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ABSTRACT
In trust management and attribute-based access control systems,
access control decisions are based on the attributes (rather than the
identity) of the requester: Access is granted if Alice’s attributes
in her certificates satisfy Bob’s access control policy. In this pa-
per, we develop a policy-hiding access control scheme that protects
both sensitive attributes and sensitive policies. That is, Bob can de-
cide whether Alice’s certified attribute values satisfy Bob’s policy,
without Bob learning any other information about Alice’s attribute
values or Alice learning Bob’s policy. To enable policy-hiding ac-
cess control, we introduce the notion of certified input private pol-
icy evaluation. Our construction uses Yao’s scrambled circuit pro-
tocol and two new techniques introduced in this paper. One novel
technique is constructing circuits with uniform topology that can
compute arbitrary functions in a family. The other technique is
committed-integer based oblivious transfer.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection

General Terms
Security, Design

Keywords
Privacy, Access Control, Automated Trust Negotiation, Crypto-
graphic Commitment, Cryptographic Protocol, Digital Credentials,
Secure Function Evaluation

1. INTRODUCTION
In trust management and attribute-based access control sys-

tems [5, 47, 23, 18, 38, 37], access control decisions are based
on attributes of clients, which are often documented by public key
certificates. Each certificate associates a public key with the key
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holder’s identity and/or attributes such as employer, group mem-
bership, credit card information, birth-date, citizenship, and so on.
Because these certificates are digitally signed, they can serve to
introduce strangers to one another without online contact with the
Certificate Authorities (CA’s). As attribute information may be sen-
sitive, the certificates that contain attribute data need protection just
as other resources do. Often times, the policies for determining
who can access the resources are sensitive also and need protection
as well. Consider the following example.

EXAMPLE 1. Bob is a bank offering certain special-rate loans
and Alice would like to know whether she is eligible for such a
loan before she applies. Alice has a digital driver license certificate
issued by the state authority; the certificate contains her birth-date,
address, and other attribute data. Alice has also an income certifi-
cate issued by her employer documenting her salary and the starting
date of her employment. Bob determines whether Alice is eligible
for a special-rate loan based on Alice’s attribute information. For
example, Bob may require that one of the following two conditions
holds: (1) Alice is over 30 years old, has an income of no less than
$43K, and has been in the current job for over six months; (2) Alice
is over 25 years old, has an income of no less than $45K, and has
been in the current job for at least one year.

Bob is willing to reveal that his loan-approval policy uses the
applicant’s birth-date, current salary, and the length of the current
employment; however, Bob considers the detail of his policy to be
commercial secret and does not want to reveal it to others. Alice is
interested in this loan and would like to go forward; however, she
wants to reveal as little information about her attributes as possi-
ble. In particular, Bob shouldn’t learn anything about her address
(which is also in her driver license) or learn her actual birth-date.
Ideally, Alice wants Bob to know whether she is eligible for the
loan, but nothing else.

In the above example, the policy is a commercial secret, and
knowledge of Bob’s policy would compromise Bob’s strategy and
invite unwelcome imitators. In other examples, the motivation for
hiding the policy is not necessarily protection from an evil adver-
sary, but simply the desire to prevent legitimate users from gaming
the system; e.g., changing their behavior based on their knowledge
of the policy. This is particularly important for policies that are
not incentive-compatible in economic terms. Furthermore, it is im-
portant to point out that a process that protects Alice’s certificates
from Bob is not only to Alice’s advantage but also to Bob’s: Bob
no longer needs to worry about rogue insiders in his organization
illicitly leaking (or selling) Alice’s private information, and may
even lower his liability insurance rates as a result of this. Privacy-
preservation is a win-win proposition, one that is appealing even if
Alice and Bob are honest and trustworthy entities.



Motivated by the preceding applications, we introduce and study
the problem ofpolicy-hiding access control. In this framework,
Bob has a private policy and Alice has several sensitive certificates.
In the end, Bob learns whether Alice’s attributes in her certificates
satisfy his policy but nothing else about her attribute values; at the
same time, Alice does not learn Bob’s policy except for what at-
tributes are required for his policy.

One may tempt to use existing general solutions to the two-
party Secure Function Evaluation (2-SFE) [55, 30, 28] (e.g., Yao’s
scramble circuit protocol [55]) for policy-hiding access control.
That is, Alice inputs her certificates and Bob inputs his policy; and
they run a 2-SFE protocol to evaluate Bob’s policy on Alice’s at-
tributes in her certificates. Such approach does not work well be-
cause (1) the function to compute in 2-SFE is public, whereas the
function (Bob’s policy) in policy-hiding access control is private;
(2) as Alice needs to input her certificates into 2-SFE, certificate
verification, which involves verifying digital signatures, needs to
be done as a part of 2-SFE circuit evaluation. This is extremely
inefficient. Observe that Alice is not allowed to input her attribute
values directly (instead of her certificates), because, Alice other-
wise can input arbitrary faked attribute values at her will1.

To avoid verifying certificates within circuit evaluation, we use
Oblivious Attribute Certificates(OACerts) proposed in [34]. In an
OACert, attribute values are not directly stored in the certificate;
instead, a cryptographic commitment for each of these values is
stored. A certificate authority (CA) generates the commitments of
Alice’s attribute values and stores them in the certificates. Alice
is able to disclose her certificates to Bob without revealing her at-
tribute values. OACerts can be integrated into current standards for
public-key certificates such as X.509 public-key certificates [6, 33]
and X.509 attribute certificates [24]. A prototype of OACerts as
been implemented by storing the commitments in X.590v3 exten-
sion fields [34]. Using OACerts, the policy-hiding access control
problem becomes that Alice inputs her committed attributes which
are documented in her OACerts and Bob inputs his policy, they
want to learn whether Alice’s committed attributes satisfy Bob’s
policy without revealing the other party’s private input.

