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Abstract

An apparently prevailing myth is that safety is unde-
cidable in Discretionary Access Control (DAC); there-
fore, one needs to invent new DAC schemes in which
safety analysis is decidable. In this paper, we dispel this
myth. We argue that DAC should not be equated with
the Harrison-Ruzzo-Ullman access matrix scheme [10],
in which safety is undecidable. We present an efficient
(running time cubic in its input size) algorithm for decid-
ing safety in the Graham-Denning DAC scheme [8], which
subsumes the DAC schemes used in the literature on com-
paring DAC with other access control models. We also
counter several claims made in recent work by Solworth
and Sloan [27], in which the authors present a new ac-
cess control scheme based on labels and relabelling and
assert that it can implement the full range of DAC models.
We present a precise characterization of their access con-
trol scheme and show that it does not adequately capture
a relatively simple DAC scheme.

1. Introduction

Safety analysis, first formulated by Harrison, Ruzzo,
and Ullman [10] for the access matrix model [13, 8], has
been recognized as a fundamental problem in access con-
trol. Safety analysis decides whether rights can be leaked
to unauthorized principals in future states. Safety analysis
was shown to be undecidable in the HRU scheme. Since
then, considerable research effort has gone into designing
access control schemes in which safety analysis is decid-
able [1, 2, 5, 11, 17, 19, 20, 23, 24, 25, 26, 27, 29, 30].
Safety analysis is particularly interesting in DAC [6, 7, 8,
9], in which a subject gets rights to resources at the dis-
cretion of other subjects. Recently, there appears to be re-
newed interest in the topic of safety in DAC, as evidenced
by the work by Solworth and Sloan [27], which was pub-
lished at the IEEE Symposium on Security and Privacy

in 2004. In that work, the authors assert that, in general,
safety is undecidable in DAC, and use this assertion as the
motivation for introducing a new access control scheme
based on labels and relabelling that has decidable safety
properties.
Our goals in this paper are to present a clear picture of

safety in DAC and to counter several claims in Solworth
and Sloan [27], that we demonstrate to be erroneous. The
work in Solworth and Sloan [27] is based on the premise
that safety is undecidable in DAC; therefore, one needs
to design new schemes for DAC so that safety analysis is
decidable. We assert that this premise is a myth, and con-
jecture that the basis for this myth is that DAC is some-
times erroneously equated to the HRU scheme [10] (for
instance, in work such as [18, 22]). As we discuss in
Section 3, DAC cannot be equated to the HRU scheme
for the following reasons. First, the HRU scheme can be
used to encode schemes that are not DAC schemes; there-
fore, the fact that safety is undecidable in the HRU scheme
should not lead one to conclude that safety is undecid-
able in DAC. Second, features in DAC cannot always be
encoded in the HRU scheme. For example, some DAC
schemes require that each object be owned by exactly one
subject; thus removal of a subject who has the ownership
of some objects requires the transfer of ownership to some
other subject (often times the owner of the subject being
removed) so that this property is maintained. Both the re-
moval of the subject and the transfer of ownership of ob-
jects it owns occur in a single state-change. A single HRU
command cannot capture these features, because it cannot
loop over all objects owned by a subject.
We dispel the myth that safety is undecidable in DAC

by presenting an efficient algorithm for deciding safety in
the DAC scheme proposed by Graham and Denning [8].
Our algorithm runs in time cubic in the size of the in-
put. The Graham-Denning scheme is, to our knowledge,
the first DAC scheme to have been proposed, and sev-
eral other DAC schemes proposed subsequently are ei-
ther subsumed by or are simple extensions of the Graham-
Denning scheme. Examples of such DAC schemes in-
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clude those used by Osborn et al. [21] to show that
RBAC can be used to implement DAC. The same schemes
are used by Solworth and Sloan [27] to show that the
Solworth-Sloan scheme can implement DAC. Our algo-
rithm suggests that safety in these DAC schemes can be
efficiently decided and there is no need to invent new ac-
cess control schemes with decidable safety as the primary
goal.
Some may hold the view that safety can be trivially de-

cided in DAC schemes. For instance, if the owner of an
object is untrusted, then he can grant rights over the ob-
ject to any other subject. Therefore, if such an owner ex-
ists, then the system will be unsafe for that object. While
it may be easy to identify one or two such conditions that
make a DAC system unsafe, identifying all such condi-
tions may not be trivial. To our knowledge, algorithms for
deciding safety in the Graham-Denning or other derived
DAC schemes have not appeared in the literature. The
proof that our algorithm is correct, which is in our techni-
cal report [15], was not trivial for us.
We observe that the presentation in [27] does not

clearly specify what information is maintained in a state,
how states may change, and the precise construction to im-
plement DAC in the scheme. In this paper we give a pre-
cise characterization of the Solworth-Sloan scheme and an
implementation of the SDCO scheme [21] in it. (Solworth
and Sloan [27] use the word “implement” in this context,
and therefore, we do the same. In previous work in the
comparison of different access control schemes, “simula-
tion” appears to be the preferred terminology.) We be-
lieve that a precise characterization of the Solworth-Sloan
scheme is of interest independent of an assessment of its
effectiveness in implementing other DAC schemes. The
publication of two papers [27, 28] based on this scheme
in recent major security conferences reflects that there is
interest in such a access control scheme based on labels
and relabelling.
Our precise characterization enables us to assess how

effectively the Solworth-Sloan scheme implements the
SDCO scheme. We counter several claims from Solworth
and Sloan [27], and demonstrate that the claims are erro-
neous. Solworth and Sloan [27] claim that theirs is the first
general access control model which both has a decidable
safety property and is able to implement the full range of
DAC models. We show that the proposed implementation
of DAC schemes in the Solworth-Sloan scheme has signif-
icant deficiencies. Two particular limitations that we dis-
cuss are the lack of support for removing subjects and ob-
jects and the inability to ensure that an object has only one
owner, as required by DAC schemes such as Strict DAC
with Change of Ownership (SDCO), which is a simplified
version of the Graham-Denning scheme. We observe also
that the implementation incurs considerable overhead. Es-
sentially for each new object to be created, a data structure

of the size exponential in the total number of rights needs
to be created.
The remainder of this paper is organized as follows. We

discuss related work in Section 2 and give precise defini-
tions of safety analysis in DAC in Section 3. In Section 4,
we study safety analysis in the Graham-Denning scheme.
We analyze the Solworth-Sloan scheme in Section 5 and
conclude in Section 6.

