
Towards Practical Automated Trust Negotiation

William H. Winsborough
NAI Labs

Network Associates, Inc.
3060 Washington Road
Glenwood, MD 21738

william winsborough@nai.com

Ninghui Li
Department of Computer Science

Stanford University
Gates 4B

Stanford, CA 94305-9045
ninghui.li@cs.stanford.edu

Abstract

Exchange of attribute credentials is a means to establish
mutual trust between strangers that wish to share resources
or conduct business transactions. Automated Trust Negoti-
ation (ATN) is an approach to regulate the exchange of sen-
sitive credentials by using access control policies. Existing
ATN work makes unrealistic simplifying assumptions about
credential-representation languages and credential storage.
Moreover, while existing work protects the transmission of
credentials, it fails to hide the contents of credentials, thus
providing uncontrolled access to potentially sensitive at-
tributes. To protect information about sensitive attributes,
we introduce the notion ofattribute acknowledgment poli-
cies(Ack policies). We then introduce the trust target graph
(TTG) protocol, which supports a more realistic credential
language, Ack policies, and distributed storage of creden-
tials.

1 Introduction

Access control presents difficult problems in a decentral-
ized collaborative environment, particularly when resources
and the subjects requesting them belong to different secu-
rity domains controlled by different authorities. Many com-
monly used access control mechanisms make authorization
decisions based on the identity of the resource requester.
Unfortunately, when the resource owner and the requester
are unknown to one another, access control based on prin-
cipal identity may be ineffective. Some trust management
systems, such as KeyNote [1] and SPKI1, address this by us-
ing credentials that delegate permissions. In these systems,
a credential, or a credential chain, acts as a capability giving
the subject certain permissions. However, even capability-

1We use SPKI to denote the part of SPKI/SDSI 2.0 [3, 4] originally
from SPKI, i.e., 5-tuples, and SDSI to denote the part of SPKI/SDSI 2.0
originally from SDSI,i.e., name certificates (or 4-tuples as called in [4]).

style systems do not match well the nature of decentralized
authority in collaborative environments.

Suppose Alpha and Beta enter into a coalition, and Alpha
wants to give access to Beta’s engineers. In the traditional
identity-based approach, administrators in Alpha would ex-
plicitly authorize individual engineers in Beta. The need for
Alpha to be aware of users from collaborating organizations
that might access its resource is a significant administrative
burden. Using a capability-like system, an administrator in
Alpha typically delegates permissions to an administrator in
Beta, who then further delegates those permissions to eligi-
ble users in Beta. These permissions are resource specific,
and each one requires a separate delegation act by Beta’s
administrator, which remains a significant burden.

To better serve the needs of collaborative environments,
particularly when alliances shift frequently, we aim to base
access control decisions on authenticated attributes of enti-
ties (i.e., organizations, users, or processes in the system),
while simultaneously decentralizing attribute authority. We
call this approach attribute-based access control (ABAC).
Some trust management systems, such asRT [6, 7], ex-
plicitly support ABAC, and others, such as SPKI/SDSI 2.0,
can be used as ABAC systems. Authorization decisions are
based on attributes of the requester, which are established by
digitally signed credentials through which credential issuers
assert their judgments about the attributes of entities. Be-
cause these credentials are digitally signed, they can serve
to introduce strangers to one another without on-line contact
with attribute authorities. ABAC avoids the need for per-
missions to be assigned to individual requesters before the
request is made. Instead, when a stranger requests access,
the ABAC-enabled access mediator can make an authoriza-
tion decision by combining agreements and judgments of
decentralized authorities in a natural and logical way.

ABAC systems depend on credentials that specify at-
tributes of entities and/or rules for deriving entities’ at-
tributes. These attributes (such as financial or medical data)
may be sensitive. Because we are interested in establishing

1



trust between entities that initially have no mutual trust, it is
unlikely the requester and the access mediator will be able
to agree upon a trusted third-party that might assist them in
using their sensitive credentials to establish mutual trust.

The goal of a growing body of work onautomated trust
negotiation (ATN)[8, 9, 10, 11] is to enable resource re-
questers and access mediators to establish trust in one an-
other through cautious, iterative, bilateral disclosure of cre-
dentials. In the existing ATN literature, access control poli-
cies are established to regulate the disclosure of credentials,
in addition to the granting of system resources. The nego-
tiation consists of a sequence of exchanges that begin by
disclosing credentials that are not sensitive. As credentials
flow, higher levels of mutual trust are established, and ac-
cess control policies for more sensitive credentials are sat-
isfied, enabling these credentials also to flow. In successful
negotiations, credentials eventually flow that satisfy the pol-
icy of the desired resource.

The current paper addresses three shortcomings of exist-
ing ATN system designs. First, existing ATN work makes
unrealistic simplifying assumptions about the language for
representing credentials. Using over-simplified languages
in ATN system design hides issues that need to be ad-
dressed. For instance, in [8, 10], propositional languages are
used to represent credentials. In practice, the simplest form
of attribute credential needs to designate an issuer, a sub-
ject, and an attribute name or id. Additional structures are
needed to adequately support delegation of authority, which
is essential in a decentralized environment. Even the most
expressive credential/policy language [5] to be used in prior
ATN work [9] does not support delegation of authority.

Second, prior ATN systems make unrealistic assump-
tions about credential storage. They presume that ATN par-
ticipants, called negotiators, have at the outset access to all
credentials they will need during negotiation. However, in a
decentralized collaborative environment, credential storage
is not centralized. Thus, ATN system design must consider
credential discovery.

The third pitfall of existing ATN designs is that although
they protect the transmission of attribute credentials, the fact
that the entity does or does not possess a given credential is
typically not protected. In all but the most rudimentary of
existing ATN systems, a negotiator receiving an attribute
query acknowledges, implicitly or explicitly, whether or not
she has credentials that satisfy the query. The attribute
query can be arbitrarily specific. This enables an unautho-
rized adversary to determine precisely which credentials—
and therefore which (potentially sensitive) attributes—the
negotiator does and does not have.

In this paper, we address these three issues through two
innovations. First, to control transmissions that could dis-
close whether or not the negotiator has a given attribute, we
introduce the notion ofattribute acknowledgment policies

(Ack policies). Second, we introduce the trust-target graph
protocol, which supports a powerful, yet efficient ABAC
credential language, Ack policies, and distributed credential
storage. As part of on-going work, we are implementing an
ATN system based on this protocol.

The rest of this paper is organized as follows. Section 2
discusses the requirements and desired features of creden-
tial languages in ABAC and present a language,RT0, that
meets our requirements and has most of our desired fea-
tures. Section 3 introduces the notion of Ack policies, and
illustrate through an example how Ack policies are used to
control the flow of information about attributes. Section 4
presents the TTG protocol. Section 5 presents negotiation
procedures, based on the TTG protocol and the acknowl-
edgment policy architecture, that support the use ofRT0

and distributed credential storage. Section 6 discusses fu-
ture work and section 7 concludes.

