
Automated Trust Negotiation Using Cryptographic
Credentials

JIANGTAO LI
Intel Corporation
NINGHUI LI
Purdue University
WILLIAM H. WINSBOROUGH
University of Texas at San Antonio

In automated trust negotiation (ATN), two parties exchange digitally signed credentials that
contain attribute information to establish trust and make access control decisions. Because the
information in question is often sensitive, credentials are protected according to access control
policies. In traditional ATN, credentials are transmitted either in their entirety or not at all.

This approach can at times fail unnecessarily, either because a cyclic dependency makes neither
negotiator willing to reveal her credential before her opponent, because the opponent must be
authorized for all attributes packaged together in a credential to receive any of them, or because
it is necessary to disclose the precise attribute values, rather than merely proving they satisfy some
predicate (such as being over 21 years of age). Recently, several cryptographic credential schemes
and associated protocols have been developed to address these and other problems. However,
they can be used only as fragments of an ATN process. This paper introduces a framework for
ATN in which the diverse credential schemes and protocols can be combined, integrated, and
used as needed. A policy language is introduced that enables negotiators to specify authorization
requirements that must be met by an opponent to receive various amounts of information about
certified attributes and the credentials that contain it. The language also supports the use of
uncertified attributes, allowing them to be required as part of policy satisfaction, and to place
their (automatic) disclosure under policy control.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—Access controls;
K.6.5 [Management of Computing and Information Systems]: Security and Protection

General Terms: Security, Design

Additional Key Words and Phrases: Access control, automated trust negotiation, digital creden-
tials, privacy

Invited submission to the ACM Transactions on Information and System Security, special issue of selected papers
of 12th ACM Conference on Computer and Communications Security (CCS’2005). Preliminary version appeared
in Proceedings of CCS’2005 under the same title.
Authors’ addresses: Jiangtao Li, Intel Corporation, 2111 NE 25th Ave, Hillsboro, OR 97124; email: jiang-
tao.li@inte.com. Ninghui Li, Department of Computer Science, Purdue University, 305 N. University Street,
West Lafayette, IN 47907; email: ninghui@cs.purdue.edu. William H. Winsborough, Department of Computer
Science, University of Texas at San Antonio, 6900 N. Loop 1604 West, San Antonio, TX 78249; email:
wwinsborough@acm.org.

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–32.

2 · Jiangtao Li et al.

1. INTRODUCTION

In automated trust negotiation (ATN) [Hess et al. 2002; Seamons et al. 2001; Seamons
et al. 2002; Winsborough and Li 2002a; 2002b; 2004; Winsborough et al. 2000; Winslett
et al. 2002; Yu and Winslett 2003b; Yu et al. 2003], two parties exchange digitally signed
credentials that contain attribute information to establish trust and make access control
decisions. In traditional ATN approaches the only way to usea credential is to send it
as a whole, thus disclosing all the information in the credential. In other words, a digital
credential is viewed as a black-box, and the information in acredential is disclosed in an
all-or-nothing fashion. In these approaches sensitive attribute values stored in a credential
are protected using access control techniques. There is an access control policy associated
with each credential and a credential can be disclosed if itsaccess control policy has been
satisfied. Disclosing credentials in an all-or-nothing fashion severely limits the power of
ATN. The following are some of the limitations.

—If there is a cyclic dependency among credentials and theirpolicies, negotiations can
fail unnecessarily. For example, in a negotiation betweenA andB, supposeA has a
credentialc1 that can be disclosed only ifB hasc2, andB hasc2, but can disclose it
only if A hasc1. Using traditional ATN techniques, the negotiation would fail because
neitherc1 nor c2 can be disclosed before the other, even though allowingA andB to
exchangebothc1 andc2 would not violate either negotiator’s policy.

—Because attribute information is disclosed in an all-or-nothing fashion, each attribute
can be disclosed only when the policy governing the credential and its entire contents
is satisfied, leading to unnecessary failure. For example, supposeB would allowA to
access a resource providedA is over21, andA has a digital driver license that includes
A’s date of birth (DoB) and address. IfA does not want to reveal her address (or her
exact DoB) toB, the negotiation would fail, even ifA were willing to prove she is over
21.

—When one negotiator does not want to disclose detailed information about his policy and
the other negotiator does not want to disclose too much information about her attributes,
a negotiation can fail even though the amount of informationthat needs to be disclosed
by each party is acceptable to both. For example, supposeB is a bank that offers a
special-rate loan andA would like to know whether she is eligible for such a loan be-
fore she applies.B is willing to reveal that his loan-approval policy uses one’s DoB,
current salary, and the length of the current employment; however,B considers further
details of this policy to be a trade secret that he is unwilling to reveal.A would like to
know whether she is eligible for the loan while disclosing aslittle information about her
attributes as possible. In particular,A does not want to disclose the exact values of her
DoB or salary level. Using traditional ATN techniques, thisnegotiation would fail.

A number of cryptographic credential schemes and associated protocols have been de-
veloped to address these and other problems. Oblivious signature based envelope [Li
et al. 2003], hidden credentials [Bradshaw et al. 2004; Holtet al. 2003], and secret hand-
shakes [Balfanz et al. 2003] can be used to address the policycycle problem. Oblivious
Attribute Certificates (OACerts) [Li and Li 2005a], privatecredentials [Brands 2000], and
anonymous credentials [Camenisch and Herreweghen 2002; Camenisch and Lysyanskaya

ACM Journal Name, Vol. V, No. N, Month 20YY.

Automated Trust Negotiation Using Cryptographic Credentials · 3

2001; Chaum 1985; Lysyanskaya et al. 1999] together with zero-knowledge proof proto-
cols can be used to prove that an attribute satisfies a policy without disclosing any other
information about the attribute. Certified input private policy evaluation (CIPPE) [Li and
Li 2005b] enablesA andB to determine whetherA’s attribute values satisfyB’s policies
without revealing additional information aboutA’s attributes orB’s policies.

While these credential schemes and associated protocols all address some limitations in
ATN, they can be used only as fragments of an ATN process. For example, a protocol that
can be used to handle cyclic policy dependencies should be invoked only when such a cy-
cle occurs during the negation process. A zero-knowledge proof protocol can be used only
when one knows the policy that needs to be satisfied and is willing to disclose the necessary
information to satisfy the policy. An ATN framework that harness these powerful crypto-
graphic credentials and protocols has yet to be developed. In this paper, we develop an
ATN framework that does exactly that. Our framework has the following salient features.

—The ATN framework supports diverse credentials, including standard digital credentials
(such as X.509 certificates [Boeyen et al. 1999; Housley et al. 1999]) as well as OACerts,
hidden credentials, and anonymous credentials.

—In addition to attribute information stored in credentials, the ATN framework also sup-
ports attribute information that is not certified. For example, oftentimes one is asked
to provide a phone number in an online transaction, though the phone number need not
be certified in any certificate. In our framework, uncertifiedattribute information and
certified attribute information are protected in a uniform fashion.

—The ATN framework has a logic-based policy langauge that wecall Attribute-based
Trust Negotiation Language (ATNL), which allows one to specify policies that govern
the disclosure of partial information about a sensitive attribute. ATNL is based on the
RT family of Role-based Trust-management languages [Li andMitchell 2003; Li et al.
2002; Li et al. 2003].

—The ATN framework has a negotiation protocol that enables the various cryptographic
protocols to be used to improve the effectiveness of ATN. This protocol is an extension
of the Trust-Target Graph (TTG) ATN protocol [Winsborough and Li 2002b; 2004].

The rest of this paper is organized as follows. We discuss related work in Section 2,
and then review several credential schemes and associated protocols that can be used in
ATN in Section 3. In Section 4, we present the language ATNL. In Section 5 we present
our negotiation protocol. We give a detailed discussion on how to break policy cycles in
Section 6 and on ATNL in Section 7. Finally we conclude our paper in Section 8.

2. RELATED WORK

The approach of using digitally signed credentials to document attributes of entities and
delegation relationships among entities has been used in the extensive literature on trust
management (TM), e.g., [Blaze et al. 1999; Blaze et al. 1996;Clarke et al. 2001; DeTre-
ville 2002; Ellison et al. 1999; Gunter and Jim 2000; Jim 2001; Li et al. 2003; Li et al.
2002; Li et al. 2003; Rivest and Lampson 1996]. In TM systems,an entity’s privilege
is based on its attributes instead of its domain-specific identities. An entity’s attributes
are demonstrated through digitally signed credentials. Delegation is an important mech-
anism for scalable and flexible trust management. Instead ofrelying on one or a few
commonly trusted parties (e.g., certificate authorities),delegation allows each domain to
autonomously determine who can access its resources and howsuch trust decisions can be

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Jiangtao Li et al.

propagated to entities from other domains; this nicely models complicated trust relation-
ships between collaborating parties.

Automated trust negotiation (ATN), introduced by Winsborough et al. [Winsborough
et al. 2000], adopts the basic TM approach but considers the fact that credentials may con-
tain sensitive information and need protection just as resources do. ATN techniques enable
strangers to establish trust in each other through cautious, iterative, bilateral disclosure
of credentials and policies. Winsborough et al. [Winsborough et al. 2000] presented two
negotiation strategies: an eager strategy in which negotiators disclose each credential as
soon as its access control policy is satisfied, and a “parsimonious” strategy in which ne-
gotiators disclose credentials only after exchanging sufficient policy content to ensure that
a successful outcome is ensured. Yu et al. [Yu et al. 2003] developed a family of strate-
gies called the disclosure tree family such that strategieswithin the family can interoperate
with each other in the sense that negotiators can use different strategies within the same
family. Seamons et al. [Seamons et al. 2001] and Yu and Winslett [Yu and Winslett 2003b]
studied the problem of protecting contents of policies as well as credentials. On the as-
pect of system architecture for trust negotiation, Hess et al. [Hess et al. 2002] proposed
the Trust Negotiation in TLS (TNT) protocol, which is an extension to the SSL/TLS hand-
shake protocol by adding trust negotiation features. Winslett et al. [Winslett et al. 2002]
introduced the TrustBuilder architecture for trust negotiation systems. The problem of
leaking attribute information was recognized by Winsborough and Li [Winsborough and
Li 2002b], Seamons et al. [Seamons et al. 2002], and Yu and Winslett [Yu and Winslett
2003a]. Winsborough and Li [Winsborough and Li 2002a; 2002b; 2004] introduced the
notion of acknowledgement policies to protect this information and provided a formal no-
tion of safety against illegal attribute information leakage. Further, Irwin and Yu [Irwin
and Yu 2005] proposed a general framework for the safety of trust negotiation systems, in
which they developed policy databases as a mechanism to helpprevent unauthorized in-
formation inferences during trust negotiation. Bonatti and Samarati [Bonatti and Samarati
2000] proposed a framework for regulating service access and information release on the
web. Their framework supports both certified attributes anduncertified attributes.

Recently, several cryptographic protocols have been proposed to address the limitations
in ATN. For example, oblivious signature based envelopes [Li et al. 2003], hidden creden-
tials [Bradshaw et al. 2004; Holt et al. 2003], oblivious commitment based envelopes [Li
and Li 2005a], and secret handshakes [Balfanz et al. 2003; Castelluccia et al. 2004] can
be used to handle policy cycle problems. Access control using pairing-based cryptogra-
phy [Smart 2003], anonymous identification [Dodis et al. 2004], certified input private
policy evaluation [Li and Li 2005b], hidden policies with hidden credentials [Frikken
et al. 2004], and policy-based cryptography [Bagga and Molva 2005] are proposed to ad-
dress the privacy issues in access control, in particular, these protocols can be used to
protect the server’s policy and the client’s identities or attributes. Recently, Frikken et
al. [Frikken et al. 2006] proposed a privacy-preserving trust negotiation protocol. How-
ever, their scheme only works for hidden credentials. Whileall the preceding protocols are
useful tools and building blocks for ATN, they are not general enough to solve arbitrary
trust negotiation problems in a systematic way. Credentialschemes that can be used in
ATN include OACerts [Li and Li 2005a], private credentials [Brands 2000], and anony-
mous credentials [Camenisch and Herreweghen 2002; Camenisch and Lysyanskaya 2001;
Chaum 1985; Lysyanskaya et al. 1999]. We will summarize the features of these protocols
and credential schemes in the next section.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Automated Trust Negotiation Using Cryptographic Credentials · 5

3. OVERVIEW OF CRYPTOGRAPHIC CREDENTIALS AND TOOLS FOR ATN

We now give an overview of six properties that are provided bycryptographic credential
schemes and their associated cryptographic tools. These properties can improve the privacy
protection and effectiveness of ATN.

