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Exchange of attribute credentials is a means to establish mutual trust between strangers wishing

to share resources or conduct business transactions. Automated Trust Negotiation (ATN) is an
approach to regulate the exchange of sensitive information during this process. It treats credentials

as potentially sensitive resources, access to which is under policy control. Negotiations that

correctly enforce policies have been called “safe” in the literature. Prior work on ATN lacks an
adequate definition of this safety notion. In large part, this is because fundamental questions such

as “what needs to be protected in ATN?” and “what are the security requirements?” are not
adequately answered. As a result, many prior methods of ATN have serious security holes. We

introduce a formal framework for ATN in which we give precise, usable, and intuitive definitions

of correct enforcement of policies in ATN. We argue that our chief safety notion captures intuitive
security goals. We give precise comparisons of this notion with two alternative safety notions that

may seem intuitive, but that are seen to be inadequate under closer inspection. We prove that

an approach to ATN from the literature meets the requirements set forth in the preferred safety
definition, thus validating the safety of that approach, as well as the usability of the definition.

Categories and Subject Descriptors: K.6.5 [Management of Computing and Information Systems]: Security
and Protection; D.4.6 [Operating Systems]: Security and Protection—access controls; information flow controls

General Terms: Algorithms, Design, Security, Theory, Verification

Additional Key Words and Phrases: access control, attribute-based access control, automated

trust negotiation, credentials, safety, strategy

1. INTRODUCTION

In Attribute-Based Access Control (ABAC) systems, access control decisions are based on
attributes of requesters. These attributes may be arbitrary properties of the requester, such
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as roles he assumes in his home organization, rights to access specific resources, licenses
or degrees held, age, etc., and are often documented by digitally signed credentials. A prin-
cipal proves that it has an attribute by showing an appropriate set of relevant credentials.
Because attributes (such as financial or medical status) may be sensitive, they need pro-
tection. The goal of a growing body of work on automated trust negotiation (ATN) [Hess
et al. 2002; Seamons et al. 2001; Seamons et al. 2002; Winsborough and Li 2002a; 2002b;
Winsborough et al. 2000; Winslett et al. 2002; Yu et al. 2000; Yu and Winslett 2003b; Yu
et al. 2003] is to enable resource requesters and access mediators to establish trust in one
another through cautious, iterative, bilateral disclosure of credentials. The distinguishing
characteristic of ATN that differentiates it from most other trust establishment schemes
(e.g., [Bonatti and Samarati 2000; Herzberg et al. 2000]) is that credentials themselves are
treated as protected resources.

Prior work on ATN lacks an adequate notion of security. Fundamental questions such as
“what needs to be protected in ATN?” and “what are the security requirements?” are not
adequately answered. The main purpose of this paper is to answer some of these questions
by providing a formal ATN framework with precise and appropriate security definitions.
Let us illustrate the deficiencies of security definitions in existing ATN work.

In most ATN frameworks, each negotiator establishes access control (AC) policies to
regulate the disclosure of credentials to negotiation opponents. A typical description in the
literature of the safety requirement for AC-policy-based ATN is the one given in [Yu et al.
2003]: “given a sequenceQ = {C1, . . . , Cn} of disclosures of protected resources, if each
Ci is unlocked at the time it is disclosed, then we say Q is a safe disclosure sequence.”
Here, unlocked means that the AC policy for the credential is satisfied by credentials dis-
closed previously by the other party, and a credential is one kind of resource. This decep-
tively simple requirement turns out to be far from adequate in ensuring that an ATN system
protects the privacy of sensitive attributes. Several groups of researchers have noted [Sea-
mons et al. 2002; Winsborough and Li 2002b; Yu and Winslett 2003a] that although early
ATN designs satisfy the safety requirement for AC policies, they nonetheless fail to ade-
quately protect the privacy of negotiators. So it is recognized that a problem exists with
ATN’s traditional notion of safety. The problem stems from the fact that the traditional
notion is satisfied by ATN designs in which, although a sensitive credential itself is not
transmitted until its associated AC policy is satisfied, the behavior of a negotiator reveals a
great deal about the contents of these credentials. Indeed, most ATN designs do just that.
When a negotiator is asked to prove a sensitive attribute, the negotiator’s behavior depends
on whether it has the attribute or not. By observing the negotiator’s behavior, the nego-
tiator’s opponent can infer whether the negotiator has a sensitive attribute or not. Thus,
in the case where simply having or not having the attribute is private information, while
the negotiator’s opponent may not yet have proof of the authenticity of the attribute, the
privacy of the attribute has certainly been compromised. In [Seamons et al. 2002], some
ad hoc solutions are proposed. For example, it is suggested that instead of transmitting the
AC policy, a negotiator having a sensitive attribute could simply behave as though he did
not, and just wait, hoping the opponent will happen to send enough credentials to satisfy
the AC policy.

Trust negotiation is of little value if participants must mislead one another to protect
sensitive information, since this would make many negotiations fail unnecessarily. Yet
most prior negotiation techniques allow a negotiator’s opponent to gain advantage just
ACM Journal Name, Vol. V, No. N, June 2006.
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in case the negotiator is honest. As we show in this paper, one of the few existing ATN
strategies that is immune from this problem is the eager strategy [Winsborough et al. 2000].
In it, each party transmits all credentials whose access control policies have already been
satisfied, whether these credentials are related to the eventual negotiation goal or not. In the
eager strategy, when a negotiator does not receive a given credential from the opponent,
it does not know whether this is because the opponent does not have the credential, or
because the negotiator simply has not satisfied the opponent’s AC policy for that credential.
However, because the eager strategy does not focus the exchange on credentials that are
relevant to the authorization decision at hand, it is impractical for many scenarios.

In [Winsborough and Li 2002b], an approach was proposed for focusing the credential
exchange while simultaneously protecting sensitive attributes of negotiators. The approach
is based on the notion of an acknowledgement policy (“ack” policy, for short). An ack
policy resembles an AC policy, though it is associated with an attribute, rather than with a
credential proving the attribute. The key difference from AC policy is that one can associate
an ack policy with an attribute one does not have. This makes it possible to provide the
ack policy without in doing so indicating whether one satisfies the associated attribute.
Note that it is not possible to provide an AC policy for an attribute without indicating that
one satisfies the attribute because AC policies are established only for attributes that one
satisfies. The intuitive goal of ack policies is that no one should learn through negotiation
whether or not a negotiator N possesses an attribute without first satisfying its ack policy.
This intuitive notion of safe enforcement of ack policies was not formalized in previous
work using the concept [Winsborough and Li 2002a; 2002b]. Therefore, it was impossible
to prove that a given strategy using ack policies is safe.

The present goal is to articulate a suitable definition of this notion that is precise, usable,
and intuitive. The definition should be precise and usable so that one can prove safety
of negotiation strategies using the definition. The definition should also be intuitive in
that ATN systems satisfying it should fulfill our expectations that sensitive attributes of
the negotiator be protected from unintended disclosure. This goal is in keeping with the
research tradition in information security and cryptography of finding security definitions
for numerous problems and protocols that are suitably precise, usable, and intuitive.

The approach we take in this paper is to formalize the following intuition about safe
enforcement of ack policies: unless N ’s negotiation opponent satisfies the ack policy for a
sensitive attribute, N ’s behavior in the negotiation must give no indication of whether N
possesses any credentials documenting the sensitive attribute. As we will see, the details
of the safety condition are somewhat intricate, and simply preventing an adversary from
determining specific attributes is inadequate. In light of this notion of safety, ack policies
are exactly the sort of policies that are required to enable negotiators to satisfy safety while
presenting to one another information about interdependencies among candidate credential
disclosures: only by using policies that do not depend significantly on his attributes can
a negotiator present policy content governing disclosure of his attributes without leaking
information about his likely attributes.

Accommodating diverse credential systems requires effort. In particular, we seek a no-
tion of safety that can be supported by systems in which credentials can represent dele-
gations of authority. Such credential systems support a limited form of deduction, which
means we must prevent safety being breached through deductive inference. The threat of
probabilistic inference also influences the selection of an appropriate safety condition.
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Let us outline our safety definition. We first formalize the ability of an adversary to dis-
tinguish between one negotiator and another. For each negotiator N and each adversary M ,
there is a set U of attributes whose ack policies are not satisfied by M . We define a strategy
to be safe if any other negotiator N ′ who differs from N only in credentials that prove at-
tributes in U is indistinguishable from N by M based on ATN. We discuss other definitions
that capture similar, but different intuitions about safety, showing they are strictly weaker
and inadequate in various respects. Our notions of safety have important similarities to the
notions of noninterferance [Goguen and Meseguer 1982] and nondeducibility [Sutherland
1986], which we discuss in Section 6.

Although we conclude that AC policies are inadequate for protecting information about
whether or not a principal has a given attribute, they may nonetheless be useful for protect-
ing other information in credentials. For instance, they may be adequate when having the
attribute is not sensitive, but a given attribute value is sensitive. Everyone has a blood type,
but one’s particular blood type might be somewhat sensitive. If a credential containing
one’s blood type is protected by an AC policy, no information is leaked by disclosing that
one has such a credential, so long as the contents of the credential are not revealed. Thus,
we also provide a precise definition of safe enforcement of AC policies.

The contributions of this paper are as follows:

(1) A formal framework for trust negotiation and a precise definition of safety for enforce-
ment of ack policies in that framework.

(2) Proof that the eager strategy is safe based on this formal definition.
(3) A formal analysis of the relationship between our safety definition and two alternative

definitions that also seem intuitive.
(4) An analysis that shows why our first safety definition is preferable to the two alterna-

tives mentioned above.
(5) A family of strategies based on the Trust Target Graph (TTG) protocol [Winsborough

and Li 2002b] that supports flexibility in the search for a successful negotiation.
(6) A proof that all strategies in this family are safe according to the formal definition.

This validates both the usability of the definition and the design of the TTG frame-
work.

(7) A precise definition of safety for AC policies that can be used with cryptographic ATN
protocols.

The rest of this paper is organized as follows. In Section 2, we discuss in detail why
previous notions of safety are inadequate. Section 3 presents contributions 1-4 from the
list above; Section 4 reviews the TTG protocol and presents contributions 5 and 6. In
Section 5, we discuss deficiencies of previous safety definition for AC policies and give
our definition (contribution 7). We discuss related work in Section 6 and conclude in
Section 7. The appendix contains proofs of theorems.

2. PRIOR UNSATISFACTORY NOTIONS OF SAFETY

Most existing negotiation strategies are safe according to the limited definitions laid out
for them by their designers. However, as we show in this section, they are not safe in
the sense of protecting the content of credentials, which is arguably the central goal of
ATN: if credential content did not need protection, requesters could simply push all their
credentials to the access mediator for evaluation. This leads us to the inevitable conclusion
ACM Journal Name, Vol. V, No. N, June 2006.
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that the definition of safety set forth in prior work is inadequate, thereby motivating our
introduction of adequate definitions in Section 3. Consider the following illustration of
unsafe behavior exhibitted by typical strategies.

EXAMPLE 1. Bob obtains a credential from the Internal Revenue Service (IRS) docu-
menting his low-income status. This credential is useful, for example, when Bob interacts
with a nonprofit organization that offers a service preparing free living wills over the In-
ternet for people with low incomes. Suppose Bob uses an AC policy recommended by the
IRS for protecting this credential, which says that Bob will show his IRS.lowIncome cre-
dential to organizations that document they are registered with the IRS as nonprofits. Bob
uses his ATN-enabled browser to contact an ATN-enabled service provided by a nonprofit
to obtain a living will, and Bob’s browser and the service’s access mediator will negotiate
successfully.

Another Web user, Alice, does not have a low-income credential. Alice and Bob each
visit the web site of an unfamiliar real estate service, SwampLand.com. When Alice and
Bob each request information about listed properties, the SwampLand access mediator
initiates a negotiation requesting Alice and Bob prove they have low-income status, which
is not an appropriate requirement. If Alice and Bob use a typical ATN strategy, such as the
TrustBuilder1-Relevant Strategy [Yu et al. 2003], this request induces Bob to present his
AC policy for his low-income credential. The aim in doing so is to prompt SwampLand
to present a non-profit credential, should it have one. This enables Bob, for instance,
to determine whether SwampLand is authorized to receive Bob’s low-income credential
without SwampLand having to transmit all its credentials to Bob. By contrast, the same
request for a low-income credentials causes the negotiation with Alice to fail, since Alice
does not have the requested credential and therefore has no AC policy she can present, since
AC policies are defined only for credentials one actually has. SwampLand.com can easily
observe the difference between Alice and Bob’s behaviors, and deduce Bob’s low-income
status, even though Bob’s AC policy indicates he does not want to share that information
with for-profit companies. Granted, SwampLand.com does not obtain proof that Bob is
low-income. However, this should provide Bob little comfort in using the ATN strategy,
as SwampLand.com’s unauthorized inferences are accurate just in case he adheres to the
protocols faithfully. Similarly, SwampLand.com can deduce that Alice does not have the
credential, though Alice also may not wish this to be disclosed.