2. Related Work

There is considerable work on DAC and safety anal-
ysis. To our knowledge, Graham and Denning [8] pro-
posed the first DAC scheme. Their scheme is based on the
work by Lampson on the access matrix model [13]. Sub-
sequently, Griffiths andWade proposed their DAC scheme
for relational database systems [9]. Downs et al. [7] dis-
cussed salient aspects of DAC, and their work was sub-
sequently subsumed by the NCSC’s guide to DAC [6].
Lunt [18] examined various issues in DAC as part of
broader work on issues in access control. Samarati and de
Capitani di Vimercati [22] included discussions on DAC
in their treatment of access control. Osborn et al. [21]
discussed several DAC schemes that are sub-cases or vari-
ants of the Graham-Denning scheme in their comparison
of DAC to RBAC. DAC was extended to include temporal
constructs by Bertino et al. [3, 4]. Solworth and Sloan [27]
presented a new DAC scheme based on labels and rela-
belling rules. The same schemewas also used by Solworth
and Sloan in [28].
Safety is a fundamental property that was first proposed

in the context of access control by Harrison et al. [10].
Subsequently, there has been considerable work on safety
in various contexts related to security [1, 2, 5, 11, 14, 16,
17, 19, 20, 23, 24, 25, 26, 27, 29, 30]. Recent work by
Li et al. [14, 16] perceived various forms of safety as spe-
cial cases of more general security properties, and safety
analysis is subsumed by security analysis. In this paper,
we adopt this perspective in defining safety analysis in the
next section. To our knowledge, the work by Solworth
and Sloan [27] was the first to directly address safety in
DAC. Other work on safety has been on specific schemes
such as the HRU scheme [10], the ESPM scheme [1] and
a trust management scheme [16]. Furthermore, to our
knowledge, there is no prior work on safety analysis in
the context of specific DAC schemes such as the Graham-
Denning scheme [8].

3. Defining Safety Analysis in DAC

In this section, we define access control schemes and
systems, and the general problem of security analysis in
the context of such schemes and systems. We then define
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safety analysis as a special case of security analysis. In
our definitions, we adopt the meta-formalism introduced
by Li et al. [16, 14].

Definition 1 (Access Control Schemes and Systems)
An access control scheme is a four-tuple hΓ,Ψ, Q,`i,
where Γ is a set of states, Ψ is a set of state-change rules,
Q is a set of queries and `: Γ×Q→ {true, false} is the
entailment function, that specifies whether a propositional
logic formula of queries is true or not in a state.
A state-change rule, ψ ∈ Ψ, determines how the access

control system changes state. Given two states γ and γ1
and a state-change rule ψ, we write γ 7→ψ γ1 if the change
from γ to γ1 is allowed by ψ, and γ

∗7→ψ γ1 if a sequence
of zero or more allowed state changes leads from γ to γ1.
An access control system based on a scheme is a state-

transition system specified by the four-tuple hγ, ψ,Q,`i,
where γ ∈ Γ is the start (or current) state, and ψ ∈ Ψ
specifies how states may change.

We recognize that our formalism for schemes and sys-
tems is fairly abstract. Nonetheless, we need such a for-
malism to be able to represent disparate access control
schemes, such as those based on the access matrix, role-
based access control and trust management approaches.
When we specify a particular access control scheme, we
specify each component precisely, using constructs that
are well-understood.
An example of an access control scheme is the HRU

scheme [10], in which the state consists of a finite set of
subjects, a finite set of objects, and an access matrix with
a row for each subject and a column for each object. Each
cell in the access matrix is the set of the rights a subject
has over the corresponding object. Examples of queries,
q1, q2 ∈ Q in the HRU scheme are “q1 = r ∈ M [s, o]”
and “q2 = r0 ∈ M [s, o]”. The queries q1 and q2 ask
whether the subject s has the right r and r0 over the object
o, respectively. Given a state, γ, and a state-change rule,
ψ, in an HRU system, let Sγ be the set of subjects that
exist in the state, γ, Oγ be the set of objects that exist,
Mγ[ ] be the access matrix, and Rψ be the set of rights in
the system. Then, γ ` q1∧¬q2 if and only if s ∈ Sγ∧o ∈
Oγ ∧ r ∈Mγ [s, o] ∧ r0 6∈Mγ [s, o].
One of the components of our characterizations of se-

curity and safety analysis below warrants some explana-
tion. Each instance of the analysis is associated with a set
T of trusted subjects. The meaning of a trusted subject
is that we preclude state-changes initiated by any subject
from T in our analysis. The intuition is that we expect
these subjects to be “well-behaved”. That is, while such
subjects may effect state-changes, they do so in such a
way that the state that results from the state-changes they
effect satisfies desirable properties (e.g., safety). Harri-
son et al. [10] do consider trusted subjects as part of their

safety analysis. Nonetheless, as pointed out previously
by Li et al. [16], the way they deal with trusted sub-
jects is incorrect. They require that we delete the rows
and columns corresponding to trusted subjects prior to the
analysis. While a trusted subject is not allowed to initiate a
state-change, she may be used as an intermediary, and the
way Harrison et al. [10] deal with trusted subjects does
not consider this possibility. In this paper, we require only
that a member of the set of trusted subjects not initiate a
state-change. In all other ways, these subjects continue to
be part of the system.

Definition 2 (Security Analysis) Given an access con-
trol scheme hΓ,Ψ, Q,`i, a security analysis instance is of
the form hγ, ψ, T ,¤φi, where φ is a propositional logic
formula of queries and¤ stands for “in the current and all
future states,” and is an operator from temporal logic [12].
Given such an instance, we say that the instance is true if
for all states γ0 such that γ ∗7→ψ γ0, γ0 ` φ. That is, φ
represents a security invariant that must be satisfied in all
states reachable from γ under ψ, with no state change ini-
tiated by a user from the set T , for the instance to be true.
Otherwise, the instance is false.

Harrison et al. [10] informally characterize safety as
the condition “that a particular system enables one to keep
one’s own objects ‘under control’ ”. This informal char-
acterization seems to be appropriate as a security property
of interest in DAC systems, as the very purpose of DAC
is that subjects should be able to keep objects that they
own, under their control. More formally, safety analysis is
a special case of security analysis, where the invariant is
that an unauthorized subject should not have a particular
right to a given object.

Definition 3 (Safety Analysis) Given an access control
scheme hΓ,Ψ, Q,`i, let the set of subjects that can exist
in a system based on the scheme be S, let the set of objects
beO, and let the set of rights beR. Assume that there ex-
ists a function hasRight: S×O×R→ {true, false} such
that hasRight(s, o, r) returns true if in the current state, s
and o exist, r is a right in the system, and s has the right r
over o, and false otherwise. A safety analysis instance has
the form hγ, ψ, T ,¤¬hasRight(s, o, r)i for some s ∈ S,
o ∈ O and r ∈ R. That is, safety analysis is security anal-
ysis with φ instantiated to ¬hasRight(s, o, r). The safety
analysis instance is true if hasRight(s, o, r) is false in ev-
ery reachable state, with no state change initiated by a user
from T , and false otherwise.