(1) Separation of credential disclosure from attribute disclosure: In several credential
systems, including private credentials [Brands 2000], anonymous credentials [Ca-
menisch and Herreweghen 2002; Camenisch and Lysyanskaya 2001; Chaum 1985;
Lysyanskaya et al. 1999] and OACerts [Li and Li 2005a], a credential holder can dis-
close her credentials without revealing the attribute values in them. In the OACerts
scheme, a user’s attribute values are not stored in the clear; instead, they are stored
in a committed form in her credentials. When the commitment of an attribute value
is stored in a credential, looking at the commitment does notenable one to learn any-
thing about the attribute value. Private credentials and anonymous credentials share
somewhat similar ideas: a credential holder can prove in zero-knowledge that she has
a credential without revealing it; thus, the attribute values in the credential are not dis-
closed. For example, consider a digital driver license certificate from Bureau of Motor
Vehicles (BMV) consisting of name, gender, DoB, and address. In trust negotiation, a
user can show that her digital driver license is valid,i.e., that she is currently a valid
driver, without disclosing any of her name, gender, DoB, andaddress.

(2) Selective show of attributes:A credential holder can select which attributes she wants
to disclose (and which attribute she does not want to disclose) to the verifier. As
each attribute in a credential is in committed form, the credential holder can simply
open the commitments of the attributes she wants to reveal. For instance, using the
digital driver license, the credential holder can show her name and address to a verifier
without disclosing her gender and DoB. Cryptographic properties of the commitment
schemes ensure that the credential holder cannot open a commitment with a value
other than the one that has been committed.

(3) Zero-knowledge proof that attributes satisfy a policy:A credential holder can use
zero-knowledge proof protocols [Boudot 2000; Cramer and Damgård 1998; Cramer
et al. 1996; Durfee and Franklin 2000] to prove that her attributes satisfy a predicate
without revealing the actual attribute values. For example, a credential holder can
prove that she is older than 21 by using her digital driver license without revealing any
other information about her actual DoB.

(4) Oblivious usage of a credential:A credential holder can use her credentials in
an oblivious way to access resources using Oblivious Signature Based Envelope
(OSBE) [Li et al. 2003], hidden credentials [Holt et al. 2003], or secret hand-
shakes [Balfanz et al. 2003; Castelluccia et al. 2004]. In OSBE, a user sends the
contents of her credential (without the signature) to a server. The server verifies that
the contents satisfy his requirement, then conducts a jointcomputation with the user
such that in the end the user sees the server’s resource if andonly if she has the signa-
ture on the contents she sent earlier. The hidden credentials and the secret handshakes
share the similar concept; however, they assume that the server can guess the contents
of the user’s credentials; thus the user does not need to sendthe contents to the server.
The oblivious usage of a credential enables a user to obtain aresource from a server
without revealing the fact that she has the credential.

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Jiangtao Li et al.

(5) Oblivious usage of an attribute:A credential holder can use her attributes in an
oblivious way to access resources using Oblivious Commitment Based Envelope
(OCBE) [Li and Li 2005a]. In OCBE, a credential holder and a server run a pro-
tocol such that in the end the credential holder receives theserver’s resource if and
only if the attributes in her credential satisfy the server’s policy. The server does not
learn anything about the credential holder’s attribute values, not even the result of the
policy predicate when applied to the attribute values.

(6) Certified input private policy evaluation (CIPPE):In CIPPE [Li and Li 2005b], a
credential holder and a server run a protocol in which the credential holder inputs the
commitments of her attribute values from her credentials, and the server inputs his
private policy function. In the end, both parties learn whether the credential holder
satisfies the server’s policy, without the attribute valuesbeing revealed to the server,
or the private function, to the credential holder. For example, suppose that the server’s
policy is that age must be greater than 25 and the credential holder’s age is 30. The
credential holder can learn that she satisfies the server’s policy without revealing her
exact DoB or knowing the threshold in the server’s policy.

There are other useful properties achieved in the private credentials [Brands 2000] and
the anonymous credentials [Camenisch and Herreweghen 2002; Camenisch and Lysyan-
skaya 2001; Chaum 1985; Lysyanskaya et al. 1999], such as multi-show unlinkable prop-
erty, anonymous property, etc. Some of these properties require anonymous communica-
tion channels to be useful. In this paper, we focus on the six properties described above,
because they either have been applied to ATN in the literature before or were developed
explicitly for ATN. Our goal is to integrate them into a coherent trust negotiation frame-
work.

Note that we do not assume each negotiating participant supports all six properties. For
instance, if one participant uses an anonymous credential system and supports properties
1–3, and the other participant supports properties 1–6, then they can use properties 1–3
when they negotiate trust. We present an ATN framework that can take advantage of these
properties when they are available, but that does not require them.

4. THE LANGUAGE OF CREDENTIALS AND POLICIES

In this section, we present the Attribute-based Trust Negotiation Language (ATNL), a for-
mal language for specifying credentials and policies. ATNLis based onRT , a family
of Role-base Trust-management languages introduced in [Liand Mitchell 2003; Li et al.
2002; Li et al. 2003]. We first give an example trust negotiation scenario in ATNL, then
describe the syntax of ATNL in detail in Section 4.2.

4.1 An Example

In this example, the two negotiators are BookSt (a bookstore) and Alice. We give the
credentials and policies belonging to BookSt first, then give those for Alice, and then
describe a negotiation process between BookSt and Alice.

BookSt’s credentials and policies are given in Figure 1. BookSt has a credential (ℓ1)
issued by the Small Business Administration (SBA) asserting that BookSt has a valid busi-
ness license. BookSt is certified in (ℓ2) by the Better Business Bureau (BBB) to have a
good security process.

BookSt offers a special discount to anyone who satisfies the policy (m1), which means
that the requester should be certified by StateU to be a student majoring in computer sci-

ACM Journal Name, Vol. V, No. N, Month 20YY.

Automated Trust Negotiation Using Cryptographic Credentials · 7

BookSt ’s credentials:
ℓ1 : SBA.businessLicense ←− BookSt
ℓ2 : BBB.goodSecProcess ←− BookSt

BookSt ’s policies:
m1 : BookSt.discount(phoneNum = x3) ←− StateU.student(program = x1)

∩ BookSt.DoB(val = x2)
∩ Any.phoneNum(val⇒ x3) ;

((x1 = ‘cs’) ∧ (x2 > ‘01/01/1984’))
m2 : BookSt.DoB(val = x) ←− BMV.driverLicense(DoB = x)
m3 : BookSt.DoB(val = x) ←− Gov.passport(DoB = x)
m4 : disclose(ac, SBA.businessLicense) ←− true

m5 : disclose(ac, BBB.goodSecProcess) ←− true

Fig. 1. The credentials and policies ofBookSt

ence, under 21 (as of January 1, 2005), and willing to providea phone number. Since
the discount is a resource, the head of this policy,BookSt.discount(phoneNum = x3),
defines a part of the application interface provided by the ATN system using this pol-
icy; the parameterphoneNum is made available to the application through this interface.
That is, the application will issue a query to determine whether the requester satisfies
BookSt.discount(phoneNum = x3), and if it succeeds, the variablex3 will be instan-
tiated to the phone number of the requester. The body of policy (m1) (i.e., the part to the
right of←−) consists of the following two parts.

Part 1: StateU.student(program = x1) ∩ BookSt.DoB(val = x2) ∩
Any.phoneNum(val⇒ x3)

Part 2: ((x1 = ‘cs’) ∧ (x2 > ’01/01/1984’))
Part 1 describes the role requirement of the policy and consists of the intersection of 3 roles.
To satisfy the roleStateU.student(program = x1), one must provide a credential (or a
credential chain) showing that one is certified by StateU to be a student;program = x1

means that the value of theprogram field is required to satisfy additional constraints. In
Any.phoneNum(val ⇒ x3), the keywordAny means that the phone number does not
need to be certified by any party and the symbol⇒ means that the phone number must be
provided (enabling it to be returned to the application). Part 2 describes the constraints on
specific field values.

BookSt’s policies(m2) and (m3) mean that BookSt considers both a driver license
from BMV and a passport issued by the government (Gov) to be valid documents for DoB.
BookSt’s policies(m4) and(m5) mean that BookSt treats his SBA certificate and BBB
certificate as non-sensitive resources and can reveal thesecertificates to anyone. The term
ac in (m4) and(m5) denotes access control policy.

Alice’s credentials and policies are given in Figure 2. Alice holds three credentials.
Credential (n1) is issued by StateU and delegates to College of Science (CoS) the authority
to certify students. Credential (n2) is Alice’s student certificate issued by CoS. Credentials
(n1,n2) prove that Alice is a valid student from StateU. Credential(n3) is her digital driver
license issued by BMV. For simplicity, we assume that the digital driver license contains
only name and DoB. Among her credentials, Alice considers her student certificate to be
sensitive, and provides it only to those who have a valid business license from SBA (p1).
Alice does not protect the content of her driver license, except for its DoB field. She

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Jiangtao Li et al.

Alice’s credentials:
n1 : StateU.student ←−CoS.student
n2 : CoS.student(program = ‘cs’, level = ‘sophomore’) ←− Alice
n3 : BMV.driverLicense(name = commit(‘Alice’), DoB = commit(‘03/07/1986’)) ←− Alice

Alice’s attribute declarations:
o1 : phoneNum = ‘(123)456-7890’ :: :: sensitive
o2 : DoB = ‘03/07/1986’ :: BMV.driverLicense(DoB) :: sensitive
o3 : program = ‘cs’ :: CoS.student(program) :: non-sensitive
o4 : level = ‘sophomore’ :: CoS.student(level) :: non-sensitive

Alice’s policies:
p1 : disclose(ac, CoS.student) ←− SBA.businessLicense
p2 : disclose(full, DoB) ←− BBB.goodSecProcess
p3 : disclose(full, phoneNum) ←− BBB.goodSecProcess
p4 : disclose(range, DoB, year) ←− true

p5 : disclose(ac, BMV.driverLicense) ←− true

Fig. 2. The credentials and policies possessed by Alice

considers her date of birth and phone number to be sensitive information, thus she reveals
them only to organizations whose security practices are adequate to provide reasonable
privacy (p2, p3). For this, we assume that BBB provides a security process auditing service.
Further, Alice is willing to reveal to everyone her year of birth (p4) and her digital driver
license (p5).

A negotiation between BookSt and Alice When Alice requests a discount sale from
BookSt, BookSt responds with his discount policy (m1). Alice first discloses her driver
license (n3), which is assumed to be an OACert, to BookSt without revealing her DoB. To
protect her phone number and her student certificate, Alice wants BookSt to show a busi-
ness license issued by SBA and a good security process certificate issued by BBB. After
BookSt shows the corresponding certificates (ℓ1, ℓ2), Alice reveals her student certificate
chain (n1, n2) and phone number (o1). As Alice is allowed by her policyp4 to reveal her
year of birth to everyone, she uses a zero-knowledge proof protocol to prove to BookSt
that her DoB in her driver license is between‘1/1/1986’ and‘12/31/1986’. BookSt now
knows that Alice is younger than 21, thus satisfies his discount policy. During the above
interactions, Alice proves that she is entitled to obtain the discount.

The above negotiation process uses the first three properties described in Section 3.

4.2 The Syntax

Figure 3 gives the syntax of ATNL in Backus Naur Form (BNF). Inthe following, we
explain the syntax. The numbers in the text below correspondto the numbers of definitions
in Figure 3.