The unsafe behavior illustrated in this example is not an artifact of the details of the
TrustBuilder strategy, but rather characterizes most ATN strategies. It occurs because
these strategies transmit AC policies, or information derived from them, in an effort to
focus exchanges on credentials that are relevant to enabling the negotiation to succeed.
This focus aims to reduce message size and other resource utilization, as well as to avoid
distributing sensitive information needlessly. Assuming ATN strategy should not fail when
success is possible, the competing goal of protecting sensitive attributes and this goal of
focused disclosure seem to be at odds with one another. This is because of the nature of AC
policies, namely that they are associated only with attributes that the negotiator satisfies.
A negotiator cannot consistently reply to credential requests by transmitting AC policies
without revealing which credentials he has and which he does not have. Although it may
be possible to obfuscate this information to some degree by replying in a less consistent
manner [Seamons et al. 2002], doing so tends to cause negotiation to fail unnecessarily. An
alternative is to introduce a form of policy that can be associated with an attribute whether
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or not the negotiator satisfies it. In keeping with [Winsborough and Li 2002a; 2002b], we
call such policies ack policies. We now use a simple example to show how ack policies
can be used to stop information leakage.

EXAMPLE 2. Continuing the scenario from Example 1, Bob adopts the IRS’s recom-
mended ack policy, which says that he will discuss the matter of low-income status only
with nonprofit organizations registered with the IRS. Alice does not have the low-income
status credential, but also considers information about her income status sensitive, so she
also adopts the same ack policy.

There is a simple negotiation strategy according to which when Alice and Bob each
visit the web site of SwampLand.com, and both are asked to prove they have low-income
status, both Alice and Bob then ask SwampLand.com to prove that it is nonprofit. There-
fore, SwampLand.com only learns that both Alice and Bob considers their income status
sensitive, but not whether they are low-income or not.

2.1 Why Ack Policies Are Practical

It has been argued [Yu and Winslett 2003a] that the use of ack policies is unworkable
because people who feel they have nothing to hide with respect to a given attribute will not
bother to use an ack policy for that attribute, thereby casting suspicion on those who do.
However, in most cases, a negotiator wishing to protect some of his sensitive attributes by
using ack policies also needs to enforce ack policies on some attributes about which he has
nothing to hide. Otherwise the fact that he protects the attribute probably indicates that he
has something to hide about whether he has that attribute. In particular, if a negotiator has
some attributes that it discloses to a given opponent and some other attributes that it does
not, the opponent can determine whether, among those attributes for which the opponent
is authorized, the negotiator uses ack policies for attributes about which he has nothing to
hide. If there are no such ack policies, the opponent can infer that the negotiator likely has
something to hide with respect to other attributes with which the negotiator associates ack
policies.

So in the typical case, the negotiator wishes to protect some attributes about which he
has nothing to hide and therefore little interest in designing ack policies. In such cases, if
there were a straightforward mechanism for obtaining suitable ack policies for potentially
senstive attributes, the simplest course of action would be always to use them. After all, if
exceptions were to be made, they would have to be specified.

We argue that defining appropriate ack policies and making them available should be
part of attribute vocabulary design. Using some mix of natural and formal language, the
vocabulary designer can be expected to explain the attributes he names. Characterizing the
appropriate recipients of the named information can be viewed as part of that explanation.
This answers the question of where ack policies come from.

To ensure that ack policies can be collected as needed, we can take advantage of a mech-
anism that also provides a nice solution to the problem of avoiding unintended collisions
among attribute names. Name collisions can be prevented by making each attribute name
include a reference, such as a URL, to a document describing the attribute vocabulary
of which it should be interpreted as being a part. Names containing different vocabulary
references cannot be misinterpreted as being the same. It is natural that the vocabulary
description should include a description of appropriate recipients of information about at-
tributes in the vocabulary. We argue that the latter description should be expressed as a
ACM Journal Name, Vol. V, No. N, June 2006.
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formal policy that can be retrieved by a negotiator automatically. Using the suggested
scheme for disambiguating the intended vocabulary, any request that a negotiator prove he
has a certain attribute must include a reference to the vocabulary document. It therefore in-
cludes a reference to an ack policy recommended by the vocabulary designer—the premier
expert in the meaning of the attribute. The negotiator can simply retrieve the ack policy and
use it as his own in the remainder of the negotiation. By using the designer-recommended
policy, the negotiator obtains not only convenience, but uniformity in his behavior with
respect to that of other negotiators.

One minor drawback of the scheme is that if a negotiator retrieves an ack policy during
a negotiation, this network activity may be observable by the adversary. A simple solution
to this problem, however, is to retrieve the ack policy for every attribute the adversary
inquires about during negotiation.

2.2 Safety and Delegation

Ensuring safe enforcement of ack policies is tricky. One difficulty comes from the fact
that credentials may contain rules for deriving principals’ attributes. Such rules are nec-
essary in credential systems that express delegation of authority, as is almost essential in
decentralized environments and is common in most access control languages designed for
distributed access control. When credentials may contain delegations, having one attribute
may imply having another attribute. Suppose for instance that a credential asserts that any-
one who has attribute t1 also has attribute t2. Then, the following two kinds of inference
can be made.

—forward positive inference: If the opponent M knows that N has attribute t1, then M
infers that N also has attribute t2 (i.e., modus ponens).

—backward negative inference: If the opponent M knows that N does not have attribute
t2, then M infers that M does not have t1 either (i.e., modus tollens).

Furthermore, sometimes the only way of having the attribute t2 is by having attribute t1.
In that case M can perform the following two kinds of inference as well.

—backward positive inference: If M knows that N has attribute t2, then M infers that
N also has attribute t1.

—forward negative inference: If M knows that N does not have attribute t1, then M
infers that N does not have attribute t2 either.

Because of the possibility of these (and maybe other) inferences, it is not obvious what the
precise safety requirement for ack policies should be. Although previous work develops
techniques to try to defend against these inferences, it is not clear whether these techniques
satisfy the intended security requirements, since such requirements have not been defined
in a precise way.

3. A FORMAL FRAMEWORK FOR TRUST NEGOTIATION

In this section, we present a formal framework for automated trust negotiation and pre-
cise definitions for safety in this framework. In Section 3.1, we set up the framework and
in Section 3.2 we give the definition of the safety requirement for a negotiation strategy.
In Section 3.3 we show that the eager strategy satisfies this safety requirement. In Sec-
tion 3.4, we discuss two alternative safety notions that appeal to different intuitions and
show that they are weaker than the definition in Section 3.2. We also present reasons why
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we ultimately dismiss each of these alternatives as inadequate. In Section 4, we apply the
framework to a credential system that supports delegation, extending a strategy from the
literature to obtain a family of strategies that satisfy our safety notion.

3.1 The Framework

An ATN system is a 7-tuple 〈K, T , E , S, T,Resource,Policy〉 whose elements are as fol-
lows:

—K is a countable set of principals. Each principal is identified with a public key. We use
K, possibly with subscripts, to denote principals.

— T is a countable set of attributes. Each attribute t is identified by a pair containing an
attribute authority (which is a principal) and an attribute name (which is a finite string
over some standard alphabet).

— E is a countable set of credentials that could legally be issued. We use e for members
of E and E for finite subsets of E .

— S : E → K is a function; S(e) ∈ K is called the subject of credential e. If S(e) = K, e
is a credential for K.

— T : E → 2T is a function such that each T (e) is finite and nonempty. A credential e
proves that S(e) has or possesses the attributes in T (e). For each K and each set E of
credentials for K, the set of attributes induced by E is T (E) =

⋃
e∈E T (e).

— Resource is a countable set of resources.
— Policy denotes the set of positive propositional logical formulas in which the proposi-

tions are attributes in T . These formula are called policies and we use φ to denote one
policy. If E is a set of credentials having subject K and if T (E) |= φ, we say that φ is
satisfied by K.
Possession of attributes in T may be considered sensitive, and the goal of ATN is to

protect such information. In our framework, one credential may prove that its subject
possesses more than one attributes. In addition to supporting credentials that explicitly
aggregate attributes, this feature will be useful when we introduce delegation in Section 4.

Notice that whether or not a credential proves possession of an attribute is independent of
the presence of other credentials. In particular, given a set of credentials E, if no credential
e ∈ E proves an attribute t by itself, the combination of credentials in E does not prove
t either. We can and do allow conjunctions of attribute to be required in policies. For
instance, one can authorize a discount for principals with a valid university student ID
and an ACM membership credential, but we do not enable one to define or protect the
derived attribute of being a student member of the ACM, based on these two credentials.
The student attribute or the ACM-member attribute must be protected if being a student
member of ACM is sensitive.

In this model, a participant in the ATN system is characterized by a finite configuration
G, which is given by G = 〈KG, EG,AckG,ACG〉. The elements of G are as discussed
below. (We drop the subscripts when G is clear from context.) We denote the set of all
configurations by Configuration.

—K is the principal controlled by the participant; this means that the participant has access
to the private key that corresponds to K, enabling the participant to prove itself to be the
(presumably unique) entity controlling the key.
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—E ⊂ E is the set of credentials that are assumed to have been issued for K in the
configuration G.

—Ack : T ↪→ Policy is a partial function mapping a finite subset of attributes in T to
policies. Attributes in the preimage of Ack are called sensitive attributes. For sensitive
attribute t, Ack[t] is called the ack policy of t (in G). Ack can associate an ack policy
with an attribute whether K possesses the attribute or not.

—AC : Resource ↪→ Policy is a partial function mapping a finite subset of resources to
policies. Resources in the preimage of AC are resources the participant has.

EXAMPLE 3. Consider the scenario described in Examples 1 and 2. Bob’s config-
uration is GB = 〈KB , EB ,AckB ,ACB〉, in which KB is Bob’s public key, EB con-
tains one credential that proves KB has IRS.lowIncome, and AckB(IRS.lowIncome) =
IRS.nonprofit. Alice’s configuration is GA = 〈KA, EA,AckA,ACA〉, in which EA = ∅
and AckA(IRS.lowIncome) = IRS.nonprofit.

While we assume that each principal (public key) is controlled by at most one entity,
it is possible that one entity controls several principals. The reader may wonder why in
that case our notion of configuration includes just one principal. Why not let a negotiator
use several principals in a negotiation? The reason we do not is that it makes it difficult to
ensure that the principals all correspond to a single entity, so it opens the door to colluding
entities obtaining resources they should not have. This is prevented in our model.

Before a trust negotiation process starts, the two negotiators establish a secure connec-
tion and authenticate the principals they each control. In addition to ensuring that sensitive
information is not disclosed to any third parties who may be monitoring the communi-
cations, this also ensures that one can be confident that credentials revealed by the other
participant indeed belong to the participant. One way to achieve this is for the two parties
to establish a TLS/SSL connection using self-signed certificates.

A negotiation process starts when one participant (called the requester) sends a request
to another participant (called the access mediator) requesting access to some resource. The
access mediator identifies the policy protecting that resource and then starts the negotiation
process. The negotiation process is modeled formally as a pair of sequences of message,
each sequence being defined by one negotiator. The negotiation proceeds by two nego-
tiators taking turns extending these sequences, thus modeling message exchange. Each
negotiator maintains a local state during the negotiation process. Internal structure of the
messages and local states are opaque in the abstract framework described in the current
section. However we assume there are two distinguished states: success , and failure . A
negotiation process fails when one of the two negotiators enters into the failure state. (In
practice, a negotiator might send a message notifying the opponent about the failure; for
technical convenience, we choose not to include such a message in the model here.) A
negotiation process succeeds when the access mediator enters into the success state. A
negotiation process stops when it succeeds or when it fails.

A negotiation strategy determines the structure of states and what actions a negotiator
takes in a negotiation process. More specifically, a negotiation strategy is a 5-tuple strat =
〈Q,M, rstart, start, reply〉 whose elements satisfy the following:

— Q is a countable set of states. We use q (possibly with superscripts and subscripts) to
denote a state.