2 Language for Credentials in ABAC

We argued above that propositions are insufficient for
representing credentials in ABAC. We now discuss require-
ments for credentials in ABAC systems. We illustrate these
requirements by using an example scenario in which a bank
wants to know whether an entity is a full-time student, to de-
termine whether the entity is eligible to defer repayment on
a guaranteed student loan (GSL). (The US government in-
sures banks against default of GSLs and requires participat-
ing banks to allow full-time students to defer repayments.)
We consider the following expressive features essential:

• Decentralized attributes: an entity asserts that another
entity has a certain attribute.E.g., a university registrar
may assert that Dan is a full-time student.

• Delegation of attribute authority: an entity delegates
authority over an attribute to another entity,i.e., one
entity trusts another entity’s judgment on the attribute.
E.g., a university may delegate to its registrar the de-
termination of who is a full-time student.

• Inference of attributes: an entity uses one attribute to
make inferences about another attribute.E.g., a univer-
sity may consider a student to be full-time even without
a full credit load if the student is a Ph.D. candidate.

• Attribute-based delegation of attribute authority. A
key to ABAC’s scalability is the ability to delegate to
strangers whose trustworthiness is determined based
on their own attributes.E.g., a university may delegate
to the graduate officers of all departments the authority
to determine which students are Ph.D. candidates.

In addition, the credential language should have a clear,
monotonic semantics. There must be no ambiguity as to
whether a given set of credentials shows that a principal has
a given attribute. Moreover, since negotiators control the

2



availability of their own credentials, it must not be possible
to obtain authorization by virtue of withholding credentials.

Other highly desirable expressive features include:

• Attribute intersection: an entity uses a combination of
attributes to infer an additional attribute of another en-
tity. E.g., a university may require that Ph.D. candi-
dates be registered for at least one credit to be consid-
ered full-time students.

• Attribute fields. Parameterizing attributes enables val-
ues, such as age and credit limit, to be documented and
used in credentials.

Several well known trust management systems have
some, but not all of these features. For instance, with their
focus on delegation of rights, KeyNote and SPKI do not
support inference of attributes or attribute-based delegation.
While SDSI adds some of this to SPKI/SDSI, the combi-
nation is complex, and does not support attribute fields or
intersection, reflecting SDSI’s focus on naming individu-
als. Existing public key infrastructure (PKI) also does not
meet our requirements. For instance, one cannot express
inference of attributes or attribute-based delegation by us-
ing X.509 attribute certificates. TPL [5] builds a limited
form of attribute inference on top of X.509 attribute certifi-
cates. However, delegations cannot be carried in creden-
tials. Thus, in the student loan example, TPL would force
every university to issue IDs directly to its full-time stu-
dents, and would not enable authority over membership in
this category to be delegated to the university’s registrar or
graduate officers. Bonatti and Samarati [2] give an attribute-
based authorization language that, like TPL, does not fully
support delegation of attribute authority.

In our current work on ATN, we useRT [6, 7], a family
of role-based trust management languages. One language
in the family, calledRT0, is presented in [7], along with
an efficient execution model that is well-suited to interleav-
ing evaluation steps with credential discovery and collection
steps. Our presentation in this paper is based onRT0, which
has all the of the features listed above except attribute fields.
The fact thatRT0 does not have fields has the advantage of
simplifying the presentation here. Additionally, other mem-
bers of the RT family, such asRT1, do support fields [6]. We
believe that the approach to ATN that we present here can
be extended toRT1, and we plan to do so. Another benefit
of usingRT0 is that we can use existing work on credential
typing systems [7] in our treatment of negotiating with cre-
dentials that are issued and stored in a distributed manner.

2.1 RT0

In this section, we summarizeRT0. Our presentation of
RT0 follows that of [6, 7].

Constructs ofRT0 include entities, role names (attribute
names), and roles (attributes). Anentityis a uniquely identi-

fied individual or process. Entities are also called principals
in the literature. Entities can issue credentials and make re-
quests.RT0 assumes one can determine which entity issued
a particular credential or request, for instance, by using pub-
lic/private key pairs as entities. Arole nameis an identifier,
such as a string. Arole takes the form of an entity followed
by a role name, separated by a dot,e.g., A.r andB.r1. A
role has a value that is a set of entities who are members
of this role. Each entityA has the authority to define who
are the members of each role of the formA.r. In RT0, an
access control permission is represented as a role as well.

Roles inRT correspond to the notion of attributes in
ABAC. An entity is a member of a role if and only if it has
the attribute identified by the role. In the rest of this paper,
we use the terms role and attribute interchangeably.

There are four kinds of credentials inRT0, each corre-
sponding to a different way of defining role membership
(i.e., of deriving attributes):

• Type-1: A.r←D

A andD are (possibly the same) entities, andr is a role
name (attribute name).

This meansD has (orsatisfies) attributeA.r, or equiv-
alently,A asserts thatD has the attributer.

• Type-2: A.r←B.r2

A andB are (possibly the same) entities, andr andr2

are (possibly the same) role names.

This means an entity has attributeA.r if it has B.r2.
That is,A asserts that an entity has the attributer if B
asserts that the entity has the attributer2. In particular,
if r andr2 are the same, this is a delegation fromA to
B of authority overr.

• Type-3: A.r←A.r1.r2

A is an entity, andr, r1, andr2 are role names. We call
A.r1.r2 a linked role.

This means an entityD hasA.r if there is an entityB
that hasA.r1, andD hasB.r2. That isA asserts that
D has the attributer if there is aB thatA asserts has
attributer1, andB asserts thatD has the attributer2.
If r andr2 are the same,A is delegating its authority
over r to anyone thatA believes to have the attribute
r1. This is attribute-based delegation:A identifiesB
as an authority onr not by using (or knowing)B’s
identity, but by another attribute ofB (viz., r1).

• Type-4: A.r←A1.r1 ∩A2.r2 ∩ · · · ∩Ak.rk

A,A1, . . . , Ak are entities, r, r1, . . . , rk are role
names, andk is an integer greater than1. We call
A1.r1 ∩A2.r2 ∩ · · · ∩Ak.rk an intersection.2

2In [7], an intersection can also contain entities or linked roles. Here,
we follow the definition in [6]. The restriction here does not change ex-
pressive power: one can always add additional intermediate roles.

3



This meansA asserts an entity has the attributer if for
eachi = 1..k, Ai asserts the entity has attributeri.

A role expression(denoted bye, e1, e2, . . .) is an entity,
a role, a linked role, or an intersection. All credentials in
RT0 take the form,A.r← e, wheree is a role expression.
We say that this credentialdefinesthe roleA.r.

2.2 Examples and Usage

This section presents two examples in which facilities to
perform business transactions are protected resources.

