
Defeating Cross-Site Request Forgery Attacks
with Browser-Enforced Authenticity Protection

Abstract. A cross site request forgery (CSRF) attack occurs when a
user’s web browser is instructed by a malicious webpage to send a request
to a vulnerable web site, resulting in the vulnerable web site performing
actions not intended by the user. CSRF vulnerabilities are very common,
and consequences of such attacks are most serious with financial web-
sites. We recognize that CSRF attacks are an example of the confused
deputy problem, in which the browser is viewed by websites as the deputy
of the user, but may be tricked into sending requests that violate the
user’s intention. We propose Browser-Enforced Authenticity Protection
(BEAP), a browser-based mechanism to defend against CSRF attacks.
BEAP infers whether a request reflects the user’s intention and whether
an authentication token is sensitive, and stripes sensitive authentication
tokens from any request that may not reflect the user’s intention. The
inference is based on the information about the request (e.g., how the
request is triggered and crafted) and heuristics derived from analyzing
real-world web applications. We have implemented BEAP as a Firefox
browser extension, and show that BEAP can effectively defend against
the CSRF attacks and does not break the existing web applications.

Key words: Cross-Site Request Forgery, Web Security, Browser Security

1 Introduction

Cross-site request forgery, also known as one-click attack or session riding and
abbreviated as CSRF or XSRF, is an attack against web applications [24, 17,
18]. In a CSRF attack, a malicious web page instructs a victim user’s browser to
send a request to a target website. If the victim user is currently logged into the
target website, the browser will append authentication tokens such as cookies to
the request, authenticating the malicious request as if it is issued by the user.
Consequences of CSRF attacks are most serious with financial websites, as an
attacker can use CSRF attacks to perform financial transactions with the victim
user’s account, such as sending a check to the attacker, purchasing a stock,
purchasing products and shipping to the attacker.

A CSRF attack does not exploit any browser vulnerability. As long as a
user is logged into the vulnerable web site, simply browsing a malicious web
page can lead to unintended operations performed on the vulnerable web site.
Launching such CSRF attacks is possible in practice because many users browse
multiple sites in parallel, and users often do not explicitly log out when they
finish using a web site. A CSRF attack can also be carried out without a user
visiting a malicious webpage. In a recent CSRF attack against residential ADSL

2

routers in Mexico, an e-mail with a malicious IMG tag was sent to victims. By
viewing the email message, the user initiated an HTTP request, which sent a
router command to change the DNS entry of a leading Mexican bank, making
any subsequent access by a user to the bank go through the attacker’s server [2].

CSRF appeared in the Open Web Application Security Project (OWASP)
top 10 web application threats in 2007 (ranked at 5) [15]. Several CSRF vul-
nerabilities against real-world web applications have been discovered [23, 19, 20].
In 2007, a serious CSRF vulnerability in Gmail was reported [21]. It allowed a
malicious website to surreptitiously add a filter to a victim user’s Gmail account
that forwards emails to a third party address. CSRF vulnerabilities are very
common. The potential damage of CSRF attacks, however, has not been fully
realized yet. We quote the following from an online article [8],

Security researchers say it’s only a matter of time before someone awak-
ens the “sleeping giant” and does some major damage with it – like
wiping out a user’s bank account or booking a flight on behalf of a user
without his knowledge.
“There are simply too many [CSRF-vulnerable Websites] to count,” says
rsnake, founder of ha.ckers.org. “The sites that are more likely to be
attacked are community websites or sites that have high dollar value
accounts associated with them – banks, bill pay services, etc.”

Several defense mechanisms have been proposed and used for CSRF attacks.
However, they suffer from various limitations (see Section 2.3).

In this paper, we study browser-based defense against CSRF attacks, which is
orthogonal to server-side defenses. The websites should follow the best practice
to defend against the CSRF attacks before browser-side defenses are univer-
sally adopted. One crucial advantage of a browser-based solution compared with
a server-side solution is that a user who started using the protected browser
will immediately have all his web browsing protected, even when visiting web-
sites that have CSRF vulnerabilities. Furthermore, because the number of major
browsers is small, deploying protection at the browser end can be achieved more
easily, compared with deploying server-side defenses at all websites.

We recognize that CSRF attacks are an example of the confused deputy
problem. The current web design assumes that the browser is the deputy of the
user and that any HTTP request sent by the browser reflects the user’s intention.
This assumption is not true as many HTTP requests are under the control of
the web pages and do not necessarily reflect the user’s intention. This becomes
a security concern for HTTP requests that have sensitive consequences (such as
financial consequences).

Our solution to this problem is to enhance web browsers with a mechanism
ensuring that all sensitive requests sent by the browser should reflect the user’s
intention. We achieve that by inferring whether an HTTP request reflects the
intention of the user and whether an authentication token is sensitive, and strip-
ing all sensitive authentication tokens from the HTTP requests that may not
reflect the user’s intention. We call it Browser-Enforced Authenticity Protection.

Title Suppressed Due to Excessive Length 3

We have implemented a prototype of BEAP as a Firefox browser extension.
The implementation consists of about 800 lines of Javascript. An extension with-
out modifying the browser core enables easy initial deployment. The full benefit
of BEAP will be achieved if it is implemented in major web browsers. We use
theoretical analysis and experiments to show that BEAP can effectively defend
against the CSRF attacks and it does not break the existing web applications.