In this paper, we introduce the notion ofCertified Input Pri-
vate Policy Evaluation (CIPPE), which enables policy-hiding ac-
cess control using OACerts. Formal definition of CIPPE is given
in Section 3. In CIPPE, Alice has private inputsx1, x2, · · · , xn,
Bob has a private functionf drawn from a familyF of functions
(usuallyf outputs ‘yes’ or ‘no’; however, we allow functions that
output more than one bit of information), and Alice and Bob share
c1, c2, · · · , cn, whereci is a cryptographic commitments ofxi, for
1 ≤ i ≤ n. The objective of CIPPE is for both Alice and Bob to
learn the result off(x1, · · · , xn). Bob should not learn anything
aboutx1, . . . , xn; and Alice should not learn more than the fact
thatf ∈ F .

We develop a CIPPE protocol for certain families of functions
that we believe are useful for expressing policies. Our solution uses
Yao’s scrambled circuit protocol [55, 39]. When a circuit is scram-
bled, the operation in each gate is hidden; however, the topological
structure of the circuit is not. Therefore, Alice could infer some
information about Bob’s policy by looking at the scrambled circuit
if Bob constructs the circuit in the naive way. To protect Bob’s pri-
vate function, we develop an efficient approach to construct circuits
with uniform topology that can compute certain functions families.
To ensure that Alice can evaluate the scrambled circuit only with
her attribute values as committed in her certificates, we develop an
efficient and provably secure Committed-Integer based Oblivious

1In SFE, there is no way to prevent a dishonest party from changing
its local input before the protocol execution.

Transfer (CIOT) protocol. The computation and communication
complexity of the proposed CIPPE protocol is close to the com-
plexity of the scramble circuit protocol that computesf(x1, . . . xn)
wheref is public, andx1, . . . , xn are not committed. The CIPPE
protocol is efficient; and we believe it can be deployed in prac-
tice (see [39] for an implement of the scramble circuit protocol by
Malkhi et al.).

The rest of this paper is organized as follows. We first describe
how CIPPE can be used to enable policy-hiding access control in
Section 2. Then we give a formal definition of CIPPE in Section 3.
In Section 4, we review two cryptographic building blocks that we
use, namely, the Pedersen commitment scheme and the scrambled
circuit protocol for 2-SFE. In the next two sections, we present two
building blocks that we build for CIPPE, one is circuit construction
of policy functions with uniform topology, the other is the CIOT
protocol. In Section 7 we give an efficient construction for CIPPE.
We discuss the related work in Section 8 and conclude our paper in
Section 9.

2. USING CIPPE FOR POLICY-HIDING
ACCESS CONTROL

In this section, we present a high-level framework for policy-
hiding access control using CIPPE. We describe how policy-hiding
access control in Example 1 can be enabled. In what follows, we
usecommit to denote the commitment algorithm of a commitment
scheme. LetParams denote the public parameters forcommit.
To be secure, a commitment scheme cannot be deterministic; thus
a commitment of a valuea also depends on an auxiliary input, a
secret random valuer. We usec = commitParams(a, r) to denote a
commitment ofa.

1. CA Setup. Let Bureau of Motor Vehicles (BMV) be the
CA who issues digital driver licenses. BMV runs the CA
setup program, i.e., BMV picks a signature scheme, a com-
mitment scheme denoted bycommit, a pair of public/private
keys, and the public parameters for the commitment scheme,
Params. Let Company C be Alice’s employer, the CA that
issues an income certificate for Alice. Company C runs the
CA setup program analogously.

2. Alice-CA Interaction. In this phase, Alice obtains two
OACerts, one from BMV and the other from Company C. Al-
ice applies for a digital driver license certificate from BMV
as follows. BMV first verifies the correctness of her attribute
values through some (possibly off-line) channels, then issues
an OACert for Alice. The OACert is signed using the BMV’s
key and contains Alice’s public key, BMV’s public key, and
a commitment for each attribute value that is to be included
in the certificate. For example, letx be Alice’s birth-date
(encoded as an integer), BMV generates a random numberr,
computesc = commitParams(x, r), and storesc in the OAC-
ert. The BMV sends the signed OACert to Alice, together
with all the secret random values that have been used. Sim-
ilarly Alice obtains an income certificate from her employer
Company C.

3. Alice-Bob Setup. Alice applies for a special-rate loan from
Bob. Bob reveals that the loan policy takes three attributes:
birth-date, current salary, and the length of current employ-
ment. Alice shows her driver license OACert and income
OACert to Bob. Alice then proves the ownership of her OAC-
erts using the usual techniques [33]. Recall that OACerts can
be used as regular digital certificates (e.g., X.509 certificates)
except the attribute values are stored in the committed form.



4. Alice-Bob Interaction. Alice and Bob run an interaction
protocol, where Alice inputs her attribute values and secret
random values she has stored from Phase 2 (Alice-CA Inter-
action) and Bob inputs his private policy function. In the end,
both Alice and Bob learn whether Alice satisfies Bob’s pol-
icy without getting other information about Alice’s attributes
or Bob’s policy.

Alice
Bob

BMV

4. Interaction

3.
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Figure 1: An example of policy-hiding access control proce-
dures between Alice and Bob.

Figure 1 depicts how CIPPE can be used in the policy-hiding
access control. We observe that the two CA’s are involved only in
issuing certificates to Alice. When Alice is interacting with various
servers such as Bob, the CA’s are not involved and can be off-line.

3. DEFINITION OF CERTIFIED IN-
PUT PRIVATE POLICY EVALUATION
(CIPPE)

We now give a formal definition of CIPPE, which allows us to
prove our protocol for CIPPE is secure.

DEFINITION 1 (CIPPE). A CIPPE scheme is parameterized
by a commitment schemecommit. A CIPPE scheme involves a
client C, a serverS, and a trustedCA, and has the following four
phases:

CA Setup CA takes a security parameterσ and another parameter
ℓ (which specifies the desired range of the attribute values),
and outputs public parametersParams for commit. The do-
main ofcommit contains[0..2ℓ − 1] as a subset.CA sends
Params to C andS.