What is DAC? The NCSC guide titled ‘A Guide To Un-
derstanding Discretionary Access Control in Trusted Sys-
tems’ [6], portions of which were published as a research
paper [7], states that “the basis for (DAC) is that an in-
dividual user, or program operating on the user’s behalf,

3



is allowed to specify explicitly the types of access other
users (or programs executing on their behalf) may have to
information under the user’s control.” We point out two
specific properties from this characterization of DAC: (1)
The notion of “control” – there is a notion that users ex-
ercise control over resources in that a user that controls
a resource gets to dictate the sorts of rights other users
have over the resource, and (2) the notion of initiation of
an action by a user to change the protection state – such
state changes occur because particular users initiate such
changes. A representation of a DAC scheme needs to cap-
ture both these properties.
Some literature (for example, [18, 22]) appears to

equate DAC with the HRU scheme [10]. This is incorrect,
as there exist many systems based on the HRU scheme
that are not DAC systems. For instance, consider an HRU
system in which there is only one command, and that com-
mand has no condition. This system is not a DAC sys-
tem as it does not have the first property from above on
the control of resources by a subject. In addition, there
are DAC schemes that do not have natural representa-
tions as HRU schemes. For instance, the Graham-Denning
scheme [8] (see Section 4.1) is a DAC scheme in which
a subject may be ‘owned’ or ‘controlled’ by at most one
other subject. A system based on the HRU scheme cannot
capture this feature in a natural way.

4. Safety Analysis in the Graham-Denning
Scheme

In this section, we study safety analysis in the Graham-
Denning DAC scheme [8]. We first present a description
of the scheme in the following section. Our description
clearly describes the states and state-change rules in the
scheme. In Section 4.2, we present an algorithm to de-
cide safety in the scheme, and show that the algorithm is
correct. We also assert that the algorithm is efficient.

4.1. The Graham-Denning Scheme

In this section, We present a precise representation for
the Graham-Denning scheme. We define what data are
stored in a protection state, and how a state-change rule
changes a state.

Assumptions We postulate the existence of the follow-
ing countably infinite sets: O, the set of objects; S, the set
of subjects (S ⊂ O); andR, the set of rights.
Note that the set of objects (or subjects) in any given

state in the Graham-Denning scheme is finite; however,
the number of objects that could be added in some future
state is unbounded. Similarly, the set of rights in any given
access control system is finite; however, different access

control systems may use different sets of rights. There-
fore, we assume S, O, andR are countably infinite.
We assume a naming convention so that we can de-

termine, in constant time, whether a given object, o, is a
subject (i.e., o ∈ S) or not (i.e., o ∈ O − S). There
exists a special “universal subject” u ∈ S; the role of u
will be explained later. The set of rights R contains two
special rights, own and control , a countably infinite set
Rb of “basic” rights, and a countably infinite set R∗b of
basic rights with the copy flag denoted by ∗, i.e., R∗b =
{r∗|r ∈ Rb}. In other words,R = {own, control}∪Rb∪
R∗b . The meaning of the copy flag is clarified when we
discuss the state-change rules for the scheme. An access
control system based on the Graham-Denning scheme is
associated with a protection state, and a state-change rule.

States, Γ A state in the Graham-Denning scheme, γ, is
associated with the tuple hOγ , Sγ,Mγ[ ]i, where Oγ ⊂ O
is a finite set of objects that exist in the state γ, Sγ ⊂ S is
a finite set of subjects that exist in γ, and Sγ is a subset of
Oγ .Mγ [ ] is the access matrix, andMγ [ ]: Sγ×Oγ → 2R.
That is,Mγ [s, o] ⊂ R is the finite set of rights the subject
s ∈ Sγ has over the object o ∈ Oγ .
Every state, γ = hOγ, Sγ ,Mγ [ ]i, in the Graham-

Denning scheme satisfies the following seven properties.

1. Every object must be owned by at least one subject,
i.e., ∀ o ∈ Oγ ∃s ∈ Sγ(own ∈Mγ [s, o]).

2. Objects are not controlled, only subjects are, i.e.,
∀ o ∈ (Oγ − Sγ)∀ s ∈ Sγ(control 6∈Mγ[s, o]).

3. The special subject u exists in the state, is not owned
by any subject, and is not controlled by any other
subject, i.e., u ∈ Sγ ∧ ∀ s ∈ Sγ(own 6∈ Mγ [s, u]) ∧
∀ s ∈ Sγ − {u}(control 6∈Mγ [s,u]).

4. A subject other than u is owned by exactly one other
subject, i.e., for every s ∈ Sγ − {u}, there exists
exactly one s0 ∈ Sγ such that s0 6= s and own ∈
Mγ [s

0, s];
5. Every subject controls itself, i.e., ∀s ∈ Sγ(control ∈

Mγ [s, s]).
6. A subject other than u is controlled by at most one
other subject, i.e., for every s ∈ Sγ−{u}, there exists
at most one s0 ∈ Sγ such that s0 6= s and control ∈
Mγ [s

0, s].
7. There exists no set of subjects such that they form
a “cycle” in terms of ownership of each other (and
in particular, a subject does not own itself), i.e.,
¬(∃ {s1, . . . , sn} ⊆ Sγ(own ∈Mγ[s2, s1] ∧ own ∈
Mγ [s3, s2] ∧ · · · ∧ own ∈ Mγ [sn, sn−1] ∧ own ∈
Mγ [s1, sn])).

These state invariants are maintained by the state-
change rules.
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State-Change Rules, Ψ Each member, ψ, of the set of
state-change rules, Ψ, in the Graham-Denning scheme,
is a set of commands parameterized by a set of rights,
Rψ. These commands are shown in Figure 1. Where
possible, we use the syntax for commands from the HRU
scheme [10], but as we mention in Section 3, we can-
not represent all aspects of DAC schemes using only con-
structs for commands in the HRU scheme. We use some
additional well-known constructs such as ∀ and ∃ in these
commands. A state-change is the successful execution of
one of the commands. We assume that the state subse-
quent to the execution of a command is γ0. We denote
such a state-change as γ 7→ψ(s) γ

0, where s is the initiator
of the command. We point out that for each command,
unless specified otherwise, Sγ0 = Sγ , Oγ0 = Oγ , and
Mγ0 [s, o] = Mγ [s, o] for every s ∈ Sγ and o ∈ Oγ . We
use ← to denote assignment, i.e., x ← y means that the
value in x is replaced with the value in y. The commands
in the Graham-Denning scheme are the following. The
first parameter to each command is named i, and is the
subject that is the initiator of the execution of the com-
mand.

• transfer r(i, s, o) This command is used to grant the
right r by an initiator that has the right r∗ over o.
There is one such command for every r ∈ Rψ ∩Rb.
The initiator, i, must possess the right r∗ over o, and
the subject s must exist for this command execution
to succeed.

• transfer r∗(i, s, o) This command is used to grant the
right r∗ by an initiator that has the right r∗ over o.
There is one such command for every r∗ ∈ Rψ∩R∗b .
The initiator, i, must possess the right r∗ over o, and
the subject s must exist for this command execution
to succeed.

• transfer own(i, s, o) This command is used to trans-
fer ownership over o from i to s. For this command
to succeed, i must have the own right over o, s must
exist, and the transfer of ownership must not violate
invariant (7) from the list of state invariants we dis-
cuss above. After the execution of this command, i
will no longer have the own right over o (but s will).

• grant r(i, s, o) This command is used to grant the
right r over o by the owner of o. There is one such
command for every r ∈ Rψ ∩Rb. For this command
execution to succeed, i must have the own right over
o, and s must exist.