ACM Journal Name, Vol. V, No. N, June 2006.
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—M is a countable set of messages. We use m and a for messages, possibly with sub-
scripts.

—The function rstart : Configuration × K → Q defines the initial state of the requester,
given his configuration G and the requester principal KO. This state is rstart(G, KO) =
q, in which q 6∈ {success, failure}.

—The function start : Configuration × Resource × K → Q ×M defines how an access
mediator starts a negotiation, given his configuration G, the resource requested ρ, and
the requester principal KO. It yields start(G, ρ,KO) = 〈q, m〉. The access mediator
uses q as its initial local state and, when q 6∈ {success, failure}, sends the message m
to the requester to start the negotiation.

—The function reply : Q × M → Q × M defines each action taken by a negotiator,
given the negotiator’s configuration G, its current state q, and the last message m from
the opponent. It yields reply(q, m) = 〈q′,m′〉. The negotiator changes state to q′ and
(when q′ 6∈ {success, failure}) sends m′ to the other negotiator.

3.2 Safety of Ack-Policy Enforcement

We now define what it means when we say a negotiation strategy is safe. Intuitively, a
strategy is safe if the ack policies are correctly enforced when using the strategy. What does
it mean to say that a negotiator N ’s ack policies are correctly enforced? The definition we
will present uses the following intuition: no adversary M , using observations it can make
in negotiation processes with N , can make any inference about credentials proving the
attributes of N it is not entitled to know (i.e., attributes whose ack policies are not satisfied
by M ).

To make the above intuition precise, we first model the ability of adversaries. An ad-
versary is given by a set of principals it controls and a set of credentials for each of the
principals. This models the ability of entities controlling different principals to collude.
(We want a notion of safety that precludes colluding principals from inferring information
that none of them is authorized for by pooling their observations about how the negotiator
behaves with each of them.) We assume each such set contains all credentials potentially
available to the principal for use in trust negotiation. (If an adversary controls a principal
that is an attribute authority of an attribute t, then credentials about t are available to the
adversary.) We assume that an adversary only interacts with a participant N through trust
negotiation. We allow the adversary M to initiate negotiation with N , by sending N a re-
quest, as well as to wait for N to initiate a negotiation process by sending a request to M .
An adversary is limited by the credentials available to it, which determine the attributes
possessed by the principals it controls. We assume that it is infeasible to forge signatures
without knowing the private keys.

The next definition introduces several concepts in a top-town fashion. It begins by giving
the main definition of indistinguishability of configurations and then gives definitions for
terms used in the main definition. The definition formalizes the observations an adversary
M can make by engaging in negotiations with a negotiator that uses a given strategy. We
capture this in terms of M ’s ability to determine that the negotiator’s actual configuration
G is not some other configuration G′. When M cannot do this, G and G′ are said to be
indistinguishable. The definition then formalizes the actions that an attacker can take and
the response it induces in a negotiator that has a certain configuration and uses a certain
strategy. The goal of the definition is to enable us to articulate the intuition that if an
ACM Journal Name, Vol. V, No. N, June 2006.
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adversary cannot distinguish between two configurations, one of which has an attribute
and the other of which does not, then the adversary cannot infer whether the negotiator has
the attribute or not. This will be made precise below.

Definition 3.1 Indistinguishability, Attack Sequence, Induced Reaction Sequence.
Given an adversary M , a negotiation strategy strat, and two configurations G and G′, G
and G′ are indistinguishable under strat by M if for every attack sequence seq that is
feasible for M , the reaction sequence induced by seq from G is the same as the reaction
sequence induced by seq from G′.

In the following, we define feasible attack sequences and the reaction sequences they
induce. There are two forms of attack sequence, requester and responder. A requester
attack sequence has the form [KA, ρ, a1, a2, . . . , ak], in which KA is a principal, ρ is a
resource, and a1, a2, . . . , ak are messages. This corresponds to the case in which the ad-
versary uses KA, a principal it controls, to request access to resource ρ, and then sends
a1, a2, . . . , ak one by one in the negotiation. Given a configuration G and a strategy
strat = 〈Q, q0, start, reply〉, the reaction sequence induced by a requester attack sequence
[KA, ρ, a1, a2, . . . , ak] is the sequence of messages: [m1,m2, . . . ,m`] such that there ex-
ists a sequence of states [q1, q2, . . . , q`]that satisfies the following conditions:

(1) 〈q1,m1〉 = start(G, ρ,KA)

(2) for all i ∈ [2, `], 〈qi,mi〉 = reply(qi−1, ai−1)

(3) for all i ∈ [1, `− 1], qi 6∈ {success, failure},
(4) either ` = k + 1 or both 1 ≤ ` ≤ k and q` ∈ {success, failure} (in the latter case, the

negotiation ends before the complete attack sequence is used)

A responder attack sequence has the form [KA, a1, a2, . . . , ak], in which KA is a princi-
pal and a1, a2, . . . , ak are messages. This corresponds to the case that the negotiator sends
a resource request to the adversary, who responds by sending the messages of the attack se-
quence. Given a configuration G and a strategy strat = 〈Q, rstart, start, reply〉, a reaction
sequence induced by a responder attack sequence [KA, a1, a2, . . . , ak] is the sequence of
messages [m1,m2, . . . ,m`] such that there exists a sequence of states [q0, q1, . . . , q`] that
satisfies the following conditions:

(1) q0 = rstart(G, KA)

(2) for all i ∈ [1, `], 〈qi,mi〉 = reply(qi−1, ai)

(3) for all i ∈ [1, `− 1], qi 6∈ {success, failure},
(4) either ` = k + 1 or both 1 ≤ ` ≤ k and q` ∈ {success, failure}.

Observe that an attack sequence may induce different reaction sequences when interact-
ing with different strategies. In particular, these reaction sequences may be of different
lengths, and some may be shorter than the attack sequence. To simplify presentation, we
choose to define an attack sequence as an object that exists independent of the possible
reaction sequences it induces.

Given an adversary M , an attack sequence seq is feasible for M if KA is controlled
by M and the only credentials included in seq are those in credentials available to M .
Feasibility formalizes the notion that M cannot forge signatures as part of computing seq.

ACM Journal Name, Vol. V, No. N, June 2006.



12 · W. Winsborough and N. Li

The notion of indistinguishability given in Definition 3.1 is suitable only for determinis-
tic negotiation strategies. Furthermore, the way a feasible attack sequence is defined limits
strategies that can be considered to those that verify possession of a credential by seeing
the digital signature in the credential and verifying that the signature is valid. These limi-
tations do not affect the development of this paper, as the strategies that we analyze in this
paper all satisfy the above requirements.

A more general way of defining indistinguishability is to follow the definition of indis-
tinguishability in the cryptographic literature, see, e.g. [Goldreich 2001]. In this approach,
each negotiation strategy is modeled as a Probabilistic Polynomial-time Interactive Turing
Machine (PPITM), which takes a configuration as its private input. A negotiation pro-
cess is modeled as a joint computation between two PPITMs. Given an adversary M , a
distinguisher A based on M is a PPITM that takes M as private input, interacts with a
negotiation strategy, and outputs either 0 or 1. We use the notation A(M)[S(G)] to denote
the output of A when given M as private input and interacting with the strategy S, which is
given G as its private input. We say that two configurations G and G′ are indistinguishable
under a strategy S if for any distinguisher A based on M :

| Pr[A(M)[S(G)] = 1]− Pr[A(M)[S(G′)] = 1] | is negligible in the security parameter

where the security parameter can be taken as the minimal length of public keys used by the
attribute authorities, and the probability is taken over the coin choices of A and S.

Observe that indistinguishability under Definition 3.1 implies the above cryptographic
notion of indistinguishability, assuming that the signature schemes used in the credential
are secure. If G and G′ are indistinguishable under strat in the sense of Definition 3.1,
then the only way to observe any difference at all between interacting with G and G′ is
by forging a credential the adversary does not have, which can be successfully carried out
only with negligible probability.

Definition 3.2 Unacknowledgeable Attribute Set. Given a configuration G and an ad-
versary M , we say that an attribute t is unacknowledgeable to M if no principal controlled
by M possesses attributes that satisfy AckG(t). We define UnAcks(G, M) to be the set of
attributes that are unacknowledgeable to M .

Intuitively, ATN should not enable an adversary M to learn any information about
UnAcks(G, M) that M would not otherwise be able to learn. Given such a set of un-
acknowledgeable attributes, the negotiator’s credentials can be divided into those that can
be released to M and those that cannot.

Definition 3.3 Releasable and Unreleasable Credentials. Given a set of credentials E
and a set of unacknowledgeable attributes U , the set of unreleasable credentials consists
of those that define unacknowledgeable attributes, and is given by unreleaseable(E,U) =
{e ∈ E | T (e) ∩ U 6= ∅}. The remaining elements of E are releasable credentials:
releaseable(E,U) = E − unreleaseable(E,U) = {e ∈ E | T (e) ∩ U = ∅}.

Equipped with this terminology, we can now state that if U is the set of attributes that
must not be acknowledged to M and if two negotiators using the same strategy have the
same set of releasable credentials with respect to U , then they should behave the same from
the point of view of M . To put it another way, a strategy is credential-combination-hiding
if configurations that differ only in unreleasable credentials are indistinguishable. We now
ACM Journal Name, Vol. V, No. N, June 2006.
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formalize this intuition in the central definition of the paper, which requires that an ATN
strategy hide all information about credentials representing unacknowledgeable attributes.

Definition 3.4 Credential-Combination Hiding. A negotiation strategy strat
is credential-combination-hiding safe if for every pair of configurations
G = 〈K, E, Ack,AC〉 and G′ = 〈K, E′,Ack,AC〉, and every adversary M , if
releaseable(E,UnAcks(M,G)) = releaseable(E′,UnAcks(M,G)), then G and G′ are
indistinguishable under strat by M .

One aspect of Definition 3.4 that differs from prior notions of safety is that it is con-
cerned only with the attributes M has, and not with the ones M proves in the negotiation.
This simplifies matters and is entirely justified because our objective is to ensure that in-
formation flow is authorized, not that it is matched by a compensatory flow in the reverse
direction. For instance, if a negotiator has cached (valid) opponent credentials from a
previous negotiation, there is no need to require those credentials to be retransmitted.

Nevertheless, since a safe strategy must function correctly with any adversary M , M
must in general prove its attributes before N reveals attributes that depend on them. If
M ’s attributes and N ’s attributes are mutually interdependent, then it may be there is no
safe strategy that would allow these attributes to be shown, even though N and M both
possess the attributes required to permit them each to reveal the attributes in question. The
strategies we discuss in this paper are unable to support using attributes that participate in
dependence cycles with attributes of the adversary. In many cases such cyclic dependences
can be handled by using cryptographic protocols, such as those harnessed for use in ATN
in [Li et al. 2005]. Such protocols can, for instance, transmit messages that provide positive
proof to an adversary that the negotiator has a certain attribute just in case the adversary has
the attributes required to be eligible for that information. However, these are nondetermin-
istic protocols. Thus, to extend our notion of safety to support such protocols, we would
need to generalize our notion of indistinguishability, as outlined above in our discussion
of that topic. It remains open whether cryptographic protocols can “break all cycles,” that
is, can provide a safe strategy that always enables negotiators to reveal attributes that the
adversary is authorized to know.

Definition 3.4 does not protect against every possible form of information leakage during
ATN, especially when an attacker has certain knowledge about the distribution of creden-
tials. For example, the attacker may know that entities having a credential e are likely
to have another credential that proves the possession of a sensitive attribute that is not in
T (e). Similarly, an attacker may know that entities having a credential e are less likely
to possess certain sensitive attributes. We speculate that our model could be extended to
address this threats. For instance, one approach to remedy the threat identified above is to
replace T (e) in Definition 3.3 by a larger set, T (e). Whereas T (e) is the set of attributes
proven by credential e, T (e) is the set of attributes that e suggests the principal either has
or does not have. This will enlarge the set of unreleasable credentials and strengthen the
resulting safety property.