Each negotiation party has apolicy base(3) that contains all information that may be
used in trust negotiation. A party’s policy base consists ofthree parts:credentials, attribute
declarations, andpolicy statements. In the following, we discuss each of the three parts in
detail.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Automated Trust Negotiation Using Cryptographic Credentials · 9

〈list of X〉 ::= 〈X〉 | 〈X〉 “ ,” 〈list of X〉 (1)
〈set of X〉 ::= ǫ | 〈X〉 〈set of X〉 (2)

〈policy-base〉 ::= 〈set of credential〉 〈set of attr-decl〉 〈set of policy-stmt〉 (3)

〈credential〉 ::= 〈member-cred〉 | 〈delegation-cred〉 (4)
〈member-cred〉 ::= 〈role〉 “←−” 〈prin〉 (5)
〈delegation-cred〉 ::= 〈role〉 “←−” 〈role〉 (6)

〈role〉 ::= 〈prin〉 “ .” 〈role-term〉 (7)
〈role-term〉 ::= 〈role-name〉 | 〈role-name〉 “ (” 〈list of field〉 “)” (8)
〈field〉 ::= 〈field-name〉 “=” (〈var〉 | 〈constant〉 | 〈commitment〉) (9)

〈attr-decl〉 ::= 〈attr-name〉 “=” 〈constant〉 “ ::” [〈list of attr-ref〉]
“ ::” (“ sensitive” | “non-sensitive”) (10)

〈attr-ref〉 ::= 〈prin〉 “ .” 〈role-name〉 “ (” 〈field-name〉 “)” (11)

〈policy-stmt〉 ::= 〈policy-head〉 “←−” 〈policy-body〉 (12)
〈policy-body〉 ::= 〈p-role-req〉 [“ ;” 〈p-constraint〉] | true (13)
〈p-role-req〉 ::= [〈role〉 “ !”] 〈conj-of-p-roles〉 (14)
〈p-constraint〉 ::= [〈pre-cond〉 “ !”] 〈constraint〉 (15)
〈pre-cond〉 ::= 〈role〉 | “ false” (16)

〈conj-of-p-roles〉 ::= 〈p-role〉 | 〈p-role〉 “∩” 〈conj-of-p-roles〉 (17)
〈p-role〉 ::= 〈prin〉 “ .” 〈p-role-term〉 | Any.〈p-role-term〉 (18)

〈p-role-term〉 ::= 〈role-name〉 | 〈role-name〉 “ (” 〈list of p-field〉 “)” (19)
〈p-field〉 ::= 〈field-name〉 (“=” | “⇒”) (〈var〉 | 〈constant〉) (20)

〈policy-head〉 ::= 〈p-role〉 | 〈dis-ack〉 | 〈dis-ac〉 | 〈dis-full〉 | 〈dis-bit〉 | 〈dis-range〉 (21)
〈dis-ack〉 ::= “disclose” “ (” “ ack” “ ,” 〈role〉 “)” (22)
〈dis-ac〉 ::= “disclose” “ (” “ ac” “ ,” 〈role〉 “)” (23)
〈dis-full〉 ::= “disclose” “ (” “ full” “ ,” 〈attr-name〉 “)” (24)
〈dis-bit〉 ::= “disclose” “ (” “ bit” “ ,” 〈attr-name〉 “)” (25)

〈dis-range〉 ::= “disclose” “ (” “ range” “ ,” 〈attr-name〉, 〈precision〉 “)” (26)

Fig. 3. Syntax of ATNL in BNF. Macros and symbols of this figureare defined in Figure 4.

ǫ empty string
〈list of X〉, 〈set of X〉 macro parameterized by X
〈var〉,〈constant〉,〈prin〉 a variable, a constant, and a principal
〈role-name〉, 〈field-name〉, 〈attr-name〉 identifiers drawn from disjoint sets
〈commitment〉, 〈precision〉, 〈constraint〉 undefined, will be explained in the text

Fig. 4. Definitions of macros and symbols in Figure 3.

4.2.1 Credentials and Roles.Two central concepts that ATNL takes fromRT [Li et al.
2002; Li et al. 2003] are principals and roles. A principal isidentified with an individual
or agent, and may be represented by a public key. In this sense, principals can issue cre-
dentials and make requests. Semantically, a role designates a set of principals; we say that
these principals are members of the role. Each principal hasits own localized name space

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Jiangtao Li et al.

for roles in which it has sole authority to define (which principals are members of) these
roles. Syntactically, arole (7) takes the form of a principal followed by a role term, sepa-
rated by a dot. The simplest kind of a role term consists of just a role name. As roles are
parameterized, a role term may also contain fields, which will be explained later. We use
A,B,D, S, andV , sometimes with subscripts, to denote principals. We useR, often with
subscripts, to denote role terms. A roleA.R can be read asA’s R role. OnlyA has the
authority to define the members of the roleA.R, andA does so by issuing role-definition
statements.

In ATNL, a credential can be either a membership credential or a delegation credential.
A membership credential(5) takes the formA.R ←− D, whereA andD are (possibly
the same) principals. This means thatA definesD to be a member ofA’s role R. A
delegation credential(6) takes the formA.R←−B.R1, whereA andB are (possibly the
same) principals, andR andR1 are role terms. In this statement,A defines itsR role to
include all members ofB’s R1 role. Note that, for simplicity, we do not limit number of
delegation depths. In other words, we allow unbounded chains of delegation.

For example, BookSt’s credential (ℓ1) in Figure 1 is a membership credential. It means
SBA issued a business license certificate for BookSt. Alice’s credential (n1) in Figure 2 is
a delegation credential. It says that StateU delegates its authority over identifying students
to College of Science (CoS). Alice’s credential (n2) in Figure 2 means that CoS asserts
that Alice is a sophomore student in StateU majoring in computer science.

A role term(8) is a role name possibly followed by a list of fields. Eachfield (9) has a
field name and a field value. A field value can be a variable, a constant, or a commitment.
For example,SBA.businessLicense is a role without any fields,CoS.student(program =
‘cs’, level = ‘sophomore’) andBMV.driverLicense(name = commit(‘Alice’),DoB =
commit(‘03/07/1986’)) are roles with fields. In the preceding roles,CoS is a principal
name,student is a role name,program is a field name,‘cs’ is a constant of string type, and
commit(‘Alice’) is a commitment. In ATNL, acommitmenttakes of the formcommit(c),
wherec is a constant, andcommit denotes the output of a commitment algorithm of a
commitment scheme [Damgård and Fujisaki 2002; Pedersen 1991]1.

If a credential is a regular certificate, such as an X.509 certificate [Housley et al. 1999],
then each field in the credential takes the formx = c, wherex is the field name andc
is a constant. For example, Alice’s student certificate (n2) may be an X.509 certificate.
When a credential is implemented as a cryptographic certificate, such as an OACert or an
anonymous credential, the attribute values are committed in the credential. Therefore, each
field takes the formx = commit(c), wherecommit(c) is the commitment of a constantc.
For example, Alice’s digital driver license (n3) is modeled as a cryptographic certificate.

We note that credentials in ATNL can capture proxy credentials used in grid comput-
ing. Proxy credentials permit one entity to allow another entity to act on his behalf for a
limited period of time. A principalA allowsB to act on behalf ofA can be encoded as
“A.proxy(source=A)←− B”, where a short validity period. For a resource ownerC To
grant access to some resource toA and to its proxies, one can write “C.access←−A” and
“C.access←−A.proxy(source=A)”. If A allowsB to let other parties to act on behalf of
A, thenA can issue “A.proxy(source=A)←−B.proxy(source=A).”

1In order to have the hiding property, a commitment scheme usually cannot be deterministic, thus the commitment
of a value also depends on a secret random value. For simplicity of presentation, we do not explicitly model the
random secret in the representation of a commitment.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Automated Trust Negotiation Using Cryptographic Credentials · 11

4.2.2 Attribute declarations.Eachattribute declaration(10) gives the name of the
attribute, the value of the attribute, a list of attribute references that correspond to this
attribute, and whether this attribute is considered sensitive or not. For example, Alice’s
attribute declaration (o1) in Figure 2 means that Alice has a phone number (123)456-7890
and she considers her phone number to be sensitive information. Alice’s attribute decla-
ration (o3) indicates that Alice’s major is ‘cs’ and that her program appears in her student
certificate, issued by CoS. We useattr to denote attribute names.

Eachattribute reference(11) corresponds to a field name in a role. The attribute ref-
erence is used to link the declared attribute to a specific role field. For example, Alice’s
DoB attribute declaration has an attribute referenceBMV.driverLicense(DoB), it means
that Alice’s DoB is documented in theDoB field of the roleBMV.driverLicense. It is
possible to have several attribute references for an attribute. This means that the attribute
is documented by several roles2. For example, suppose Alice also has a passport, and her
DoB is certified in her passport. Then the attribute declaration for herDoB looks like

DoB = ‘03/07/1986’ :: BMV.driverLicense(DoB),
Gov.passport(BirthDate) :: sensitive

Because the disclosure of attribute values in a credential can be separated from the dis-
closure of the credential, one purpose of the attribute declarations is to uniformly manage
the disclosure of an attribute value that appears in different credentials. That is, the policy
author gives disclosure policies for attributeDoB, instead of assigning separate disclosure
policies forBMV.driverLicense(DoB) andGov.passport(BirthDate).

When the list of the attribute references is empty, the corresponding attribute does not
appear in any role that is certified by a credential. In other words, the attribute isuncertified
by any authorities. Unlike most prior trust negotiation systems, our framework supports
uncertified attributes. In many online e-business scenarios, like the example in Section 4.1,
the access control policies require some personal information about the requester, such as
phone number and email address, which may not be documented by any digitally signed
credentials. Like certified attributes, uncertified attributes may be sensitive, and should be
protected in the same way. We treat all attributes uniformly, whether certified or not, by
protecting them with disclosure policies.

If an attribute is not sensitive, then the keywordnon-sensitive appears at the end of
its corresponding attribute declaration. This means that the attribute can be revealed to
anyone. There is no access control policy for this attribute. On the other hand, if an attribute
is treated as a sensitive resource, the attribute owner willmark its attribute declaration
with the keywordsensitive. In this case, if there are disclosure policy statements forthis
attribute, one has to satisfy the body of one of these statements to learn information about
the attribute. If there is no disclosure policy statement for a sensitive attribute, it means the
attribute must never be disclosed.

2We assume that the attribute values from different roles arethe same, however we do not require each principal
to use the same field name. For example,BMV may useDoB as the field name for date of birth, whereasGov
usesBirthDate as the field name. Name agreement for different field names canbe achieved using application
domain specification documents [Li et al. 2002; Li et al. 2003]. Note that if the attribute values from different
roles are different, we treat them as different attributes.

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Jiangtao Li et al.

4.2.3 Policy statements.In ATNL, a policy statement (12) takes the form
〈policy-head〉←−〈policy-body〉 in which 〈policy-body〉 either istrue or takes the form:

pre-cond-1 ! B1.R1 ∩ · · · ∩Bk.Rk ;
pre-cond-2 ! ψ(x1, . . . , xn)

whereB1, . . . , Bk are principals,R1, . . . , Rk are role terms,k is an integer greater than or
equal to 1,pre-cond-1 andpre-cond-2 are two pre-conditions (which we discuss shortly),
ψ is a constraint from a constraint domainΦ, andx1, x2, . . . , xn are the variables appearing
in the fields ofR1, . . . , Rk. The constraintψ(x1, . . . , xn) is optional. We callB1.R1 ∩
· · · ∩ Bk.Rk in the policy statement anintersection. In the syntax of ATNL, we do not
support multiple occurrences of the same variable in the intersection and pre-conditions of
a policy statement.

A pre-conditionis defined to be a role or the keywordfalse. Pre-cond-2 (16) can be
either of these; when it exists,pre-cond-1 is a role (14). The motivation for pre-conditions
is that, oftentimes, policies may contain sensitive information. The policy enforcer does
not want to reveal the policy statement to everyone. If a pre-condition isfalse, the pre-
condition is never satisfied. If the pre-condition is a role,sayB.R, then the negotiation
opponent has to be a member ofB.R for the pre-condition to be satisfied. Returning to the
policy body, if pre-cond-1 is satisfied (or ifpre-cond-1 is omitted), then the negotiation
opponent is allowed to seeB1.R1 ∩ · · · ∩Bk.Rk, otherwise, she is not permitted to know
the content of this policy body. Oncepre-cond-1 is satisfied, ifpre-cond-2 is also satisfied,
then the negotiation opponent is allowed to see the constraintψ(x1, . . . , xn).

Verifying that a principal satisfies a policy body takes two steps. In the first step, the
policy enforcer verifies that the principal has all roles andhas provided all uncertified at-
tributes given byB1.R1, . . . , Bk.Rk. In the second step, the policy enforcer verifies that
the variables in the parameters ofR1, . . . , Rk satisfy the constraintψ(x1, . . . , xn). Such
two-step policy verification process is made feasible by using cryptographic credentials
and the associated cryptographic tools (see Section 3). Thefirst step corresponds to verify-
ing that the principal has the desired credentials. The second step corresponds to verifying
that the principal’s attribute values in the credentials satisfy the constraintψ(x1, . . . , xn).
If ψ(x1, . . . , xn) is disclosed, which happens only when the second pre-condition has been
satisfied, then the principal can use zero-knowledge proof protocols to prove that her at-
tribute values satisfy the constraint or simply reveal all her credentials along with all her
attributes; otherwise, the principal can elect to run a private policy evaluation protocol with
the policy enforcer, enabling each to determine whether shesatisfies the constraint.

Using the example in Section 4.1, BookSt’s policy (m2) in Figure 1 is a policy state-
ment with no constraint. It states thatBookSt considers a driver license from BMV to
provide adequate documentation of date of birth. The variable x is used in the state-
ment to indicate that the field value ofBookSt.DoB is the same as theDoB field value
in BMV.driverLicense.

The BookSt policy statement (m1) means that, in order to be a member of the role
BookSt.discount, a principal has to have the rolesBookSt.student(program = x1),
BookSt.DoB(val = x2), andAny.phoneNum(val ⇒ x3). It further requires that the
program field valuex1 in BookSt.student and the DoB field valuex2 in BookSt.DoB
satisfy the constraint(x1 = ‘cs’) ∧ (x2 > ’01/01/1984’). The symbol⇒ in the role
Any.phoneNum(val ⇒ x3) indicates that BookSt must receive a phone number from the
negotiation opponent. Where the equality symbol= is used, the policy requires only proof

ACM Journal Name, Vol. V, No. N, Month 20YY.