Client-CA Interaction C choosesn valuesx1, . . . , xn ∈ [0..2ℓ−
1] (these areC’s attribute values) and sends them toCA. For
eachi, 1 ≤ i ≤ n, CA generates a new random numberri

and computes the commitmentci = commitParams(xi, ri).
CA givesci andri to C, andci to S.

Recall that in the actual usage scenario in Section 2,CA does
not directly communicate withS. Instead,CA verifiesC’s
attribute values before computing the commitments and stor-
ing c1, . . . , cn into C’s OACerts. The OACerts are then sent
by C to S, enablingS to have the commitment values as if
they were sent fromCA. Here we abstract these steps away
to haveCA sendingci to S. We stress thatCA doesnot di-
rectly participate in the policy-hiding access control process
betweenC andS.

Client-Server Setup S chooses a familyF of functions and sends
the description ofF toC (this models the fact thatF is public
knowledge). Eachf in F mapsn ℓ-bit integers to a bit, i.e.,
f : ([0..2ℓ − 1])n → {0, 1}. S chooses a functionf ∈ F
privately.

Now S hasc1, . . . , cn, andf . C hasc1, . . . , cn, x1, . . . , xn,
andr1, . . . , rn.

Client-Server Interaction C and S run an interactive protocol.
In the end, bothC and S output F (x1, r1, . . . , xn, rn, f),
whereF takesc1, . . . , cn, andF as parameters, and is de-
fined as

F (x1, r1, . . . , xn, rn, f)

=

8<: f(x1, . . . , xn) if f ∈ F ∧
ci = commit(ai, ri) for eachi

⊥ otherwise.

When both C and S are honest,C and S will output
f(x1, . . . , xn) in this phase.

To avoid unnecessarily cluttering the exposition, in Definition 1
we assume that there is only oneCA in a CIPPE scheme, and that
x1, . . . , xn are equal-length and are committed under the same
commitment parameters. The definition of CIPPE can be modi-
fied to support multiple CA’s, different input lengths, and different
commitment parameters. As a matter of fact, we can easily adjust
our CIPPE protocol to support the situation in which eachxi is
committed under a different set of commitment parameters.

Notion of Security
The security definitions we use follow [28, 13, 14]. We consider
security against three kinds of adversaries. Anadversaryis a prob-
abilistic interactive Turing Machine [31]. Ahonest-but-curiousad-
versary is an adversary who follows the prescribed protocol, and at-
tempts to learn more information than allowed from the execution.
A weak-honestadversary [14] is an adversary who may deviate ar-
bitrarily from the protocol, as long as her behavior appears honest
to parties executing the protocol. Amaliciousadversary is an ad-
versary who may behave arbitrarily. When we consider malicious
adversaries, there are certain things we cannot prevent: an adver-
sary (1) may refuse to participate in the protocol, (2) may substitute
its local input with something else, and (3) may abort the protocol
prematurely. When we consider weak-honest, we cannot prevent
an adversary from substituting her local input.
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Figure 2: Ideal model for the CIPPE interaction protocol.

The security of a CIPPE protocol is analyzed by comparing what
an adversary can do in the protocol to what she can do in the ideal
model with a Trusted Third Party (TTP). In the ideal model, as
depicted in Figure 2, the client sends her private inputxi andri,
for 1 ≤ i ≤ n, to the TTP, and the server sends his private input



f to the TTP. The TTP verifies thatci = commit(xi, ri) for each
i andf ∈ F , computesf(x1, . . . , xn), sends the result back to
the client and the server. If the verification fails, the TTP simply
outputs a special symbol⊥.

The ideal model differs for honest-but-curious adversaries,
weak-honest adversaries, and malicious adversaries. In the ideal
model for honest-but-curious adversaries, an honest party outputs
her output from the TTP, whereas an honest-but-curious party out-
puts an arbitrary function from her initial input and the output she
obtained from the TTP. The ideal model for weak-honest adver-
saries is similar to the ideal model for honest-but-curious adver-
saries, but differs in that a weak-honest adversary can substitute
her input before sending to the TTP. In the ideal model for mali-
cious adversaries, a malicious adversary can terminate the protocol
prematurely, even at a stage when she has received her output and
the other party has not.

DEFINITION 2 (SECURITY). Let F be the function the client
and server compute in the interaction phase of a CIPPE scheme.
Let Π be the CIPPE protocol for computingF . We model the
client and server as a pair of admissible probabilistic polynomial-
time machines, where at least one of them is honest. ProtocolΠ
securely computesF if for every pair of admissible probabilis-
tic polynomial-time machines(C∗, S∗) in real model, there ex-
ists a pair of admissible probabilistic polynomial-time machines
(C, S) in the ideal model, such that the joint execution ofF un-
der(C∗, S∗) in the real model is computationally indistinguishable
from the joint execution ofF under(C, S) in the ideal model.

Our construction for CIPPE is provably secure in the honest-but-
curious model and the weak-honest model. The server’s privacy is
guaranteed against any malicious client. A malicious server may
learn additional information about a client’s attributes; however,
this additional information is limited to at most one bit and such
malicious behavior will be detected by the client.

4. CRYPTOGRAPHIC ASSUMPTIONS
AND TOOLS

In this section we first give the cryptographic assumptions and
then briefly review two cryptographic tools that we use for our
CIPPE construction: the Pedersen commitment scheme [45] and
the scrambled circuit protocol for 2-SFE [55].

Basic Cryptographic Assumptions
The security of our CIPPE protocol is based on the following two
standard assumptions in cryptography.

1. Discrete Logarithm (DL) Assumption. Given a finite cyclic
groupG, a generatorg ∈ G, and a group elementy, the
DL assumption states that there exists no polynomial-time
algorithm that can computelogg y with non-negligible prob-
ability.