Definition 3.4 also does not protect against inferences that take advantage of possible
relationships between two principals’ attributes. For example, an attacker may know that
if one principal K1 has a sensitive attribute, then another principal K2 is also likely to have
the attribute. Then the attacker may learn K2’s attribute by negotiating with K1. While
such inferences can be stopped if K1 and K2 use the same policies for protecting their
attributes, Definition 3.4 does not by itself prevent such inferences being made.
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M = FE
Q = Configuration× FE × FE × K × Resource

rstart(G, KO) =
startState = 〈G, ∅, ∅, KO,null〉
return startState

start(G, ρ, KO) =
if ACG(ρ) is trivially satisfied, return 〈success,null〉
publicCreds = {e ∈ E | each policy in AckG(T (e)) is trivially satisfied}
startState = 〈G, ∅, publicCreds, KO, ρ〉
return 〈startState, publicCreds〉

reply(〈G, opCreds, locCreds, KO, ρ〉, m) =
opCreds+1 = opCreds ∪m
if local negotiator is resource provider (i.e., ρ 6= null )

and opCreds+1 proves KO satisfies ACG(ρ)
return 〈success,null〉

locCreds+1 = {e ∈ E | opCreds proves KO satisfies each policy in AckG(T (e)) }
m+1 = locCreds+1 − locCreds
if m+1 = ∅ return 〈failure,null〉
return 〈〈G, opCreds+1, locCreds+1, KO, ρ〉, m+1〉

Fig. 1. The eager strategy. FE denotes the set of finite subsets of E .

3.3 Safety of The Eager Strategy

Next, we discuss the eager strategy and observe that it satisfies Definition 3.4. A negotia-
tor using the eager strategy sends all credentials as soon as the attributes they define have
their ack policies satisfied by credentials received from the opponent. The two negotiators
take turns exchanging all credentials that are unlocked, i.e., that define attributes whose
ack policies have been satisfied by credentials disclosed previously by the opponent. In the
first transmission, the access mediator sends all credentials defining unprotected attributes.
The requester then sends all credentials defining unprotected attributes or attributes whose
ack policies were satisfied in the first transmission. The negotiators continue exchanging
credentials in this way until either the policy governing the desired resource has been sat-
isfied by credentials sent by the requester, in which case the negotiation succeeds, or until
a credential exchange occurs in which no new credentials become unlocked, in which case
the negotiation fails.

Definition 3.5 Eager Strategy. The eager strategy is presented in Figure 1. It uses a
state of the form 〈G, opCreds, locCreds,KO, ρ〉, in which G is the negotiator’s configura-
tion, opCreds and locCreds are the sets of credentials disclosed thus far by the opponent
and the negotiator, respectively, KO is the opponent’s public key, and ρ is a resource if the
negotiator is an access mediator and null otherwise.

THEOREM 3.6. The eager strategy is credential-combination-hiding safe.

The proof is in Appendix A.

EXAMPLE 4. If Alice and Bob have the configurations shown in Example 3, and each
one negotiates with SwampLand.com, which has no credentials, both negotiations start
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with SwampLand sending an empty message and then immediately fail, with no further
messages flowing. For the sake of illustration, if we assume that KA = KB , AckA = AckB

and ACA = ACB , then SwampLand.com obtains no basis on which to distinguish Alice
from Bob1.

It should be noted that the eager strategy does not take advantage of the distinguishing
characteristic of ack policies, viz., that they can be defined for attributes the negotiator does
not possess, and therefore can be revealed without disclosing whether the negotiator has
the attribute. In Section 4, we present and prove safe a strategy that takes advantage of the
fact that ack policies can be safely disclosed, enabling the strategy to use them to focus the
exchange on relevant credentials.

3.4 Weaker Notions of Safety

In this section we discuss two weaker notions of safety that seem natural to consider, one
of which in particular seemed quite appealing to us at first. However, as we explain at the
end of this section, it turns out that both are inadequate. These two alternative notions of
safety are strictly weaker than credential-combination hiding; in this section we prove their
logical relationship to credential-combination hiding and to one another.

A strategy that violates Definition 3.4 may not actually enable an adversary to make any
inferences about the negotiator’s unacknowledgeable attributes. A violation means that
there exist configurations G and G′ = 〈KG, E′,AckG,ACG〉 and an adversary M such
that the releasable credentials of G and G′ are the same, but G and G′ can be distinguished
by M . This means that M can infer that certain combinations of unreleasable credentials
are not candidates for being the exact set held by G; however it does not ensure M can rule
out any combination of unacknowledgeable attributes.

For example, suppose that low-income status can also be proved by multiple credential
issued by the IRS. A strategy that violates Definition 3.4 may enable an adversary to rule
out a negotiator’s having one of these credentials, without enabling the adversary to infer
that a negotiator does not have the low-income attribute.

Thus, it seems natural to consider a weaker notion of safety in which we ensure only that
M cannot rule out any combination of attributes. The goal of the following weaker safety
notion, which we call attribute-combination hiding, is to preclude negotiation enabling
the adversary to make any inferences that certain attribute combinations are impossible.
However, when there are interdependencies among attributes, anyone familiar with the
credential scheme can rule out certain attribute combinations. For instance, if every cre-
dential proving one attribute t1 also proves another attribute t2, it is impossible to have t1
but not t2. Therefore, the definition only precludes the adversary inferring things he does
not already know.

Definition 3.7 Attribute-Combination Hiding. A negotiation strategy strat is attribute-
combination-hiding safe if for every configuration G = 〈K, E, Ack,AC〉, for every
subset U of T , and for every expressible subset U ′ of U , there exists a configuration
G′ = 〈K, E′,Ack,AC〉 such that (a) T (E′)∩U = U ′ and (b) for every adversary M such
that UnAcks(G, M) ⊇ U , G and G′ are indistinguishable under strat by M .

Given a set U of attributes, U ′ is an expressible subset of U if there exists a set of

1In practice, Alice and Bob would not have the same key; the point is that SwampLand.com cannot distinguish
someone who has the low-income attribute from someone who does not.
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credentials E0 such that T (E0) ∩ U = U ′. By “exists” here, we mean hypothetically; the
credentials in E0 need never actually have been issued.

Definition 3.7 says that if N uses strategy strat, then from M ’s point of view, N could
have any expressible combination of attributes in U . If the definition is violated, then
there is a configuration G, a set of attributes U , and a U ′ ⊆ U such that there exists a
credential set E′ that agrees with U ′ on U (i.e., T (E′) ∩ U = U ′), and every such E′

is distinguishable from EG by some adversary M with UnAcks(G, M) ⊆ U . In other
words, M can determine that T (E′) ∩ U 6= U ′, thereby ruling out U ′ as a candidate for
the combination of unacknowledgeable attributes held by N .

Notice the importance in Definition 3.7 of fixing U as a lower bound on UnAcks(G, M)
before picking a G′ that works for all M satisfying the bound. It would not be adequate to
find a different G′ for each M because then colluding attackers could pool their knowledge
to rule out the various G′s.

One might object that attribute-combination hiding is still too strong. In our running
example, Bob could use a strategy that violates this requirement without enabling Swamp-
land to determine whether Bob has the low-income attribute. Violation means only that
Swampland can rule out Bob having a certain combination of attributes. For instance,
Swampland might be able to infer that Bob is not both low-income and over 65 years old
without being able to determine which attribute Bob does not have.

The following still weaker notion, which we call attribute hiding, only prevents the
adversary learning whether specific attributes are satisfied. It says that an adversary cannot
determine through ATN whether or not the negotiator has any given unacknowledgeable
attribute.

Definition 3.8 Attribute Hiding. A negotiation strategy strat is attribute-hiding safe if,
for every configuration G = 〈K, E, Ack,AC〉 and every attribute t, there exists a G′ =
〈K, E′,Ack,AC〉 that differs from G in t (i.e., t ∈ T (E)− T (E′) or t ∈ T (E′)− T (E))
and, for every adversary M , if t in UnAcks(G, M), G′ is indistinguishable from G by M .

A violation of attribute hiding means that some M can use ATN to determine whether or
not N satisfies a particular unacknowledgeable attribute, which is clearly something that
any reasonable safety definition must preclude. The following theorem verifies that both
credential-combination hiding and attribute-combination hiding do so.

THEOREM 3.9. The relative strength of the safety definitions is as follows:

(1) If strat is credential-combination-hiding safe, then it is attribute-combination-hiding
safe.

(2) If strat is attribute-combination-hiding safe, then it is attribute-hiding safe.

The proof is in Appendix B.

Attribute hiding by itself is not sufficient as a safety requirement because it does not pre-
clude the adversary M inferring that N does not have a certain combination of attributes.
For example, a strategy could be attribute-hiding safe while enabling the adversary to infer
N has either a CIA credential or an NSA credential, so long as M cannot determine which
of these is the case. Since even this imprecise information clearly may be damaging, this
makes attribute hiding an unacceptable standard for ATN safety. This problem is prevented
by attribute-combination hiding, illustrating that it is strictly stronger than attribute hiding.
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The problem with attribute-combination hiding is revealed when we consider the proba-
bilistic inference of attributes. Assume that the opponent has some prior knowledge about
the probability that each credential combination occurs; the opponent can easily infer in-
formation about the probability that each attribute combination occurs. Given a set U of
unacknowledgeable attributes, safety should mean that after any number of negotiations,
the opponent has no basis on which to improve his estimate of the probability that the ne-
gotiator has any given attribute combination in U . To make this more concrete, suppose
that several configurations each induce a given set of unacknowledgeable attributes U ′ and
that all but one of them are distinguishable from the negotiator’s actual configuration G.
This does not violate the requirement of attribute-combination hiding. However, it does
mean that the opponent can rule out many configurations. So, for instance, if the one
indistinguishable configuration is very rare, the adversary can learn that N ’s unacknowl-
edgeable attributes are very unlikely to be exactly U ′. In the CIA and NSA credential
example above, learning that the negotiator probably does not have a certain combination
(e.g., none) of the credentials can be detrimental, even if that knowledge is not entirely
certain. Credential-combination hiding does not have this problem because all configura-
tions with the same releasable credentials are indistinguishable, so it does not permit the
opponent to rule out any of the configurations that induce U ′.

4. APPLYING THE MODEL WITH DELEGATION

We now discuss the application of our model to credential systems that support forms of
delegation common in trust management languages. Delegation credentials enable decen-
tralization of authority over attributes, and support administrative scalability. They are
essential to the traditional trust-management approach to authorization [Blaze et al. 1996],
where they allow a single attribute, such as an access right, to be delegated from one princi-
pal to another. However they can be more general [Li et al. 2003; Li et al. 2002], specifying
that having attribute t1 implies having attribute t2. Here the authority on t2 is delegating
to the authority on t1 some control over who satisfies t2.

In this section we present the TTGstrat family of ATN strategies. Unlike with the
eager strategy, negotiators exchange information about their ack policies so as to focus
their credential disclosures on credentials that are relevant to the negotiation. In TTGstrat,
credentials, ack policies, and AC policies are all expressed using the language RT0 [Li
et al. 2002; Li et al. 2003], which supports delegation. TTGstrat is based on the trust-
target-graph (TTG) approach of Winsborough and Li [2002b], which it generalizes in that
the search for successful branches in the negotiation structure is more flexible.

The main result of this section is that TTGstrat strategies provide credential-
combination hiding. This supports our contention that Definition 3.4 is a useful defini-
tion of safety for ATN. It also shows that the use of ack policies enables negotiators to
safely focus one another’s credential disclosures on relevant credentials, even when using
a credential system that supports delegation.

In terms of the framework given in Section 3.1, when the credential system supports del-
egation, we capture this by presuming that the credentials directly represented in the model
are those that assign attributes directly to principals specified in the credential. These are
the only credentials that appear in the configuration of a negotiator. In the environment,
there is also a set L of delegation credentials that do not belong to a specific negotiator,
since they can be used in many proofs that show various principals have a given attribute.
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In general, a delegation credential ` ∈ L asserts that one attribute implies another attribute.
So, to handle the inferencing problems raised in Section 2, when there are delegation cre-
dentials, init(G) will return a G in which AckG protects attributes more strongly than does
AckG.

4.1 Confidentiality Assumptions

We make the simplifying assumption that all delegation credentials are available to the
negotiator. If we assume only that delegation credentials are available to principals that
satisfy the attributes defined in the credentials, negotiators cannot safely protect attributes
they do not have. When having t1 implies having t2, it is not possible to hide not having
t1 unless one also hides not having t2, so the negotiator must be aware of the implication.
Thus, it appears to be inherent that a negotiator cannot effectively negotiate while protect-
ing all information about an attribute without knowing whether it is at least possibly related
to other attributes he may be asked about in the course of the negotiation.