Automated Trust Negotiation Using Cryptographic Credentials · 13

that the associated field value satisfies any constraints given in the policy statement.

4.2.4 Policy heads.The policy head in a policy statement determines which resource
is to be disclosed and how it is to be disclosed. Apolicy head(21) can be a role or a disclo-
sure. When the policy head is a role, the statement means thatif the negotiation opponent
satisfies the policy body, then she is a member of the role. Roles defined in policy state-
ments are controlled by the policy owner and are calleddummy rolesbecause they serve
only to define local policies. If the policy head is a disclosure, then the opponent is granted
a permission specified in the disclosure, once the policy body is satisfied. This section
explains each type of disclosure and its associated permission. In the rest of this paper, we
useack for acronyms of acknowledgement andac for acronyms of access control.

We call (the body of) a policy statement with headdisclose(ack, A.R) (22) anAck
policy for the roleA.R. The opponent has to satisfy one ofA.R’s Ack policies to gain
permission to learn whether the policy enforcer is a member of A.R. Until such satisfaction
is shown, the policy enforcer’s behavior should not depend in any way on whether she
belongs toA.R.

We call a policy statement with headdisclose(ac, A.R) (23) anAC policyfor the cre-
dentialA.R←−D. We assume, in this case, that the policy enforcer isD and thatD has
the membership credentialA.R←−D. When the negotiation opponent has satisfied an AC
policy for the credentialA.R←−D, he is authorized to receive a copy of the credential.

We call a policy statement with headdisclose(full, attr) (24) a full policy for the at-
tributeattr. If a full policy for attr is satisfied, the negotiation opponent is allowed to see
the full value ofattr. Whenattr is an uncertified attribute, this means the policy enforcer
can simply disclose its value. When the field value linked to the attribute reference ofattr
is a commitment, it means the policy enforcer can open the commitment to the opponent.

We call a policy statement with headdisclose(bit, attr) (25) abit policy for the attribute
attr. Bit policies are defined only for certified attributes. If a bit policy for attr is satis-
fied, the negotiation opponent has the permission to receiveone bit of information about
the value ofattr, in the sense of receiving the answer to the question whetherthe value
satisfies some predicate. We stress that the one bit information of attr in our context is
not necessarily the value of a certain bit in the binary representation ofattr, but can be the
output of any predicate onattr. More specifically, the policy enforcer can run a private
policy evaluation with the opponent in which the opponent learns whetherattr, together
with other attributes of the enforcer, satisfies the opponent’s private policy. Alternatively,
the policy enforcer can prove thatattr satisfies (or does not satisfy) the opponent’s public
policy using zero-knowledge proof techniques. While specifying the bit disclosure policy,
one should be aware that the bit disclosure ofattr is vulnerable to a probing attack. If
an adversarial opponent runs the private policy evaluationmultiple times using different
policies that constrainattr, she may learn more information about the value ofattr.

We call a policy statement with headdisclose(range, attr, precision) (26) a range
policy for the attributeattr. Range policies are defined only for certified attributes of
certain data types, such as finite integer type, finite float type, and ordered enumeration
type. If the range policy forattr is satisfied, then the negotiation opponent has permis-
sion to learn thatattr belongs to a range with the given precision. For example, if the
negotiation opponent has satisfied the policy fordisclose(range,DoB, year), then she is
allowed to know the year ofDoB, but not the exact date. How to specify precision de-
pends on the data type of the attribute. For example, assume credit score takes integer

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Jiangtao Li et al.

values from 1 to 1000, and Alice has a credit score of 722 documented in her credit report
certificate using cryptographic credential schemes. IfBookSt satisfies Alice’s policy of
disclose(range, score, 50), then Alice can prove toBookSt that her credit score is be-
tween 701 and 750 using zero-knowledge proof protocols. Similarly, the policy with head
disclose(range, score, 10) means that if the policy is satisfied, the opponent can learn that
Alice’s credit score is between 721 to 730.

When no Ack policy is specified for an attribute, this indicates that the Ack policy is
trivially satisfied. Although a more natural logical interpretation would be that in this case
it is trivially unsatisfiable, such an Ack policy would render its attribute unusable, which
is not useful. The other types of policies (i.e., AC policy, full policy, bit policy, and range
policy) are taken to be unsatisfiable if they are not defined.

So if there is no Ack policy associated with a roleA.R in the policy base, then the
policy enforcer can reveal to everyone that she is (or is not)a member ofA.R. On the
other hand, if there is no AC policy associated with a roleA.R in the policy base, then
the policy enforcer should never reveal her credentialA.R ←− D to anyone. If there
are both an Ack policy and an AC policy with a roleA.R, the access control policy is
actually the intersection of these two policies,i.e., only if the negotiation opponent satisfies
both policies can she see the credential corresponding toA.R. That is enforced implicitly
through our trust negotiation protocol.

5. THE EXTENDED TRUST TARGET GRAPH (ETTG) PROTOCOL

In this section, we introduce a trust negotiation protocol that can take advantage of ATNL
and the cryptographic protocols. This protocol extends thetrust-target graph protocol in-
troduced in [Winsborough and Li 2002b; 2004], to deal with the additional features of
ATNL and cryptographic certificates.

In this protocol, a trust negotiation process involves the two negotiators working together
to construct atrust-target graph(TTG). A TTG is a directed graph, each node of which
is a trust target. Introduced below, trust targets represent questions that negotiators have
about each other. When a requester requests access to a resource, the access mediator
and the requester enter into a negotiation process. The access mediator creates a TTG
containing one target, which we call theprimary target. The access mediator then tries
to process the primary target by decomposing the question that it asks and expanding the
TTG accordingly in a manner described below. It then sends the partially processed TTG
to the requester. In each following round, one negotiator receives new information about
changes to the TTG, verifies that the changes are legal and justified, and updates its local
copy of the TTG accordingly. The negotiator then tries to process some nodes, making its
own changes to the graph, which it then sends to the other party, completing the round. The
negotiation succeeds when the primary target is satisfied; it fails when the primary target
is failed, or when a round occurs in which neither negotiatorchanges the graph.

5.1 Nodes in a Trust-Target Graph

A node in a TTG is one of the five kinds of targets, defined as follows. We use the notation
e և S for several different categories ofe, meaning thatS belongs to, satisfies, or has the
propertye. We introduce the various usages of the notation informallyas they are used in
the following list.

—A role targettakes the form〈V :A.R
?

ևS〉, in whichV is one of the negotiators,A.R is

ACM Journal Name, Vol. V, No. N, Month 20YY.

Automated Trust Negotiation Using Cryptographic Credentials · 15

a role3, andS is a principal.S is oftenopp(V), the negotiator opposingV , but it can be
any principal. This target means thatV wants to see the proof ofA.R և S.

—A policy targettakes the form〈V :policy-id
?

ևS〉, in whichV is one of the negotiators,
S is a principal, andpolicy-id uniquely identifies a policy statement inV ’s policy base.
We assume each negotiator assigns each of her policy statements a unique identifier for
this purpose. This target means thatV wants to see the proof thatS satisfies the body of
the statement corresponding topolicy-id.

—An intersection targettakes the form〈V : B1.R1 ∩ · · · ∩ Bk.Rk

?
և S〉, in whichV is

one of the negotiators,S is a principal,B1.R1, . . . , Bk.Rk are roles, andk is an integer
greater than 1. This means thatV wants to see the proof ofB1.R1 ∩ · · · ∩Bk.Rk և S.

—A trivial target takes the form〈V : S
?

և S〉, in whichV is one of the negotiators, and
S is a principal. Representing questions whose answers are always affirmative, trivial
targets provide placeholders for edges that represent credentials in the TTG.

—An attribute goaltakes the form〈V :attr
?

ևS〉, in whichattr is the name of an attribute
in S’s attribute declaration. This goal means thatV wants to learn some information
about the value ofattr, e.g., V may want to learn the full value of the attribute, or to
learn partial information about the attribute, e.g., whether it satisfies a policy.

In each of the above forms of targets, we callV theverifier, andS thesubjectof this node.

5.2 Edges in a Trust-Target Graph

Seven kinds of edges are allowed in a trust-target graph, listed below. We use֋ to repre-
sent edges in TTG’s.

—A credential edgetakes the form〈V : A.R
?

և S〉֋ 〈V : e
?

և S〉, in whichA.R is a

role, ande is either a principle or a role. We call〈V : e
?

և S〉 a credential child of

〈V :A.R
?

ևS〉. (We use similar “child” terminology for other kinds of edges.) An edge
always points from the child to the parent. Unlike the other kinds of edges, a credential
edge needs to bejustifiedto be added into the TTG; a credential edge is justified if the
edge is accompanied by a credential that provesA.R և e.

—A policy edgetakes the form〈V :A.R
?

ևS〉֋ 〈V : policy-id
?

ևS〉, in whichpolicy-id
is a policy identifier andA.R is the role in the head of the policy statement (that corre-
sponds topolicy-id).

—A policy control edgetakes the form〈V : policy-id
?

և S〉 ֋ 〈V : A.R
?

և S〉, in
whichpolicy-id is a policy identifier andA.R is one of the pre-conditions in the policy
statement.

—A policy expansion edgetakes the form〈V : policy-id
?

և S〉֋ 〈V : B1.R1 ∩ · · · ∩

Bk.Rk

?
ևS〉, in whichpolicy-id is a policy identifier andB1.R1 ∩ · · · ∩ Bk.Rk is the

intersection in the policy statement. Ifk > 1, the policy expansion child is an intersec-
tion target; otherwise, it is a role target. Each policy expansion edge has associated with
it up to one tag consisting of a constraint.

—An intersection edgetakes the form〈V :B1.R1 ∩ · · ·∩Bk.Rk

?
ևS〉֋〈V :Bi.Ri

?
ևS〉,

wherei is in 1..k, andk is greater than 1.

3Technically, the roles in the TTG correspond syntacticallyto the non-terminal〈p-role〉, rather than to〈role〉.
This is because they are derived from policies, and so can contain symbols such asAny and⇒.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Jiangtao Li et al.

—An attribute edgetakes the form〈V :A.R
?

և S〉֋ 〈V : attr
?

և S〉, in whichS is the
negotiation opponent ofV , attr is an attribute name, andA.R is a role. This is used
when the attributeattr is linked to a specific field inA.R in S’s attribute declarations.

—An attribute control edgetakes the form〈V : e
?

և S〉֋ 〈opp(V) : policy-id
?

և V 〉, in
which opp(V) denotes the opponent ofV , policy-id is a policy identifier, ande is the
role or attribute name in the head of the policy statement. Attribute control edges are
used for handling disclosure policies. Each attribute control edge has a tag consisting of
one of ac, ack, full, bit, or range; in the range case, it also includes a precision parameter.

The optional tag on a policy expansion edge is used to expressthe constraint portion of
the policy statement identified bypolicy-id. The tag on an attribute control edge charac-
terizes the information thatV can gain permission to learn by satisfying the body of the
statement identified bypolicy-id.

5.3 State Propagation in TTG

Each node has aprocessing state, which is a pair of boolean states: verifier-processed
and opponent-processed. A node isverifier-processedwhen the verifier cannot process
the node any further,i.e., the verifier cannot add any new child to the node. A node is
opponent-processedwhen the opponent cannot process the node any further. When anode
is both verifier-processed and opponent-processed, we say that it is fully processed.

Each target has asatisfaction state, which has one of three values: satisfied, failed, and
unknown. For each role target or intersection target, thereis afield-state table. The field-
state table is used to maintain information about the field values in the corresponding role
or intersection target. Each field-state table contains zero or more tuples. Each tuple has
multiple field states, one for each field in the target,i.e., for each field in the role or inter-
section target, there is a field state corresponding to it in the tuples of the field state table.
Each field state has three entries, one for full disclosure, one for bit disclosure, and one
for range disclosure4. Each entry can have valuefalse, indicating that the corresponding
disclosure policy has been found to be unsatisfiable by the negotiator desiring to know the
field value. Entry values can also be of several other types, as will be discussed shortly.
Each attribute goal has anattribute state. An attribute state has three entries, one for full
disclosure, one for bit disclosure, and one for range disclosure. Each entry can be one of
the three values:true, false, or unknown. A true value means the corresponding policy
in that entry has been satisfied. Aunknown value means the corresponding policy has not
been satisfied yet. Afalse value means the corresponding policy is failed by the opponent.

We now describe how to determine the satisfaction state of targets, the field state of
fields, the attribute state of attribute goals, and corresponding local states.