In Section 2, we describe the background, the related work, and the CSRF
vulnerabilities we found in real-world web applications. We describe our proposal
and the prototype implementation in Section 3. In Section 4, we analyze the
effectiveness and compatibility of our proposal. Finally, we conclude in Section 5.

2 Understanding CSRF Attacks and Existing Defenses

CSRF attacks exploit existing authenticated sessions. Two common approaches
for maintaining authenticated web sessions are cookies and HTTP authentication
credentials, which we call authentication tokens.

Cookies [13] are pieces of text data sent by the web server to the browser.
The browser stores the cookies locally and sends them along with every further
request to the original web site who sets them. After a web site has authenti-
cated a user, for example, by validating the user name and password entered
by the user, the web site can send back a cookie containing a “session ID” that
uniquely identifies the session, which is referred to as authentication cookie. If
the web server relies only on cookies for user authentication, every request that
has a valid authentication cookie is interpreted as an intended request issued
by the authenticated user who owns the session. When sending a cookie to a
browser, the website can specify an optional attribute expires among other three
attributes. The expires field takes the value of a date that indicates how long
the cookie is valid. After the date passes, the browser deletes the cookie. If the
expires field is omitted, then the cookie is called a session cookie and should be
deleted when user closes the web browser. Cookies with an expires field are called
persistent cookies. Most financial websites and sensitive services specify the au-
thentication cookie as a session cookie, because the session cookies are removed
when the browser is closed and won’t be abused by others who may share the
same computer and browser.

HTTP authentication [4], an authentication mechanism defined in the HTTP
protocol [6], is widely used within Intranet environments. In the mechanism,
when accessing a webpage that requires authentication, the browser will popup
a dialog asking for the username and password. After entering the information,
the credential is encoded and sent to the web server via the Authorization request
header. The browser remembers the credential until the browser is closed. When
later the user visiting the webpages in the same authentication realm, the browser
automatically includes the credential in the request via the Authorization header.

CSRF attacks use HTTP requests that have lasting observable effects at the
web site. Two request methods are used in real-world HTTP requests: GET
and POST. According to the HTTP/1.1 RFC document [6], the GET method,
which is known as a “safe” method, is used to retrieve objects. The GET requests

4

should not have any lasting observable effect (e.g., modification of a database).
The operations that have lasting observable effects should be requested using
the method POST. The POST requests have a request body and are typically
used to submit forms. However, there exist web applications that do not follow
the standard and use GET for requests that have lasting side effects.

Visiting web pages in one site may result in HTTP requests to another site;
these are called cross-site requests. More precisely, in a cross-site request, the
link of the request is provided by a website that is different from the destination
website of the request. Cross-site requests are common. For example, a webpage
may include images, scripts, style files and sub-frames from a third-party website.
When the user clicks a hyper-link or a button contained in a webpage, the linked
URL may be addressing a third-party website.

2.1 The CSRF Attack

The general class of cross site request forgery (CSRF) attacks was first introduced
in a posting to the BugTraq mailing list [24], and has been discussed by web
application developers [17, 18]. CSFR attacks use cross-site requests for malicious
purposes. For example, suppose that the online banking application of bank.com
provides a “pay bills” service using an HTML form. The user asks the bank to
send a check to a payee by completing the form and clicking the “Sumbit” button.
Upon the user clicking the button, a POST request is sent to the server, together
with the authentication cookie. When the web server receives this HTTP request,
it processes the request and sends a check to the payee identified in the request.

A CSRF attack works as follows.While accessing the bank account, the user
simultaneously browses some other web sites. One of these sites, evil.org, contains
a hidden form and a piece of JavaScript. As soon as the user visits the web
page, the browser silently submit the hidden form to bank.com. The format
and content of the request is exactly the same as the request triggered by the
user clicking the submit button in the “pay bill” form provided by the bank. On
sending the request, the user’s browser automatically attaches the authentication
cookies to the request. Since the session is still active in the server, the request
will be processed by the server as issued by user. As illustrated in this example,
POST requests can be forged by a hidden form. If the bank uses GET request
for the pay bill service, the request can be easily forged by using various HTML
elements, such as 〈img〉, 〈script〉, 〈iframe〉, 〈a〉 (hyper-link) and so on.

We note that as long as a user is logged in to a vulnerable web site, a single
mouse click or just browsing a page under the attacker’s control can easily lead
to unintended operations performed on the vulnerable web site.

CSRF vs. XSS. CSRF vulnerabilities should not be confused with XSS vul-
nerabilities. In XSS exploits, an attacker injects malicious scripts into an HTML
document hosted by the victim web site, typically through submitting text em-
bedded with code which is to be displayed on the page, such as a blog post. Most
XSS attacks are due to vulnerabilities in web applications which fail in sanitizing
untrustworthy inputs which might in turn be displayed to users. CSRF attacks
do not rely on the execution and injection of malicious JavaScript code. CSRF

Title Suppressed Due to Excessive Length 5

vulnerabilities are due to the use of cookies or HTTP authentication as the au-
thentication mechanism. A web site that does not have XSS vulnerabilities may
contain CSRF vulnerabilities.