Example 1 Referring to the student-loan deferment sce-
nario at the top of the section, StateU may define its full-
time student attribute by the following two credentials,
which represent alternative ways of satisfying the attribute:

StateU .fulltimeStu ←Registrar .fulltimeStu

StateU .fulltimeStu ←
StateU .phdCand ∩ Registrar .parttimeStu

The following credentials, together with the above, show
Bob is a full-time student:

StateU .phdCand←StateU .gradOfficer .phdCand

StateU .gradOfficer ←Carol

Carol .phdCand←Bob

Registrar .parttimeStu ←Bob

Now assume StateU is certified by a (fictitious) accredita-
tion board for universities (ABU):

ABU.accredited ←StateU

If universities definefulltimeStu appropriately (for ex-
ample, as done by StateU above), BankWon can issue cre-
dentials like those below to grant loan-deferment permis-
sion (denoted byBankWon.deferGSL ) to students like Bob.

BankWon.deferGSL ←BankWon.univ .fulltimeStu

BankWon.univ ←ABU.accredited

The intended meaning of an attribute, such as
fulltimeStu , must be agreed upon, particularly when
used in linked roles, likeBankWon.univ .fulltimeStu ,
where all universities are assumed to be using a com-
mon vocabulary. This is supported in RT through the use
of anapplication domain specification document(ADSD),
which defines the intended meaning of attribute names in
an application-domain specific name space. Each credential
refers to such an ADSD. See [6] for details.

Example 2 In the aftermath of a large natural disaster,
MedSup, a medical supply merchant, offers to sell at a dis-
count medical supplies to be used in the official clean up,
which is being organized by a coalition called ReliefNet.
Alice works for MedixFund, one of several charitable orga-
nizations that use private contributions to obtain emergency

medical supplies for emergency teams working the disas-
ter site. The following four credentials show that Alice is
authorized for the discount:

MedixFund .pA←Alice (1)
ReliefNet .coaMember←MedixFund (2)

MedSup.partner ←ReliefNet .coaMember (3)
MedSup.discount ←MedSup.partner .pA (4)

Prior to joining the coalition, MedixFund issued creden-
tial (1), which states that Alice is a purchasing agent for
the fund. One of ReliefNet’s responsibilities is to identify
coalition-member organizations, as it does in credential (2).
MedSup recognizes these organizations as its coalition part-
ners, as in credential (3), and offers discounted sales to the
purchasing agents of those partners, as stated in creden-
tial (4). In this example, the judgments of MedixFund, Re-
liefNet, and MedSup are combined to authorize Alice’s re-
ceiving a discount from MedSup. When MedSup enters into
other coalitions, it can add an additional credential defin-
ing MedSup.partner to give the discount to the purchasing
agents of its new partners.

2.3 Semantics ofRT0

In [7], the semantics ofRT0 is defined as a mapping from
roles to the entities they contain. To suit our needs here, we
extend that semantics to a binary relation consisting pairs of
role expressions that are related by role containment.

Given a setC of RT0 credentials, letE(C) be the set of
role expressions containing the following: every entity inC,
every linked role inC, every intersection inC, and every role
A.r, in whichA is an entity inC andr is a role name inC.

The semantics ofC is given by the least�C ⊆ E(C) ×
E(C) that satisfies the five conditions below. (We write just
�, omitting theC when it is clear from context.)

1. For anye ∈ E(C), e � e, i.e., � is reflexive.

2. If e1 � e2 ande2 � e3, thene1 � e3, i.e., � is
transitive.

3. For any credentialA.r←e in C, A.r � e.

4. If A.r1.r2 ∈ E(C) andA.r1 � B, thenA.r1.r2 �
B.r2.

5. If A1.r1 ∩ · · · ∩Ak.rk ∈ E(C) andAi.ri � e for each
i in [1..k], thenA1.r1 ∩ · · · ∩Ak.rk � e.

It is straightforward to see that the relation�C exists and
is well-defined. It can be constructed by starting from the
empty relation and iteratively adding new pairs according to
the requirements until they are all satisfied.

We claim that the relation� is an extension to the
semantics given in [7] in that ife1 �C e2, then
memberC′(e1) ⊇ memberC′(e2) is true for anyC′ ⊇ C.
Here,memberC(e) is the set of entities that, according to
the semantics in [7], are members ofe under a given set

4



of credentialsC. In particular, e �C D if and only if
memberC(e) 3 D.

Example 3 Referring to example 2, credentials (1) and (2)
give rise to MedSup.partner � MedixFund by ap-
plying rules 3 and 2, and toMedSup.partner .pA �
MedixFund .pA by additionally applying rule 4.

3 ATN and Sensitive Attributes

As discussed in the introduction, information in attribute
credentials is often sensitive, and work on automated trust
negotiation (ATN) aims at protecting the transmission of
these credentials and their sensitive content. In the ATN
literature [8, 9, 10, 11], access control (AC) policies are as-
sociated with credentials as well as with resources. When
Alice requests a resource, the access mediator transmits to
Alice the AC policy of that resource. This is in effect a
query asking Alice whether she holds credentials that satisfy
the AC policy. Suppose that Alice holds such credentials,
and that they are protected by AC policies. Alice sends a
counter query based on these AC policies, asking the access
mediator to satisfy these policies first. However, the very act
of sending back this counter query strongly suggests to the
access mediator that Alice holds the credentials that satisfy
the original query. This is because if Alice did not have the
credentials, she would behave differently. Thus, informa-
tion about Alice’s possession of credentials—and therefore
about attributes she may consider sensitive—is not effec-
tively protected. Granted, an attacker does not learn with
certainty that Alice holds a given attribute without first sat-
isfying Alice’s AC policies, since the attacker has not seen
the actual credentials. However, this should provide Alice
little comfort in using the protocols, as the attacker’s unau-
thorized inferences are accurate just in case she adheres to
the protocols faithfully.

Trust negotiation is of little value if participants must lie
to one another to protect sensitive information, since this
would make most negotiations fail unnecessarily. Yet most
prior negotiation techniques allow a negotiator’s opponent
to gain advantage just in case the negotiator is honest. The
only existing trust negotiation strategy that is immune from
this problem is the eager strategy. In it, each party trans-
mits all credentials whose access control policies have al-
ready been satisfied, whether these credentials are related to
the eventual negotiation goal or not. In the eager strategy,
when a negotiator does not receive a given credential from
the opponent, it does not know whether this is because the
opponent does not have the credential, or because the nego-
tiator simply has not satisfied the opponent’s AC policy for
that credential. However, because the eager strategy does
not focus the exchange on credentials that are relevant to
the authorization decision at hand, it is impractical for most
scenarios.

3.1 Acknowledgment Policies

The problem of unauthorized information flow discussed
above is caused by the fact that AC policies are associated
only with the credentials a negotiator holds. When the nego-
tiator does not hold a credential, she has no associated AC
policies, and consequently behaves differently from when
she does hold the credential. Thus, from the way a negotia-
tor responds to queries, one can infer whether or not she has
relevant credentials.

To solve this problem, one has to protect information
about not having a sensitive attribute the same way as one
protects information about having one, responding in a uni-
form way in either case. For this, we now introduceac-
knowledgment (Ack) policies, which a participant estab-
lishes in association with attributes that she considers sensi-
tive, whether or not she satisfies those attributes.