• grant r∗(i, s, o) This command is very similar to the
previous command, except the the owner grants r∗ ∈
Rψ ∩R∗b .

• grant control(i, s, o) This command is used to grant
the control right over o by its owner. For the exe-
cution of this command to succeed, i must have the
right control over o, smust exist, omust be a subject,

and another subject must not already have the right
control over o. These checks are needed to maintain
the state invariants related to the control right that we
discuss above.

• grant own(i, s, o) This command is used to grant
the own right over o. This is different from the
transfer own command in that in this case, i retains
(joint) ownership over o. For the execution of this
command to succeed, i must have the right own over
o, o must not be a subject, and smust exist.

• delete r(i, s, o) This command is used to delete a
right a subject has over o. There is one such com-
mand for every r ∈ Rψ ∩Rb. For the execution of
this command to succeed, i must have the right own
over o, and s must exist.

• delete r∗(i, s, o) This command is similar to the pre-
vious command, except that a right r∗ ∈ Rψ ∩R∗b is
deleted.

• create object(i, o) This command is used to create
an object that is not a subject. For the execution of
this command to succeed, imust exist, and omust be
an object that is not a subject, that does not exist. An
effect of this command is that i gets the own right
over o in the new state.

• destroy object(i, o) This command is used to destroy
an object that exists. For the execution of this com-
mand to succeed, i must have the right own over o,
and o must be an object that is not a subject.

• create subject(i, s) This command is used to create
a subject. For the execution of this command to suc-
ceed, i must exist, and s must be a subject that does
not exist. In the new state, i has the own right over s,
and s has the control right over itself.

• destroy subject(i, s) This command is used to de-
stroy a subject. For the execution of this command to
succeed, i must have the own right over s. An effect
of this command is that ownership over any object
owned by s is transferred to i.

4.2. Safety analysis

An algorithm to decide whether a system based on the
Graham-Denning scheme is safe is shown in Figure 2. A
system based on the Graham-Denning scheme is charac-
terized by a start-state, γ, and state-change rule, ψ (which
is a set of commands). The algorithm takes as input γ,
ψ, a triple, ω = hs, o, xi ∈ S × O × R, and a finite set,
T ⊂ S, of trusted subjects. The algorithm outputs “true”
if the system satisfies the safety property with respect to
the subject s, object o and right x, and “false” otherwise.
We first discuss the algorithm, and then its correctness and
time-complexity.
In lines 5-10 of the algorithm, we check the cases for

which we do not have to consider potential state-changes
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command transfer r(i, s, o) command transfer r∗(i, s, o)
if r∗ ∈Mγ [i, o] ∧ s ∈ Sγ then if r∗ ∈Mγ[i, o] ∧ s ∈ Sγ then
Mγ0 [s, o]←Mγ [s, o] ∪ {r} Mγ0 [s, o]←Mγ [s, o] ∪ {r∗}

command transfer own(i, s, o) command grant r(i, s, o)
if own ∈Mγ [i, o] ∧ o ∈ Sγ ∧ s ∈ Sγ then if own ∈Mγ[i, o] ∧ s ∈ Sγ then
if @ {s1, . . . , sn} ∈ Sγ such that Mγ0 [s, o]←Mγ [s, o] ∪ {r}
own ∈Mγ [s1, s] ∧ own ∈Mγ[s2, s1]
∧ · · · ∧ own ∈Mγ [sn, sn−1]
∧ own ∈Mγ [o, sn] then command grant r∗(i, s, o)
Mγ0 [s, o]←Mγ [s, o] ∪ {own} if own ∈Mγ [i, o] ∧ s ∈ Sγ then
Mγ0 [i, o]←Mγ [i, o]− {own} Mγ0 [s, o]←Mγ[s, o] ∪ {r∗}

command grant control(i, s, o) command grant own(i, s, o)
if own ∈Mγ [i, o] ∧ o ∈ Sγ ∧ s ∈ Sγ then if own ∈Mγ[i, o] ∧ o 6∈ Sγ
if @ s0 ∈ Sγ such that ∧ s ∈ Sγ then
s0 6= o ∧ control ∈Mγ[s0, o] then Mγ0 [s, o]←Mγ [s, o] ∪ {own}
Mγ0 [s, o]←Mγ [s, o] ∪ {control}

command delete r(i, s, o) command delete r∗(i, s, o)
if (own ∈Mγ [i, o] ∧ s ∈ Sγ) if (own ∈Mγ[i, o] ∧ s ∈ Sγ)
∨ control ∈Mγ [i, s] then ∨ control ∈Mγ[i, s] then
Mγ0 [s, o]←Mγ [s, o]− {r} Mγ0 [s, o]←Mγ [s, o]− {r∗}

command create object(i, o) command destroy object(i, o)
if o 6∈ Oγ ∧ i ∈ Sγ ∧ o ∈ O − S then if own ∈Mγ[i, o] ∧ o 6∈ Sγ then
Oγ0 ← Oγ ∪ {o} Oγ0 ← Oγ − {o}
Mγ0 [i, o]← own

command create subject(i, s) command destroy subject(i, s)
if s 6∈ Oγ ∧ i ∈ Sγ ∧ s ∈ S then if own ∈Mγ[i, s] ∧ s ∈ Sγ then
Oγ0 ← Oγ ∪ {s} ∀ o ∈ Oγ, if own ∈Mγ [s, o] then
Sγ0 ← Sγ ∪ {s} Mγ0 [i, o]←Mγ [i, o] ∪ {own}
Mγ0 [i, s]← {own} Oγ0 ← Oγ − {s}
Mγ0 [s, s]← {control} Sγ0 ← Sγ − {s}

Figure 1. The set of commands that constitutes the state-change rule, ψ, for a system based on
the Graham-Denning scheme. Each command has a name (e.g., transfer own), and a sequence of
parameters. The first parameter is always named i, and is the initiator of the command, i.e., the
subject that executes the command. There is one transfer r, grant r, and delete r command for each
r ∈ Rψ ∩Rb, and one transfer r∗, grant r∗, and delete r∗ command for each r∗ ∈ Rψ ∩R∗b .
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1 Subroutine isSafeGD(γ, ψ, ω, T )
2 /* inputs: γ, ψ, ω = hs, o, xi, T ⊆ S */
3 /* output: true or false */
4 if x ∈ R∗b then let y ← x
5 else if x 6= own ∧ x 6= control then let y ← x∗

6 else let y ← invalid /* No copy flags for own or control */
7 if x 6∈ Rψ then return true
8 if x = control ∧ o ∈ O − S then return true
9 if x ∈Mγ [s, o] then return false

10 if y ∈Mγ [s, o] then return false
11 if T ⊇ Sγ then return true
12 if o 6∈ Oγ then return false
13 if ∃bs ∈ Sγ − T such that y ∈Mγ [bs, o] then return false
14 for each sequence U , sn, . . . , s2, s1 such that
15 own ∈Mγ [s1, o] ∧ · · · ∧ own ∈Mγ [sn, sn−1] ∧ own ∈Mγ [u, sn] do
16 if ∃si ∈ {s1, . . . , sn} such that si ∈ Sγ − T then return false
17 return true