5.3.1 Satisfaction state.The trust target satisfaction state is determined as follows:

(1) Role target. The initial satisfaction state of a role target is unknown. It becomes
satisfied when one of its credential children or one of its policy children is satisfied,
and for each field in its role with the⇒ symbol (the verifier wants to see the full value
of this field), the full policy entry in its field state table isnot unknown (the full value
of the field has been disclosed). It becomes failed when it is fully processed and it
has no child, or all of its children are failed, or there exists some field in the role with

4In this specification, we support only a single range policy for each field, though it can be easily extended to
allow multiple range policies.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Automated Trust Negotiation Using Cryptographic Credentials · 17

the⇒ symbol whose full entry value in the field state isfalse. It becomes satisfied
when one of its children is satisfied and each field in the role with the⇒ symbol has a
non-false value in the full entry.

(2) Policy target.Let policy-id be the policy identifier in this policy target. If the policy
body corresponding topolicy-id is the constanttrue, then the inital satisfaction state
of this target is satisfied. Otherwise, the initial satisfaction state of a policy target is
unknown.
(a) If there is no constraint in the policy corresponding topolicy-id, the satisfaction

state of the policy target becomes satisfied when it is fully processed and its policy
expansion child is satisfied. It becomes failed when it is fully processed and either
it has no policy expansion child (the pre-condition for the policy has not been
satisfied) or its policy expansion child is failed.

(b) If there is a constraint in the policy corresponding topolicy-id, the satisfaction
state of the policy target becomes satisfied when it is fully processed, its policy
expansion child is satisfied, and the constraint is evaluated and also satisfied. If the
constraint has been revealed (i.e., any policy control child for the constraint has
been satisfied), it can be evaluated when the value or the range of each variable in
the constraint has been disclosed. If the constraint is private, it can be evaluated
by using the private policy evaluation, or by conventional means once the full
value of each variable in the policy has been disclosed. It becomes failed when
it is fully processed and it has no policy expansion child, orits policy expansion
child is failed, or the constraint uses a variable whose corresponding field-policy
entries are allfalse, or the constraint is not satisfied.

(3) Intersection target.The initial satisfaction state of an intersection target isunknown.
It becomes satisfied when it is fully processed and all of its children are satisfied. It
becomes failed when one of its children is failed.

(4) Trivial target. A trivial target is always satisfied.

5.3.2 Attribute state.There are three entries in the attribute state of an attribute goal,
one for full policy, one for bit policy, and one for range policy. The initial value of each
entry isunknown. If the satisfaction state of the attribute control child ofthe attribute goal
becomes satisfied, we mark the value of the corresponding entry in the attribute state to
be true. On the other hand, if the satisfaction state of the attribute control child becomes
failed, we mark the value of the corresponding entry in the attribute state to befalse.

5.3.3 Field-state table.The field-state table for each role or intersection target isini-
tially set to be empty. The values in the field-state table arecomputed based on the field-
state tables of its children or its grandchildren, as they become available. If the given target
is an intersection target, then the field-state table is the cross-product of all the field-state
tables in its intersection children. If the given target is arole target and has a delegation-
credential child, then the field-state table is copied from its child. If the given target is
a role target and has a policy child, then the field-state table is the subset of all tuples in
the field-state table of its grandchild in which the field values satisfy the constraint of its
policy child’s policy. If the given target has a non-delegation credential child and the cor-
responding credential is a standard credential (i.e., one not containing commitments, such
as X.509 certificate), then the precise value of the field is copied to the full entry of the
field-state table. Otherwise, if the current target has an attribute child, depending on the
attribute state of the attribute goal, the opponent revealsthe attribute value as follows. If

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Jiangtao Li et al.

the full entry in the attribute state of the attribute child is true, then the opponent reveals
the exact value of the field and the value is added to the full entry of the field state in the
field-state table. If the bit entry in the attribute state of the attribute child istrue, the bit
entry in the field state is set to contain a reference to the current role target, as well as a
reference to the corresponding attribute in that role target. As field information flows up
the TTG from its sources to constraints that the fields’ values must satisfy, these references
enable the negotiator to determine which fields of which credentials must satisfy those
constraints. If a range disclosure entry in the attribute state of the attribute child istrue,
the opponent proves that the field value belongs to some rangeaccording the precision
parameter. The disclosed range is then written into the range entry of the field state. If an
entry in the attribute state of the attribute child isfalse, then we write the valuefalse into
the corresponding entry in the field state.

The legal update operations do not remove nodes or edges oncethey have been added,
and once a node is fully processed, it remains so thereafter.Consequently, once a target
becomes satisfied or failed, it retains that state for the duration of the negotiation.

5.4 Messages in the Protocol

As described before, negotiators cooperate by using the protocol to construct a shared
TTG, a copy of which is maintained by each negotiator. Negotiators take turns transmit-
ting messages each of which contains a sequence of TTG updateoperations and a set of
credentials to be used in justifying credential edges. Negotiators may also run a set of
cryptographic protocols, described in Section 3, during the ETTG protocol. On receiving
an update operation, a negotiator verifies it is legal beforeupdating its local copy of the
shared TTG. The following arelegalTTG update operations:

—Initialize the TTG to contain a given primary trust target (TT), specifying a legal initial
processing state for this node. (See below.)

—Add a justified edge (not already in the graph) from a TT that is not yet in the graph to
one that is, specifying a legal initial processing state forthe new node. The new TT is
added to the graph as well as the edge.

—Add a justified edge (not already in the graph) from an old node to an old node.
—Mark a node processed. If the sender is the verifier, this marks the node verifier-

processed; otherwise, it marks it opponent-processed.

The legal initial processing state of a trivial target is fully-processed. Both a policy target
and an intersection target are initially opponent-processed. An attribute goal is initially
verifier-processed. A role target is initially either opponent-processed or verifier processed.
These operations construct a connected graph. Satisfaction states of trust targets, field-state
tables of trust targets, and attribute states of attribute goals are not transmitted in messages;
instead, each negotiation party infers them independently.

5.5 Node Processing

Previously we described the ETTG negotiation protocol, in which two negotiators ex-
change update messages. The protocol defines what updates are legal, and the receiver
of a message can verify that the updates in the message are legal. We now describe pro-
cedures forcorrect processing, which update the TTG in a manner designed to satisfy the
primary target whenever this is possible, while enforcing each negotiator’s policies. Cor-
rect processing continues until either the primary target is satisfied (negotiation success),

ACM Journal Name, Vol. V, No. N, Month 20YY.

Automated Trust Negotiation Using Cryptographic Credentials · 19

it is failed (negotiation failure), or neither negotiator can perform a correct update (also
negotiation failure).

Note that a negotiator cannot be forced to follow the correctprocedures, and when it
does not, the other negotiator may not be able to tell. The protocol and the correct pro-
cessing procedures are intended to guarantee that a misbehaving negotiator can never gain
advantage (either learn information or gain access withoutsatisfying relevant policies first)
over a faithful negotiator who follows the protocol and the correct procedures. Therefore,
a normal negotiator has no incentive to misbehave. Still, itis always within the power
of either negotiator to behave incorrectly, and doing so mayprevent the negotiation from
succeeding. For instance, either negotiator can simply abort the negotiation at any time.

5.5.1 Node Processing State Initialization.When a new node is added to a TTG, its
processing state should be initialized as follows:

—A trivial target is fully processed, its satisfaction state is satisfied, and it has no field
state.

—For a role target,〈KV :K.r
?

ևKS〉, if K.r is a dummy role (defined in a policy state-
ment), the target is opponent-processed, which means that the opponent cannot process
it; otherwise, it is verifier-processed. The initial satisfaction state for this target is un-
known. If there are fields in the roleK.r, we add an empty field-state table for this
target.

—A policy target is initially opponent-processed. If the policy body corresponding to
the policy identifier in this target istrue, then the initial satisfaction state is satisfied,
otherwise, the satisfaction state is unknown. There is no field state for this target.

—An intersection target is initially opponent-processed.The initial satisfaction state for
this target is unknown. If there exist fields in any roles in the intersection target, we
create an empty field-state table for this target.

—An attribute goal is initially verifier-processed. The attribute state for the attribute goal
is set to be empty. That is, there is no entry in the attribute state corresponding to this
attribute goal.

5.5.2 Verifier-Side Processing.We now describe how a negotiatorV processes a node
when it is the verifier of the node. These rules apply to nodes that are not yet marked
verifier-processed. We assume thatmgu(R,R′) returns a most general substitution that
makes the corresponding fields of role namesR andR′ syntactically identical.

1. Processing T = 〈V :A.R
?

ևS〉
(a) For each ofV ’s local policy statements in whichA.R′ is a dummy role in the policy
head,A.R andA.R′ are unifiable, andpolicy-id is the corresponding policy identifier,V

can add a policy edgeT ֋〈V :policy-id
?

ևS〉.
(b) V can markT as verifier-processed only after (a) isdone, meaning that all edges that
can be added according to (a) have been added.
(c) If one of the policy children has been satisfied,V copies the values in the field state
of each field from its grandchild, the policy expansion childof the newly satisfied policy
child, to the field states in its current target.

2. Processing T = 〈V :policy-id
?

ևS〉
(a) Let[pre-cond-1 !] B1.R1∩· · ·∩Bk.Rk ; [[pre-cond-2 !] ψ(x1, . . . , xn)] be the policy
body corresponding topolicy-id, and letσ = mgu(R,R′) exist in whichR andR′ are the

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Jiangtao Li et al.

role names in the parent node and the policy head, respectively. If pre-cond-1 is a role, say

A1.R1, V can add a policy control edgeT ֋〈V :A1.σ(R1)
?

ևS〉.

(b) After (a) is done and〈V :A1.σ(R1)
?

և S〉 is satisfied,V can add a policy expansion

edgeT ֋ 〈V :B1.σ(R1) ∩ · · · ∩ Bk.σ(Rk)
?

ևS〉. V can also do so in the case that there
is no pre-condition for the intersection.
(c) If there is no constraint for this policy, (c) is trivially done. Otherwise, ifpre-cond-2 is
a role, sayA2.σ(R2), V can add a policy control edgeT ֋〈V :A2.σ(R2)

?
ևS〉.

(d) After (c) is done and either〈V :A2.σ(R2)
?

ևS〉 is satisfied or there is no pre-condition
for the constraint,V can add a tag to the policy expansion edge with the constraintin it.
(e)V can markT as verifier-processed only after (d) isdone, or if there is no constraint for
the policy after (b) isdone, or if (a) is doneand the policy control child added in (a) has
been marked fail.
(f) T is satisfied only if its policy expansion child has been satisfied and the constraint (if it
exists) in the tag has been satisfied. The constraint can be evaluated only if there is enough
information in the field states corresponding to the required fields. There are the following
three cases.

—When each of the variables in the constraint has in its full entry in the field state a non-
empty value that is not equal tofalse (i.e., all the required attribute values have been
fully disclosed),V determines whether those values satisfy the constraints inthe policy
statement identified by policy-id. If the constraint is satisfied,V marksT to be fully-
satisfied; otherwise,V marksT to be failed. If the constraint is public, then bothV and
S can verify the constraint; otherwise, onlyV verifies the constraint.

—When each of the variables in the constraint has in its full and bit entries in the field
states non-empty values not equal tofalse (i.e., V is allowed to see either one bit or
full information for each of the required attributes in the constraint), the bit entry in
each field state contains a reference to the role target corresponding to the credential
providing the field’s value. If the constraint is private,V runs a private policy evaluation
protocol withS to evaluate the constraint. If the constraint is public,S can prove toV
using zero-knowledge proof techniques that her attributessatisfy (or do not satisfy) the
constraint by using the information stored in the bit entries of the field states to identify
the credentials and fields within them from which each variable in the constraint obtains
its value.

—When some variables in the constraint have in their range entries in the field states a
non-empty value that is not equal tofalse (i.e., all the required attribute values have been
disclosed with certain precisions),V checks whether the range information in these
range entries of the field states, when added to the availableinformation about the other
variable values, is enough to determine whether the constraint can be satisfied. If the
range information is enough to evaluate the constraint,V verifies the constraint accord-
ingly. If the constraint is satisfied,V marksT to be fully-satisfied, otherwise,V marks
T to be failed. If the constraint cannot be evaluated, the satisfaction state ofT remains
unknown. If the constraint is public, then bothV andS can verify the constraint, other-
wise, onlyV verifies the constraint.

3. Processing T = 〈V :B1.R1 ∩ · · · ∩Bk.Rk

?
ևS〉

(a)V can add thek intersection edges,T ֋〈V :Bi.Ri

?
ևKS〉, 1 ≤ i ≤ k

ACM Journal Name, Vol. V, No. N, Month 20YY.