What exactly Ack policies should protect is an interest-
ing question. When Alice assignsB′.r′1 to be the Ack pol-
icy for the roleB.r1, ideally, Alice would want a guarantee
that no negotiation opponent can learn by negotiating with
her whether or not she satisfiesB.r1 without first proving
to Alice that the opponent satisfiesB′.r′1. However, this is
very difficult to guarantee because of three kinds of possible
inferential breaches of Ack policy, the first two of which are
deductive. In the negative case, where Alice does not sat-
isfy B.r1, suppose an attacker knowsA.r←B.r1, and asks
Alice whether she satisfiesA.r. If Alice answers no, the
attacker would know that Alice does not satisfyB.r1. Sim-
ilarly, in the positive case, suppose that the attacker knows
that B.r1 ← D.r2, and asks Alice whether she satisfies
D.r2. If Alice answers yes, the attacker would know that
Alice satisfiesB.r1. The third form of inferential breach
arises when credential storage is distributed and negotiators
have to collect credentials. In that case, whether or not Al-
ice holds a credentialA.r ← B.r1 might strongly suggest
whether or not Alice satisfiesA.r or B.r1, since only in the
affirmative case is the credential relevant to proving Alice’s
attributes.

We handle the first of these potential breaches by ensur-
ing Alice acknowledges she does not satisfyA.r only after
enforcing her Ack policy forB.r1. In section 5.1, we return
to show how we protect against the third potential breach.

In this paper, we handle the second potential breach only
partially. In the positive case, when Alice satisfies a sensi-
tive attribute, our policy framework protects this informa-
tion only to the extent that the attribute is proven directly
through use of a type-1 credential. When an attribute can
be proven by using other types of credentials (rules), Alice
needs to use additional precautions. So, in our framework,
if Alice assignsB′.r′1 to be her Ack policy forB.r1, Al-
ice would acknowledge whether or not she has a credential
B.r1← Alice only after the opponent (shows it) satisfies

5



B′.r′1. When Alice considersA.r sensitive and knows that
A.r←B.r1, then Alice should make sure that her Ack pol-
icy for B.r1 is adequately strong to protectA.r as well as
B.r1. The policy framework presented in this paper does
not automatically guarantee this. Techniques to make the
policy framework automatically provide this guarantee are
the subject of future work.

Once it has satisfied Alice’s Ack policy for an attribute,
the opponent is authorized to know whether Alice satisfies
the attribute. For instance, Alice can then disclose that she
has no credentials proving she satisfies the attribute. On
the other hand, if she has such credentials, even after the
opponent has satisfied the Ack policy, Alice may want the
opponent to satisfy additional AC policies before she trans-
mits the credentials. This is because knowing that Alice has
a credential is different from receiving a copy of it: the cre-
dential itself can be used subsequently by the opponent to
document facts about Alice to other parties.

Both Ack policies and AC policies are given by attributes
that the negotiation opponent must satisfy to gain authoriza-
tion. We use the following structures to represent these poli-
cies. A negotiatorA defines a set of sensitive attributes,
sensitiveRolesA. For eachB.r1 ∈ sensitiveRolesA,
A definesAckA[B.r1] to be A’s Ack policy for B.r1,
e.g., B′.r′1. A also defines a set of sensitive credentials,
sensitiveCredsA, which is a subset of the type-1 creden-
tials that proveA satisfies attributes insensitiveRolesA.
For eachB.r1 ← A ∈ sensitiveCredsA, A defines
ACA[B.r1 ← A] to beA’s AC policy for that credential,
e.g., B′′.r′′1 .

3.2 An Extended Example Scenario

Example 4 We extend example 2 to include access control
policies and acknowledgment policies. We repeat the cre-
dentials in example 2 here to be self-contained.
Alice possesses the following credentials:

MedixFund .pA←Alice (5)
ReliefNet .coaMember←MedixFund (6)

We assume Alice considers theMedixFund .pA attribute to
be sensitive, and acknowledges it only to her employer’s
business partners. She wishes to further protect creden-
tial (5) with an AC policy, providing it only to organizations
whose security practices are adequate to provide reasonable
privacy. For this, we assume that the Better Business Bu-
reau provides a security process auditing service. These two
policies are given as follows:

AckAlice [MedixFund .pA] = MedixFund .partner (7)
ACAlice [(5)] = BBB.goodSecProcess (8)

MedSup holds the following credentials:

ReliefNet .coaMember←MedSup (9)
BBB.goodSecProcess ←MedSup (10)

The following are also defined. (We discuss which negotia-
tor holds them in sections 3.3 and 3.4.)

MedSup.partner ←ReliefNet .coaMember (11)
MedSup.discount ←MedSup.partner .pA (12)

MedixFund .partner ←ReliefNet .coaMember (13)

In general, MedSup would also consider some attributes and
credentials to be sensitive. However, for the purposes of this
example, we assume not.

When Alice requests a discounted sale from MedSup,
MedSup responds with the AC policy for that resource,
MedSup.discount . We formalize this response by what
we call a trust target, or just a target:

〈MedSup:MedSup.discount
?

�Alice 〉 (14)

This target states MedSup’s request for a proof that Alice
satisfiesMedSup.discount . We call it the primary target
because satisfying it is the central goal of negotiation.

3.3 A (Not So Realistic) Negotiation Process

Let us first consider the credential and trust-target flow in
a negotiation where Alice starts with all the credentials she
needs to satisfy (14), and MedSup starts with all it needs
to satisfy (7), and (8). In other words, Alice holds (5), (6),
(11), and (12), and MedSup holds (9), (13), and (10). The
negotiation starts after Alice transmits her request for the
discount, and after MedSup transmits (14).

1. Alice observes that she could satisfy the primary target
by using credentials (5), (6), (11), and (12). However,
(5) defines an attribute that Alice considers sensitive.
Based on her Ack policy for this attribute, Alice trans-
mits a new target that must be satisfied before she ac-
knowledges that she has theMedixFund .pA attribute:

〈Alice :MedixFund .partner
?

�MedSup〉 (15)

2. MedSup provides the credentials (9) and (13), thus sat-
isfying target (15).

3. Alice’s Ack policy for MedixFund .pA now being sat-
isfied, Alice transmits a target based on her AC policy
for credential (5):

〈Alice :BBB.goodSecProcess
?

�MedSup〉 (16)

4. MedSup provides (10), satisfying target (16).
5. Now MedSup is authorized to receive the credentials

that satisfy the primary target. Alice transmits them,
and the negotiation terminates with an affirmative au-
thorization decision regarding the discounted sale.

When asked about a sensitive attribute, either explicitly
or implicitly, Alice must enforce her Ack policy, whether or
not she satisfies the sensitive attribute. So, if she only had
available credentials (6), (11), and (12), she would still need
to enforce target (15) before doing anything to indicate she
does not have credential (5).

6



3.4 Towards A More Realistic Negotiation Process

In practice, negotiators may both have to contribute cre-
dentials to the proof that a given target is satisfied. For in-
stance, Alice should not have to obtain copies of creden-
tials (11) and (12) before the negotiation, since they are
local policies of MedSup. Similarly, MedSup should not
be expected to obtain credential (13). In this more real-
istic scenario, Alice holds (5), (6), and (13), while Med-
Sup holds (9), (10), (11), and (12). As part of showing
MedSup.discount � Alice , (6) and (11) must be com-
bined to showMedSup.partner � MedixFund .