2.2 Real-world CSRF vulnerabilities

In order to understand how commonly the CSRF vulnerability exists in the real-
world web applications, one of the authors of the paper examined about a dozen
web sites for which he has an account and usually visits. As a result, we found
four of them are vulnerable to CSRF attacks as shown in Table 1. We verified
all the attacks with Firefox 2.0.

Vulnerable web site Targeted sensitive operation

A university credit union site Money transfer between accounts; adding a new account

A university web mail Deleting all emails in the Inbox

An online forum for HTML development Posting a message; updating user profile

Department portal site Editing biography information

Table 1. The CSRF vulnerabilities discovered in real world websites.

The university credit union site relies on session cookies for authentication.
Some services provided in the online banking are vulnerable to the CSRF attack.
In particular, adding new accounts and transferring money between accounts are
vulnerable. In the experiment, we conducted a benign attack that transfers $0.01
from the victim’s checking account to the saving account. We also successfully
launch an attack to add an external account. Combining these two enables the
adversary to transfer money from the victim’s account to an arbitrary external
account. Fortunately, the bank requires contacting the help-desk personally to
confirm the operation of adding an external account. And also the bill paying
service is not vulnerable.

The university web mail uses session cookies for authentication. Most sen-
sitive operations (e.g., sending an email, changing the password) are protected
against the CSRF attacks using secret token validation (see Section 2.3). How-
ever, the feature of “managing folders” is vulnerable, and a CSRF attack can be
launched to remove all emails in the victim’s Inbox.

In an online forum for HTML development, all operations are vulnerable to
the CSRF attack. The attacker is able to impersonate the victim user to send a
posting, update the user profile, and so on. The vulnerable forum is created using
phpBB [16], which is the most widely used open source forum solution. All forums
created using phpBB 2.0.21 or earlier are vulnerable to the CSRF attack [22].
This is a well-known vulnerability and there are CSRF attack generators for
phpBB forums available online. Many public forums have upgraded to phpBB
2.0.22 or later, but there are still many forums using the vulnerable versions.

In the departmental portal site, a CSRF attack is able to edit the biography
information of the victim shown on the webpage.

6

We have reported the vulnerabilities to the websites of the university credit
union and the university web mail; we did not expose the name of those websites
here because they have not fixed the vulnerabilities yet. These examples of vul-
nerabilities demonstrate that there exist a considerable amount of web services
vulnerable to the CSRF attacks and the potential damage could be severe.

2.3 Existing CSRF Defenses

Several defense mechanisms have been proposed for CSFR attacks, we now dis-
cuss their limitations.

Filtering authentication tokens from cross-site requests. Johns et al. [10]
proposed a client-side proxy solution, which stripes all authentication tokens
from a cross-site request. The proxy intercepts web pages before they reach the
browser and appends a secret random value to all URLs in the web page. Then
the proxy removes the authentication tokens from the requests that do not have
a correct random value. The solution breaks the auto-login feature and content
sharing websites (such as Digg, Facebook, etc.) because it does not distinguish
legitimate cross-site requests from malicious cross-site requests. In addition, it
does not support HTML dynamically created in the browser and cannot work
with SSL connections.

Authenticating web forms. The most popular CSRF defense is to authenti-
cate the web form from which an HTTP request is generated. This is achieved by
having a shared random secret, called a as a secret validation token, between the
web form and the web server. If a web form provides a sensitive service, the web
server embeds a secret validation token in an invisible field or the POST action
URL of the form. Whenever form data is submitted, the request is processed
only if it contains the correct secret value. Not knowing the secret, the adver-
sary cannot forge a valid request. One drawback of this approach is it requires
nontrivial changes to the web applications. Moreover, as pointed out by Barth
et al. [3], although there exist several variants of this technique they are gener-
ally complicated to implement correctly. Many frameworks accidentally leak the
secret token to other websites. For example, NoForge proposed in [11] leaks the
token to other websites through the URL and the HTTP Referer header.

Referer-checking. In many cases, when the browser issues an HTTP request,
it includes a Referer header that indicates which URL initiated the request. A
web application can defend itself against CSRF attacks by rejecting the sensitive
requests with a Referer of a different website. A major limitation with this ap-
proach is that some requests do not have a Referer header. There does not exist
a standard specification on when to and when not to send the Referer header.
Different browser vendors behave differently. Johns and Winter [10] give a sum-
mary on when browsers do not send the Referer header in major browsers. As
a result, both a legitimate request and a malicious request may lack the Referer
header. The adversary can easily construct a request lacking the Referer header.
Moreover, because the Referer header may contains sensitive information that
impinges on the privacy of web users, some users prohibit their browsers to send

Title Suppressed Due to Excessive Length 7

Referer header and some network proxies and routers suppress the Referer headers.
As a result, simply rejecting the requests lacking a Referer header incurs a com-
patibility penalty. Barth et al. [3] suggested a new Origin header that includes
only the hostname part of the Referer header, to alleviate the privacy concern. It
remains to be seen whether this will be adopted. In conclusion, using a server-
side referer-checking to defeat the CSRF attacks has a dilemma in handling the
requests that lack a Referer header.