2. Decision Diffie-Hellman (DDH) Assumption. Given a finite
cyclic groupG and a generatorg ∈ G, the DDH assump-
tion states that there exists no polynomial-time algorithm that
can distinguish between two distributions〈ga, gb, gab〉 and
〈ga, gb, gc〉, wherea, b, c are chosen at random.

A function µ is callednegligible in the security parameterσ if,
for every polynomialp, |µ(σ)| is smaller than1/|p(σ)| for large
enoughσ; otherwise, it isnon-negligible.

The Pedersen Commitment Scheme
Setup A trusted third partyT chooses two large prime numbersp

andq such thatq dividesp − 1. It is typical to havep be
1024 bits andq be 160 bits.T picksg to be a generator of
Gq, the unique order-q subgroup ofZ∗

p. We uses ∈R Zq

to denote thats is uniformly randomly chosen fromZq. T
pickss ∈R Zq and computesh = (gs mod p). T keeps the
values secret and makes the valuesp, q, g, h public.

Commit The domain of the committed values isZq. For a party
A to commit an integerx ∈ Zq, A choosesr ∈R Zq and
computes the commitmentc = (gxhr mod p).

Open To open a commitmentc, A revealsx andr, and a verifier
verifies whetherc = (gxhr mod p).

We use a trusted third partyT to generate the parameters of the
Pedersen commitment scheme because the setup algorithm is run
by a trustedCA in the CIPPE setting. The Pedersen commitment
scheme isunconditionally hiding: Even with unlimited computa-
tional power it is impossible for an adversary to learn any informa-
tion about the valuex from c, because the commitments of any two
numbers inZq have exactly the same distribution. This commit-
ment scheme iscomputationally binding: Under the DL assump-
tion, it is computationally infeasible for an adversarial committer
to open a valuex′ other thanx in the open phase of the commit-
ment scheme.

The scrambled circuit protocol for 2-SFE
The scrambled circuit protocol was developed by Yao [55] (see [30,
42, 29] for detailed descriptions of the protocol). This protocol runs
between two players: a (circuit)generatorand a (circuit)evalua-
tor. Let x be the evaluator’s input,y be the generator’s input, and
f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a function known to both par-
ties. The goal of the scramble circuit protocol is for the two parties
to securely evaluatef(x, y) without the generator learningx or the
evaluator learningy. In the protocol, the generator first constructs a
circuit for computingf . The generator then constructs a scrambled
version of the circuit and sends the scrambled circuit to the evalu-
ator for evaluation. In a scrambled circuit, each wire is associated
with two random numbers, one corresponds to0 and the other to
1. Before the evaluation, the evaluator uses oblivious transfer [41]
to obtain the random values corresponding to each bit of the eval-
uator’s private inputx. During the evaluation, the evaluator learns
exactly one random value for each internal wire, yet she doesn’t
know whether it corresponds to0 or 1. Finally the evaluator sends
the outcome of the evaluation to the generator, who then recovers
the final result.

5. BUILDING CIRCUITS THAT HAVE UNI-
FORM TOPOLOGICAL STRUCTURE

When a circuit is scrambled, the operation in each gate is hidden;
however, the topological structure of the circuit is not. Therefore,
the client could infer some information about the server’s function
by looking at the scrambled circuit if the server constructs the cir-
cuit in a naive way. To protect the server’s private function, we
present an approach to construct circuits that can compute a family
of functions and have the same topological structure.

Function definition
We propose a familyF of functions that can express many policy
functions in real applications. We defineF as follows.F has four
parametersℓ, n, m, andλ. Each functionf in F(ℓ, n, m, λ) takes



m parametersy1, . . . , ym ∈ [0..2ℓ − 1] andn inputsx1, . . . , xn ∈
[0..2ℓ − 1], and maps them to{0, 1}. Let f(x1, . . . , xn) =
p(xi1 op1 y1, xi2 op2 y2, · · · , xim opm ym), where1 ≤
i1, i2, . . . , im ≤ n, eachopi is one of the following predicates
{=, 6=, >, <,≥,≤}, andp is a disjunctive (or conjunctive) normal
form in which the number of disjuncts (or conjuncts) is no more
thanλ.

If the server chooses a functionf from the familyF(ℓ, n, m, λ)
of functions, the client should not be able to distinguishf from any
other functions in the family. For instance, consider Example 1 in
Section 1, Bob (the bank) can setn = 3, m = 8, λ = 4, and the
policy function is of the form:

f(x1, x2, x3) = (x1 ≥ 30 ∧ x2 ≥ 43000 ∧ x3 > 6) ∨
(x1 ≥ 25 ∧ x2 ≥ 45000 ∧ x3 > 12),

wherex1 denotes age,x2 denotes annual income in dollars, andx3

denotes length of current employment in months. Alice learns that
x1, x2, andx3 are used for comparison at most8 times, she would
not learn information such as which values they are compared with,
and how many times each attribute is compared.

If Bob builds a circuit forf(x1, x2, x3) in a naive fashion, Alice
can learn from the topology of the circuit how many times eachxi

is compared, what these comparison operators are, and some infor-
mation about the structure of the policy function. One technical dif-
ficulty in hiding such information is that each attribute may be used
in multiple comparisons, and we want to hide the number of times
it is used. A straightforward way to do this is to usem circuits, each
of which select one input from then inputs. This is not efficient as
it needsO(nm) gates. Our construction uses results from the lit-
erature on permutation and multicast switching networks (see, for
example [46, 49, 2, 58, 54]). Some of these networks may be useful
for constructing circuits for families of functions beyond the ones
considered in this paper.

Basic circuit components
We introduce three basic circuit components that will be used in
our construction. We depict them in Figure 3.
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Figure 3: Basic circuit components: (a) the structure of 4-bit
comparison circuits, (b) the structure of 8-input logical opera-
tion circuits, (c) the high-level schema for a generalizer circuit,
(d) an (8,8)-generalizer,

1. Comparison circuit. Given two ℓ-bit integersx andy, the
comparison circuit computesx = y, x 6= y, x > y, or

x < y. Observe thatx ≥ y andx ≤ y can be represented as
x > y − 1 andx < y + 1, respectively. Letxℓ−1 . . . x1x0

be the binary representation ofx andyℓ−1 . . . y1y0 be the
binary representation ofy.