It might seem tempting to allow MedSup to use cre-
dentials (12) and (11) to reduce (14) to〈MedSup :
ReliefNet .coaMember .pA

?

�Alice 〉. However, we avoid
this approach when handling targets that involve linked
roles: reducing such targets by using type-3 credentials
could lead to targets having an unbounded number of linked
attributes. In an alternative design, MedSup simply pro-
vides credentials (11) and (12) when it establishes the target.
However, this requires credential flow that could be avoided.

Consequently, we develop here a design based on a
third approach. We allow MedSup to ask Alice to pro-
vide any pA credential she may hold. For this, Med-
Sup establishes what we call a linking goal,〈MedSup :
?X.pA

?

� Alice 〉. A linking goal is like a target in which
the attribute authority is undetermined. From there, Alice
and MedSup negotiate the disclosure of the fact that Al-
ice has the attributeMedixFund .pA, as well as the trans-
mission of credential (5), which proves this fact. This
proceeds as above, except that Alice uses credential (13)
to reduce target (15), posing instead of (15),〈Alice :
ReliefNet .coaMember

?

� MedSup〉. Then MedSup poses

〈MedSup : ReliefNet .coaMember
?

� MedixFund 〉, elic-
iting credential (6) from Alice. At that point MedSup can
verify that the primary target, (14), is satisfied.

To ensure that Alice’s response to the linking goal does
not make unauthorized, implicit disclosures of whether or
not she satisfies a sensitive attribute, Alice negotiates dis-
closure of whether or not she satisfies all attributes of the
form B.pA that she considers sensitive.

4 The Trust Target Graph Protocol

In this section, we introduce the trust-target graph proto-
col. In the this protocol, a trust negotiation process involves
the two negotiators working together to construct atrust-
target graph(TTG). A TTG is a directed graph. Each node
is either a trust target or a linking goal. When a requester
requests access to a resource, the access mediator and the
requester enter into a negotiation process. The access me-
diator creates a TTG containing one target, which we call

the primary target. The access mediator then tries to pro-
cess the primary target, and sends the partially processed
TTG to the requester. In each following round, one negotia-
tor receives from the other new information about changes
to the TTG, verifies that the changes are legal, and updates
its local copy of the TTG accordingly. The negotiator then
tries to process some nodes, making its own changes to the
graph, which it then sends to the other party, completing the
round. The negotiation succeeds when the primary target is
satisfied; it fails when the primary target is failed, or when a
round occurs in which neither negotiator changes the graph.

This protocol is similar to the Disclosure Tree protocol
in [11]. However, it supports a realistic ABAC language,
while the Disclosure Tree protocol supports only proposi-
tional language. Also, in the next section we show how the
TTG protocol supports the use of Ack policies to protect
credential possession information.

4.1 Nodes in a Trust-Target Graph

A node in a TTG is one of the three kinds of targets or a
linking goal, defined as follows. Nodes are unique.

• A standard targettakes the form〈V :f
?

�S〉, in which
V is one of the negotiators,f is a role or a linked role,
andS is an entity. S is oftenopp(V ), the negotiator
opposingV , but it can be any entity. This target means
thatV wants to see the proof off � S.

• An intersection targettakes the form〈V : (A1.r1∩· · ·∩
Ak.rk)

?

�S〉. This means thatV wants to see the proof
of A1.r1 ∩ · · · ∩Ak.rk � S.

• A trivial target takes the form〈V : S
?

� S〉, in which
V is one of the negotiators, andS is an entity. Trivial
targets provide placeholders for edges in the TTG.

• A linking goal takes the form〈V : ?X.r2
?

� S〉, mean-
ing V wants to see a proof ofB.r2 � S for every
entityB for which it holds. (See section 3.4.)

In each of the above forms of targets or linking goal, we
call V theverifier, andS thesubjectof this node.

Each target has asatisfaction state, which has one of
three values:satisfied, failed, or unknown. Each linking
goal has acompletion state, which has one of two values:
completeor incomplete. Being complete means that all so-
lutions to this goal have been determined.

Each node (a target or a goal) also has aprocessing state,
which is a pair of boolean states: verifier-processed and
opponent-processed. A node isverifier-processedwhen the
verifier cannot process the node any further,i.e., the ver-
ifier cannot add any new child to the node. A node is
opponent-processedwhen the opponent cannot process the
node any further. When a node is both verifier-processed
and opponent-processed, we say that it isfully processed.

7



4.2 Edges in a Trust-Target Graph

Six kinds of edges are allowed in a trust-target graph,
listed below. Edges are unique. Each kind of edge has its
own requirements for being justified. We use� to repre-
sent edges in TTG’s.

• A standard implication edgetakes the form〈V : f
?

�

S〉�〈V :e
?

�S〉, in whiche is any role expression and
f is a role or a linked role. A standard implication edge
has to end at a standard target, but can start from any

target. We call〈V :e
?

�S〉 a standard implication child

of 〈V : f
?

� S〉. (We use similar “child” terminology
for other kinds of edges.) An edge always points from
the child to the parent.

A standard implication edge isjustified if the edge is
accompanied by a credential chain that provesf � e.

• A linking-monitor edgetakes the form〈V :A.r1.r2
?

�

S〉�〈V : ?X.r2
?

�S〉.
This edge means that in order forV to determine
whetherA.r1.r2 � S, V wants to know all theB’s
that makeB.r2 � S true.

A linking-monitor edge is always justified.

• A linking-solution edgetakes the form〈V : ?X.r2
?

�

S〉� 〈V : B.r2
?

� S〉. This is the only kind of edge
going into a linking goal.

A linking-solution edge is always justified.

• A linking implication edgetakes the form〈V :
A.r1.r2

?

�S〉�〈V :A.r1
?

�B〉.
This linking implication edge is justified when〈V :
A.r1.r2

?

�S〉 has a linking-monitor child〈V : ?X.r2
?

�

S〉, and〈V : ?X.r2
?

�S〉 has a link-solution child〈V :
B.r2

?

�S〉 that is satisfied.

• An intersection edgetakes the form〈V : (A1.r1∩· · ·∩
Ak.rk)

?

�S〉�〈V :Ai.ri
?

�S〉, wherei is in 1..k.

An intersection edge is always justified.

• A control edgetakes the form〈V :f
?

�S〉�〈opp(V ) :
f ′ ?

�V 〉. Control edges are used for handling acknowl-
edgment and access control policies.

A control edge is always justified.

4.3 Messages in the Protocol

As described above, negotiators cooperate through use
of the protocol in constructing a shared TTG, a copy of
which is maintained by each negotiator. Negotiators alter-
nate transmitting messages that each contains a sequence of

TTG update operations and a set of credentials to be used
in justifying implication edges. On receiving a update op-
eration, a negotiator verifies it is legal before updating its
local copy of the shared TTG. The following arelegalTTG
update operations:
• Initialize the TTG to contain a given primary TT, spec-

ifying a legal initial processing state for this node. (See
below.)