Figure 2. The subroutine isSafeGD returns “true” if the system based on the Graham-Denning
scheme, characterized by the start-state, γ, and state-change rule, ψ, satisfies the safety property
with respect to ω and T . Otherwise, it returns “false”. In line 6, we assign some invalid value to y,
as there is not corresponding right with the copy flag for the rights own and control . In this case,
the algorithm will not return in line 10 or 13. The subject u appears in line 15 only to emphasize
that the “chain” of ownership is terminal.

before we are able to decide whether the system is safe or
not. In lines 5-6, we consider the case that a subject may
have (or acquire) the right with the copy flag. For this, we
need to exclude own and control from consideration, as
those rights do not have counterparts with the copy flag.
We use the mnemonic invalid to indicate this. In line 7,
we check that the right x is indeed in the system. In line
8, we check whether we are being asked whether s can
get the control right over o, where o is an object that is
not a subject (we know s does not have and cannot get the
right, by property (2) of the seven properties we discuss
in the previous section). In line 9, we check whether the
right x has already been acquired by s over o. In line 10,
we check that if the right y has already been acquired by
s over o (the check in line 10 is needed when x ∈ Rb,
as then, the possession of x∗ implies the possession of x;
in the case that x ∈ R∗b , the lines 9 and 10 are identical).
When x = own or x = control , the condition of line 10
will never be true, and we will not return from that line.
In the remainder of the algorithm, we consider those cases
in which a state-change is needed before s can get x over
o (if it can at all). In line 11, we check whether there is
at least one subject that can initiate state-changes, and if
not, we know that the system is safe. In line 12, we check
whether o exists, and if it does not, given that there exists
a subject that can create o (from our check in line 11), the
subject can then grant x to s over o. In line 13, we check
whether there is a subject that can initiate state-changes,

and that has x with the copy-flag (or x itself, if x ∈ R∗b ).
If x = own or x = control , the condition of line 13
cannot be true. In lines 14-16, we check whether there is a
sequence of subjects with the particular property that each
owns the next in the sequence, and the last subject in the
sequence owns o. If any one of those subjects can initiate
state-changes, then we conclude that the system is not safe
and return false. In all other cases, we conclude that the
system is safe, and return true.
The following lemma asserts that the algorithm is cor-

rect. Theorem 2 summarizes our results with respect to
safety analysis in the Graham-Denning scheme.

Lemma 1 A system based on the Graham-Denning
scheme, that is characterized by the start-state, γ, and
state-change rule, ψ, is safe with respect to ω =
hs, o, xi and T ⊂ S (where T is finite) if and only if
isSafeGD(γ, ψ, ω, T ) returns true.

Proof. Sketch: the proof is quite lengthy, and we present
it in [15]. We present a sketch of the proof here. For
the “if” part, we need to show that if the system is not
safe with respect to ω and T , then isSafeGD returns false
on input (γ, ψ, ω, T ). If the system is not safe, then we
know that there exists a state-change sequence γ 7→ψ(s1)

γ1 7→ψ(s2) · · · 7→ψ(sn) γn, such that x ∈ Mγn [s, o]. If
such a sequence exists with n = 0, then this can only be
because s already has the right, and we show that in this
case the algorithm returns false. If n = 1, then the right
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has to appear in Mγ1 [s, o] in only one state-change, and
we show that in this case as well, the algorithm returns
false. For the general case, we use induction on n, with
n = 1 as the base case.
For the “only if” part, we need to show that if the algo-

rithm returns false, then the system is not safe with respect
to ω and T . We consider each case in which the algorithm
returns false (lines 9, 10, 12, 13 and 16). In each case,
we construct a state-change sequence such that in the final
state of the sequence, γ0, x ∈Mγ0 [s, o].

Theorem 2 Safety is efficiently decidable in a system
based on the Graham-Denning scheme. In particular,
isSafeGD runs in time at worst cubic in the size of the
components of the start state and the set of rights in the
system.

Proof. We make the following observations about the
running time of isSafeGD in terms of its input, namely,
Sγ ,Oγ, Rψ, Mγ [ ], ω and T , by considering each line in
the algorithm as follows. Each of the lines 5-10 runs in
time at worst linear in the size of the input. In partic-
ular, as we mention in the previous section, we adopt a
naming convention for subjects and objects that enables
us to perform the check o ∈ O − S in line 8, in constant
time. Line 11 runs in time at worst quadratic in the size
of the input (|Sγ| × |T |), line 12 runs in time at worst
linear (|Oγ |), and line 13 runs in time at worst quadratic
(|Sγ|× |Rψ|). As each subject is owned only by one other
subject, each sequence to which line 14 refers is of size
at most |Sγ |. Furthermore, there are at most |Sγ| such se-
quences. Therefore, lines 14-16 run in time at worst cubic
in the size of the input. The fact that isSafeGD(γ, ψ, ω, T )
runs in time polynomial in the size of the input in conjunc-
tion with Lemma 1 proves our assertion. .

We observe that cubic running time is only an upper-
bound, and is not necessarily a tight upper-bound on the
time-complexity of the algorithm. It may be possible, for
instance, to store the “chains” of owners in some auxiliary
data structure to get a faster running time.

5. The Solworth-Sloan Scheme, Revisited

Solworth and Sloan [27] present a new DAC scheme
based on labels and relabelling rules, and we call it the
Solworth-Sloan scheme. While the presentation in [27]
does not clearly specify what information is maintained in
a state and how states may change, we were able to infer
what is intended after considerable effort.
In this section, we give a precise characterization of

the Solworth-Sloan scheme as a state transition system.
Our objective in doing so is to represent the Solworth-
Sloan scheme sufficiently precisely to enable comparisons

to other DAC schemes. In particular, our intent is to as-
sess the mapping of DAC schemes to the Solworth-Sloan
scheme that is discussed by Solworth and Sloan [27]. Sol-
worth and Sloan [27] refer to the DAC schemes discussed
by Osborn et al. [21] and assert that they present a gen-
eral access control model which is sufficiently expressive
to implement each of these DAC models. In this section,
we show that this claim is incorrect.
We reiterate that the DAC schemes discussed by Os-

born et al. [21] are either subsumed by, or are minor ex-
tensions of the Graham-Denning scheme that we discuss
in Section 4. We have shown in Section 4.2 that safety is
efficiently decidable in the Graham-Denning scheme, and
our algorithm can be used with relatively minor modifica-
tions to decide safety in these schemes. Thereby, Solworth
and Sloan’s [27] other assertion in reference to the DAC
schemes discussed by Osborn et al. [21], that “. . . every
published general access control model. . . either is insuf-
ficiently expressive to represent the full range of DACs or
has an undecidable safety problem. . . ”, has been rendered
invalid.