Automated Trust Negotiation Using Cryptographic Credentials · 21

(b) V can markT verifier-processed only after (a) is done.
(c) For each of its intersection children, if it has been satisfied,V copies the values in the
field state of each field from the child target to the field states of its current target. The
intersection target is satisfied if all of its intersection children are satisfied.

5.5.3 Opponent-Side Processing.We now describe how a negotiatorS process a node
when it is the opponent of the verifier of the node. These rulesapply to nodes that are not
yet marked opponent-processed.

1. Processing T = 〈V :A.R
?

ևS〉
(a) If there exists a policy statement with headdisclose(ack, A.R), S can add an attribute

control edgeT ֋〈S :ack-id
?

ևV 〉, whereack-id is the policy identifier for the ack policy.

(b) After (a) is done and〈S : ack-id
?

և V 〉 is satisfied (if it exists), ifS has the credential
A.R←−S, and if there exist a policy statementac-id with headdisclose(ac, A.R), S can

add an attribute control edgeT ֋〈S :ac-id
?

ևV 〉.

(c) After (b) is done and〈S : ac-id
?

ևV 〉 (if it exists) is satisfied,S can add the credential

edgeT ֋ 〈V :S
?

ևS〉. OnceS reveals her credentialA.R←− S, S markT to be fully-
satisfied. If the credential disclosed is a traditional certificate (and all the attributes in the
credential has been disclosed as well),S copies the attribute values to the full entries of the
field states in nodeT .
(d) After (a) is done and〈S : ack-id

?
և V 〉 is satisfied, ifS has a delegation credential

A.R′←−A1.R1,A.R andA.R′ are unifiable andσ = mgu(R,R′), S can add the creden-

tial edgeT ֋〈V :A1.σ(R1)
?

ևS〉.
(e)S can markT as opponent-processed ifT is satisfied, or all of the above steps are done.

2. Processing T = 〈V :attr
?

ևS〉
(a) If there exists a policy statementfull-id with headdisclose(full, attr), S can add an

attribute control edgeT ֋ 〈S : full-id
?

ևV 〉. S adds a full entry to the attribute state and
sets its value to beunknown. If the attribute control child has been satisfied,S sets the
full entry of the attribute state to betrue. Once the full entry of the attribute state becomes
true, S reveals the attribute value corresponding toattr, and copies the value to the full
entry of the field state in the parent node ofT .
(b) If there exists a policy statementbit-id with headdisclose(bit, attr), S can add an

attribute control edgeT ֋ 〈S : bit-id
?

և V 〉. S adds a bit entry to the attribute state and
sets its value to beunknown. If the attribute control child has been satisfied,S sets the bit
entry of the attribute state to betrue. Let us denote byP the parent node ofT . Once the
bit entry of the attribute state becomestrue, S writes the identity ofP to the bit entry of
the field state inP .
(c) If there exists a policy statementrange-id with headdisclose(range, attr, precision),

S can add an attribute control edgeT ֋〈S : range-id
?

ևV 〉. S adds a range entry with the
precision parameter to the attribute state and sets its value to beunknown. If the attribute
control child has been satisfied,S sets the range entry of the attribute state to betrue. Then
S runs a zero-knowledge proof protocol withV to prove thatattr belongs to a range with
certain precision, and writes the range value into the rangeentry of the field state in the
parent node ofT .
(d)S can markT as opponent-processed ifT is satisfied, or all of the above steps are done.

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Jiangtao Li et al.

5.6 Examples of The Extended Trust-Target Graph (ETTG) Protocol

We now give two examples that illustrate the ATNL language and the ETTG protocol.
Example 1 shows the usage of various types of credentials in ATN; example 2 deals with
the scenario in which the constraint is private.�� �� �������	
� �
���� ���
���� ���������	����� � ��� ���������� � ����
!��"�
����� # ��� �
$��� ��������� � ��� �
 %���
!��"�
����� # ��� �
&� �� ���������	����� � ��� �

��� � �������'	��
��� � (��� � � � (
)����� �
 *� �� �� �
 �*� �� �"�
�+	� �
,��� �-.������������ ��� �
 �/� �� 0������������ ��� �
��� �� 1�����	����� � ��� �
�&� �� �
 �$� ����� �
 �,� � ����������� � (�%� � �& � (�)� � �� � (�/� � �� � (

234546789: 45;4<2=673=: 45;4<>7?43 45;4<
@A BCDEFGHFCI JKLL JKLL
���� M��N� O ��� P M�Q�Q�*,&N�

��� � ��� (
Fig. 5. Final TTG for the bookstore example. In this figure,← denotes the symbolև, A
denotesAlice, andB denotesBookSt. The white nodes are created byBookSt and the
grey nodes are created byAlice.

EXAMPLE 1. This example is a simple instance of the ETTG protocol and illustrates
the usage of the first three properties described in Section 3. Referring to the bookstore
example in Section 4.1, we depict the final TTG in Figure 5. Alice and BookSt run the
ETTG protocol as follows: As BookSt wants to see the proof ofBookSt.discount և

Alice in order to grant Alice access, BookSt creates the primary target (node 1) for the
negotiation and sets its satisfaction state to be unknown. If node 1 becomes satisfied, then
the negotiation succeeds. In BookSt’s policy base, there isa policy statement (m1) for
BookSt.discount, hence BookSt creates a policy target (node 2) and adds a policy edge
between node 1 and node 2. As the policy statement (m1) has no pre-conditions, BookSt
reveals the policy by adding a policy expansion child (node 3) and a constraint tag between
the parent (node 2) and the child (node 3). Based on the policy(m1), BookSt wants to see
Alice’s phone number and wants to know whether Alice’s program and DoB satisfy his
constraint. BookSt then creates node 4, 5, 6 and adds them as intersection children to node
3. Since the roleBookSt.DoB is a dummy role and there are policies (m2,m3) associated

ACM Journal Name, Vol. V, No. N, Month 20YY.

Automated Trust Negotiation Using Cryptographic Credentials · 23

with it, BookSt adds a policy target (node 7) as the policy child to node 6. BookSt then
adds a policy expansion child (node 8) to node 7. Similarly, BookSt adds node 9 and 10.
Essentially, BookSt wants to see Alice’s DoB from either a driver license or a passport.
Now BookSt cannot process the TTG any more.

After receiving the TTG from BookSt, Alice begins to processthe graph. Alice first
discloses her credentialn1 (as it is not sensitive) and adds a credential child (node 11).
She cannot disclosure her student credential (n2) immediately, as there exists an AC policy
(p1) for n2. Therefore Alice adds a policy target (node 12) and expands it with a role target
(node 13). Note that the edge between node 11 and 12 is an attribute control edge, which
means that if node 12 is satisfied, then Alice can disclose herstudent credential (n2). Alice
also reveals her digital driver license (without revealingher DoB) to BookSt, creates a
trivial target (node 14), and adds a credential edge betweennode 8 and node 14. At this
point, Alice notices that she needs to prove she is younger than ‘1/1/1984’ and to reveal
her phone number, she adds an attribute goal (node 15) for herDoB attribute and another
attribute goal (node 19) for herphoneNum, she also expands the TTG by adding nodes
16, 17, 18, 20. As the node 16 is trivially satisfied (because the policy forp4 is true), Alice
proves to BookSt that she was born in 1986. Alice’s year of birth flows up from node 8 to
node 3.

BookSt adds a trivial target (node 21) and shows to Alice hisStateU.businessLicense
certificate andBBB.goodSecProcess certificate, which triggers the satisfaction of the
nodes 12 and 20. Alice then reveals her student credential (n2) and her uncertified
phoneNum. The values of Alice’s attributeprogram andphoneNum flow up to node
3, where BookSt verifies that Alice’s attributes satisfy theconstraint. Finally, the primary
target is satisfied and the negotiation succeeds.

EXAMPLE 2. This example illustrates the usage of properties 1, 2, and6 (private pol-
icy evaluation) described in Section 3. Suppose BankWon, anonline bank certified by
National Credit Union Administration (NCUA), offers a special-rate loan. Before apply-
ing the loan, an applicant is required to show a valid driver license. The loan policy is that
the applicant must have either (1) a credit score more than 680 and an income more than
55k, or (2) a credit score more than 700 and an income more than45k. BankWon considers
his loan policy as private information, and discloses (the thresholds of) the policy only to
BankWon’s preferred members. Carol, who is not one of BankWon’s preferred members,
wants to know whether she is eligible for that loan. She has a credit report from Experian
and a tax certificate from Internal Revenue Service (IRS). Carol considers her credit score
and her income to be sensitive attributes. BankWon and Carol’s credentials and policies
are given in Figure 6.

Using the ETTG protocol, BankWon and Carol can negotiate trust successfully. The
final TTG of the negotiation is given in Figure 7. In the ETTG protocol, BankWon first
creates a primary target (node 1), a policy target (node 2), and a role target (node 3).
The edge between node 2 and 3 is a policy control edge. After Carol reveals her driver
license and adds node 4, BankWon is able to expand the loan policy and adds nodes 5 –
14. Carol then reveals her tax certificate and credit report without revealing her sensitive
attributes to BankWon, and adds two attribute goals (node 15and 19) to TTG. As node
6 is not satisfied, the constraint of the loan policy is not revealed to Carol. However, as
the bit policies for Alice’sincome andscore are satisfied, Carol and BankWon are able to
run a private policy evaluation onincome andscore with BankWon’s private constraint.

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Jiangtao Li et al.

Bank ’s credentials and policies:
q1 : NCUA.member ←− Bank
r1 : Bank.loan ←− BMV.driverLicense !

IRS.tax(income = x1) ∩ Bank.credScore(val = x2) ;
Bank.preferred !
((x1 > 680) ∧ (x2 > ‘55k’)) ∨ ((x1 > 700) ∧ (x2 > ‘45k’)

r2 : Bank.credScore(val = x) ←− Equifax.credReport(score = x)
r3 : Bank.credScore(val = x) ←− Experian.credReport(score = x)
r4 : Bank.credScore(val = x) ←− TransUnion.credReport(score = x)
r5 : disclose(ac, NCUA.member) ←− true

Carol ’s credentials:
s1 : Experian.credReport(score = commit(720)) ←− Carol
s2 : IRS.tax(income = commit(‘65k’), employer = commit(‘Company A’)) ←− Carol
s3 : BMV.driverLicense(name = ‘Carol’, DoB = commit(‘06/18/1972’)) ←− Carol

Carol ’s attribute declarations:
t1 : DoB = ‘06/18/1972’ :: BMV.driverLicense(DoB) :: sensitive
t2 : score = 720 :: Experian.credReport(score) :: sensitive
t3 : income = ‘48k’ :: IRS.tax(income) :: sensitive
t4 : employer = ‘Company A’ :: IRS.tax(employer) :: non-sensitive

Carol ’s policies:
u1 : disclose(full, DoB) ←− BBB.goodSecProcess
u2 : disclose(bit, score) ←− NCUA.member
u3 : disclose(range, score, 50) ←− true

u4 : disclose(bit, income) ←− true

u5 : disclose(range, income, 10k) ←− BBB.goodSecProcess
u6 : disclose(ac, Experian.credReport) ←− true

u7 : disclose(ac, IRS.tax) ←− true

u8 : disclose(ac, BMV.driverLicense) ←− true

Fig. 6. The credentials and policies for Example 2

After the private policy evaluation outputstrue (i.e., Carol’s certified attributes satisfy the
constraint), node 2 becomes satisfied. In the end, node 1 is also satisfied and the ETTG
protocol succeeds.

6. BREAKING POLICY CYCLES

In this section, we discuss how to break policy cycles using the ETTG protocol.

6.1 Examples of Policy Cycles

We begin with a few examples of policy cycles and illustrate how such cycles can be broken
using cryptographic protocols.

EXAMPLE 3. Both Alice and Bob have a CIA credential. Alice will revealthat she has
a CIA credential only to those who are also agents of the CIA. Similarly, Bob only reveals
his CIA credential to his peers. The negotiation starts by Alice requesting a document from
Bob. The credentials and policies are given in Figure 8(a) inATNL. Figure 8(b) depicts
the TTG of this example where a policy cycle can be found in nodes 3, 4, 5, and 6. In

ACM Journal Name, Vol. V, No. N, Month 20YY.