• Add a justified edge (not already in the graph) from a
TT that is not yet in the graph to one that is, specifying
a legal initial processing state for the new node. The
new TT is added to the graph as well as the edge.

• Add a justified edge (not already in the graph) from an
old node to an old node.

• Mark a node processed. If the sender is the verifier, this
marks the node verifier-processed; otherwise, it marks
it opponent-processed.

The legal initial processing state of a trivial target
is fully-processed. A linking goal must be verifier-
processed. An intersection target must be verifier-processed
or opponent-processed. A standard target can take any state.

These operations construct a connected graph. Satisfac-
tion state of trust targets and completion state of linking
goals are not transmitted in messages; instead, each negotia-
tion party infers them independently. The satisfaction-state
rules presented in the next section ensure that negotiators
using the protocol always reach the same conclusions re-
garding node satisfaction.

4.4 Trust Target Satisfaction State Propagation

We now describe how to determine the satisfaction state
of targets and the completion state of linking goals.
Standard target. The initial satisfaction state a standard

target is unknown. It becomes satisfied when one of
its implication children is satisfied. It becomes failed
when it is fully processed and either it has no implica-
tion child, or all of its implication children are failed.

Intersection target. The initial satisfaction state of an in-
tersection target is unknown. It becomes satisfied when
it is fully processed and all of its children are satisfied.
It becomes failed when one of its children is failed.

Trivial target. A trivial target is always satisfied.

Linking goal. The initial completion state of a linking goal
is incomplete. It becomes complete when it is fully
processed and all of its linking-solution children are
either satisfied or failed.

The legal update operations do not remove nodes or
edges once they have been added, and once a node is fully
processed, it remains so thereafter. Consequently, once a
target becomes satisfied or failed, it retains that state for the
duration of the negotiation.

8



5 Node Processing

In the previous section, we described the TTG negoti-
ation protocol, in which two negotiators exchange update
messages. The protocol defines what updates are legal,
and the receiver of a message can verify that the updates
in the message is legal. This section describes procedures
for correct processing, which update the TTG in a manner
designed to satisfy the primary target whenever this is possi-
ble, while enforcing each negotiator’s Ack and AC policies.
Correct processing continues until either the primary tar-
get is satisfied (negotiation success), it is failed (negotiation
failure), or neither negotiator can perform a correct update
(also negotiation failure). The latter happens if a negotiator
is not a member of a necessary role, or if there is a cyclic de-
pendence in the policies of the two negotiators with regard
to a necessary role. (Such a cyclic dependence manifests
itself in the TTG as a cycle involving at least two control
edges.)

Note that a negotiator cannot be forced to follow the cor-
rect procedures, and when it does not, the other negotia-
tor may not be able to tell. The protocol and the correct
processing procedures are intended to guarantee that a mis-
behaving negotiator can never gain advantage (either learn
information or gain access without satisfying relevant poli-
cies first) over a faithful negotiator who follows the protocol
and the correct procedures. Therefore, a normal negotiator
has no incentive to misbehave. Still, it is always within the
power of either negotiator to behave incorrectly, and doing
so may prevent the negotiation from succeeding. For in-
stance, either negotiator can simply abort the negotiation at
any time.

5.1 Negotiating with Credentials Whose Storage
is Distributed

Prior ATN systems have simply assumed that negotia-
tors have all the credentials they will need during negotia-
tion. However, in a realistic environment that uses ABAC
and ATN, credential storage is not centralized, and creden-
tial discovery should be considered. In this section we con-
sider the following basic problem: which negotiator can be
expected to have which credentials, allowing them to take
responsibility for adding corresponding edges to the TTG?

We base our approach on the results in [7], where a stor-
age type system and a notion of well-typed credentials were
presented to guarantee that credential chains can be discov-
ered even when credentials are stored in a distributed way.
Each credential is assumed to be stored by its issuer (an
issuer-storedcredential) or by its subjects (asubject-stored
credential), where subject and issuer are defined as follows.
For a credential,A.r←e, we callA theissuer, and each en-
tity in base(e) a subjectof this credential, wherebase(e)
is defined as follows:base(D) = {D}, base(B.r2) =

{B}, base(A.r1.r2) = {A}, base(A1.r1 ∩ · · · ∩Ak.rk) =
{A1, A2, . . . , Ak}. Each role name has two types: an
issuer-side type and a subject-side type. On the issuer
side, the possible types are issuer-(traces-)none, issuer-
(traces-)def, and issuer-(traces-)all, in order of increasing
strength. Ifr is issuer-def or issuer-all, each credential of
the formA.r ← e is required to be issuer-stored. Ifr is
issuer-all, the well-typing rule for credentials additionally
requirese to be issuer-all. (The types for role expressions
are determined from role names.) This means that fromA,
one can retrieve the credential and discover its subject, al-
lowing one to find all issuer stored credentials issued by that
subject, and to repeat the process to discover all members of
A.r. On the subject side, the possible types are subject-
(traces-)none and subject-(traces-)all. Ifr is subject-all,
each credential of the formA.r ← e′ is required to be
subject-stored, ande′ must also be subject-all. To ensure
that credentials are either issuer-stored or subject-stored,
the well-typing rule also requires that no role expression is
both issuer-none and subject-none. A linked roleA.r1.r2 is
issuer-all when bothr1 andr2 are; same is true for subject-
all. A.r1.r2 is issuer-def ifr1 is issuer-def andr2 is subject-
all, or r1 is issuer-all andr2 is issuer-def. For more infor-
mation on the type system, refer to [7].

Here we assume that the above typing system is in place.
We additionally assume here that role names are either
issuer-none or subject-none. Ack policies can be assigned
only to roles that are issuer-none and subject-all, and AC
policies can be assigned only to credentials defining such
roles. This makes sense because normally an entityD only
has control over credentials of the formA.r←D whenA.r
is subject-traces-all.

The typing system ensures that every chain proving
A.r � S can be partitioned into a set of issuer-stored cre-
dentials that are reachable fromA, and a set of subject-
stored credentials that are reachable fromS. This justifies
assuming that each negotiator,V , can discover and use all
issuer-stored credentials that can be traced fromV ’s poli-
cies. We call this set of credentialsCI(V ). Similarly, we
assume that any negotiator,O, can discover and use any
subject-stored credential that can be traced fromO. We call
this setCS(O). These two sets,CI(V ) andCS(O), are de-
signed to ensure that every credential relevant to the nego-
tiation is available to eitherV or O, respectively. In order
for O to behave uniformly whenO does not satisfy one of
the roles insensitiveRolesO, CS(O) also must also con-
tain each subject-stored credential reachable from a sensi-
tive role. This addresses the third and helps address the first
potential inferential breach of Ack policy identified in sec-
tion 3.1.

9



5.2 Node Processing State Initialization

When a new node is added to a TTG, its processing state
should be initialized as follows:

• A trivial target is fully processed.

• For a standard target,〈V : A.r
?