• Circuit for x > y isWℓ−1

i=0

�
xi ∧ ¬yi ∧

Vℓ−1

j=i+1
(xj = yj)

�
• Circuit for x < y isWℓ−1

i=0

�
¬xi ∧ yi ∧

Vℓ−1

j=i+1
(xj = yj)

�
• Circuit for x = y is

Vℓ−1

i=0
(xi = yi)

• Circuit for x 6= y is
Wℓ−1

i=0
(xi 6= yi)

Note that the circuits forx > y and x < y have
the same topology. To make the structure of all com-
parison circuits uniform, we modify the circuits forx =
y and x 6= y by adding some “dummy” gates. For
example, the comparison circuit forx = y could beVℓ−1

i=0

�
(xi = yi) ∧

Vℓ−1

j=i+1
g(xi, yi)

�
where g(xi, yi) al-

ways outputs 1. Figure 3(a) shows the structure of 4-bit com-
parison circuits. Note that eachℓ-bit comparison circuit re-
quiresO(ℓ) gates (5ℓ − 4 gates).

2. Logical operation circuit. Given m Boolean inputs
a1, . . . , am, the logical circuit computes

W
i∈S

ai or
V

i∈S
ai

whereS ⊆ {1, 2, . . . , m}. We can use a binary tree struc-
ture to implement them-input logical circuit. For example,
to compute the logical formula

W
i∈S

bi, every gate in the bi-
nary tree computes∨; if i ∈ S we give the corresponding
wire valueai, otherwise, set value 0. Figure 3(b) shows a
8-bit logical operation circuit. Note that them-input logical
circuits requireO(m) gates (m − 1 gates).

3. Generalizer circuit.An (n, n)-generalizer is ann-input and
n-output switching network, it passes each inputi to zero or
more outputs. The existence of(n, n)-generalizer withO(n)
gates is demonstrated nonconstructively by Pipenger [46].
Ofman [43] gives a construction of a generalizer using the
schema shown in Figure 3(c). In his construction, the net-
work consists of two parts: a pack network and a copy net-
work. The pack network packs those inputs having requests
to consecutive positions. The copy network copies inputs
to multiple outputs. The network proposed by Ofman [43]
requires3n log n gates. Thompson [49] improved Ofman’s
work and gives a construction using2n log n gates. The
Thompson’s construction uses a reversed butterfly network
concatenated with a butterfly network. Figure 3(d) is the
Thompson’s construction of a(8, 8)-generalizer.

Our construction
Our construction takes the following three stages.

1. Copy Stage.The copy stage takesn ℓ-bit integersx1, . . . , xn

and outputsm ℓ-bit integers in which eachxi is copied to
output vi times wherevi ≥ 0 and

P
vi = m. To build

the copy stage in circuit, we constructℓ identical (n, m)-
generalizers, one for each bit. A(n, m)-generalizer can be
implemented by⌈m

n
⌉ numbers of(n, n)-generalizer. This

stage needsO(ℓm log n) gates (about2ℓm log n gates).

2. Comparison Stage.The comparison stage takesm ℓ-bit in-
tegers and makesm comparisons. This stage consists of
m comparison circuits, one for each(x, y) pair. This stage
needsO(ℓm) gates (about5ℓm gates).



3. Logical Computation Stage.Observe that all the disjunc-
tive normal forms where the number of conjunctions is no
more thanλ can be expressed as

Wλ

j=1
(
V

i∈Sj
ai), where

S1, S2, . . . , Sm ⊆ {1, 2, . . . , m}. Such disjunctive normal
forms can be implemented usingλ m-input logical opera-
tion circuits and oneλ-input logical operation circuits. For
eachm-input logical operation circuit, the input consists of
the m output bits from the comparison stage, the output is
connected to the input wire of the lastλ-input logical oper-
ation circuit. The conjunctive normal forms can be imple-
mented analogously. This stage needsO(λm) gates (about
λm gates).

Generalization Network

2x
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3x1x
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Stage
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Figure 4: An example circuit structure for the family F of func-
tions with parameters ℓ = 3, n = 3, m = 4, and λ = 4. There
are 4 comparison circuits in the comparison stage, and 5 logical
operation circuits in the logical computation stage.

Figure 4 shows the structure of circuits that can compute the
family F(3, 3, 4, 4) of functions. For the familyF(ℓ, n, m, λ) of
functions, our circuit construction needsO(ℓm log n + λm) gates
(around(2 log n + 5)ℓm + λm gates).

6. A COMMITTED-INTEGER BASED
OBLIVIOUS TRANSFER (CIOT) PRO-
TOCOL

To build a CIPPE protocol using the scrambled circuit protocol,
we have to ensure that the client gets the keys of the input wires
corresponding to her committed input. We present a Committed-
Integer based Oblivious Transfer (CIOT) protocol to achieve this.
A CIOT protocol involves a sender and a receiver. The receiver
has a committedℓ-bit integerx, the sender hasℓ pairs of values
(k0

1, k1
1), · · · , (k0

ℓ , k1
ℓ ), and both the sender and receiver share the

commitment ofx. In the end of the protocol, the receiver learns
exactly one key in each pair; furthermore, the keys she learns cor-
respond to the bits inx. The main idea of CIOT is as follows.
Using the commitment ofx, the receiver generatesℓ new commit-
ments, one for each bit ofx. Then the sender and receiver run a
modified version of non-interactive oblivious transfer protocol [4,
41] for each commitment.

PROTOCOL1 (CIOT PROTOCOL). Let 〈p, q, g, h〉 be the
public parameters of the Pedersen commitment scheme. All arith-
metic in this section ismod p unless specified otherwise. Letx

be an integer in[0..2ℓ − 1], andxℓ−1 . . . x1x0 be the binary rep-
resentation ofx, i.e., x = x02

0 + x12
1 + · · · + xℓ−12

ℓ−1. Let
c = commit(x, r) = gxhr be the commitment ofx with a random
r ∈ Zq.