5.1. The Solworth-Sloan Scheme

Overview There exists the following countably infinite
sets of constants:

• a set S of subjects
• a setO of objects
• a setR of rights
• a set G of groups
• a set T o of object tags

• a set T g of group tags

An object label is a pair hs, ti, where s ∈ S is a subject
and t ∈ T o is a object tag.
Which rights a subject has over a particular object are

determined indirectly in the following three steps.

1. There is a labelling function label that assigns an ob-
ject label to each object.

An object’s label may be changed by object rela-
belling rules, which determine whether an action
rewriting one object label into another succeeds or
not. For example, when the object label c1 = hs1, t1i
is relabelled to c2 = hs2, t2i, all objects that origi-
nally have the label c1 now have the label c2.

2. There is an authorization function auth that maps
each object label and each right to a group. For each
object label c and each right r, members of the group
identified by auth(c, r) have right r over objects that
are assigned the label c.
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3. Which subjects are members of a group is determined
by native group sets (NGS’s), which are complicated
structures that we describe below. We define a func-
tion members that maps each group to a set of sub-
jects.

We schematically illustrate the steps to determine whether
a subject can access an object or not as follows.

objects label−→ object labels auth−→ groups members−→ subjects

States, Γ A state, γ, is characterized by a 9-tuple
hSγ , Oγ , Rγ, Gγ , Lγ , labelγ , authγ,ORSγ ,Eγi.

• Sγ is the set of subjects in the state γ; Oγ is the set
of objects in the state γ; Rγ is the set of rights in the
state γ, and Gγ is the set of groups in state γ.
There is a distinguished right wr, which exists in ev-
ery state, i.e., wr ∈ Rγ . The role of wr is explained
in our discussion of the state-change rules.

• Lγ ⊂ Sγ × T o is the finite set of object labels in the
state γ.

• labelγ : Oγ −→ Lγ assigns a unique object label to
each object in the current state.

• authγ : (Lγ × Rγ) −→ Gγ maps each pair of an
object label and a right to a group. For example,
authγ[c, re] = g1 means that the group g1 has the
re right over all objects labelled c.

• ORSγ is an ordered sequence of object relabelling
rules, each rule has the form of rl(p1, p2) = h, where
rl is a keyword, and p1, p2 are object patterns. An
object pattern is a pair, where the first element is a
subject in S or one of the three special symbols ∗, ∗u,
and ∗w, and the second element is an object tag in T o

or the special symbol ∗. In the rule rl(p1, p2) = h, h
is a group, a subject, or one of the four following sets:
{}, {∗}, {∗u}, {∗w}. When h is {∗u} (resp., {∗w}),
{∗u} (resp., {∗w}) must appear in p1 or p2.
For example, the following is an ORSγ , in which s1
is a subject, t1 is an object tag, and g1 is a group:

rl(h∗u, t1i, hs1, ∗i) = g1
rl(hs1, ∗i, h∗u, t2i) = {∗}
rl(h∗u, ∗i, h∗u, ∗i) = {∗u}
rl(h∗u, ∗i, h∗w, ∗i) = {}

• Eγ is a finite set of native group sets
(NGS’s) that exist in the state, γ. Each
e ∈ Eγ is characterized by the 7-tuple
he.G, e.T g, e.gtag, e.ntg, e.admin, e.patterns,
e.GRSi.

– e.G ⊆ Gγ is the set of groups that are defined
in this NGS.

– e.T g ⊆ T g is the set of group tags that are used
in this NGS.

– The function e.gtag : Sγ −→ e.T g assigns a
unique tag to each subject in the current state.

– e.ntg is a group tag in e.T g; it determines when
a new subject is added to the state, which tag is
assigned to that subject. That is, if a subject s
is added, then e.gtag[s] would be set to e.ntg.

– e.admin points to one NGS in Eγ; it identifies
an NGS in the current state as the administrative
group set of the NGS e; e.admin could be e, in
which case e is the administrative group set for
itself.

– e.patterns is a function mapping each group in
e.G to a (possibly empty) set of group patterns.
Each group pattern is a pair where the first ele-
ment is either a subject in the current state or a
special symbol ∗u, and the second element is a
group tag in e.T g. In other words, the set of all
group patterns that can be used in e, denoted by
e.P g, is (Sγ ∪ {∗u})× e.T g, and the signature
of e.patterns is e.G −→ 2e.P

g , where 2e.Pg

denote the powerset of e.P g.
For any group g ∈ e.G, e.patterns[g] gives a
set of patterns for determining memberships of
the group. Intuitively, the label h∗u, tgi is in
e.patterns[g] means that any subject who is as-
signed (via the e.gtag function) the group tag tg
is a member of the group; and the label hs, tgi
is in e.patterns[g] means that the subject s is a
member of the group if it is assigned the group
tag tg.

– e.GRS is a set of group relabelling rules, each
has the form Relabel(tg1, t

g
2) = g, where

Relabel is a keyword, tg1, t
g
2 ∈ e.T g are two

group tags used in this NGS, and g is a group
defined in the administrative group set e.admin
(i.e., g ∈ e.admin.G). The role of a mem-
ber of e.GRS is explained in the following dis-
cussion of state-change rules in the context of
group tag relabel.

An additional constraint on the state γ is that each
group is defined in exactly one NGS and each group
tag can be used in at most one NGS, i.e.,

∀e1 ∈ Eγ∀e2 ∈ Eγ ( e1.G ∩ e2.g = ∅ ∧
e1.T

g ∩ e2.T g = ∅ )

We define the following auxiliary function
membersγ[ ] : Gγ −→ Sγ such that membersγ[g]
gives the set of all subjects that are members of the
group g. To determine whether a subject s is in
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membersγ [g], we first determine the unique NGS e,
such that g ∈ e.G. Now, s ∈ membersγ [g] if and
only if the tag tg assigned to s (via e.gtag) satisfies
the condition that at least one of the two group labels
hs, tgi and h∗u, tgi are in the patterns for g, i.e.,

∃ tg ∈ e.T g ( e.gtag(s) = tg ∧
( hs, tgi ∈ e.patterns[g] ∨
h∗u, tgi ∈ e.patterns[g] ) )

As an example, consider an NGS e where
e.G = { gemp , gmgr , gexe }
e.T g = { Boss,Worker }
e.gtag[s1] = Boss
e.gtag[s2] = Boss
e.gtag[s3] = Worker
e.ntg = Worker
e.admin = e
e.patterns[gexe ] = { hs1,Bossi }
e.patterns[gmgr ] = { h∗u,Bossi }
e.patterns[gemp ] =

{ h∗u,Bossi, h∗u,Workeri }
e.GRS =

{Relabel(Worker,Boss) = gmgr
Relabel(Boss,Worker) = gexe }

In this NGS, three groups are defined: executives
(gexe), managers (gemp), and employees (gmgr ).
There are two tags: Boss and Worker . There are
three subjects; s1 and s2 are assigned the tag Boss
and s3 is assigned the tagWorker . The new subject
tag isWorker , so each newly added subject will au-
tomatically be assigned the tagWorker . The admin-
istrative NGS is e itself. According to the patterns,
members of the three groups are as follows:
membersγ [gexe ] = {s1}
membersγ [gmgr ] = {s1, s2}
membersγ [gmgr ] = {s1, s2, s3}

The group relabeling rules are such that managers
can change a subject’s tag fromWorker to Boss and
executives can change a subject’s tag from Boss to
Worker .