� S〉, if r is subject-
traces-all, it is verifier-processed, which means that the
verifier cannot process it any further; otherwise, it is
opponent-processed.

• For a standard target,〈V :A.r1.r2
?

�S〉, if both r1 and
r2 are subject-traces-all, then it is verifier-processed;
otherwise, it is opponent-processed.

• An intersection target is initially opponent-processed,
if created by the verifier; it is verifier-processed if cre-
ated by the opponent of the verifier.

• A linking goal is initially verifier-processed.

5.3 Verifier-Side Processing

We now describe how a negotiatorV process a node
when it is the verifier of the node. This case needs to con-
sider only those nodes not yet marked verifier-processed.

ForV to process a standard target〈V :A.r
?

�S〉, if V has
a credentialA.r←B.r2 in CI(V ) (discussed in section 5.1),

thenV could add〈V :B.r2
?

�S〉 as an implication child to

〈V :A.r
?

�S〉, since satisfying the former suffices to satisfy
the latter. However, unlessB.r2 is subject-traces-all, the

opponent cannot process the target〈V : B.r2
?

� S〉, and
so there is no point adding it; instead,V can continue its
backward search for role expressionse such thatB.r2 � e,
until it either finds ane that the opponent can process, or
it finds ane that affects the logical structure of the TTG,
namely an entity, a linked role, or an intersection.

We construct a function that can be used by the verifier
to skip over targets that need not be created, and to con-
struct instead a set of targets whose satisfaction would im-
ply the satisfaction of the omitted target. This function is
oppoFrontier : E(CI(V )) → 2E(CI(V )), whereE(CI(V ))
is the set of role expressions defined in section 2.3. We
defineoppoFrontier to befrontier[oppo, CI(V )], in which
oppo is a predicate on role expressions such thatoppo(e) is
true whene is an entity, a subject-traces-all role, a linked
role, or an intersection, andfrontier is defined as follows.

We definefrontier[pred, C], in whichpred is a predicate
on role expressions andC is a set of credentials, to be the
pointwise-minimal function satisfying the following system
of equalities and inequalities:

1. If pred(e) is true,frontier[pred, C](e) = {e},
2. If pred(e) is not true, ande ← e′ ∈ C, then

frontier[pred, C](e) ⊇ frontier[pred, C](e′).

This least-solution construction is well-defined because
of two factors. First, the function space is a finite lattice
under the pointwise subset ordering. Second, the system
of equalities and inequalities can easily be converted into
a monotonic function-valued function whose least fixpoint,
which is known to exist, is the system’s least solution. By
extending the graph-based approach in [7], we have im-
plemented an efficient, goal-oriented search algorithm that
computesfrontier[pred, C] for any givenpred andC.

We now describe how a verifier correctly processes a
node. Remember that a node is processed according to the
following procedure only when it is not already verifier-
processed. What we present here are constraints for correct
processing. One strategy is to carry out correct processing
steps as soon as one can, but other strategies are possible.

ProcessingT = 〈V :A.r
?

�S〉
(1) For eachA.r ← e ∈ CI(V ) and eache′ ∈
oppoFrontier(e), V can add an implication edgeT � 〈V :
e′

?

�S〉.
(2) V can markT as verifier-processed only after (1) is
done, meaning that all edges that can be added according
to (1) have been added.

ProcessingT = 〈V : A.r1.r2
?

� S〉 when r1 is issuer-
traces-all
(1) For each entityB such thatA.r1 � B, and for eache
such thate ∈ oppoFrontier(B.r2), V can add a standard

implication edge,T �〈V :e
?

�S〉.
(2) V can markT as verifier-processed only after (1) is
done.
ProcessingT = 〈V : A.r1.r2

?

� S〉 when r1 is issuer-
traces-def
(1) V can add the (unique) linking-monitor edge,T � 〈V :
?X.r2

?

�S〉.
(2) After (1) is done,V can add a linking-implication edge

T � 〈V : A.r1
?

� B〉 for each linking-solution edge〈V :
?X.r2

?

� S〉� 〈V : B.r2
?

� S〉 such that〈V : B.r2
?

� S〉 is
satisfied.
(3) V can markT as verifier-processed only after both (1)

and (2) are done (i.e., all 〈V : B.r2
?

� S〉 are added and
satisfied).

ProcessingT = 〈V :A1.r1 ∩ · · · ∩Ak.rk
?

�S〉

(1) V can add thek intersection edges,T � 〈V : Aj .rj
?

�
S〉, 1 ≤ j ≤ k
(2) V can markT verifier-processed only after (1) is done.

5.4 Opponent-Side Processing

We now describe how a negotiatorO should process a
node whenO is the opponent of the verifier of the node.
Here,CS(O) is taken to be the set of credentials introduced

10



in section 5.1.

We definesimpFrontier to befrontier[simp, CS(O)], in
which simp(e) is true whene is not a role, andfrontier
is defined in section 5.3. We definesensFrontier to be
frontier[sens, CS(O)], in which sens(e) is true whene is
not a non-sensitive role.

O uses the following rules to process nodes that are not
yet marked opponent-processed.

ProcessingT = 〈V :A.r
?

�O〉 whenA.r is not sensitive
(1) If O ∈ sensFrontier(A.r), thenO can add an implica-

tion edgeT �〈V :O
?

�O〉.
(2) When O 6∈ sensFrontier(A.r), for each e in
sensFrontier(A.r) that is not an entity,O can add an im-

plication edgeT �〈V :e
?

�O〉.
(3) O can markT as opponent-processed ifT is satisfied, or
both (1) and (2) are done.

ProcessingT = 〈V :A.r
?

�O〉 whenA.r is sensitive

(1) O can add a control edgeT � 〈O : eAck
?

� V 〉, where
eAck = AckO[A.r].
(2) After (1) is done and〈O : eAck

?

� V 〉 is satisfied, if
O has the credentialA.r ← O ∈ CS(O), and if eAC =
ACO[A.r←O] is defined,O can add the control edgeT �

〈O :eAC
?

�V 〉.
(3) After (2) is done and〈O : eAC

?

� V 〉 (if it exists) is

satisfied,O can add the implication edgeT �〈V :O
?

�O〉.
(4) For eache in sensFrontier(A.r) that is not an entity,O

can add an implication edgeT �〈V :e
?

�O〉.
(5) O can markT as opponent-processed ifT is satisfied, or
all of the above steps are done.

ProcessingT = 〈V :A.r
?

�S〉 whenS 6= O
(1) If S ∈ simpFrontier(A.r), thenO can add an implica-

tion edgeT �〈V :S
?

�S〉.
(2) If S 6∈ simpFrontier(A.r), for each e ∈
simpFrontier(A.r) that is not an entity,O can add an im-

plication edgeT �〈V :e
?

�S〉.
(3) O can markT as opponent-processed ifT is satisfied, or
both (1) and (2) are done.

ProcessingT = 〈V :A.r1.r2
?

�S〉
Note thatS may or may not beO.

(1) O can add the linking-monitor edgeT � 〈V : ?X.r2
?