2.4 A variant of CSRF attack

All existing CSRF defenses fail when facing a variant of CSRF attacks men-
tioned in [7]. We use the Facebook as an example to illustrate the at-
tack. Facebook allows the users to post an article or a video from any
website to the user’s own profile. For example, the user can post a video
from Youtube.com to his Facebook profile by clicking “Share – Facebook”
under the video. When clicking the link, the following GET request is
sent to the Facebook: http://www.facebook.com/sharer.php?u=http://www.
youtube.com/watch?v=VIDEO_ID&t=VIDEO_TITLE. This request loads a confir-
mation page (Fig. 1(A)) which asks the user the click a “Post” button to com-
plete the transaction. After the user clicking the “Post” button, a POST request
is sent to http://www.facebook.com/ajax/share.php to confirm the posting
operation.

An attacker is able to launch a CSRF attack that posts anything to the
victim user’s profile. On the malicious webpage, the attacker includes an iframe
linking to the posting confirmation page (Fig. 1(A)). In addition, the attacker is
able to auto-scroll the iframe to the “Post” button and hide other parts of the
page by using two nested iframes and manipulating the sizes of the iframes. The
sample code of the attack with Firefox 2.0 is given in Appendix A. As a result,
what is shown in the browser looks like Fig. 1(B). The user can be easily tricked
to click the “Post” button without knowing that he is posting something to his
own Facebook profile.

Facebook.com uses secret validation token to defend against CSRF attacks.
However, because the request is sent by user clicking the “Post” button in the
confirmation page provided by Facebook the request will include a correct vali-
dation token. Using a referer-checking would also fail because the final posting
request has a Referer header of Facebook.com.

This attack is traditionally defended using “frame busting”, in which the
target webpage includes a piece of JavaScript to force itself to be displayed in a
top-level frame [12]. However, this defense can be defeated if the attacker disables
the JavaScript in the sub-frame that links to the target webpage [9].

3 Browser-Enforced Authenticity Protection (BEAP)

CSRF attacks are particularly difficult to defend because cross-site requests are
a feature of the web. Many web sites use legitimate cross-site requests, and some
of these usages require the attachment of cookies to cross-site requests to work
properly (e.g., posting a video from Youtube to Facebook in the above example).

8

Fig. 1. (A): The confirmation page that posts a video from Youtube.com to the Face-
book profile; (B): A malicious page that includes (A) as an iframe and tries to trick
the user click the button without seeing other parts of (A);

To effectively defend against CSRF attacks, one needs as much information
about an HTTP request as possible, in particular, how the request is triggered
and crafted. Such information is available only within the browser. Existing
defenses suffer from the fact that they do not have enough information about
HTTP requests. They either have to change the web application to enhance
the information they have or to use unreliable source of information (such as
Referer header). Even when such information is available, it is still insufficient.
For example, they cannot defend against the attack in Section 2.4 because while
they can tell the request is coming from their web form, they do not know that
the web form is actually embedded in a page controlled by the attacker.

We focus on browser-based defense against CSRF attacks. It is well known
that CSRF is a confused deputy attack against the browser. The current web
design assumes that the browser is always the deputy of the user and that any
HTTP request sent by the browser reflects the user’s intention. This assumption
is not true as many HTTP requests are under the control of the web pages and do
not necessarily reflect the user’s intention. This confusion causes no harm when
these requests have no sensitive consequences, and merely retrieve web pages
from the web server. However, when these requests have sensitive consequences
(such as financial consequences), it becomes a severe security concern. Because
such requests occur in authenticated sessions, these requests have authentication
tokens attached. The fundamental nature of the CSRF attack is that the user’s
browser is easily tricked into sending a sensitive request that does not reflect the
user’s intention.

Our solution to this problem is to directly address the confused deputy prob-
lem of the browser. More specifically, we propose Browser-Enforced Authenticity

Title Suppressed Due to Excessive Length 9

Protection (BEAP), which enhances web browsers with a mechanism ensuring
that all sensitive requests sent by the browser reflect the user’s intention. BEAP
achieves this through the following. First, BEAP infers whether an HTTP re-
quest reflects the intention of the user. Second, BEAP infers whether authentica-
tion tokens associated with the HTTP request are sensitive. An authentication
token is sensitive if attaching the token to the HTTP request could have sen-
sitive consequences. Third, if BEAP concludes that an HTTP request reflects
the user’s intention, the request is allowed to be sent with authentication tokens
attached. If BEAP concludes that an HTTP request may not reflects the user’s
intention, it strips all sensitive authentication tokens from the HTTP request.
In this rest of this section, we describe BEAP in details.

3.1 Inferring the User’s Intention

In inferring whether an HTTP request reflects the user’s intention, we classify the
requests into two types depending on the source of the request. Type-1 requests
are caused by the webpages hosted in the browser. When displaying a webpage,
the browser may send additional requests to retrieve the resources included in
the web page, such as images, scripts and so on. These resources may come
from the same website or a third-party website. Similarly, when the user clicks a
hyper-link or a button contained in a webpage, requests are sent by the browser.
In addition, the Javascripts contained in the webpages may send requests as
well. In all these cases, the URLs and contents of the requests are determined
by the source webpage. Whether such a request reflects the user’s intention is
inferred by browser-enforced Source-set checking, which we will explain soon.