The assumption that delegation credentials are available is typically justified when at-
tributes are characteristics of subjects or roles that they occupy within their organizations.
For instance, it is unlikely to be private information that a university delegates to its regis-
trar authority for identifying students. However, when attributes are capabilities to access
specific resources, there may be times when delegation of those capabilities are sensitive.
If the negotiator does not have access to all delegation credentials, but has an upper bound
for the set, he can still negotiate safely. However, if this is done, negotiation may fail in
some cases where it would succeed if the negotiator had perfect knowledge of the dele-
gation credentials. For instance, although a negotiator may not know it, it may be that
an attribute representing a given permission can depend on other attributes representing
the same permission, but cannot depend on attributes representing something else. With-
out having this information, safety would require the negotiator to protect all attributes as
strongly as it does the permission. Thus it seems that our assumption can be relaxed only
at the cost of having some negotiations fail that would otherwise succeed.

4.2 The Language for Credentials and Policies

We first describe the language for credentials and policies. The language is a subset of
RT0 [Li et al. 2002; Li et al. 2003]. Credentials, ack policies, and AC policies are all
expressed using statements in this language.

Constructs of RT0 include principals, attribute names, and attributes. An attribute name
is a string over a standard alphabet. An attribute takes the form of a principal followed by
an attribute name, separated by a dot, e.g., K.r and K1.r1. (In [Li et al. 2002; Li et al.
2003], attributes are called roles.)

There are three types of statements in our subset of RT0, each corresponding to a dif-
ferent way of defining attributes. For consistency, we maintain the naming convention for
these three statement types used in [Li et al. 2002; Li et al. 2003] where further discussion
of the intuition behind these statement forms can be found:

— Type-1: K.r←−K0

— Type-2: K.r←−K1.r1

— Type-4: K.r←−K1.r1 ∩K2.r2 ∩ · · · ∩Kn.rn

A credential is a digitally signed type-1 statement. A delegation credential is a digitally
signed type-2 statement. Type-4 statements can be used only for policies.
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EPub.discount
(1)←− EOrg.preferred

(2)←− StateU.student
(3)←− RegistrarB.student

(4)←− Alice.

Fig. 2. A credential chain showing that Alice is authorized for EPub’s student discount.

EXAMPLE 5. A fictitious Web publishing service, EPub, offers a discount to preferred
customers of its parent organization, EOrg. EOrg considers students of the university Sta-
teU to be preferred customers. StateU delegates the authority over identifying students to
RegistrarB, the registrar of one of StateU’s campuses. RegistrarB then issues a credential
to Alice stating that Alice is a student. These are represented by four RT0 credentials:

EPub.discount ←− EOrg.preferred (1)
EOrg.preferred ←− StateU.student (2)
StateU.student ←− RegistrarB.student (3)
RegistrarB.student ←− Alice (4)

The credential “EPub.discount ←− EOrg.preferred” is read: if EOrg assigns a principal
the attribute “preferred”, then EPub assigns the that principal the attribute “discount”. The
four credentials above form a chain, pictured in Figure 2, proving that Alice is entitled to a
discount.

In our framework, a policy is a positive propositional formula in which the propositions
are attributes in T . In this section, such a policy is represented by a dummy attribute
drawn from a set TD, a new set of attributes that is disjoint from T . Dummy attributes are
defined by one or more type-2 and/or type-4 statements in which the attributes to the right
of the arrow are drawn from T ∪ TD. Dummy attributes are defined by statements that are
assumed to be locally available to the policy enforcer. Non-dummy attributes are defined
by non-delegation and delegation credentials that must be provided to the policy enforcer.
Each non-delegation credential K.r←−K0 is stored (and protected by) its subject, K0.

The semantics of the above language can be defined through several equivalent ways,
e.g., using sets, graphs, or logic programming rules [Li et al. 2002; Li et al. 2003]. Here,
we present a logical semantics. In this semantics, we use one binary predicate hasAttr.
Each statement is translated into a first-order logic sentence.

—From K.r←−K0 to hasAttr(K0,K.r).
—From K.r←−K1.r1 to ∀z(hasAttr(z,K.r)⇐ hasAttr(z,K1.r1))
—From K.r←−K1.r1∩ · · ·∩Kn.rn to ∀z(hasAttr(z,K.r)⇐ hasAttr(z,K1.r1)∧ · · ·∧

hasAttr(z,Kn.rn))
Given a set E of non-delegation (type-1) credentials that have the same subject K0,

a set L of delegation (type-2) credentials defining non-dummy attributes, and a set P of
statements defining dummy attributes (type-2 and type-4), T (E) is the set of attributes K.r
such that the first order theory translated from E ∪ L ∪ P implies hasAttr(K0,K.r).

4.3 A Simplified Trust Target Graph Protocol

In this section, we introduce a simplified version of the trust-target graph protocol intro-
duced in [Winsborough and Li 2002b]. We are able to simplify it because we are using
only a subset of RT0. The protocol accommodates a diverse family of strategies based
on TTGs. While different strategies that use the protocol may construct a wide variety of
TTGs, all strategies permitted by the protocol construct TTGs that soundly demonstrate
negotiator attributes.
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In this protocol, a trust negotiation process involves the two negotiators working together
to construct a trust-target graph (TTG). A TTG is a directed graph, each node of which
is a trust target. Trust targets, whose syntax is given below, are queries issued by one
negotiator about the other negotiator’s attributes. When a requester requests access to a
resource, the access mediator and the requester enter into a negotiation process. The access
mediator creates a TTG containing one target, which we call the primary target. The access
mediator then tries to process the primary target, and sends the partially processed TTG
to the requester. In each following round, one negotiator receives from the other new
information about changes to the TTG, verifies that the changes are legal, and updates
its local copy of the TTG accordingly. The negotiator then tries to process some nodes,
making its own changes to the graph, which it then sends to the other party, completing
the round. The negotiation succeeds when the primary target is satisfied; it fails when the
primary target is failed, or when a round occurs in which neither negotiator changes the
graph. In the next section we show how the TTG protocol supports the enforcement of ack
policies to protect sensitive attribute information.

Nodes in a Trust-Target Graph. A node in a TTG is one of the three kinds of trust
targets, defined as follows. Nodes are unique.

—A attribute target takes the form 〈KV : K.r
?

� KS〉, in which KV is (a principal con-
trolled by) one of the negotiators, K.r is a attribute, and KS is a principal. KS is the
subject of the target, which is the negotiator opposing KV . This target means that KV

wants to see a proof of hasAttr(KS ,K.r).

—An intersection target takes the form 〈KV : (K1.r1 ∩ · · · ∩Kn.rn)
?

�KS〉. This means
that KV wants to see the proof that hasAttr(KS ,K1.r1) ∧ · · · ∧ hasAttr(KS ,Kn.rn).

—A trivial target takes the form 〈KV :KS
?

�KS〉, in which KV is one of the negotiators,
and KS is a principal. Trivial targets provide placeholders for edges in the TTG.

In each of the above forms of targets, we call KV the verifier, and KS the subject of
the target. Each target has a satisfaction state, which has one of three values: satisfied,
failed, or unknown. Each target also has a processing state, which is a pair of Boolean
states: verifier-processed and opponent-processed. Depending on target kind, these are
initially either true or false. The processing state of a target can be changed by the veri-
fier by setting verifier-processed to true; similarly for the opponent of the verifier. When
the verifier is faithfully executing the protocol, a node is verifier-processed if the verifier
cannot process the node any further, meaning that the verifier cannot add any new child to
the node via a justified edge, for instance because he has no credentials that would justify
the edge. When the opponent of the verifier is faithfully executing the protocol, a node is
opponent-processed if the opponent cannot process the node any further. When a node is
both verifier-processed and opponent-processed, we say that it is fully processed.

Edges in a Trust-Target Graph. Three kinds of edges are allowed in a trust-target graph,
listed below. Each kind of edge has its own requirements for being justified. We use � to
represent edges in TTG’s. Note that the edges of a TTG form a set, not a multiset.

—An implication edge takes the form 〈KV :K.r
?

�KS〉�〈KV :χ
?

�KS〉, in which χ is a
principal, an attribute, or an intersection. An implication edge has to end at an attribute
target, but can start from any target. We call 〈KV : χ

?
� KS〉 an implication child of
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〈KV : K.r
?

� KS〉. (We use similar “child” terminology for other kinds of edges.) An
edge always points from the child to the parent. An implication edge is justified if the
edge is accompanied by a credential of the form K.r←−χ.

—An intersection edge takes the form 〈KV : (K1.r1 ∩ · · · ∩ Kn.rn)
?

� KS〉� 〈KV :
Ki.ri

?
�KS〉, where i is in 1..n. An intersection edge is always justified.

—A control edge takes the form 〈KV : K.r
?

� KS〉� 〈KS : K ′.r′
?

� KV 〉. Control
edges are used for handling acknowledgment policies. This edge would be added by
the negotiator controlling KS ; intuitively it means that, before this negotiator will show
anything indicating whether KS possesses K.r, it wants to see a proof that KV possesses
K ′.r′ first. A control edge is always justified.

Messages in the Protocol. As described above, negotiators cooperate through use of
the protocol in constructing a shared TTG, ttg , a copy of which is maintained by each
negotiator. Negotiators alternate transmitting messages each of which contains a sequence
of TTG update operations and a set of credentials to be used in justifying implication edges.
On receiving a message m, a negotiator verifies that the update operations it contains are
legal before applying the operations to its local copy of the shared TTG. This is done
by using the Boolean-valued function legalUpdate(m, ttg). The following are legal TTG
update operations:

—Initialize the TTG to contain a given primary TT, specifying a legal initial processing
state for this node. (See below.)

—Add a justified edge (not already in the graph) from a TT that is not yet in the graph to
one that is, specifying a legal initial processing state for the new node. The new TT is
added to the graph as well as the edge.

—Add a justified edge (not already in the graph) from an old node to an old node.
—Mark a node processed. If the sender is the verifier, this marks the node verifier-

processed; otherwise, it marks it opponent-processed.

These operations construct a connected graph. The legal initial processing state of a
trivial target is fully-processed. An intersection target is initially opponent-processed, and
an attribute target is initially either opponent-processed or verifier-processed.

Satisfaction states of trust targets are not transmitted in messages; instead, each nego-
tiation party infers them independently. The satisfaction-state rules presented in the next
section ensure that negotiators using the protocol always reach the same conclusions re-
garding node satisfaction.

Trust Target Satisfaction State Propagation. We now describe how to determine the
satisfaction state of targets:

—The initial satisfaction state of an attribute target is unknown. It becomes satisfied when
one of its implication children is satisfied. It becomes failed when it is fully processed
and either it has no implication child, or all of its implication children are failed.

—The initial satisfaction state of an intersection target is unknown. It becomes satisfied
when it is fully processed and all of its children are satisfied. It becomes failed when
one of its children is failed.

—A trivial target is always satisfied.
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〈EPub :StateU.student
?

�Alice〉

6(2)

〈EPub :EOrg.preferred
?

�Alice〉

6(1)

〈EPub :EPub.discount
?

�Alice〉

〈Alice :EPub
?

�EPub〉

6(A)

〈Alice :BBB.member
?

�EPub〉
������1(i)

-
(ii)

〈EPub :Alice
?

�Alice〉

6(4)

〈EPub :RegistrarB.student
?

�Alice〉
PPPPPPi (3)

Fig. 3. Trust Target Graph created during negotiation between Alice and EPub. The edges labeled (i) and (ii)
represent control edges, corresponding to the dependencies given by Alice’s ack policy (i) and those added by
the auxiliary function init (ii). Implication edge (A) must be added by EPub and the credential justifying it must
be transmitted to Alice before Alice adds implication edges (3) and (4).

The legal update operations do not remove nodes or edges once they have been added,
and once a node is fully processed, it remains so thereafter. Consequently, once a target
becomes satisfied or failed, it retains that state for the duration of the negotiation.

PROPOSITION 4.1. If a principal updates a TTG legally and propagates the satisfac-
tion state correctly, then in the TTG, when a target 〈KV : K.r

?
� KS〉 is satisfied, the

credentials associated with the TTG prove that hasAttr(K.r, KS). Similarly, when a tar-

get 〈KV :K1.r1 ∩ · · · ∩Kn.rn
?

�KS〉 is satisfied, the credentials associated with the TTG
prove that hasAttr(K1.r1,KS) ∧ · · · ∧ hasAttr(Kn.rn,KS).

The proof is in Appendix C.