Input The receiver hasx andr, and the sender hasℓ pairs of in-
tegers(k0

0, k1
0), . . . , (k

0
ℓ−1, k

1
ℓ−1). Both the sender and re-

ceiver havec.

Output The receiver learnskx0

0 , . . . , k
xℓ−1

ℓ−1
. The sender learns

nothing.

1. The receiver decomposesc into ℓ commitments, one for each
bit of x. More specifically, the receiver randomly picks
r1, . . . , rℓ−1 ∈ Zq and setsr0 = r −

Pℓ−1

i=1
2iri mod q.

The receiver computesci = commit(xi, ri) = gxihri for
i = 0, 1, . . . , ℓ−1, and gives them to the sender. The sender

checks that
Qℓ−1

i=0
(ci)

2
i

= c. Observe that
Qℓ−1

i=0
(ci)

2
i

=Qℓ−1

i=0
(gxihri)2

i

= g
Pℓ−1

i=0
xi2

i

h
Pℓ−1

i=0
ri2

i

= gxhr = c.

2. For i = 0, 1, . . . , ℓ − 1, the sender calculatesK0
i =

〈p, q, h, ci〉 and K1
i = 〈p, q, h, cig

−1〉. Using the ElGa-
mal encryption scheme [22] (modified to have messages
from a subgroup [50]), the sender sends to the receiver
two ciphertextsEK0

i
(k0

i ) = (hyi , k0
i cyi

i ) andEK1

i
(k1

i ) =

(hzi , k1
i (cig

−1)zi), whereyi andzi are chosen at uniform
random fromZq by the sender. The receiver can obtain
kxi

i as follow: If xi equals 0, thenci = hri , the receiver
knows the private key corresponding toK0

i (the private key
is ri), therefore she can decryptEK0

i
(k0

i ) to recoverk0
i . If

xi equals 1, thencig
−1 = hri , the receiver knows the pri-

vate key corresponding toK1
i , she can decryptEK1

i
(k1

i ) to

recoverk1
i .

Both the sender and receiver needO(ℓ) modular exponentiation,
i.e., the sender needs2ℓ modular exponentiation, and receiver needs
4ℓ modular exponentiation. The security properties of the CIOT
protocol are given by the following theorems.

THEOREM 1. The sender does not learn anything from the
CIOT protocol.

PROOF. The CIOT protocol consists of two phases: a bit-
commitment phase and an oblivious transfer phase. The sender
learns nothing aboutx from the oblivious transfer phase, as
the receiver does not send any information to the sender during
that phase. Thus, all the information the sender learns about
x is from the bit-commitment phase. In the bit-commitment
phase, the sender learns the commitmentsc0, . . . , cℓ−1. Ob-

serve thatc0 = c
Qℓ−1

i=1
(ci)

−2
i

; therefore,c0 can be computed
from c, c1, . . . , cℓ−1 and does not leak any additional informa-
tion. Recall thatr, r1, . . . , rℓ−1 are chosen uniformly randomly
from Zq; the distributions ofc, c1, . . . , cℓ−1 are exactly the same
as the distribution of any commitment under the Pedersen com-
mitment scheme. Thusc, c1, . . . , cℓ−1 leak nothing about their
corresponding committed valuesx, x1, . . . , xℓ−1. Therefore, the
sender does not learn anything aboutx. In other words, for any
x, y ∈ [0..2ℓ − 1] (let cx, cy be the corresponding commitments),
and for any adversary executing the sender’s part, the views that
the adversary sees when the receiver inputs(x, cx) and when the
receiver inputs(y, cy) are perfectly indistinguishable.

THEOREM 2. Under the DDH assumption and the DL assump-
tion onGq, the order-q subgroup ofZ∗

p, the receiver learns at most
one value per(k0

i , k1
i ) pair.



PROOF. Suppose an adversarial receiver learns bothk0
i andk1

i

for some giveni, where 0 ≤ i ≤ ℓ − 1. Under the DDH
assumption, the ElGamal encryption scheme is semantically se-
cure [50]. Therefore, the adversary knows the private keys cor-
responding to the ElGamal public keysK0

i = 〈p, q, h, ci〉 and
K1

i = 〈p, q, h, cig
−1〉. In other words, the adversary knowsr

wherehr = ci, andr′ wherehr′

= cig
−1. Thus, the adversary

knows r and r′ wherehr = ghr′

; she can effectively compute
logg(h) = (r − r′)−1 mod q, which contradicts the DL assump-
tion.

THEOREM 3. Under the DDH assumption and the DL assump-
tion on Gq, the order-q subgroup ofZ∗

p, if the receiver learnsℓ
keys, these values must bekx0

0 , . . . , k
xℓ−1

ℓ−1
.

PROOF. By Theorem 2, if an adversarial receiver learnsℓ keys,
she learns exactly one key per(k0

i , k1
i ) pair. Suppose she learns

ky0

0 , . . . , k
yℓ−1

ℓ−1
, whereyi ∈ {0, 1} for i ∈ [0..ℓ − 1] and there

exist at least onej such thatxj 6= yj . Therefore,
Pℓ−1

i=0
yi2

i 6=Pℓ−1

i=0
xi2

i = x. Under the DDH assumption, the adversary
knows the private keys corresponding to the ElGamal public keys
Ky0

i , . . . , K
yℓ−1

i ; thus she knowsti for eachi ∈ [0..ℓ − 1] such
thatgyihti = ci. As

gxhr = c =
Qℓ−1

i=0
(ci)

2
i

=
Qℓ−1

i=0
(gyihti)2

i

=

g
Pℓ−1

i=0
yi2

i

h
Pℓ−1

i=0
ti2

i

= gyht,

wherey denotes
Pℓ−1

i=0
yi2

i and t denotes
Pℓ−1

i=0
ti2

i (mod q),
the receiver knowsx, r, y, and t such thatgxhr = gyht. The
receiver can efficiently computelogg(h), which contradicts the DL
assumption.