Type-2 requests are not associated with a source webpage. For example, when
the user clicks an URL embedded in an email, the URL is passed to the browser
as a startup argument, resulting in an HTTP request that is not associated with
any webpage already hosted in the browser. We use the following user-interface
intention heuristics to infer whether a type-2 request reflects the user’s intention.

1. Address-bar-entering. When the user types in a URL in the address bar and
hits enter, the request sent by the browser is considered as intended, because
we can assure that the user intends to visit the URL she typed in.
Note that we distinguish between typing in by keyboard and pasting from
the clipboard. The adversary may send the victim an email, which contains
a URL that links to a CSRF attack. Instead of providing a hyper-link for
the user to click, the email can ask the user to copy and paste the URL to
the browser’s address-bar. To defeat this trick, only when the URL is typed
in to the address-bar by the keyboard, the request is intended. If the URL
is pasted from the clipboard, the request is not considered to be intended.

2. Bookmark-clicking. When the user selects a link from the bookmarks, the
request is considered as intended, because users are usually careful in main-
taining the bookmarks.

3. Default-homepage. When the browser displays the default home page either
when it starts or when user clicks the “homepage” button, the request is

10

considered intended, because the configuration of default homepage is set by
the user and cannot be easily modified by malicious web sites.

All other type-2 requests are not considered to be intended. For example,
when the user clicks a link from the history, or when the user clicks a link
outside the browser (e.g., in an email or a word document), the requests are
not considered as intended. When performing those actions, users normally do
not have a clear idea about which web site they are going to. The history and
the links outside the browser may contain malicious contents that could launch
CSRF attacks. Note that these requests are still allowed to proceed, we will only
strip sensitive authentication tokens from them.

Browser-enforced Source-set Checking. To determine whether a type-1
request reflects the user’s intention, we borrow the idea from the server-side
referer-checking technique. Our approach has two significant differences. First,
the enforcement is done by the browser rather than the web application. In
this way, the Referer header does not need to be sent to the web server. This
addresses the privacy concerns caused by sending out the Referer header, and it
is compatible to the browsers and network devices that block the Referer header.
In addition, the browser is able to check the Referer for all requests whose links
are provided by a webpage (type-2 requests); so it avoids the dilemma in the
server-side referer-checking with the requests that lack a Referer header. Second,
we extend the notion of Referer to Source-set by taking into account the visual
relationships among webpages in the browser. As a result, we can defeat the
CSRF attack against Facebook mentioned in Section 2.4. Source-set checking
can only be done in the browser.

Intuitively, the Source-set of a request includes all web pages that can po-
tentially affect the request. We define the Source-set as follows.

Definition 1. The referer of a request is the webpage that provides the link to
the request. The Source-set of a request includes its referer and all webpages
hosted in ancestor frames of the referer.

For example, in Fig. 1, when the user clicks the “Post” button in the last tab,
a request is sent to Facebook.com. The referer of the request is the innermost
iframe that links to http://www.facebook.com/sharer.php. The Source-set
includes the referer and its two ancestor webpages that are from the malicious
website (In the attack, the malicious webpage includes an iframe linking to
another malicious webpage, which further includes an iframe linking to Facebook.
See Appendix A for the sample code of the attack).

The rationale for including all ancestors of the referer page in the Source-set
of a request is because all ancestor webpages can potentially affect the request.
Users are typically unaware of the existence of the frame hierarchy, and they
assume they are visiting the website hosted in the top-level frame with the URL
shown in the address-bar. The parent frame is able to manipulate the URL, size,
position and scrolling of child frame, to fool the user. As a result, when the user
performs some actions in the child frame, those actions may not reflect the user’s

Title Suppressed Due to Excessive Length 11

intention. Therefore, the referer and all its ancestor webpages are considered to
be in the Source-set of a request.

Given a type-1 request, we consider it reflect the user’s intention if all web-
pages in the Source-set are from the same website as the destination of the
request. This is based on the following assumption: a request sent by a website
to itself reflects the user’s intention. In other words, a website won’t launch a
CSRF attack against itself.

3.2 Inferring the Sensitive Authentication Tokens

We have introduced a mechanism to infer whether an HTTP request reflects
the user’s intention. A simple way to defend against the CSRF attacks is to
stripe all cookies and other authentication tokens from all requests that may not
reflect the user’s intention. However, such a policy would break some existing
web applications. In particular, it would disable the legitimate cross-site requests
that need to carry authentication tokens. An important observation is that al-
though legitimate cross-site requests may need to carry an authentication token,
legitimate cross-site requests typically do not lead to sensitive consequence, be-
cause sensitive operations typically require an explicit confirmation that is done
in the target website. Based on this observation, we further infer whether an
authentication token is sensitive or not for a request, and stripe only sensitive
authentication tokens from requests that may not reflect the user’s intension.

We use heuristics derived from analyzing the real-world web applications
to determine whether an authentication token is sensitive or not for a request,
based on the following information: (1) Whether the request is GET or POST.
(2) Whether the token is a session cookie, a persistent cookie or an HTTP autho-
rization header. (3) Whether the communication channel is HTTP or HTTPS.
Our heuristics are summarized in Table 2 and are explained below.