Automated Trust Negotiation Using Cryptographic Credentials · 25RS TU TSVWXY Z [\S TU]RZ [^S TU _`aSbXcdeYfWgh i cRj kTSlfW]hdmXV i c\j Z [

\nS [U T Z o
pSTU [Z [

qrstsuvwxy stzsq{uvr{y stzs|v}sr stzs~nS TU T��S�]emh] Z [�S TU TS�]h�h]]h� Z [
R�S [U TTTS�]Wfhll Z o

�STU _`aSbXcdeYfWgh i cRj Z [�STU TSlfW]hdmXV i c\j Z [R�S TU ���S]�bdlfW]h i c\j Z [R\S TU �c�S]�bdlfW]h i c\j Z [RpS TU �]XYS]�bdlfW]h i c\j Z [R^S TU eYfWgh Z [R�S [U �p Z o R�S [U �^ Z o �S TU]\ Z [RRS TU]n Z [RnS TU]p Z [R�S TU lfW]h Z [\�S [U �\ Z o \\S [U �n Z o\RS [U�[��Sghg�h] Z o
��� ��������� ��� ������ ��

Fig. 7. Final TTG for Example 2. In this figure,← denotes the symbolև, B denotes
Bank, andC denotesCarol. The white nodes are created byBank and the grey nodes are
created byCarol.

Bob’s credential and policy:
v1 : CIA.agent ←− Bob
w1 : Bob.document ←− CIA.agent
w2 : disclose(ack, CIA.agent) ←− CIA.agent
w3 : disclose(ac, CIA.agent) ←− true

Alice’s credential and policy:
x1 : CIA.agent ←− Alice
y1 : disclose(ack, CIA.agent) ←− CIA.agent
y2 : disclose(ac, CIA.agent) ←− true

�� ¡ �¢£¤¥¦§¨© ª«¬� ¡ ­�ª «®� ¡ ¯°±�²³§¨©ª «´�±¡ µ�ª ¶·�±¡ ¯°±�²³§¨© ª ¶¸� ¡ ­¬ ª «¹º»¹º»
(a) (b)

Fig. 8. (a) The credentials and policies for Example 3. (b) TTG for Example 3. In this
figure,← denotes the symbolև, A denotesAlice, andB denotesBob. The white nodes
are created byBob and the grey nodes are created byAlice.

the ETTG protocol, Bob first creates notes 1, 2, and 3. Bob wants to see whether Alice
is a CIA agent. Alice has an Ack policy for her CIA credential and she only reveals her
CIA credential to her peers, thus Alice creates nodes 4 and 5.Bob creates node 6 as his

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Jiangtao Li et al.

CIA credential has an Ack policy(w2), then creates an edge between node 3 and node 6
by expanding the Ack policy. At this point, without using thecryptographic tools listed
in Section 3, the negotiation would fail because none of the nodes in the cycle could be
satisfied. To break this policy cycle, Alice and Bob can run anOSBE protocol [Li et al.
2003] in which Bob delivers an envelope to Alice with the property that Alice can open
the envelope if she has a CIA agent credential. This envelopecontains Bob’s CIA agent
credential. Since Alice is a CIA agent, she can successfullyopen the envelope and see
Bob’s CIA credential. Therefore, Alice can mark node 5 satisfied, and can reveal her CIA
credential to Bob. In the end, node 1 becomes satisfied and thenegotiation succeeds. If
Bob does not have a CIA agent credential, he would still engage in an OSBE protocol, but
sending a random string in the envelope. In this way, Bob can ensure that Alice is unable to
observe any behavioral characteristic indicating whetherBob has a CIA credential unless
Alice satisfies Bob’s Ack policy and is therefore authorizedfor the information.

Bob’s credentials, attributes, and policies:
v1 : CIA.agent(level = commit(3)) ←− Bob
v2 : FBI.agent ←− Bob
v3 : level = 3 :: CIA.agent(level) :: sensitive
w1 : disclose(ack, CIA.agent) ←− CIA.agent(level = x) ; x ≥ 2
w2 : disclose(ac, CIA.agent) ←− true

w3 : disclose(full, level) ←− FBI.agent
w4 : disclose(ac, FBI.agent) ←− true

Alice ’s credentials, attributes, and policies:
x1 : CIA.agent(level = commit(4)) ←− Alice
x2 : FBI.agent ←− Alice
x3 : level = 4 :: CIA.agent(level) :: sensitive
y1 : disclose(ack, CIA.agent) ←− CIA.agent ; x ≥ 2
y2 : disclose(ac, CIA.agent) ←− true

y3 : disclose(full, level) ←− FBI.agent
y4 : disclose(ac, FBI.agent) ←− true

Fig. 9. The credentials and policies for Example 4, illustrating that not every cycle can be
broken.

EXAMPLE 4. We now give an example of a policy cycle that cannot be broken by using
TTG. The corresponding credentials and policies in this example are given in Figure 9.
Observe that there is a policy cycle between Alice and Bob’s Ack policies. Recall that in
the ETTG protocol, the attribute disclosure policies can beadded to the TTG only if the
corresponding credential has been disclosed. This is because, unlike Ack policies, attribute
policies may differ from one negotiator to another, and are presumed to be specified by
people who actually have the credential. Thus disclosing anattribute policy can strongly
suggest that the negotiator has the credential, which should not be done unless the opponent
satisfies the associated Ack poliy. However, in the example,when Bob sends to Alice an
oblivious envelope containing proof that his CIA credential satisfies Alice’s policy, Alice
cannot update the TTG to reflect this even though she can open the envelope. This is
because in doing so Alice would reveal fact that her level is greater than or equal to 2,

ACM Journal Name, Vol. V, No. N, Month 20YY.

Automated Trust Negotiation Using Cryptographic Credentials · 27

which Bob is not authorized to know because of Alice’s attribute policy. Therefore, the
policy cycle cannot be broken principally because Alice’s full policy for the level attribute
cannot be revealed to Bob unless Alice knows he satisfies her Ack policy. One would wish
Bob could be told he should include his FBI credential in the oblivious envelope, which
the attribute policy would tell him. But if Alice disclosed the attribute policy, this would
enable Bob to infer that Alice has the CIA credential even if Bob were unauthorized for this
information. Thus it is unsafe for Alice to provide the attribute policy before the oblivious
envelope is sent and therefore sending the oblivious envelope is not sufficient to break the
impass.

6.2 Breaking Policy Cycles Using ETTG

Detecting a policy cycle is easy—we can use any of the existing graph cycle detection
algorithms. However, deciding when and how to break a policycycle is not a trivial task.
When a policy cycle is detected, we might not be able to break it immediately. For example,
if A depends onB andC, andB depends onA. Even if we detect a cycle betweenA and
B, we cannot break it untilC has been satisfied. Another example is that two policy cycles
may be strongly connected, in which case we have to break two cycles simultaneously.
Our strategy to break policy cycles is that we (1) detect policy cycles, then (2) analyze the
cycles to make sure they can be broken, finally (3) use OSBE andOCBE protocols to break
the policy cycles. We next present a more complex example to illustrate how policy cycles
can be broken.

EXAMPLE 5. This example illustrates the usage of properties 1, 2, 4, and 5 (oblivious
usage of credentials and attributes) described in Section 3. Suppose Bob, a CIA agent,
has a secret document to which access is allowed by CIA agentsonly. Bob has a security
clearance certificate from Gov with his security clearance level committed in it. Bob can
show his CIA agent credential only to his peers, and can reveal his security clearance level
only to those whose level is greater than or equal to 3. Similarly, Alice has a CIA agent
credential and a security clearance certificate with certain disclosure policies. Alice shows
her CIA agent credential only to CIA agents with security level greater than or equal to 2.
She discloses her security level only to CIA agents. See Figure 10 for the description of
these credentials and policies in ATNL. When Alice wants to access Bob’s document, they
engage in the ETTG protocol and build a TTG as depicted in Figure 11(a).

There are two policy cycles in the TTG, one cycle has nodes 3, 4, 5, 6, and 8, the other
cycle has nodes 3, 4, 5, 7, 10, 11, 12, 14, 15, 6, and 8. Without breaking the policy cycles,
the negotiation between Alice and Bob would fail, because neither Alice nor Bob can
update the TTG any more. As the two policy cycles share commonnodes, we cannot break
them separately. See Figure 11(b) for the dependency relation between Alice and Bob’s
attributes. To break the policy cycles, Alice and Bob run an OSBE protocol in which Bob
delivers an envelope to Alice with the property that Alice can open the envelope if she has
a CIA agent credential. This envelope contains Bob’s CIA agent credential. In the mean
time, they run an OCBE protocol in which Bob delivers anotherenvelope to Alice such
that Alice can open the envelope if and only if her security level is greater than 2. In the
second envelope, Bob opens the commitment of his security level. Bob learns nothing from
the previous interactions. After Alice opened the two envelopes, she verifies whether the
received CIA credential and security level satisfy her policies. If so, she reveals her CIA
agent credential and her security level to Bob. Now the policy cycles are broken.

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Jiangtao Li et al.

Bob’s credentials, attributes, and policies:
v1 : CIA.agent ←− Bob
v2 : Gov.secClearance(level = commit(3)) ←− Bob
v3 : level = 3 :: Gov.secClearance(level) :: sensitive
w1 : Bob.document ←− CIA.agent
w2 : disclose(ack, CIA.agent) ←− CIA.agent
w3 : disclose(full, level) ←− Gov.secClearance(level = x) ; x ≥ 3
w4 : disclose(ac, CIA.agent) ←− true

w5 : disclose(ac, Gov.secClearance) ←− true

Alice’s credentials, attributes, and policies:
x1 : CIA.agent ←− Alice
x2 : Gov.secClearance(level = commit(4)) ←− Alice
x3 : level = 4 :: Gov.secClearance(level) :: sensitive
y1 : disclose(ack, CIA.agent) ←− CIA.agent

∩ Gov.secClearance(level = x) ; x ≥ 2
y2 : disclose(full, level) ←− CIA.agent
y3 : disclose(ac, CIA.agent) ←− true

y4 : disclose(ac, Gov.secClearance) ←− true

Fig. 10. The credentials and policies for Example 5

7. DISCUSSIONS ON ATNL

In most previous ATN protocols, the only way to satisfy a policy is by sending the cre-
dentials that document the attributes needed to satisfy thepolicy. In this paper, we view
a credential as a structured object and allow the use of cryptographic protocols such as
zero-knowledge proof protocols. This leads to two different degrees in which one can sat-
isfy a policy. For example, when Alice uses a zero-knowledgeproof protocol to prove to
Bob that she has a credential, Bob is convinced himself, but Bob is unable to convince any
third party using the record of the communication. We call this anon-repeatable proof. On
the other hand, if Alice hands over her credentials to Bob, and Bob stores the credentials,
then Bob is able to produce the proof that Alice indeed has therequired attributes to con-
vince other parties, for example, during an audit. We call such a repeatable proof. Note
that a repeatable proof does not require sending the exact bit-stream of a credential. A
noninteractive zero-knowledge proof of possession of a credential also serves the purpose.
However, sending a credential is the most efficient way of proving possession of it, and
there appears to be no reason to use more expensive ways of providing a repeatable proof
of possessing a credential.

In general, a non-repeatable proof is more expensive than a repeatable proof; however,
it has privacy advantages, since the proof cannot be used to convince any other party. In
this paper we take the approach that all policies can be satisfied by non-repeatable proofs.
Our approach can be extended to deal with the situation that certain policies may require
repeatable proofs. For example, ATNL can be extended so thatwhen a role appears in the
body of policy rule, the policy author can specify whether a repeatable proof is needed.

On the credential owner’s side, there are three levels of revealing possession of an at-
tribute: (1) one can behave in a way that suggests one has or doesn’t have the attribute, but
the other party cannot be certain (2) one can provide a non-repeatable proof that one has
credentials documenting the attribute, (3) one can providea repeatable proof for possession

ACM Journal Name, Vol. V, No. N, Month 20YY.

Automated Trust Negotiation Using Cryptographic Credentials · 29¼½ ¾¿ ¾½ÀÁÂÃÄÅÆÇ È É ÊËÌÍÌÎÏÐÑÒ ÌÍÓÌÔÊÕÎÏËÕÒ ÌÍÓÌÔÖÏ×ÌË ÌÍÓÌÔØ½ ¾¿ Ù¼È ÉÚ½ ¾¿ ÛÜÝ½ÞßÅÆÇÈ Éà½Ý¿ á¼È âã½Ý¿ ÛÜÝ½ÞßÅÆÇ ä åÁæ½çÅÂèéÅæÅé ê ëì È âí½Ý¿ ÛÜÝ½ÞßÅÆÇ È â î½Ý¿ åÁæ½çÅÂèéÅæÅé ê ëì È âï½ ¾¿ÙØ È É ð½Ý¿ ¾ È â ¼ñ½Ý¿ éÅæÅéÈ â¼¼½ ¾¿ ÙÚ È É¼Ø½ ¾¿ åÁæ½çÅÂèéÅæÅé ê ëì È É¼Ú½ ¾¿ÝÈ É ¼à½ ¾¿ éÅæÅé È É¼ã½Ý¿ áØ È âòóôô
òóôôõö÷

õö÷ø ù ú
ø ù û

èÞì
¾¿ ÛÜÝ½ÞßÅÆÇ ¾¿ éÅæÅéÝ¿ ÛÜÝ½ÞßÅÆÇ Ý¿ éÅæÅé

èüì
Fig. 11. (a) Final TTG for the Example 5. In this figure,← denotes the symbolև, A
denotesAlice, andB denotesBob. The white nodes are created byBob and the grey nodes
are created byAlice. (b) Disclosure dependency graph for Alice’s and Bob’s sensitive
attributes.

of the attribute. One can use different policies to protect different level of revelation. The
approach taken in this paper uses two kinds of policies: Ack policies govern (1) and (2),
and AC policies govern (3). That is, before the Ack policy governing an attribute has been
satisfied, one has to behave the same way whether one has the attribute or not; after the Ack
policy has been satisfied, one can provide a non-repeatable proof of possession. An AC
policy governs the release of the credentials documenting the attribute, which constitutes a
repeatable proof.