EXAMPLE 6. Alice is cautious about whom she tells that she is a university student.
Her ack policy for StateU.student requires recipients of this information to be members
of the Better Business Bureau (BBB): AckAlice(StateU.student) = BBB.member. EPub can
prove this by using the following credential:

BBB.member ←− EPub (A)

Notice that if an adversary were to ask Alice directly about RegistrarB.student, Alice must
not indicate whether she has the attribute unless and until the adversary shows he satisfies
Alice’s ack policy for StateU.student. In the next section we introduce an auxiliary function
init that Alice can use to ensure her ack policy for RegistrarB.student is restrictive enough
to ensure this is handled correctly. The TTG constructed during a negotiation between
Alice and EPub is shown in Figure 3.

4.4 A Family of TTG Strategies

In this section, we describe a family of negotiation strategies that each use the TTG proto-
col. In the next section, we prove the safety of this family of strategies.
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An Auxiliary Configuration-Initialization Function. We now define an auxiliary func-
tion init(G) that is essential for enforcing ack policies in the context of delegation creden-
tials. It strengthens the ack policies of some attributes so as to ensure that other attributes
are adequately protected.

First, we introduce the delegation credential graph, which is a directed graph represent-
ing the attribute implication relationships documented by credentials in L. The node set of
the graph is T (the set of all attributes) and the edge set is as follows: for each credential
K0.r0←−K1.r1 in L, there is an edge pointing from K1.r1 to K0.r0.

The function init(G) takes G = 〈KG, EG,AckG,ACG〉 and returns an extended config-
uration, given by G = 〈KG, EG,AckG,ACG, LG〉. That is, the function changes the ack
policy and collects delegation credentials. We have illustrated the need to strengthen the
ack policy above in Example 6. Delegation credentials are issued in a decentralized man-
ner and stored throughout the system. To be used by a negotiator, a delegation credential
must first be retrieved. Part of init’s job is to retrieve the delegation credentials that may
be needed during negotiation. In practice, it is important to avoid the need to collect cre-
dentials during negotiation because doing so could create a kind of covert channel: if the
adversary can observe network traffic generated by the negotiator, he may be able to infer
sensitive information, for instance, that the negotiator is unfamiliar with an attribute that
the adversary has asked about, and so must not have the attribute. This must to be avoided
if the attribute needs to be protected.

Specifically, init does the following:

(1) For each attribute K.r ∈ T that is sensitive (i.e., AckG(K.r) is defined), collect all
delegation credentials in L that can reach K.r in the delegation credential graph. This
enables one to determine all attributes that imply (directly or indirectly) the sensitive
attribute K.r.

(2) Propagate the ack policies so that if K1.r1 implies K0.r0, then the ack policy for K1.r1

is at least as strong as the ack policy for K0.r0 (in the sense that AckG(K1.r1) |=
AckG(K0.r0)). This defeats the forward positive- and negative-inference attacks de-
scribed in Section 2 as it ensures that when one reveals whether one has the attribute
K1.r1 or not, the ack policy for K0.r0 has also be satisfied.
The propagation is achieved as follows. For each attribute K.r ∈ T , introduce a
new attribute name rK.r to be used for representing the ack policy of K.r, and define
KG.rK.r to be equivalent to the conjunction of the ack policies of all attributes implied
by K.r. The following are technical details of this process. We assume that the new
attribute name rK.r is uniquely determined based on K.r. We create one new rule:
KG.rK.r←−K ′

1.r
′
1 ∩ · · · ∩K ′

n.r′n in which {K ′
1.r

′
1, . . . ,K

′
n.r′n} ⊆ TD enumerates

the ack policies of every attribute in T reachable from K.r in the delegation credential
graph, including K.r itself. If {K ′

1.r
′
1, . . . ,K

′
n.r′n} is empty, define AckG(K.r) =

true; otherwise define AckG(K.r) = KG.rK.r.
(3) For each attribute K.r ∈ T that is either sensitive or that is possessed by G directly

(i.e., K.r←−KG ∈ EG), collect all credentials that are reachable from K.r. LG is
now defined to be the set of all credentials collected in steps 1 and 3.
Collecting credentials reachable from all attributes possessed by G enables the nego-
tiator to know the set of attributes it satisfies, as will be needed for successful negotia-
tion. Collecting credentials reachable from sensitive attributes is needed to help defeat
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the backward negative-inference attack described in Section 2. If t2 is implied by t1
and t1 is sensitive, but not held by G, the negotiator needs to be aware of t2. When
asked if he holds t2, the negotiator must not provide the answer until the opponent
proves satisfaction of the ack policies for t1.

Operations of TTG Negotiation Strategies. We denote strategies in the TTG family by
TTGstrat = 〈Mttg, Qttg, rstartttg, startttg, replyttg〉.Mttgis the set of messages discussed
in the previous section. Each state q ∈ Qttg is given by a triple consisting of an extended
configuration, a TTG, and an opponent principal. The state is initialized by using one of
the following two functions:

startttg(G, ρ,KS) returns the state given by q1 = 〈init(G), ttg ,KS〉 in which ttg consists

of a single trust target, 〈KG :ACG(ρ)
?

�KS〉. It also returns a message m1 that encodes
this TTG initialization step.

rstartttg(G, KS) returns the state 〈init(G), ttg ,KS〉 in which ttg is empty.

An important optimization is to precompute init(G), since it is invariant across negotia-
tions.

The key idea underlying the function replyttg, presented in Figure 4, is as follows. When
a negotiator N sees a trust target which asks N to prove possession of a sensitive attribute
K.r, N asks the opponent to prove that it satisfies the ack policy for K.r. After this is
done, N reveals whether it has any type-1 credential proving possession of K.r. If some
delegation credential says that K.r is implied by K1.r1, N adds the trust target for K1.r1

and an implication edge, then repeats the process for K1.r1. This way, if N has attribute
K1.r1 and thus has attribute K.r, this information is released only after K1.r1’s ack policy
is also satisfied. This defeats the backward positive-inference attack.

The centerpiece of the replyttg function is a collection of rules for correct processing,
which define candidate updates that can be performed on the TTG. These updates are legal,
and are designed to enforce ack policies. Given an extended configuration G, an opponent
principal KS , and a TTG ttg , candidates(G, KS , ttg) returns a set of candidate updates.
This function is defined in the following sections.

replyttg is implicitly parameterized with respect to the definition of a choice opera-
tion. By defining various choice operations, different strategies in the family are obtained.
choice(outmsg , candidates) selects from among candidate updates, candidates, one up-
date to be performed. The choice operation signals the end of a negotiator’s turn by return-
ing the flag value stop. The values the choice operation returns are assumed to satisfy the
two following requirements: naturally, choice(outmsg , ∅) = stop; and, to ensure negotia-
tions do not fail needlessly, negotiators must not send empty messages if they can avoid it.
So when outmsg .size = 0, we assume that choice(outmsg , candidates) is not stop unless
candidates is empty. Given a sequence of one or more update operations ops and a TTG
ttg on which they are legal, another primitive operation we use, apply(ops, ttg), returns
the TTG that results.

In each of its turns, a negotiator iteratively selects an update operation and performs it
locally. These operations are transmitted at the end of the negotiator’s turn, along with any
credentials needed to justify them. Correctly executing negotiators continue taking turns
until either the primary target is satisfied (negotiation success), it is failed (negotiation
failure), or neither negotiator can perform a correct update (also negotiation failure). The
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replyttg(〈G, ttgold, KS〉, inmsg) =
if not legalUpdate(inmsg, ttgold), return 〈failure,−〉
ttg = apply(inmsg.ops, ttgold)

if inmsg is empty and candidates(G, KS , ttg) = ∅, return 〈failure,−〉 % Cannot make progress
outmsg.ops = empty list
while the satisfaction state of root(ttg) is not failed or satisfied do

candidates = candidates(G, KS , ttg)
o = choice(outmsg, candidates) % Consumes head of stream
if o = stop, break
outmsg.ops.append(o)
ttg = apply(o, ttg)

if the satisfaction state of root(ttg) is failed, return 〈failure,−〉
if KG is the verifier of root(ttg) and the satisfaction state of root(ttg) is satisfied, return 〈success,−〉
outmsg .creds = a set of credentials that justify updates in outmsg .ops
return 〈〈G, ttg, KS〉, outmsg〉

Fig. 4. The replyttg function is the core of the TTGstrat family of strategies.

latter happens if a negotiator does not have a necessary attribute, or if there is a cyclic
dependence in the policies of the two negotiators with regard to a necessary attribute. (Such
a cyclic dependence manifests itself in the TTG as a cycle involving at least two control
edges.)

The choice operation is arbitrary, provided it makes a deterministic selection among
candidate updates and it satisfies the two requirements mentioned above. This determin-
ism prevents unintended information flow being encoded by the order in which updates
are performed. If desired, choice can be modified to take the current TTG as an input pa-
rameter. Also, if a choice operation that uses information about the history of the current
negotiation is desired, an auxiliary component can be added to the state and maintained by
the choice operation.

Node Processing State Initialization. When a new node is added to a TTG, its process-
ing state should be initialized as follows:

—A trivial target is fully processed.

—For a attribute target, 〈KV : K.r
?

� KS〉, if K.r is a dummy attribute, the target is
opponent-processed, which means that the opponent cannot process it; otherwise, it is
verifier-processed.

—An intersection target is initially opponent-processed.

Verifier-Side Processing. We now define the candidate update operations a negotiator
KV using configuration G can perform on nodes for which KV is the node’s verifier.
These rules apply to nodes that are not yet marked verifier-processed.

1. Processing T = 〈KV :K.r
?

�KS〉
(a) For each locally available policy statement K.r←−K1.r1 in which K.r is a dummy
attribute, (the negotiator controlling) KV can add an implication edge T �〈KV :K1.r1

?
�

KS〉.
(b) KV can mark T as verifier-processed only after (a) is done, meaning that all edges that
can be added according to (a) have been added.
2. Processing T = 〈KV :K1.r1 ∩ · · · ∩Kn.rn

?
�KS〉
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(a) KV can add the n intersection edges, T �〈KV :Kj .rj
?

�KS〉, 1 ≤ j ≤ n
(b) KV can mark T verifier-processed only after (a) is done.

Opponent-Side Processing. We now define the candidate update operations a negotiator
KS using configuration G can perform on nodes for which KS is the subject. These rules
apply to nodes that are not yet marked opponent-processed.

1. Processing T = 〈KV : K.r
?

� KS〉 when AckG(K.r) is trivially satisfied (i.e., K.r is
not sensitive and does not reach any sensitive attribute in the delegation credential graph)
(a) If K.r←−KS ∈ EG, KS can add an implication edge T �〈KV :KS

?
�KS〉.

(b) If K.r←−K1.r1 ∈ LG, KS can add an implication edge T �〈KV :K1.r1
?

�KS〉.
(c) KS can mark T as opponent-processed if T is satisfied, or if (a) and (b) are done.
2. Processing T = 〈KV :K.r

?
�KS〉 when AckG(K.r) is not trivially satisfied

(a) KS can add a control edge T �〈KS :eAck
?

�KV 〉, where eAck = AckG[K.r].
(b) After (a) is done and 〈KS : eAck

?
�KV 〉 is satisfied, if KS has the credential K.r←−

KS ∈ EG, KS can add the implication edge T �〈KV :KS
?

�KS〉.
(c) After (a) is done and 〈KS : eAck

?
�KV 〉 is satisfied, if KS has the credential K.r←−

K1.r1 ∈ LG, KS can add the implication edge T �〈KV :K1.r1
?

�KS〉.
(d) KS can mark T as opponent-processed if T is satisfied, or all of the above steps are
done.

The above processing rules defend against the backwards positive- and negative-
inference attacks discussed in Section 2. For instance, if KS should have K.r←−K1.r1,
and KV should establish the target, 〈KV :K.r

?
�KS〉, KS does not mark this target pro-

cessed until it has added the implication child, 〈KV : K1.r1
?

� KS〉. KS will then add a
control child to the latter target using KS’s ack policy for K1.r1. Consequently, the sat-
isfaction state of 〈KV :K.r

?
�KS〉 will not become either satisfied or failed until the ack

policy for K1.r1 has been satisfied.

4.5 Safety of TTG Strategies

THEOREM 4.2. For each choice operation meeting the requirements discussed in Sec-
tion 4.4, the induced TTG strategy TTGstrat is credential-combination hiding.

The proof is in Appendix D.