GET POST

HTTP HTTPS
SensitiveSession Cookies Not Sensitive Sensitive

Persistent Cookies Not Sensitive
HTTP Authorization Header Sensitive

Table 2. The default policy enforced by the browser

The HTTP authorization headers are always sensitive. The HTTP autho-
rization headers are typically used in the home/enterprise network. The services
using the authorization headers for authentication are typically sensitive, e.g.,
home router administration, enterprise network services. In addition, it would
be severe if a malicious website in the Internet is able to launch a CSRF attack
against a service inside the Intranet.

For cookies we distinguish between the two request methods. All cookies that
are attached to the POST requests are sensitive for two reasons. First, according

12

to the HTTP/1.1 RFC document, all the operations that have lasting observable
effects should be requested using the method POST. Second, the POST requests
are used to submit forms and forms are mostly submitted to the same website
as that provides the form. So to stripe authentication tokens from the cross-site
POST requests will protect all web applications that follow the RFC standard,
and won’t affect the existing web applications.

However, there exist some web applications that do not follow the standard
and use GET requests for sensitive operations. We would like to protect those
web applications against the CSRF attacks as well. For the cookies with GET
requests, the policy further distinguishes between the session cookies and per-
sistent cookies. The persistent cookies (those that have an expiration date) with
GET requests are not sensitive. The persistent cookies are commonly used by
the websites to provide personalized services without asking the user to explicitly
log in. For example, Amazon.com displays recommendations based on the user’s
history activities. This is achieved by storing the user’s identity and related infor-
mation in persistent cookies. If the user links to Amazon.com from a third party
website (e.g., a search engine), the request should carry the persistent cookies
so that Amazon.com is able to recognize the user and provides a personalized
service. Therefore, there exists legitimate cross-site GET requests that need to
carry persistent cookies. On the other hand, most sensitive web applications (es-
pecially financial websites such as banks) use session cookies (those that does
not have an expiration date and will be deleted when the browser is closed) as
the authentication token for sensitive operations. For example, the persistent
cookies are not enough for a user to place an order in Amazon.com, he needs to
type in his password to obtain a session cookie to place an order. Some financial
websites provide a “Remember me” option with the login form, but typically
that is used to remember the user’s username, the user still needs to type in the
password to obtain a session cookie in order to access his account. Furthermore,
using persistent cookies for sensitive operations is a bad practice, because the
users may access their accounts from public computers (e.g., in an Internet Cafe).
Using persistent cookies for authenticating sensitive operations would allow the
persons who use the same computer following the user to impersonate the user.

It is a bit complicated for the session cookies with GET requests. We observe
some websites issue legitimate cross-site GET requests that need to carry session
cookies. In particular, the content sharing websites, such as Digg, Facebook, etc.,
allow people to discover and share contents from anywhere on the Internet, by
submitting links and stories. Many webpages include links to the submission
pages of those websites, so that the users can easily post the current article or
video to their accounts. For example, as shown in Figure 2, Youtube.com provides
links to various content sharing websites under each video. When clicking the
Facebook link, a GET request is sent from Youtube.com to Facebook.com. If the
user already logs in to Facebook.com, the request will carry the session cookie
and the user can be directly linked to the submission page (Fig. 1(A)) without
logging in again. To preserve this functionality of the content sharing websites,
the policy treats the session cookies with GET requests using the HTTP protocol

Title Suppressed Due to Excessive Length 13

as not sensitive. In contract, the session cookies with GET requests using the
HTTPS protocol are sensitive, because the sensitive services are typically served
over HTTPS.

Fig. 2. Youtube provides links to various content sharing websites under the video
player.

In conclusion, we infer whether an authentication token is sensitive as sum-
marized in Table 2. To defend against the CSRF attack, we stripe the sensitive
authentication tokens from the requests that may not reflect the user’s intention.

3.3 Implementation

We have implemented a prototype of our proposal as a Firefox browser extension.
It consists of about 800 lines of Javascript code. The extension intercepts each
request when it is going to be sent, and removes the cookies and HTTP autho-
rization headers that are not allowed to be attached according to the policy. The
user interface in Firefox is implemented using XUL (XML User Interface Lan-
guage), which is an XML user interface markup language. The XUL is flexible
and extensible. To implement the user intention heuristics for type-1 requests,
the extension hooks onto the events corresponding to those actions and overloads
the event-handlers. To compute the Source-set of each request, the extension first
identified the referer of the request, and then computes the source-set based on
the frame hierarchy. The overhead introduced by our implementation is minimal.
See Appendix B for details.

4 Evaluation and Discussions

Effectiveness of BEAP. How effective is BEAP for defending against CSRF
attacks? In other words, how effective dose BEAP achieves “all sensitive requests
sent by the browser reflect the user’s intention”? We now answer these questions
by analyzing under what assumptions the two inferences work correctly.