Other designs are also possible. The simplest one is to have only one kind of policy that
govern all three levels of revealment. One problem with thisdesign is that the policies of
different parties about the same attribute may be quite different, and the differences may
hint whether one possesses an attribute or not. Another design is to have Ack policies
govern (1), and AC policies govern (2) and (3). In this design, a policy cycle involving two
Ack policies cannot be broken, for the following reasons. Before the Ack policy governing
an attribute is satisfied, one cannot serve the AC policy, as the fact of having an AC policy
implies possession of the attribute. Even if one runs an OSBEprotocol, one cannot send in
the envelope a proof that one has the attribute as doing so would violate the AC policy in
general. Opening the envelope does not enable the receiver to confirm anything about the
other party’s attributes. Therefore, one cannot make progress in the negotiation.

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · Jiangtao Li et al.

8. CONCLUSION

We have introduced a framework for ATN that supports the combined use of several crypto-
graphic credential schemes and protocols that have been previously introduced piecemeal
to provide capabilities that are useful in various negotiation scenarios. Our framework
enables these various schemes to be combined flexibly and synergistically, on the fly as
the need arises. The framework has two key components: ATNL,a policy language that
enables negotiators to specify authorization requirements that must be met by an opponent
to receive various amounts of information about certified attributes and the credentials that
contain it; ETTG, an ATN protocol that organizes negotiation objectives and the use of
cryptographic techniques to meet those objectives. We haveshown several examples that
illustrate how our framework enables negotiations to succeed that would not were they
conducted using traditional ATN techniques.

ACKNOWLEDGMENTS

This work is supported by NSF IIS-0430274, NSF CCR-0325951,and sponsors of CE-
RIAS. We thank the anonymous reviewers for their helpful comments.

REFERENCES

BAGGA, W. AND MOLVA , R. 2005. Policy-based cryptography and applications. InProceedings of the 9th
International Conference on Financial Cryptography and Data Security.

BALFANZ , D., DURFEE, G., SHANKAR , N., SMETTERS, D., STADDON, J.,AND WONG, H.-C. 2003. Secret
handshakes from pairing-based key agreements. InProceedings of the IEEE Symposium on Security and
Privacy. 180–196.

BLAZE , M., FEIGENBAUM, J., IOANNIDIS, J.,AND KEROMYTIS, A. D. 1999. The KeyNote trust-management
system, version 2. IETF RFC 2704.

BLAZE , M., FEIGENBAUM, J.,AND LACY, J. 1996. Decentralized trust management. InProceedings of the
1996 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 164–173.

BOEYEN, S., HOWES, T., AND RICHARD, P. 1999. Internet X.509 public key infrastructure LDAPc2 schema.
IETF RFC 2587.

BONATTI , P. AND SAMARATI , P. 2000. Regulating service access and information release on the web. In
Proceedings of the 7th ACM Conference on Computer and Communications Security. ACM Press, 134–143.

BOUDOT, F. 2000. Efficient proofs that a committed number lies in an interval. InAdvances in Cryptology —
EUROCRYPT ’00. LNCS, vol. 1807. 431–444.

BRADSHAW, R., HOLT, J.,AND SEAMONS, K. 2004. Concealing complex policies with hidden credentials. In
Proceedings of 11th ACM Conference on Computer and Communications Security. 146–157.

BRANDS, S. A. 2000.Rethinking Public Key Infrastructures and Digital Certificates: Building in Privacy. MIT
Press.

CAMENISCH, J. AND HERREWEGHEN, E. V. 2002. Design and implementation of the idemix anonymous
credential system. InProceedings of the 9th ACM Conference on Computer and Communications Security
(18–22). ACM, 21–30.

CAMENISCH, J.AND LYSYANSKAYA , A. 2001. An efficient system for non-transferable anonymous credentials
with optional anonymity revocation. InAdvances in Cryptology — EUROCRYPT ’01. LNCS, vol. 2045.
Springer, 93–118.

CASTELLUCCIA, C., JARECKI, S.,AND TSUDIK, G. 2004. Secret handshakes from CA-oblivious encryption.
In Advances in Cryptology — ASIACRYPT ’04. 293–307.

CHAUM , D. 1985. Security without identification: Transaction systems to make big brother obsolete.Commu-
nications of the ACM 28,10, 1030–1044.

CLARKE , D., ELIEN , J.-E., ELLISON, C., FREDETTE, M., MORCOS, A., AND RIVEST, R. L. 2001. Certificate
chain discovery in SPKI/SDSI.Journal of Computer Security 9,4, 285–322.

CRAMER, R. AND DAMGÅRD, I. 1998. Zero-knowledge proof for finite field arithmetic, or: Can zero-knowledge
be for free? InAdvances in Cryptology — CRYPTO ’98. LNCS, vol. 1462. Springer, 424–441.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Automated Trust Negotiation Using Cryptographic Credentials · 31

CRAMER, R., FRANKLIN , M. K., SCHOENMAKERS, B., AND YUNG, M. 1996. Multi-authority secret-ballot
elections with linear work. InAdvances in Cryptology — EUROCRYPT ’96. LNCS, vol. 1070. Springer,
72–83.

DAMGÅRD, I. AND FUJISAKI, E. 2002. An integer commitment scheme based on groups with hidden order. In
Advances in Cryptology — ASIACRYPT ’02(1–5). LNCS, vol. 2501. Springer, 125–142.

DETREVILLE , J. 2002. Binder, a logic-based security language. InProceedings of the 2002 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, 105–113.

DODIS, Y., K IAYIAS , A., NICOLOSI, A., AND SHOUP, V. 2004. Anonymous identification in ad hoc groups.
In Advances in Cryptology — EUROCRYPT ’04. 609–626.

DURFEE, G. AND FRANKLIN , M. 2000. Distribution chain security. InProceedings of the 7th ACM Conference
on Computer and Communications Security. ACM Press, 63–70.

ELLISON, C., FRANTZ, B., LAMPSON, B., RIVEST, R., THOMAS, B., AND YLONEN, T. 1999. SPKI certificate
theory. IETF RFC 2693.

FRIKKEN , K. B., ATALLAH , M. J., AND L I , J. 2004. Hidden access control policies with hidden credentials.
In Proceedings of the 3rd ACM Workshop on Privacy in the Electronic Society.

FRIKKEN , K. B., LI , J.,AND ATALLAH , M. J. 2006. Trust negotiation with hidden credentials, hidden policies,
and policy cycles. InProceedings of 13th Network and Distributed System Security Symposium. 157–172.

GUNTER, C. A. AND JIM , T. 2000. Policy-directed certificate retrieval.Software: Practice & Experience 30,15
(Sept.), 1609–1640.

HESS, A., JACOBSON, J., MILLS , H., WAMSLEY, R., SEAMONS, K. E., AND SMITH , B. 2002. Advanced
client/server authentication in TLS. InNetwork and Distributed System Security Symposium. 203–214.

HOLT, J. E., BRADSHAW, R. W., SEAMONS, K. E.,AND ORMAN , H. 2003. Hidden credentials. InProceedings
of the 2nd ACM Workshop on Privacy in the Electronic Society. 1–8.

HOUSLEY, R., FORD, W., POLK , T., AND SOLO, D. 1999. Internet X.509 public key infrastructure certificate
and CRL profile. IETF RFC 2459.

IRWIN, K. AND YU, T. 2005. Preventing attribute information leakage in automated trust negotiation. In
Proceedings of the 12th ACM conference on Computer and Communications Security. 36–45.

JIM , T. 2001. SD3: A trust management system with certified evaluation. In Proceedings of the 2001 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, 106–115.

L I , J. AND L I , N. 2005a. OACerts: Oblivious attribute certificates. InProceedings of the 3rd Conference on
Applied Cryptography and Network Security. LNCS, vol. 3531. Springer, 301–317.

L I , J. AND L I , N. 2005b. Policy-hiding access control in open environment. In Proceedings of the 24nd ACM
Symposium on Principles of Distributed Computing. ACM Press, 29–38.

L I , N., DU, W., AND BONEH, D. 2003. Oblivious signature-based envelope. InProceedings of the 22nd ACM
Symposium on Principles of Distributed Computing. ACM Press, 182–189.

L I , N., GROSOF, B. N., AND FEIGENBAUM, J. 2003. Delegation Logic: A logic-based approach to distributed
authorization.ACM Transaction on Information and System Security 6,1 (Feb.), 128–171.

L I , N. AND M ITCHELL , J. C. 2003. Datalog with constraints: A foundation for trust management languages.
In Proceedings of the 5th International Symposium on Practical Aspects of Declarative Languages. Number
2562 in LNCS. Springer, 58–73.

L I , N., MITCHELL , J. C.,AND WINSBOROUGH, W. H. 2002. Design of a role-based trust management frame-
work. In Proceedings of the 2002 IEEE Symposium on Security and Privacy. IEEE Computer Society Press,
114–130.

L I , N., WINSBOROUGH, W. H., AND M ITCHELL , J. C. 2003. Distributed credential chain discovery in trust
management.Journal of Computer Security 11,1 (Feb.), 35–86.

LYSYANSKAYA , A., RIVEST, R. L., SAHAI , A., AND WOLF, S. 1999. Pseudonym systems. InProceedings of
the 6th Workshop on Selected Areas in Cryptography. LNCS, vol. 1758. Springer, 184–199.

PEDERSEN, T. P. 1991. Non-interactive and information-theoretic secure verifiable secret sharing. InAdvances
in Cryptology — CRYPTO ’91. LNCS, vol. 576. Springer, 129–140.

RIVEST, R. L. AND LAMPSON, B. 1996. SDSI — A simple distributed security infrastructure.

SEAMONS, K. E., WINSLETT, M., AND YU, T. 2001. Limiting the disclosure of access control policies during
automated trust negotiation. InProceedings of the Symposium on Network and Distributed System Security.

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · Jiangtao Li et al.

SEAMONS, K. E., WINSLETT, M., YU, T., YU, L., AND JARVIS, R. 2002. Protecting privacy during on-line
trust negotiation. In2nd Workshop on Privacy Enhancing Technologies. Springer-Verlag.

SMART, N. 2003. Access control using pairing based cryptography.In Proceedings of the Cryptographers’
Track at the RSA Conference 2003. Springer-Verlag LNCS 2612, 111–121.

WINSBOROUGH, W. H. AND L I , N. 2002a. Protecting sensitive attributes in automated trust negotiation. In
Proceedings of the ACM Workshop on Privacy in the ElectronicSociety. ACM Press, 41–51.

WINSBOROUGH, W. H. AND L I , N. 2002b. Towards practical automated trust negotiation.In Proceedings of
the 3rd International Workshop on Policies for DistributedSystems and Networks. IEEE Computer Society
Press, 92–103.

WINSBOROUGH, W. H. AND L I , N. 2004. Safety in automated trust negotiation. InProceedings of the IEEE
Symposium on Security and Privacy. 147–160.

WINSBOROUGH, W. H., SEAMONS, K. E., AND JONES, V. E. 2000. Automated trust negotiation. InDARPA
Information Survivability Conference and Exposition. Vol. I. IEEE Press, 88–102.

WINSLETT, M., YU, T., SEAMONS, K. E., HESS, A., JACOBSON, J., JARVIS, R., SMITH , B., AND YU, L.
2002. Negotiating trust on the web.IEEE Internet Computing 6,6 (November/December), 30–37.

YU, T. AND WINSLETT, M. 2003a. Policy migration for sensitive credentials in trust negotiation. InProceedings
of the ACM Workshop on Privacy in the Electronic Society. ACM Press, 9–20.

YU, T. AND WINSLETT, M. 2003b. Unified scheme for resource protection in automated trust negotiation. In
Proceedings of IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 110–122.

YU, T., WINSLETT, M., AND SEAMONS, K. E. 2003. Supporting structured credentials and sensitive policies
through interoperable strategies for automated trust negotiation. ACM Transactions on Information and System
Security 6,1 (Feb.), 1–42.

Received February 2006

ACM Journal Name, Vol. V, No. N, Month 20YY.

