ng). For step 5
we must look at the algorithm in Figure 5. In Figure 5, the
complexity of steps 1-5 is dominated by the conversion of
rule Boolean expressions to their corresponding DNF which
is O(2"®). Note however that in practice np is reasonably
small [8]. Steps 6-25 involve scanning the local policies and
applying the heuristics. We can see that at each step each
policy is compared with all other policies and the application
of the heuristics results in at most one new policy in each
step. This means that the number of steps is proportional to
m?2, where m is the total number of local policies in a PDP.
The actual application of the heuristics can be executed in
time linear in np which is the maximum number of atomic
Boolean expressions in a local policy. Therefore the com-
plexity here is O(ngm?). Coming back to Figure 4, steps 6-9
can be done in time O(m). Hence the overall complexity of
the Policy_Decomposition procedure is O(2"€ + nrngm?).
Note that above procedure is executed once for each policy
and does not incur any overhead during the request evalua-
tion.

For the Request_Evaluation algorithm (Figure 6), the re-
ordering of rules based on evaluation cost (Steps 5-6) can be
done offline in time O(ngrlognr). Steps 1-4 can be executed
in time O(ng). Although step 8 will take O(ngmlogm), we
will not consider this in the request evaluation time since it
can be executed offline. Steps 9-18, in the worst case where
all local policies are unique, the time will be O(ngrm). Hence
the request evaluation will be O(ngm). Note that because
of the use of the IRE table as the number of local policies
shared by the rules increases the time for request evaluation
decreases.

5. RELATED WORK

Several access control models [6, 7, 12, 14, 16] have been
proposed for collaborative systems. Akenti [16] uses an au-
thorization model use of authenticated X.509 certificates,
in which there is a trusted Akenti server (a PDP) which
is contacted by the resource gatekeeper (PEP) when a re-
quest is made to access protected resources. The PDP finds
all the (possibly distributed) relevant policy certificates from
all stakeholders and evaluates them to make a decision. The
PRIMA [12] system adopts a decentralized privilege man-
agement model in which the main focus is on enabling fine-
grained privilege delegation among subjects and on estab-
lishing trust relationships among entities from different ad-
ministrative domains. Approaches like those described in
[14] mainly focus on group authorization in grid communi-
ties. Cohen et al. [6] propose a family of coalition-based ac-
cess control(CBAC) models, wherein elements required for a



coalition-based access control are layered on top of a simple
role-based access control model. Their models also incor-
porate team-based and task-based access control. Edwards
[7] proposed the use of roles to associate policies regarding
resources with users for achieving access control in a collab-
orative system. However, compared to our approach, those
approaches have one or more of the following shortcomings:
lack of approaches for dealing with sensitive information re-
quired for access control; use of simple access control lan-
guages; lack of execution strategies for the efficient enforce-
ment of distributed access control.

Lorch et al. [13] experiment with using XACML for pro-
viding access control in distributed systems. They describe
the use of XACML for implementing the PRIMA authoriza-
tion model discussed above. Jin and Ahn [10] propose a role-
based access control for ad-hoc collaborative environments.
They use XACML to express the policies needed to support
their framework. In contrast to these approaches, we pro-
pose an extension to the reference architecture of XACML
in order to support the decomposition of policies for collab-
orative access control. In addition we provide policy decom-
position techniques and strategies for efficient access control
enforcement.

The notion of policy decomposition has been mainly used
in the context of policy refinement [5, 15]. These approaches
typically consider multiple distributed resources in an ap-
plication as one single abstract hierarchical resource. A
high-level access control policy for the abstract resource is
transformed to produce local policies that govern access to
concrete resources. These local policies are then stored at
the PDPs controlling each resource. Unlike our approach
in which the policy decomposition is guided by the sensitiv-
ity /availability of attribute information necessary for access
control and/or user defined constraints at each PDP, the
policy decomposition in these approaches is mainly guided
by the resource type hierarchy.

Works in the area of privacy preserving access control
[11, 9] have proposed techniques to hide sensitive creden-
tials of the request owner and the policies of a policy owner
from each other during the request evaluation. Li et al. [11]
have proposed a OSBE (Oblivious Signature-Based Enve-
lope) scheme to protect the sensitive credentials of a request
owner but the policies are revealed. Frikken et al. [9] have
proposed cryptographic protocols that hides both policies
and credentials during access control. If we directly ap-
ply these approaches to a global policy that involves predi-
cates on sensitive information from multiple parties, during
a request evaluation, we can only prevent a requester from
knowing the global policy but we need a central PEP to col-
lect sensitive attribute values from each participating party
which does not want to share such sensitive information.
In comparison, the coordinator in our system only collects
decisions from each party but not any sensitive attribute
values. In other words, their approaches are not feasible for
multi-party collaborative access control in which each party
is not willing to disclose its own sensitive information to
other parties or the central PEP.

6. CONCLUSION

In this paper, we have proposed a novel access control
model for collaborative access control. Our architecture is
developed based on the XACML framework which allows our
technique to be easily integrated into existing systems. The

main idea is to properly decompose a global policy and dis-
tribute it to each collaborating party. The decomposition
ensures the autonomy and confidentiality of each involved
party and guarantees the consistency of the decisions. Ad-
ditionally, we also propose an algorithm to optimize request
evaluation in our system.

Several future research directions exist, one of which is
to conduct a simulation study to evaluate the efficiency and
effectiveness of our approach. Also, we plan to consider hier-
archical relationships among PDPs where each PDP reports
the decision to his parent PDP. Another interesting direc-
tion is to take into account more complex decomposition
constraints which may require the integration of the decom-
posed policies with policies originally residing at the local
PDP.
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