We observe that, under three assumptions, a CSRF attack always results in a
request that BEAP considers to not reflect the user’s intention. First, the browser
has not been compromised. BEAP is not designed to defend against attacks
that exploit vulnerabilities in browsers to take over the browser or the operating

14

system. BEAP defends against CSRF attacks, which exploit web browsers’ design
feature of allowing cross-site requests. Defending against browser exploitation is
orthogonal to our work. Second, a user will not type in a CSRF attack URL
in the address bar, or include a CSRF attack page in the bookmark, or use it
as the default homepage. Under these two assumptions, type-2 requests that
are considered as intended are not CSRF attacks. Third, a website does not
include CSRF attacks against itself. This ensures that any CSRF attack via
type-1 requests will be correctly classified. The third assumption means that we
cannot defend against CSRF attacks that are injected into the target website.
For example, the attacker may be able to inject a CSRF attack into a forum via a
posting, which sends a posting on the victim’s behalf. In this case, the malicious
request is actually not a cross-site request, and will be treated as intended. Such
an attack cannot be defeated by a pure client-side defense, because the browser
cannot tell which requests in a webpage are legitimately added by the web site
and which ones are maliciously added by user postings. The problem should be
addressed by having the web application sanitize the user input to be displayed
in the website, similar to defending against XSS attacks.

Second, BEAP allows non-sensitive cookies to be sent with requests that
are not intended. This causes no harm when these requests do not have sensi-
tive consequences. This is true assuming that websites do not contain sensitive
operations that (1) use GET requests and rely on persistent cookies for au-
thentication, or (2) use GET requests over HTTP and rely on session cookies
for authentication. We would like to point out that these are all bad practices
and are vulnerable to attacks other than CSRF attacks. First, using GET for
requests that have sensitive consequence violates the HTTP/1.1 standard [6].
Second, when using persistent cookies for authenticating sensitive services, the
accounts can be easily stolen if the user access the account in a public com-
puter. Third, serving sensitive service over HTTP enables the network attacker
to launch session injection attack. In particular, we did not observe any financial
websites violate these assumptions; they are all hosted over HTTPS and relying
on session cookies for authentication.

We have also experimentally evaluated our implementation, by verifying that
it successfully defends against all attacks we have found in Section 2.2.

Compatibility of BEAP. BEAP will stripe cookies and HTTP authentication
headers from some requests. Would this affect the existing web applications and
change the user’s browsing experiences? We now show that the answer is no.

First, we point out that cookie blocking has already been used for other pur-
poses. Cookies, such as those set by doubleclick.com, can be used to track
users’ browsing behavior and violate user’ privacy. Because of this, Internet Ex-
plorer 6 and later versions protect the user’s privacy with respect to cookies [14].
In particular, IE requires web sites to deploy policies as defined by P3P (Platform
for Privacy Preferences) [1]. When a website does not provide a P3P policy or the
policy does not satisfy the user’s preference, IE performs cookie filtering against
the website. The approach applied by IE’s cookie filtering has similarities with
our defense against the CSRF attacks, but it aims at protecting privacy while

Title Suppressed Due to Excessive Length 15

we aim at protecting authenticity. The cookie filtering infers whether a cookie
may violate the user privacy based on the type of the cookie and the heuristics
derived from real-world web applications. When the focus is privacy rather than
authenticity, persistent cookies are considered more sensitive than session cook-
ies, and a persistent cookie with no associated P3P policy is “leashed”, and will
not be attached to requests downloading third-party content.

We tested the compatibility of our implementation against 19 popular web-
sites ranging 6 categories as shown in Table 3. On each website, we logged in
the account and tried the major functionalities provided by the website and the
operations that normal users would perform. For some of them, we created a
new user account. Everything worked well, and all the browsing experiences re-
mained unchanged. We did not use a crawler or an automatic tool to perform
a large-scale compatibility testing, because testing the compatibility is possible
only when we have an account on a website and log into the account to per-
form authenticated operations. In particular, creating web accounts on financial
websites typically require having physical accounts.

Categories Web sites Operations

Email Gmail, Hotmail Check emails, send emails, change settings

Social network MySpace, Facebook, Blogger create accounts, add friends, modify the profiles

Online shopping Amazon, ebay place bids, buy items, update the profiles

Financial sites PayPal, Chase, Citi Cards,
American Express, Fidelity,
Discover Cards, a credit union

add a bank account, money transfer, pay bills

Personal desktop iGoogle, Windows Live Setup a personal desktop

Internet portal Yahoo! Check emails, write a movie review, join a group

Table 3. The web applications used for compatibility evaluation.

Finally, we note that while we have not encountered web sites that use cross-
site requests in a way affected by BEAP’s policy, it is certainly plausible for such
sites to exist. However, we note that the functionalities provided by these web
sites are not disabled. When cookies are striped, the worst case is that the user
needs to re-enter the password in order to perform certain operations.

5 Conclusions

CSRF vulnerabilities are common in real-world web applications, and the con-
sequences of such attacks are most severe with financial websites. We have pro-
posed a browser-based mechanism called BEAP to defend against the CSRF
attacks. It infers whether a request sent by the browser is sensitive and whether
an authentication token is sensitive, and stripes sensitive authentication tokens
from any request that may not reflect the user’s intention. We have implemented
BEAP as a browser extension for Firefox, and have shown that BEAP can ef-
fectively defend against the CSRF attacks, and does not break the existing web
applications.