In the CIOT protocol, a malicious receiver may learn the inputs
that do not correspond to bits of her committedx. However, in
this case, she cannot learn a key for every input wire of the cir-
cuit. Therefore in this case she cannot compute the output of the
scrambled circuit.

7. OUR CIPPE PROTOCOL
We now give the CIPPE protocol which follows Definition 1, and

specify what each participant does in each step.

PROTOCOL2 (CIPPE PROTOCOL). The CIPPE protocol in-
volves a clientC, a serverS, and a trustedCA, and has the following
four phases:

CA Setup CA takes a security parameterσ and a setup parameters
ℓ as input. CA runs the Pedersen commitment setup algo-
rithm to createParams = 〈p, q, g, h〉 such that2ℓ < q, and
sends it toC andS.

Client-CA Interaction C choosesn integers x1, . . . , xn ∈
[0..2ℓ − 1] and sends them toCA. For eachxi, 1 ≤ i ≤ n,
CA picks ri ∈R Zq and computes the commitmentci =
(gxihri mod p). CA givesci andri to C, andci to S.

Client-Server Setup S takes three parametersℓ, n, m, andλ as
input, and outputs the familyF of functions as defined in
Section 5.S sends the description ofF to C, then chooses a
private functionf ∈ F .

Now S hasc1, . . . , cn, andf . C hasc1, . . . , cn, x1, . . . , xn,
andr1, . . . , rn.

Client-Server Interaction The steps are as follows.

1. Scrambling the circuit:S constructs a circuit that computes
the functionf using the technique described in Section 5,
then scrambles the circuit.S gives the scrambled circuit to
C.

2. Committing the output:Let wire wt denote the unique out-
put wire of the scrambled circuit, and(k0

t , k1
t ) denote the

corresponding keys ofwt. S sends〈η0 = Ek0
t
[ 0σ ] , η1 =

Ek1
t
[ 1σ ]〉 to C.

3. Coding the input:For eachxi where1 ≤ i ≤ n, there areℓ
corresponding input wires in the scrambled circuit.C andS

run the CIOT protocol in whichC inputsxi, ri, andci; and
S inputsci andℓ pairs of keys that correspond to theℓ input
wires. In the end of this step,C learns one key per input wire;
furthermore, each key corresponds to a bit inC’s committed
input.

4. Evaluating the circuit:After Step 3,C possesses enough in-
formation to evaluate the scrambled circuit independently.C

evaluates the circuit and obtainsk, the key of the output wire.
Recall thatC receives〈η0, η1〉 from S in step 2,C tries to de-
crypt η0 andη1 using keyk. If C fails in decrypting both of
them, she outputs⊥ and aborts; this happens only whenS

intentionally misbehave. IfC succeeds in decryptingη0 and
gets0σ, she outputs 0. Otherwise, ifC succeeds in decrypt-
ing η1 and gets1σ, she outputs 1.

5. Notifying the result:C sendsk to S, enablingS to output0 if
k = k0

t and output1 if k = k1
t .

The purpose of committing the output in step 2 is to achieve
the fairness of the computation. The client and server needO(ℓn)
modular exponentiation andO(ℓm log n+λm) symmetric key en-
cryptions. More precisely, the server needs around2ℓn modular
exponentiation and the client needs around4ℓn modular exponen-
tiation, both the client and server need(16 log n + 40)ℓm + 8λm
symmetric key encryptions.

The CIPPE protocol is complete in the sense that if bothC and
S follow the protocol,C will get proper keys of the input wires,
and will be able to evaluate the scrambled circuit correctly. Due
to the space limit, we cannot give the formal security proofs of the
CIPPE protocol here; the proofs are given in the full version of this
paper [35]. We now briefly discuss the security properties of our
CIPPE protocol and the intuitions underlying these properties.

• The CIPPE protocol is secure against honest-but-curious
adversaries. This property follows from the fact that the
scramble circuit protocol is secure in the honest-but-curious
model [55].

An honest-but-curious server cannot learn any information
about a client’s private input, as the server is not able to
obtain any information about the client’s committed values
from the CIOT protocol. An honest-but-curious client cannot
learn any information about the a server’s private function
f , because the client learns only the topology of the circuit
which is public information.

• The CIPPE protocol is secure against weak-honest adver-
saries. As we described in Section 6, for the client to evaluate
the scrambled circuit, the client has to get one input value for
each of her input wires to the circuit. Furthermore, if the
client gets an input value for each of the input wires, these



input values must correspond to her committed attribute val-
ues. Therefore, the client can neither learn the server’s pri-
vate functionf nor change the result of the computation, as
long as the server follows the protocol.

For a weak-honest server, it is not possible for her to build a
circuit that has different topology than expected, because the
client can detect such deviated behavior immediately. The
server can build a circuit that computes a function other than
f , we denote the function computed by the circuit asf ′. Be-
causef is the server’s private input, it is essentially same as
the server inputsf ′ instead off . In other words, such ad-
versarial behavior in the real model can be simulated by the
execution of computingf ′ in the ideal model.

• The CIPPE protocol is secure against a malicious client.
However, a malicious server may learn (at most) one extra
bit of information. The server can do this by constructing
a scrambled circuit that would fail for some of the client’s
input. While executing step 4 of Protocol 2, the client may
fail during the evaluation of the circuit or fail to decryptη0

andη1. At the end of the protocol, the client may sendk0
t ,

k1
t ), or nothing to the server. Thus the server can classify

the client’s input into one of three subsets determined by the
circuit. When the server is honest, the server can classify the
client’s input into only two subsets. In other words, a mali-
cious server may learn less than one bit of extra information.
However, the client would know that the server has cheated
when the circuit evaluation fails.