5. SAFETY OF ACCESS-CONTROL-POLICY ENFORCEMENT

In this paper, we use ack policies, but not AC policies, for protecting credentials and their
attribute-information content. Recall that the primary distinction between AC policies and
ack policies is that AC policies are defined only for resources the negotiator actually has,
while ack policies can be defined for an attribute whether the negotiator has the attribute
or not. This means that when a credential’s AC policy is used during negotiation, the fact
that the negotiator has the credential may be disclosed. By contrast, ack policies can be
used without this information leakage. We emphasize that we believe AC policies cannot
be used to safely protect the attribute information contained in credentials according to any
notion of safety along the lines discussed in Section 3. However, the use of AC policies
for protecting credentials has a longer history [Winsborough et al. 2000] than the use of
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ack policies [Winsborough and Li 2002b], and may serve a complementary purpose in a
system, for instance, if the signed credential is considered more sensitive than its unsigned
content.

It is straightforward to add AC policies to our formal model of ATN for additional pro-
tection of credentials. We now discuss the deficiencies in prior work of the traditional
definition of safety for AC policies and present a definition following the spirit of provid-
ing meaningful notions of safety.

The existing safety definition of AC policies is inadequate even when not considering the
leaking of attribute information. The requirement that “credentials should not be disclosed
until AC policies for them are satisfied” is acceptable only for ATN systems of certain
kinds, i.e., those that use credentials only by directly transmitting them. It is inadequate for
ATN systems where one takes advantage of the fact that credentials are structured objects,
e.g., by using the signatures to compute messages in a protocol without transmitting the
signatures themselves [Li et al. 2003; Holt et al. 2003].

There are two parts of the requirement that are imprecise. First it is undefined what it
means that a “credential is disclosed.” Clearly, sending the exact bit-string of a credential
should be viewed as the credential flowing. What if one does not send the exact bit-string,
but sends something (presumably derived from the bit-string) that enables everyone to ver-
ify that the credential exists? For example, if σ is the signature, then one could send the
content (but not the signature) of the credential and θ = 2σ; the receiver can recover the
signature easily. One may argue that in this case the receiver recovers the complete creden-
tial, thus the credential is disclosed. Now consider the case that some value derived from
the signature is sent to the opponent, enabling the opponent to verify that the signature
exists but not to recover the signature. (Such a value is easily constructed for RSA signa-
tures [Rivest et al. 1978].) Whether this constitutes a disclosure of a credential is not so
clear. This becomes even less clear in the case that one uses a zero-knowledge protocol to
convince the opponent that one holds the credential, but the opponent cannot use the com-
munication transcript to convince any other party of this. We believe that a suitable notion
of AC-policy enforcement should not permit any of these forms of credential disclosure
to unauthorized recipients. To capture all such forms of credential disclosure, the precise
definition of “a credential is not disclosed” should be “the same communication transcripts
can be generated efficiently without having access to the credential.” Note that we do not
require such transcripts be generated by negotiators during trust negotiation; we only re-
quire that there exists an algorithm that can generate such transcripts efficiently. Since the
transcripts can be generated without access to the credential, clearly the credential is not
disclosed. This is similar to the notion of simulations and zero-knowledge proofs used in
the cryptography literature.

Another place where the requirement is imprecise is “until AC policies are satisfied.”
This is related to the discussion above; how is AC policy satisfied? Does one have to see
credential bit-strings, or is it sufficient to be convinced that the credential exists? We argue
that a straightforward definition is that “credentials are not disclosed to parties who do
not satisfy the corresponding AC policies.” The disclosure of a credential does not violate
security so long as the opponent holds the necessary credentials to satisfy the credential’s
AC policy.

To summarize, the AC safety requirement should be as follows.

Definition 5.1 Safety of Access Control Policies. A negotiation strategy is AC-safe if
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for every configuration G, for every adversary M , and for every feasible attack sequence
seq, the response sequence induced from G by seq can be efficiently computed without
credentials whose AC policy is not satisfied by M .

The notion of credentials not being disclosed is formalized here by saying that it is not
necessary to have access to the credentials to efficiently play the negotiator’s part in the
negotiation. Also note that, instead of making requirements on the order of events, we
simply require that to receive credentials governed by an AC policy, an opponent must
possess credentials satisfying that AC policy.

6. RELATED WORK

Automated trust negotiation was introduced by Winsborough et al. [Winsborough et al.
2000], who presented two negotiation strategies, an eager strategy in which negotiators
disclose each credential as soon as its access control policy is satisfied, as well as a “par-
simonious” strategy in which negotiators disclose credentials only after exchanging suffi-
cient policy content to ensure that a successful outcome is ensured. The former strategy has
the problem that many irrelevant credentials may be disclosed; the latter, that negotiators
reveal implicitly, and in an uncontrolled way, which credentials they hold, by transmitting
access control policy content for them. The length of negotiations in both strategies is
at most linear in the number credentials the two parties hold. Yu et al. [Yu et al. 2000]
introduced the quadratic “prunes” strategy, which requires negotiators to explicitly reveal
arbitrary attributes with no protection.

Yu et al. [Yu et al. 2003] developed families of strategies called disclosure tree protocols
that can interoperate in the sense that negotiators can use different strategies within the
same family. Seamons et al. [Seamons et al. 2001] and Yu and Winslett [Yu and Winslett
2003b] studied the problem of protecting contents of policies as well as credentials. These
previous works did not address the leaking of sensitive attribute information.

On the aspect of system architecture for trust negotiation, Hess et al. [Hess et al. 2002]
proposed the Trust Negotiation in TLS (TNT) protocol, which is an extension to the
SSL/TLS handshake protocol by adding trust negotiation features. Winslett et al. [Winslett
et al. 2002] introduced the TrustBuilder architecture for trust negotiation systems.

The problem of leaking attribute information was recognized by Seamons et al. [Sea-
mons et al. 2002] and Winsborough and Li [Winsborough and Li 2002b]. Winsborough
and Li [Winsborough and Li 2002b; 2002a] introduced the notion of ack policies to protect
this information and studied various inferencing attacks that can be carried out. However,
precise notion of safety was not provided in this work.

Yu and Winslett [Yu and Winslett 2003a] have introduced a technique called policy mi-
gration that seeks to make it more difficult for the adversary to infer information about a
negotiators attributes based on AC policies. In the versions of credential AC policies dis-
closed during ATN, the technique moves requirements from policies governing credentials
defining sensitive attributes to those of other credentials that are also required by the ATN.
This approach obscures the information carried in the ATN about the negotiator’s sensitive
attributes, but it does not hide it entirely. For instance, by observing multiple negotiations,
an adversary can observe that the AC policies presented for a given credential are not al-
ways the same and then infer that the negotiator has another credential that the adversary
has requested. Moreover, the technique can sometimes cause negotiation to fail when suc-
cess is possible. For these reasons, it seems clear that policy migration is not an adequate
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solution to the problem.
The notion of credential-combination-hiding is similar to the notion of noninterfer-

ence [Goguen and Meseguer 1982], which considers a system that has inputs and outputs of
different sensitivity levels. A system can be defined as noninterference secure if low-level
outputs do not depend upon high-level inputs. The definition for credential-combination-
hiding safety says that the behavior the adversary can observe, (i.e., low-level outputs)
does not depends on credentials proving unacknowledgeable attributes (i.e., high-level in-
puts). The notion of attribute-combination-hiding is similar to the notion of nondeducibil-
ity [Sutherland 1986], which requires that low-level outputs be compatible with arbitrary
high-level inputs. Our definitions deal with a system that involves communication between
the two parties, and we want to ensure that one party cannot tell the state of another party.
Our notions of indistinguishable configurations are also reminiscent of security definitions
for cryptographic protocols.

Inference control has received a lot of attention, particularly in the context of multilevel
databases [Staddon 2003], statistical databases [Domingo-Ferrer 2002; Wang et al. 2003]
and, to a lesser extent, in deductive databases [Bonatti et al. 1995]. Most of this work
focuses on limiting the information that can be deduced from answers to multiple queries.
Such schemes require that history information be maintained allowing multiple interactions
with the same party to be correlated, which is a very strong assumption in our context of
open systems, an assumption that we do not make. As a result, our approach is quite
different.

7. CONCLUSION

Although many ATN schemes have previously been proposed, precise security goals and
properties were lacking. In this paper, we have introduced a formal framework for ATN
in which we have proposed a precise and intuitive definition of correct enforcement of
policies in ATN. We call this safety notion credential-combination hiding, and have ar-
gued that it captures natural security goals. We have stated two alternative, weaker safety
notions that seem somewhat intuitive, and identified flaws that make them unacceptable.
We have formulated the eager strategy using our framework and shown that it meets the
requirements set forth in our safety definition, thus supporting our contention that the
framework and safety definition are usable. We have presented a family ATN strategies
that support a credential system with delegation and shown that these strategies provide
credential-combination hiding. This result further supports our contention that credential-
combination hiding is a useful definition of safety for ATN.

APPENDIX

A. PROOF OF THEOREM 3.6

THEOREM 3.6. The eager strategy is credential-combination-hiding safe.

PROOF OF THEOREM 3.6. Consider any pair of configurations G = 〈K, E, Ack,AC〉
and G′ = 〈K, E′,Ack,AC〉 such that releaseable(E,UnAcks(M,G)) =
releaseable(E′,UnAcks(M,G)). For any given requester attack sequence,
[KA, ρ, a1, a2, . . . , ak], we show that the reaction sequence it induces given G,
[m1,m2, . . . ,m`], is the same as the response sequence it induces given G′,
[m′

1,m
′
2, . . . ,m

′
`′ ]. Let q1, q2, . . . , q` and q′1, q

′
2, . . . , q

′
`′ be the associated states.

We use induction on the steps in the eager strategy to show that for each i ∈ [1, `], either
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qi = q′i ∈ {success, failure}, or opCredsi = opCreds′i and locCredsi = locCreds′i, in
which qi = 〈G, opCredsi, locCredsi,KO, ρ〉 and q′i = 〈G′, opCreds′i, locCreds′i,KO, ρ〉.

When the attack sequence is a requester attack sequence, the negotiator uses start
to begin the negotiation. If ACG(ρ) is trivially satisfied, then so is ACG′(ρ) and
both computations return 〈success,null〉, so we are done. So assume otherwise. Re-
ferring to the construction of 〈q1,m1〉 = start(G, ρ,KA), clearly publicCreds ⊆
releaseable(E,UnAcks(M,G)). By our choice of G and G′, it follows that in the con-
struction using G′, publicCreds′ = publicCreds. (We use primed version of local variable
throughout to indicate the values of those variables in the construction using G′ and un-
primed versions of the variables for the values in the construction using G.) It follows that
locCreds0 = locCreds′0. That opCreds0 = opCreds′0 holds is trivial, completing the proof
in the base case.

Now we assume opCredsi = opCreds′i and locCredsi = locCreds′i for i ∈ [1, ` − 1],
and show that the induction hypothesis holds for i + 1. It is easy to see by inspec-
tion of reply that qi+1 = success if and only if q′i+1 = success , and the step is
shown. Suppose otherwise. Since opCredsi consists of credentials held by M , it fol-
lows that locCredsi+1 ⊆ releaseable(E,UnAcks(M,G)). Similarly, locCreds′i+1 ⊆
releaseable(E′,UnAcks(M,G′)). Clearly UnAcks(M,G) = UnAcks(M,G′), so, since
opCredsi = opCreds′i by induction hypothesis, locCredsi+1 = locCreds′i+1. It now fol-
lows easily that opCredsi+1 = opCreds′i+1 and locCredsi+1 = locCreds′i+1, as required to
complete the induction.

Note that it cannot be that `′ > ` because either ` = k + 1 or q′` ∈ {success, failure},
which terminates the response sequence by definition. Thus the two response sequences
are identical, as desired. When the attack sequence is passive, essentially the same proof
applies; the base case is simpler and the step is the same.

B. PROOF OF THEOREM 3.9

Before we present the proof of this theorem, we note several identities that follow from
Definition 3.3.