16

References

1. The platform for privacy preferences project (p3p). http://www.w3.org/TR/P3P.
2. The web hacking incidents database, 2008. http://www.webappsec.org/projects/whid

/byid id 2008-05.shtml.
3. A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses for cross-site request

forgery. In Proc. ACM Conference on Computer and Communications Security
(CCS), Oct. 2008.

4. J. Franks, P. Hallam-Baker, J.Hostetler, S.Lawrence, P. Leach, A. Luotonen, and
L. Stewart. HTTP authentication: Basic and digest access authentication. RFC
2617, June 1999. http://www.ietf.org/rfc/rfc2617.txt.

5. Google. Load time analyzer 1.5, firefox add-on, Mar. 2007.
https://addons.mozilla.org/en-US/firefox/addon/3371.

6. N. W. Group. Hypertext transfer protocol – HTTP/1.1. RFC 2616, June 1999.
http://www.ietf.org/rfc/rfc2616.txt.

7. R. Hansen and T. Stracener. Xploiting google gadgets: Gmalware and beyond,
Aug. 2008.

8. K. J. Higgins. CSRF vulnerability: A ‘sleeping giant’, 2006.
9. C. Jackson. Defeating frame busting techniques, 2005.

http://www.crypto.stanford.edu/framebust/.
10. M. Johns and J. Winter. RequestRodeo: Client side protetion against session

riding. In Proceedings of the OWASP Europe 2006 Conference, 2006.
11. N. Jovanvoic, E. Kirda, and C. Kruegel. Preventing cross site request forgery

attacks. In Proceedings of the Second IEEE Conference on Security and Privacy
in Communication Networks, September 2006.

12. P. Koch. Frame busting. http://www.quirksmode.org/js/framebust.html.
13. D. Kristol and L. Montulli. HTTP state management mechanism. RFC 2965, Oct.

2000. http://www.ietf.org/rfc/rfc2965.txt.
14. MSDN. Privacy in internet explorer 6. http://msdn.microsoft.com/en-

us/library/ms537343(VS.85).aspx.
15. OWASP. Top ten most critical web application security vulnerabilties. Whitepaper,

2007. http://www.owasp.org/index.php/Top 10 2007.
16. phpBB. Create communities worldwide. http://www.phpbb.com.
17. C. Shiflett. Foiling cross-site attacks, Oct. 2001. http://shiflett.org/articles/foiling-

cross-site-attacks.
18. C. Shiflett. Security corner: Cross-site request forgeries, Dec. 2004.

http://shiflett.org/articles/cross-site-request-forgeries.
19. US-CERT. Cross-site request forgery (CSRF) vulnerability in @mail webmail

4.51. CVE-2006-6701, Dec. 2006. http://nvd.nist.gov/nvd.cfm?cvename=CVE-
2006-6701.

20. US-CERT. Multiple cross-site request forgery (CSRF) vulnera-
bilities in phpmyadmin before 2.9.1. CVE-2006-5116, Oct. 2006.
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2006-5116.

21. US-CERT. Google gmail cross-site request forgery vulnerability. Vulnerability
Note 571584, Oct. 2007. http://www.kb.cert.org/vuls/id/571584.

22. US-CERT. Cross-site request forgery (CSRF) vulnerability
in privmsg.php in phpbb 2.0.22. CVE-2008-0471, Jan. 2008.
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2008-0471.

23. US-CERT. Cross-site request forgery (CSRF) vulnerability in the
Linksys wrt54gl wireless-g broadband router. CVE-2008-0228, Jan. 2008.
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2008-0228.

24. P. W. Cross-site request forgery, 2001. http://www.tux.org/p̃eterw/csrf.txt.

Title Suppressed Due to Excessive Length 17

Appendix

A The Attack Code of the Facebook Example

The following code is constructed for Firefox 2.0.

1. The top-level frame of the malicious webpage.

<html>

<head>

<title>Attack</title>

</head>

<body>

<h1>A malicious web page</h1></br>

Please click the button to continue.

<iframe src ="inner.html" width=70 marginwidth="25%" height=20

scrolling="no" frameborder="0" class="iframe"></iframe>

</body>

</html>

2. The mid-level frame "inner.html".

<html>

<body onload="window.scrollTo(1440, 980);">

<iframe src="http://www.facebook.com/sharer.php?u=

http%3A//www.youtube.com/watch%3Fv%3DnQSZOri6Pj0&

t=Sand%20animation%20of%20animals."

width=3000 height=1000 frameborder=0></iframe>

</body>

</html>

B Performance Evaluation

We evaluated the performance overhead introduced by the browser extension.
The experiment was carried out on a 2.19GHz Intel Core 2 Duo with 2GB of
memory , running the Windows operating system. We used Firefox 2.0.0.13 as
a base for performance comparison. We compared the page loading times for
account login on a few common web sites. The page loading times are measured
using the Load Time Analyzer extension [5]. Each page is loaded 5 times, and
the loading times are averaged. The results is shown in Table 4. The performance
overhead is less than 8%, with an average of 2%.

18

Web sites MySpace iGoogle Paypal Yahoo! Ebay

Page loading times for login (base) 2629 1352 6422 1094 1387

Page loading times for login (upgraded) 2733 1464 6484 1125 1399

Table 4. The comparison of the page loading times for login.