In the example scenario we consider, if the bank is being
detected to be dishonest by Alice, the bank may suffer from
reputation as well as other kinds of damage. This small extra
gain does not seem to warrant such malicious behavior in the
kind of electronic commerce scenarios we consider.

8. RELATED WORK

Automated Trust Negotiation
Our work is closely related to a growing body of work on Auto-
mated Trust Negotiation (ATN) [53, 57, 56, 52] whose goal is to
enable clients and servers to establish trust in each other through
cautious, iterative, bilateral disclosure of sensitive certificates and
policies. Recent works on using cryptographic protocols for ATN
include Hidden Credentials [32, 8, 25], Secret Handshakes [3], and
Oblivious Signature Based Envelope [36]. While these schemes are
useful for scenarios where policies are based on attributes such as
secret clearance or memberships in some secret underground move-
ments, they are not suitable for the kind of e-commerce scenarios
such as Example 1. Using any of these schemes, the server could
send an encrypted message to a client such that the client can de-
crypt if and only if the client has certificates whose contents are the
same as those identified by the server’s policy; at the same time,
the server does not know whether the client has those certificates
or not. These schemes can implement policy-hiding access control
when the servers’ policies have very specific forms. In Example 1,
if Bob’s loan approval policy is either Alice’s birthdate is April 1st,
1974 or Alice’s salary is exactly $60,000, then policy-hiding access
control can be achieved using these existing schemes. However, for
the kind of policies in Example 1, where many possible attribute
values would satisfy a policy, these schemes do not work well.

Secure Function Evaluation
Secure Function Evaluation (SFE) [55, 30, 28] is a powerful and
general cryptographic primitive. It allows two or more parties to

jointly compute some function while hiding their inputs to each
other. CIPPE may be cast as a special case of 2-SFE problem: (1)
takex1, . . . , xn as Alice’s private input and make the commitment
verification part of the public function, (2) treat the description of
Bob’s private functionf as part of Bob’s private input, and (3) make
the public function to be evaluated a universal circuit that takes
f ’s description,x1, x2, · · · , xn, andc1, c2, · · · , cn, and computes
f(x1, · · · , xn) (this universal circuit is similar in concept to a uni-
versal Turing Machine). However, applying the general solution
in this case is very inefficient, as the circuit for verifying commit-
ments and the universal circuit are very large.

The idea of committing local inputs before the function evalu-
ation has appeared in the SFE literature (e.g., [17, 30, 27, 10])
to ensure the correctness of the computation. This concept is sub-
stantially different from our model, where Alice’s input is certified
by a trusted third party in CIPPE. Cachin and Camenisch [10] in-
troduced the notion of fair secure computation where a partially
trusted third partyT participates to ensure the fairness of the com-
putation. Their work [10] is different from CIPPE in that (1)T ’s
job is to achieve fairness instead of certifying Alice’s input (in fact,
Alice’s input is even private toT ), and (2) the function to compute
is public.

Selective Private Function Evaluation was introduced by Canetti
et al. [15] whose goal is for Bob to compute a private function
f(xi1 , . . . , xim) over a subset of Alice’s databasex = x1, . . . , xn

without revealing Bob’s function. In their, the authors focused on
the case wheref andm are public but them locations in the data-
base are private to Bob.

Abadi and Feigenbaum [1] introduced the notion of Secure Cir-
cuit Evaluation. In Secure Circuit Evaluation, Alice has a private
inputx and Bob has a private circuitC. In the end Alice learns the
valueC(x) but nothing else aboutC. Sander et al. [48] improved
the previous results and gave an efficient one-round protocol for
secure evaluation of circuits that have polynomial size and depth
O(log n). In these protocols, Alice can choose which input value
to use in the circuit evaluation. It is not clear how Secure Circuit
Evaluation protocols can be applied to CIPPE because the client’s
input in CIPPE is committed and certified by a trust CA.

OACerts and Anonymous Credentials
Our work builds directly on OACerts developed in [34]. The ideas
of storing commitments of attribute values in certificates appeared
in the literature on anonymous credentials [16, 9, 12, 11]. Thus
it is possible to replace OACerts and use anonymous credentials
in policy-hiding access control and CIPPE. Note that using zero-
knowledge proof protocols [19, 7, 9, 12] together with OACerts or
anonymous credentials, Alice can prove that her attribute values in
her certificates have certain properties without revealing any other
information about her attributes. However, in order for Alice to use
such techniques to prove that she satisfies Bob’s policy, she needs
to know the policy. Therefore, zero-knowledge proof protocols are
not suitable for policy-hiding access control.

Oblivious Transfer
Crépeau [20] introduced the notion of Committed Oblivious Trans-
fer (COT). In COT, Bob commits two bits:a0 anda1, and Alice
commits a bitb. In the end, Alice learnsab without learning any-
thing else, while Bob learns nothing. Garay et al. [26] gave an
efficient construction of COT in the universal composability frame-
work. The CIOT protocol we propose in this paper differs from the
COT protocols in that the receiver’s input in CIOT is a committed
integer instead of a bit. Finally, the details of our CIOT protocol are
reminiscent of the techniques used in the oblivious transfer proto-



cols [41, 51], zero-knowledge proofs of that a committed number
belongs to an interval [40, 21], and anonymous fingerprinting [44].

9. CONCLUSION AND FUTURE WORK
We have presented an efficient and provably secure solution to

policy-hiding access control, which enables Bob to decide whether
Alice’s certified attribute values satisfy Bob’s policy, without Bob
learning any other information about Alice’s attribute values or Al-
ice learning Bob’s policy. Our approach uses OACerts and CIPPE.
Our construction for CIPPE uses Yao’s scrambled circuit protocol
and two novel techniques, one is constructing topologically uni-
form circuits that can compute arbitrary functions in a function
family, the other is a committed-integer based oblivious transfer
protocol. Future work includes constructing efficient topologically
uniform circuits for function families other than the one we studied
in Section 5.
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