State-Change Rules, Ψ There is a single state tran-
sition rule ψ in this scheme; ψ consists of six actions
that can result in state changes. These actions are men-
tioned in Section 3.4 of [27] without precise definitions.
(We break up the “Relabel an object” operation in [27]
into two relabelling actions.) We describe the actions
and their effects when applying them to a state γ =
hSγ , Oγ , Rγ, Gγ , Lγ , labelγ , authγ,ORSγ ,Eγi. We use
γ0 to denote the state after the change.
1. create object(s, o, c = hs1, to1i): the subject s cre-
ates the object o and assigns the object label c to the
object o.

This action succeeds when s ∈ Sγ , o 6∈ Oγ , c ∈ Lγ
and the subject s has the distinguished rightwr on the
object label c, i.e., s ∈ membersγ [authγ(c,wr)].
Effects of the action are Oγ0 = Oγ ∪ {o} and
the function label is extended so that labelγ0(o) =
hs1, to1i.

2. create label(s, c = hs, t1i, g1, g2, · · · , gk), where
k = |Rγ | is the number of rights in γ: the subject s
creates the new object label c, and assigns the groups
g1, g2, · · · , gk to have the rights over c, .
This action succeeds when s ∈ Sγ , c 6∈ Lγ , the sub-
ject in c is s, and g1, · · · , gk ∈ Gγ .
The effects of this action are follows. Let
r1, r2, · · · , rk be the k rights in Rγ . Then Lγ0 =
Lγ ∪ {c} and the function auth is extended such that
authγ0(c, ri) = gi for 1 ≤ i ≤ k.

3. create subject(s, s0): the subject s creates a new sub-
ject s0.
This action succeeds when s ∈ Sγ and s0 6∈ Sγ .
The effects of this action are Sγ0 = Sγ ∪{s0} and for
every NGS e ∈ Eγ , e.gtag is extended so that in γ0,
e.gtag(s0) = e.ntg.

4. object relabel(s, c1 = hs1, t1i, c2 = hs2, t2i): the
subject s relabels objects having label c1 to have the
label c2.
This action succeeds when the first relabelling rule
in the object relabelling rule sequence ORSγ that
matches (c1, c2) is rl(p1, p2) = h and s ∈ value[h]
(the function value[ ] is defined below). The rule
rl(p1, p2) = h matches (c1, c2) when p1 matches c1
and p2 matches c2 at the same time. When the pat-
tern h∗u, ∗imatches the label hs1, t1i, we say that ∗u
is unified with the subject s1. Note that when ∗u oc-
curs more than one times in p1, p2, they should be
unified with the same subject.
Recall that h maybe a group g, a subject s0, or
one of the four sets: {}, {∗}, {∗u}, {∗w}. The
function value is defined as follows: value[g] =
membersγ[g]; value[s0] = {s0}; value[{}] = ∅,
value[{∗}] = Sγ; value[{∗u}] is the subject that is
unified with ∗u.
Consider the following ORSγ .

rl(h∗u, t1i, hs1, ∗i) = g1
rl(hs1, ∗i, h∗u, t2i) = {∗}
rl(h∗u, ∗i, h∗u, ∗i) = {∗u}
rl(h∗u, ∗i, h∗w, ∗i) = {}

The action object relabel(s, hs2, t1i, hs1, t2i) would
match the first relabelling rule, and it would suc-
ceed when s is a member of the group g1.
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The action object relabel(s, hs1, t1i, hs2, t2i) would
match the second relabelling rule and always suc-
ceeds. The action object relabel(s, hs2, t2i, hs2, t1i)
would match the third relabelling rule and fail,
because ∗u is unified with s2. The action
object relabel(s, hs2, t2i, hs1, t1i) would match the
fourth relabelling rule and fail.
The effect of the relabel action is in the function
label. For every object o such that labelγ [o] = c1,
in the new state, labelγ0 [o] = c2.

5. group tag relabel(s, s0, tg1, t
g
2): the subject s relabels

the group tag for the subject s0 from tg1 to t
g
2.

This action succeeds when there is an NGS e ∈ Eγ

such that tg1 and t
g
2 are used in e, the subject s0 has the

group tag tg1 in e, there is a corresponding group rela-
belling rule in e.GRS, and s is a member of the group
that can use the relabelling rule. More precisely, the
action succeeds when
∃e ∈ Eγ ( e.gtag[s0] = tg1 ∧

“Relabel(tg1, t
g
2) = g” ∈ e.GRS ∧

s ∈ membersγ[g] )

Note that the tags tg1 and t
g
2 can appear only in one

NGS and they must appear in the same NGS for the
action to succeed. The effect of this action is such
that the function e.gtag is changed such that in γ0,
e.gtag[s0] = tg2.

6. create ngs(s, e): the subject s creates a new NGS e.
To perform this action, one must provide the com-
plete description of a new NGS e, i.e., the 7-
tuple he.G, e.T g, e.gtag, e.ntg, e.admin, e.patterns,
e.GRSi. For this action to succeed, the groups de-
fined in e and the group tags in e must be new, i.e.,
they do not appear in any existing NGS’s in γ.
The effects are that Gγ0 = Gγ ∪ e.G and Eγ0 =
Eγ ∪ e.

Given the above state transition rule, we make the
following observations. No removal of subjects, ob-
jects, labels, or groups is defined. Given a state
hSγ , Oγ , Rγ, Gγ , Lγ , labelγ , authγ,ORSγ ,Eγi, Sγ (the
set of subjects), Oγ (the set of objects), and Gγ (the
set of groups) may change as a result of create subject,
create object, and create label, respectively. Rγ , the set
of rights, is fixed for the system and does not change. Gγ ,
the set of groups, may change when a new NGS is added
by the create ngs action. The function labelγ: Oγ −→ Lγ
is extended when a new object is added and is changed
when an object relabelling action object relabel happens.
The function authγ is extended when a new object label
is created; existing assignments do not change. ORSγ , the
object relabelling rule sequence, always stay the same. Eγ

is extended when a new NGS is added.

5.2. Encoding a simple DAC scheme in the
Solworth-Sloan scheme

In this section, we encode a relatively simple DAC
scheme in the Solworth-Sloan scheme. The DAC scheme
we consider is a sub-scheme of the Graham-Denning
scheme. It is called Strict DAC with Change of Owner-
ship (SDCO) and is one of the DAC schemes discussed
by Osborn et al. [21]. Our construction is based on com-
ments by Solworth and Sloan [27] on how various DAC
schemes can be encoded in the Solworth-Sloan scheme.
As the presentation in that paper is not detailed, we of-
fer a more detailed construction. Our construction lets us
assess the utility of the Solworth-Sloan scheme in encod-
ing SDCO. After we present the encoding, we discuss its
deficiencies from the standpoints of correctness, and the
overhead it introduces.