�
S〉.
(2) After (1) is done,O can add a linking-implication edge

T � 〈V : A.r1
?

� B〉 for each linking-solution edge

〈V : ?X.r2
?

�S〉�〈V :B.r2
?

�S〉 such that〈V :B.r2
?

�S〉
is satisfied.
(3) O can mark T opponent-processed whenT has a

linking-monitor child 〈V : ?X.r2
?

� S〉 whose completion
state is complete and (2) is done.

ProcessingG = 〈V : ?X.r2
?

�S〉:
(1) O can add a linking-solution edge,G � 〈V : A.r2

?

�
S〉, for anyA.r2 ∈ sensitiveRolesO or A.r2 defined by a
credential inCS(O).
(2)O can markG opponent-processed only after (1) is done.

ProcessingT = 〈V :A1.r1 ∩ · · · ∩Ak.rk
?

�S〉
(1) O can add thek intersection edges,T � 〈V : Aj .rj

?

�
S〉, 1 ≤ j ≤ k.
(2) O can markT opponent-processed after (1) is done.

Notice that ifO considersB.r1 sensitive and does not
satisfyB.r1, the above processing rules protect that infor-
mation against the first form of deductive breach of Ack
policy, identified in section 3.1 (i.e., the negative case). For
instances, ifO should haveA.r←B.r1, andV should es-

tablish the target,〈V : A.r
?

� O〉, O does not mark this
target processed until it has added the implication child,

〈V : B.r1
?

� O〉. O will then add a control child to the
latter target usingO’s Ack policy for B.r1. Consequently,

〈V : A.r
?

� O〉 will not become failed until the Ack policy
for B.r1 has been satisfied.

6 On-going and Future Work

We are in the process of implementing a trust negotiation
system that uses the TTG protocol.

6.1 Termination, Correctness, and Completeness

We have designed the TTG protocol and processing rules
with termination, correctness, and completeness concerns in
mind. We plan to formalize and prove the following prop-
erties in an extended version of this paper:

Termination. The number of nodes in the TTG is clearly
polynomial in the number of credentials held by the two
negotiators. No node or edge is added more than once, and
each negotiator marks each node as processed at most once.
So, because negotiators limit the number of empty messages
they allow, negotiation will terminate.

Correctness. If a negotiator follows the TTG protocol and
the processing rules presented here, other entities cannot un-
duly gain information through negotiation with the negotia-
tor.

Completeness. Consider any pair of negotiators. Suppose
there is a sequence of credential exchanges with the follow-
ing safety property: for each credential that is transmitted,
if it is governed by Ack or AC policies, those policies have
been satisfied by credentials available to the sender through
prior transmissions in the same negotiation. Then, if both
negotiators follow the TTG protocol and the node process-
ing rules, the negotiation process will succeed.

11



Strong Completeness. In addition to the above, if well-
typed credentials exist that, if available to two negotiators,
would enable them to negotiate successfully, then, between
them, the negotiators can collect such credentials prior to
exchanging any information with one another.

6.2 Strategy

The rules presented in section 5 above constrain, but do
not determine the total order in which the nodes of the TTG
are constructed, processed, and marked fully-processed.
Many different orders are possible and the selection among
them may reflect the disposition of the negotiators, such as
their eagerness to negotiate efficiently versus their conser-
vatism about disclosing their own credentials. The TTG
implementation we are building as this paper goes to press
uses an eager strategy.

6.3 Breaches of Ack Policy by Positive Inference

As part of on-going work, we are seeking solutions to the
second form of inferential breach identified in section 3.1.
Preliminary study suggests that we may need negotiators to
collect credentials from third parties during the negotiation
process to prevent such breaches.

7 Conclusion

We have presented the trust-target graph protocol. Un-
like previous ATN work, our protocol is based on a creden-
tial language that is realistic, by criteria we have discussed.
We have presented an acknowledgment policy architecture
that solves a problem common to prior ATN systems, that
negotiators control the flow only of credentials, and not the
sensitive attribute information contained in these creden-
tials. We have also presented negotiation procedures, based
on the TTG protocol and the acknowledgment policy archi-
tecture, that support a realistic credential language and dis-
tributed storage of credentials, and that protect negotiators’
sensitive attributes from unauthorized disclosure.

Acknowledgments

This work is supported by DARPA through SPAWAR
contracts N66001-01-C-8005 and N66001-00-C-8015. We
thank the anonymous reviewers for their helpful sugges-
tions.

References

[1] Matt Blaze, Joan Feigenbaum, John Ioannidis,
and Angelos D. Keromytis. The KeyNote trust-
management system, version 2. IETF RFC 2704,
September 1999.

[2] Piero Bonatti and Pierangela Samarati. Regulating ser-
vice access and information release on the web. In
Proceedings of the 7th ACM Conference on Computer
and Communications Security (CCS-7), pages 134–
143. ACM Press, November 2000.

[3] Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt
Fredette, Alexander Morcos, and Ronald L. Rivest.
Certificate chain discovery in SPKI/SDSI.Journal of
Computer Security, 9(4):285–322, 2001.

[4] Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest,
Brian Thomas, and Tatu Ylonen. SPKI certificate the-
ory. IETF RFC 2693, September 1999.

[5] Amir Herzberg, Yosi Mass, Joris Mihaeli, Dalit Naor,
and Yiftach Ravid. Access control meets public key
infrastructure, or: Assigning roles to strangers. InPro-
ceedings of the 2000 IEEE Symposium on Security and
Privacy, pages 2–14. IEEE Computer Society Press,
May 2000.

[6] Ninghui Li, John C. Mitchell, and William H. Wins-
borough. Design of a role-based trust management
framework. InProceedings of the 2002 IEEE Sympo-
sium on Security and Privacy. IEEE Computer Society
Press, May 2002.

[7] Ninghui Li, William H. Winsborough, and John C.
Mitchell. Distributed credential chain discovery in
trust management (extended abstract). InProceedings
of the Eighth ACM Conference on Computer and Com-
munications Security (CCS-8), pages 156–165. ACM
Press, November 2001.

[8] Kent E. Seamons, Marianne Winslett, and Ting Yu.
Limiting the disclosure of access control policies dur-
ing automated trust negotiation. InProceedings of the
Symposium on Network and Distributed System Secu-
rity (NDSS’01), February 2001.

[9] William H. Winsborough, Kent E. Seamons, and
Vicki E. Jones. Automated trust negotiation. In
DARPA Information Survivability Conference and Ex-
position. IEEE Press, January 2000.

[10] Ting Yu, Xiaosong Ma, and Marianne Winslett.
Prunes: An efficient and complete strategy for trust ne-
gotiation over the internet. InProceedings of the 7th
ACM Conference on Computer and Communications
Security (CCS-7), pages 210–219, November 2000.

[11] Ting Yu, Marianne Winslett, and Kent E. Seamons. In-
teroperable strategies in automated trust negotiation.
In Proceedings of the 8th ACM Conference on Com-
puter and Communications Security (CCS-8), pages
146–155. ACM Press, November 2001.

12