(1) T (E) ∩ U = T (unreleaseable(E,U)) ∩ U .
T (E) ∩ U = (∪e∈ET (e)) ∩ U = ∪e∈E(T (e) ∩ U)

= ∪e∈E∧T (e) ∩ U 6=∅(T (e) ∩ U)
= ∪e∈unreleaseable(E,U)(T (e) ∩ U)
=

`
∪e∈unreleaseable(E,U)T (e)

´
∩ U

= T (unreleaseable(E, U)) ∩ U

(2) T (releaseable(E,U)) ∩ U = ∅.
releaseable(E, U)) ∩ U =

`
∪e∈releaseable(E,U)T (e)

´
∩ U

= ∪e∈E∧T (e)∩U=∅(T (e) ∩ U)
= ∪e∈E∧T (e)∩U=∅∅
= ∅

(3) releaseable(E1 ∪ E2, U) = releaseable(E1, U) ∪ releaseable(E2, U).
releaseable(E1 ∪ E2, U) = {e ∈ (E1 ∪ E2) | T (e) ∩ U 6= ∅}

= {e ∈ E1 | T (e) ∩ U 6= ∅} ∪ {e ∈ E2 | T (e) ∩ U 6= ∅}
= releaseable(E1, U) ∪ releaseable(E2, U)

(4) For all U ′ ⊇ U , releaseable(unreleaseable(E,U), U ′) = ∅.
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releaseable(unreleaseable(E, U), U ′) = {e ∈ {e ∈ E | T (e) ∩ U 6= ∅} | T (e) ∩ U ′ = ∅}
= {e ∈ E | T (e) ∩ U 6= ∅ ∧ T (e) ∩ U ′ = ∅}
= ∅

(5) For all U ′ ⊇ U , releaseable(releaseable(E,U), U ′) = releaseable(E,U ′).
releaseable(releaseable(E, U), U ′) = {e ∈ {e ∈ E | T (e) ∩ U = ∅} | T (e) ∩ U ′ = ∅}

= {e ∈ E | T (e) ∩ U = ∅ ∧ T (e) ∩ U ′ = ∅}
= {e ∈ E | T (e) ∩ U ′ = ∅}
= releaseable(E, U ′)

THEOREM 3.9. The relative strength of the safety definitions is as follows:

(1) If strat is credential-combination-hiding safe, then it is attribute-combination-hiding
safe.

(2) If strat is attribute-combination-hiding safe, then it is attribute-hiding safe.

PROOF OF THEOREM 3.9. Part 1: Given a credential-combination-hiding safe strat-
egy strat, for every configuration G = 〈K, E, Ack,AC〉, for every subset U of T , and for
every expressible subset U ′ of U , we can construct a configuration G′ = 〈K, E′,Ack,AC〉
as follows. By the assumption that U ′ is expressible, there exists E0 such that T (E0)∩U =
U ′. Let E′ = unreleaseable(E0, U) ∪ releaseable(E,U).

We now show (1a): E′ induces the desired set of unacknowledgeable attributes, i.e.,
T (E′) ∩ U = U ′. From Identities 1 and 2, we have the following:

T (E′) ∩ U = (T (unreleaseable(E0, U)) ∪ T (releaseable(E,U))) ∩ U
= (T (unreleaseable(E0, U)) ∩ U) ∪ (T (releaseable(E,U)) ∩ U)
= (T (E0) ∩ U) ∪ ∅ = U ′

We now use credential-combination-hiding safety to show the following (1b): for every
M such that UnAcks(G, M) ⊇ U , G and G′ are indistinguishable under strat by M . Let
U ′′ be the set of attributes that are unacknowledgeable to M ; we have U ′′ ⊇ U . It is
sufficient to show that releaseable(E,U ′′) = releaseable(E′, U ′′), since by the credential-
combination-hiding safety property of strat, M cannot distinguish G and G′. This equality
follows from Identities 3, 4, and 4 as follows:

releaseable(E′, U ′′)
= releaseable(unreleaseable(E0, U) ∪ releaseable(E,U), U ′′)
= releaseable(unreleaseable(E0, U), U ′′) ∪ releaseable(releaseable(E,U), U ′′)
= ∅ ∪ releaseable(E,U ′′) = releaseable(E,U ′′)

Part 2: Given an attribute-combination-hiding safe strategy strat, for every configuration
G = 〈K, E, Ack,AC〉, for every attribute t, we need to show that there exists G′ that differs
from G in t (i.e., t ∈ T (E)− T (E′) or t ∈ T (E′)− T (E)) and for every adversary M , if
t in UnAcks(G, M), G′ is indistinguishable from G by M . Case one: if t ∈ T (E), then let
U = {t} and U ′ = {}. Clearly, U ′ is an expressible subset to U . By attribute-combination-
hiding safety of strat, there exists a configuration G′ = 〈K, E′,Ack,AC〉 that satisfies the
above requirement. Case two: if t 6∈ T (E), then let U = {t} and U ′ = {t}. Clearly, U ′ is
an expressible subset of U . (By the setup of the framework, every attribute has at least one
credential to prove it.) Again, by attribute-combination-hiding safety of strat, there exists
a configuration G′ = 〈K, E′,Ack,AC〉 that satisfies the above requirement.
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C. PROOF OF PROPOSITION 4.1

PROPOSITION 4.1. If a principal updates a TTG legally and propagates the satisfaction
state correctly, then when a target 〈KV :K.r

?
�KS〉 is satisfied in the TTG, the credentials

associated with the TTG prove that hasAttr(K.r, KS). Similarly, when a target 〈KV :
K1.r1∩· · ·∩Kn.rn

?
�KS〉 is satisfied, the credentials associated with the TTG prove that

hasAttr(K1.r1,KS) ∧ · · · ∧ hasAttr(Kn.rn,KS).

PROOF OF PROPOSITION 4.1. We use induction on the order in which nodes are
marked satisfied. Initially, only one target exists and it is not satisfied. Consider the ith

node to be marked satisfied. If it is a trivial target, the proposition holds trivially. If it is
a standard target, one of its implication children is satisfied. If it is an intersection target,
all of its intersection children are satisfied. In each case, the result now follows from the
induction assumption on the children and, in the implication case, the fact that the edge is
justified.

D. PROOF OF THEOREM 4.2

THEOREM 4.2. For each choice operation meeting the requirements discussed in Sec-
tion 4.4, the induced TTG strategy TTGstrat is credential-combination hiding.

PROOF OF THEOREM 4.2. Given any pair of configurations G = 〈K, EG,Ack,AC〉
and G′ = 〈K, EG′ ,Ack,AC〉, and any adversary M , by assuming
releaseable(E,UnAcks(M,G)) = releaseable(EG′ ,UnAcks(M,G)), we show that
G and G′ are indistinguishable under strat by M .

We will show that the negotiation behaviors obtained by using G and G′ are identical.
We consider the case in which the attack sequence [KA, ρ, a1, a2, . . . , ak] is a requester
attach sequence, and show that the reaction sequence induced by it from G is identical to
the reaction sequence induced by it from G′; the responder attack-sequence case is similar.

Let init(G) be given by G = 〈KG, EG,AckG,ACG, LG〉 and let init(G′) be given by
G′ = 〈KG, E′

G,AckG′ ,ACG, LG′〉. We begin by showing AckG′ is the same as AckG

and LG = LG′ . By assumption, AckG(K.r) is non-trivial if and only if AckG′(K.r) is
non-trivial, for each attribute K.r. So step 1 of init collects the same delegation credentials
in both cases. Because AckG is identical to AckG′ , the delegation credential graph does
not depend on G, and the dummy attributes introduced in step 2 are uniquely determined,
it follows that AckG′ is the same as AckG. Thus AckG(K.r) is non-trivial if and only if
AckG′(K.r) is non-trivial, and consequently step 3 collects the same delegation credentials
in both cases. So LG = LG′ , as desired.

Next we use induction on i ∈ [1, `] to show that the response sequence [m1,m2, . . . ,m`]
generated by using G is identical to the response sequence [m′

1,m
′
2, . . . ,m

′
`] generated

by using G′. We simultaneously show that except for the configurations they contain,
the sequences of states [q1, q2, . . . , q`] and [q′1, q

′
2, . . . , q

′
`] used in the construction of the

respective message sequences are also identical.

Base case. Because AckG is identical to AckG′ , the state q1 produced by startttg(G, ρ,KA)
is the same as the state q′1 produced by startttg(G, ρ,KA). It follows that the messages m1

and m′
1 produced by each of the respective functions are also the same.

Induction step. We must show that for i ∈ [2, `], assuming mi−1 = m′
i−1 and that qi−1

q′i−1 differ only in their configurations, then 〈qi,mi〉 = replyttg(qi−1, ai−1) is the same as
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〈q′i,m′
i〉 = replyttg(q′i−1, ai−1), again, except for the configurations in the states. To do

this, we use an inner induction on the iterations of the loop in the definition of replyttg to
show that in corresponding iterations, the values of ttg and outmsg obtained by using G

are the same as the values obtained by using G
′
, which we denote by ttg ′ and outmsg ′.

The base case is straightforward: the outer induction assumption tells us that ttgold and
ttg ′old are the same, so in the third line of replyttg, apply(ai−1.ops, ttgold) is the same as
apply(ai−1.ops, ttg ′old); the output messages outmsg and outmsg ′ are both empty lists.

For the inner induction step, we assume that the TTGs and output messages are the
same at the top of the loop, and show that they are again the same at the bottom. Because
choice is deterministic, it is sufficient to show that candidates(G, KA, ttg) is the same as
candidates(G

′
,KA, ttg ′). This, together with the fact that the TTGs are again the same

at the bottom will show that each of the two negotiations terminate the loop at the same
point. This will complete the proof.

We show that candidates(G, KA, ttg) is the same as candidates(G
′
,KA, ttg ′) by con-

sidering each node in the TTGs and each processing rule that might be used to process it,
and by showing that (each instance of) the rule applies when using configuration G if and
only if it applies when using configuration G′. In the following paragraphs we consider the
opponent-side processing rules; cases are labeled according to node-processing rule. The
verifier-side processing rules are similar.

Case 1(a) In this case AckG(K.r) is trivially satisfied, which means that no member
of UnAcks(G, M) is reachable from K.r in the delegation credential graph. (This fol-
lows from step 2 of init.) So K.r ←− KO ∈ EG if and only if K.r ←− KO ∈
releaseable(E,UnAcks(G, M)). This in turn holds if and only if K.r ←− KO ∈
releaseable(EG′ ,UnAcks(G, M)), by the theorem’s hypotheses. Finally, K.r←−KO ∈
releaseable(EG′ ,UnAcks(G, M)) holds if and only if K.r←−KO ∈ EG′ , again because
no member of UnAcks(G, M) is reachable from K.r.

Case 1(b) We have already argued that LG = LG′ , so rule 1(b) applies to ttg if and only
if it applies to ttg ′.

Case 1(c) The satisfaction state of nodes is uniquely determined by the structure of the
TTG and the processing state of nodes in it. By induction hypothesis, at the top of the loop
ttg and ttg ′ are identical in structure, including in the processing state of each node. It
follows that the satisfaction state of T is the same in the two TTGs. Moreover, since ttg
and ttg ′ are identical, for each node, the same instances of 1(a) and 1(b) can be and have
been applied to that node in ttg as in ttg ′. (We say a rule “has been applied” if performing
the rule does not change the TTG.)

Case 2(a) Because AckG = AckG′ , the same instances of this rule apply when using G as
when using G′.

Case 2(b) Since ttg and ttg ′ are identical, for each node, the same instances of 2(a) can
be and have been applied to that node in ttg as in ttg ′. An argument similar to that used
in case 1(c) shows that the satisfaction state of 〈KO : eAck

?
�KV 〉 is the same in ttg as in

ttg ′. In the case that the satisfaction state is unknown, rule 2(b) applies neither using G nor
using G′. If it is satisfied, it follows by Proposition 4.1 that M has attributes that satisfy
AckG(K.r), which tells us that no element of UnAcks(G, M) is reachable from K.r in the
delegation credential graph. Thus, as we showed in case 1(a), K.r←−KO ∈ EG if and
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only if K.r←−KO ∈ EG′ . So the same instances of rule 2(b) apply using G as using G′.

Case 2(c) Since ttg and ttg ′ are identical, for each node, the same instances of 2(a) can be
and have been applied to that node in ttg as in ttg ′. As in case 2(b), the satisfaction state
of 〈KO :eAck

?
�KV 〉 is the same in the two TTGs. We have argued above that LG = LG′ .

So the same instances of rule 2(c) apply in ttg using G as apply in ttg ′ using G′.

Case 2(d) Since the two graphs are identical, the same instances of 2(a), 2(b), and 2(c)
apply to ttg as apply to ttg ′, each rule instance has been applied to ttg if and only if it has
been applied to ttg ′. So the rule 2(d) can be applied to ttg if and only if it can be applied
to ttg ′.
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