Strict DAC with Change of Ownership (SDCO) As
we mention above, SDCO is a sub-scheme of the Graham-
Denning scheme (see Section 4.1). In SDCO, there is a
distinguished right, own, but no control right. Also, there
are no rights with the copy flag. The state-change rules
in SDCO are the commands grant r (for each r ∈ Rψ),
delete r (for each r ∈ Rψ), grant own, create object and
create subject. We do not consider commands to destroy
subjects or objects as their counterparts are not specified
for the Solworth-Sloan scheme.
For simplicity, we consider an SDCO scheme that

has only three rights own, re,wr. In the Solworth-Sloan
scheme, if two objects o1 and o2 have the same label,
then o1 and o2 always have the same access characteris-
tics. That is, in every state, the set of subjects having a
right r over o1 is the same as the set of subjects having the
right r over o2. In SDCO, one can reach states in which
o1 and o2 have different access characteristics. Therefore,
each object needs to be assigned a distinct label.
Therefore, before creating an object, one has to create

a new label. When creating a new label c, one has to as-
sign a group to auth(c, own) and a group to auth(c, re);
and a group to auth(c,wr). Each pair hc, ri determines a
unique access class. Therefore, a distinct group needs to
be created. We use g(o, r) to denote the group that will be
assigned to have the right r over object o.
In order to keep track of which subset of rights a sub-

ject has over an object, we need 8 group tags, one corre-
sponding to each subset of {own, re,wr}, we use tg(o, x),
where x is a 3-bit string to denote these tags.
In order for a subject s to create an object o, s needs to

do the following:

1. Create an NGS e = he.G, e.T g, e.gtag, e.ntg,
e.admin, e.patterns, e.GRSi as follows.

• e.G = {g(o, own), g(o, re), g(o,wr)}
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• e.T g = {tg(o, 000), tg(o, 001), tg(o, 010),
tg(o, 011), tg(o, 100), tg(o, 101), tg(o, 110),
tg(o, 111)}.

• e.gtag[s] = tg(o, 100) and e.gtag[s0] =
tg(o, 000) for every s0 ∈ Sγ s.t. s0 6= s.

• e.ntg = tg(o, 000)

• e.admin = e

• e.patterns[g(o, own)] =
{h∗u, tg(o, 100)i, h∗u, tg(o, 101)i,
h∗u, tg(o, 110)i, h∗u, tg(o, 111)i}
e.patterns[g(o, re)] =
{h∗u, tg(o, 010)i, h∗u, tg(o, 011)i,
h∗u, tg(o, 110)i, h∗u, tg(o, 111)i}
e.patterns[g(o,wr)] =
{h∗u, tg(o, 001)i, h∗u, tg(o, 011)i,
h∗u, tg(o, 101)i, h∗u, tg(o, 111)i}
That is, in each tag, the first bit corresponds to
own, the second to re, and the third towr. In the
set of patterns for the group that corresponds to
own, the first bit is always set in each tag, and
similarly for the groups that correspond to re
and wr respectively.

• e.GRS =
{Relabel(g(o, b1b2b3), g(o, b01b02b03)) =
g(o, own)
| b1b2b3, b01b02b03 ∈ {0, 1}3 ∧ b1b2b3 and b01b02b03
differ in exactly one bit }

2. Use create label(s, hs, t(o)i, g(o, re), g(o,wr)) to
create the label c(o).

3. Use the action create object(s, o, hs, t(o)i) to create
the object o and label it with c(o).

To grant or revoke a right, one uses group relabelling.
For instance, suppose s is a subject, and for the NGS,
e, e.gtag[s] = tg(o, 000). Then, we know that s is not
a member of any of the groups g(o, own), g(o, re) or
g(o,wr). The subject would be granted the right re by rela-
belling hs, tg(o, 000)i to the label hs, tg(o, 010)i. The ex-
ecution of this relabelling results in the subject becoming a
member of the group g(o, re), thereby giving him the right
re over the object o. Similarly, the subject would have the
right re revoked by relabelling hs, tg(o, 010)i to the label
hs, tg(o, 000)i. These operations can be carried out only
by a subject that is a member of the group g(o, own).
We make the following observations about the above

mapping.

• The above mapping does not capture the state invari-
ant in SDCO that in every state, there is exactly one
owner for every object that exists. In the Solworth-
Sloan system that results from the above mapping,
one can perform relabelling operations and reach

states in which there are mutiple owners for an ob-
ject, or no owner for an object. For instance, sup-
pose that there already exists a subject s such that
s ∈ membersγ [g(o, own)]. Given the above rela-
belling rules, there is nothing that precludes another
subject from also becoming a member of the group
g(o, own) while s continues to maintain membership
in that group. It is also possible to remove the mem-
bership of s in the group g(o, own) thereby leaving
the object with no owner. It is unclear how we would
prevent such situations from occuring in a system
based on the Solworth-Sloan scheme.

• We are unable to capture destruction of subjects and
objects as such constructs have not been specified for
the Solworth-Sloan scheme. Destruction of subjects
and objects is generally considered to be an impor-
tant component of any access control system. We
point out that a state-change rule to destroy a subject
or an object in the Solworth-Sloan scheme must be
carefully designed, as there are several components
of the state (such as tags) of which we must keep
track. Therefore, adding such state-change specifica-
tions does not appear to be a trivial task. In particu-
lar, it is unclear how and with what overhead we can
capture in the Solworth-Sloan scheme, the notion of
transfer of ownership over objects owned by a subject
that is being destroyed.

• There is considerable overhead in implementing
a relatively simple DAC scheme (SDCO) in the
Solworth-Sloan scheme. For each object, we need
to create a set of labels whose size is linear in the
number of the subjects in the state. We also need to
create a set of tags whose size is exponential in the
number rights in the system. These tags are used to
define groups, and the therefore, the number of en-
tries in all the sets of patterns is also exponential in
the number of rights in the system. This is consid-
erable overhead considering the simplicity of SDCO,
and the fact that one can “directly” implement it, with
efficiently decidable safety.

Our conclusion is that several of the claims made by
Solworth and Sloan [27] are incorrect. In particular, not
only is the motivation (decidable safety) for the creation
of the new scheme invalid, but it is also not effective in
implementing relatively simple DAC schemes.

6. Conclusions

The focus of this paper is to provide a clear picture of
safety analysis in DAC. We have used a state-transition-
system-based meta-formalism to precisely model access
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control schemes and systems and have studied safety anal-
ysis in a general DAC scheme from the literature, the
Graham-Denning scheme [8]. We have presented an al-
gorithm for deciding safety with running time O(n3) in
the Graham-Denning scheme, and proved that the algo-
rithm is correct. We have also countered several claims
made by Solworth and Sloan [27]. In particular, we have
countered the claim that the mapping presented there en-
codes all DAC schemes by considering a relatively simple
DAC scheme and demonstrating that the mapping has sev-
eral deficiencies. We conclude by asserting that safety in
existing general DAC schemes is decidable and there is no
need to invent new DAC schemes with decidable safety as
the primary goal.
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