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Abstract
Although thek-anonymity and̀ -diversity models have led to a number of valuable privacy-protecting

techniques and algorithms, the existing solutions are currently limited to static data release. That is, it is
assumed that a complete dataset is available at the time of data release. This assumption implies a sig-
nificant shortcoming, as in many applications data collection is rather a continual process. Moreover, the
assumption entails “one-time” data dissemination; thus, it does not adequately address today’s strong de-
mand for immediate and up-to-date information. In this paper, we consider incremental data dissemination,
where a dataset is continuously incremented with new data. The key issue here is that the same data may
be anonymized and published multiple times, each of the timein a different form. Thus, static anonymiza-
tion (i.e., anonymization which does not consider previously released data) may enable various types of
inference. In this paper, we identify such inference issuesand discuss some prevention methods.

1 Introduction

When person-specific data is published, protecting individual respondents’ privacy is a top priority. Among
various approaches addressing this issue, thek-anonymitymodel [22, 19] and thè-diversitymodel [16] have
recently drawn significant attention in the research community. In thek-anonymity model, privacy protection
is achieved by ensuring that every record in a released dataset is indistinguishable from at least(k − 1) other
records within the dataset. Thus, every respondent included in the dataset correspond to at leastk records in
a k-anonymous dataset, and the risk of record identification (i.e., the probability of associating a particular
individual with a released record) is guaranteed to be at most 1/k. While thek-anonymity model primarily
focuses on the problem of record identification, the`-diversity model, which is built upon thek-anonymity
model, addresses the risk of attribute disclosure (i.e., the probability of associating a particular individual with
a sensitive attribute value). As an attribute disclosure may occur without records being identified (e.g., due
to lack of diversity in a sensitive attribute), the`-diversity model, in its simplest form1, additionally requires
that every group of indistinguishable records contain at least` distinct sensitive attribute values; thereby the
risk of attribute disclosure is bound to at most1/`.

1We discuss more robust`-diversity requirements in Section 2.
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Although these models have yielded a number of valuable privacy-protecting techniques [3, 8, 9, 11,
12, 21], existing approaches only deal with static data release. That is, all these approaches assume that a
complete dataset is available at the time of data release. This assumption implies a significant shortcoming,
as in many applications data collection is rather a continuous process. Moreover, the assumption entails
“one-time” data dissemination. Obviously, this does not address today’s strong demand for immediate and
up-to-date information, as the data cannot be released before the data collection is considered complete.

As a simple example, suppose that a hospital is required to share its patient records with a disease control
agency. In order to protect patients’ privacy, the hospitalanonymizes all the records prior to sharing. At
first glance, the task seems reasonably straightforward, asexisting anonymization techniques can efficiently
anonymize the records. The challenge is, however, that new records are continuously collected by the hospital
(e.g., whenever new patients are admitted), and it is critical for the agency to receive up-to-date data in timely
manner.

One possible approach is to provide the agency with datasetscontaining only the new records, which are
independently anonymized, on a regular basis. Then the agency can either study each dataset independently or
merge multiple datasets together for more comprehensive analysis. Although straightforward, this approach
may suffer from severely low data quality. The key problem isthat relatively small sets of records are
anonymized independently so that the records may have to be modified much more than when they are
anonymized together with previous records [5]. Moreover, arecoding scheme applied to each dataset may
make the datasets inconsistent with each other; thus, collective analysis on multiple datasets may require
additional data modification. Therefore, in terms of data quality, this approach is highly undesirable. One
may believe that data quality can be assured by waiting for new data to be accumulated sufficiently large.
However, this approach may not be acceptable in many applications as new data cannot be released in a
timely manner.

A better approach is to anonymize and provide the entire dataset whenever it is augmented with new
records (possibly along with another dataset containing only new records). In this way, the agency can be
provided with up-to-date, quality-preserving and “more complete” datasets each time. Although this ap-
proach can also be easily implemented by using existing techniques (i.e., anonymizing the entire dataset
every time), it has a significant drawback. That is, even though each released dataset, when observed inde-
pendently, is guaranteed to be anonymous, the combination of several released datasets may be vulnerable to
various inferences. We illustrate these inferences through some examples in Section 3.1. As such inferences
are typically made by comparing or linking records across different tables (or versions), we refer to them as
cross-version inferencesto differentiate them from inferences that may occur withina single table.

Our goal in this paper is to identify and prevent cross-version inferences so that an increasing dataset can
be incrementally disseminated without compromising the imposed privacy requirement. In order to achieve
this, we first define the privacy requirement for incrementaldata dissemination. We then discuss three types
of cross-version inference that an attacker may exploit by observing multiple anonymized datasets. We also
present our anonymization method where the degree of generalization is determined based on the previ-
ously released datasets to prevent any cross-version inference. The basic idea is to obscure linking between
records across different datasets. We develop our technique in two different types of recoding approaches;
namely, full-domain generalization [11] and multidimensional anonymization [12]. One of the key differ-
ences between these two approaches is that the former generalizes a given dataset according to pre-defined
generalization hierarchies, while the latter does not. Based on our experimental result, we compare these two
approaches with respect to data quality and vulnerability to cross-table inference. Another issue we address is
that as a dataset is released multiple times, one may need to keep the history of previously released datasets.
We thus discuss how to maintain such history in a compact formto reduce unnecessary overheads.
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The remainder of this paper is organized as follows. In Section 2, we review the basic concepts of thek-
anonymity and̀ -diversity models and provide an overview of related techniques. In Section 3, we formulate
the privacy requirement for incremental data dissemination. Then in Section 4, we describe three types of
inference attacks based on our assumption of potential attackers. We present our approach to preventing these
inferences in Section 5 and evaluate our technique in Section 6. We review some related work in Section 7
and conclude our discussion in Section 8.

2 Preliminaries

In this section, we discuss a number of anonymization modelsand briefly review existing anonymization
techniques.

2.1 Anonymity Models

Thek-anonymity model assumes that data are stored in a table (or arelation) of columns (or attributes) and
rows (or records). It also assumes that the target table contains person-specific information and that each
record in the table corresponds to a unique real-world individual. The process of anonymizing such a table
starts with removing all the explicit identifiers, such as name and SSN, from the table. However, even though
a table is free of explicit identifiers, some of the remainingattributes in combination could be specific enough
to identify individuals. For example, it has been shown that87% of individuals in the United States can be
uniquely identified by a set of attributes such as{ZIP, gender, date of birth} [22]. This implies that each
attribute alone may not be specific enough to identify individuals, but a particular group of attributes together
may identify a particular individuals [19, 22].

The main objective of thek-anonymity model is thus to transform a table so that no one can make high-
probability associations between records in the table and the corresponding individuals by using such group
of attributes, calledquasi-identifier. In order to achieve this goal, thek-anonymity model requires that any
record in a table be indistinguishable from at least(k − 1) other records with respect to the quasi-identifier.
A set of records that are indistinguishable from each other is often referred to as anequivalence class. Thus,
ak-anonymous table can be viewed as a set of equivalence classes, each of which contains at leastk records.
The enforcement ofk-anonymity guarantees that even though an adversary knows the quasi-identifier value
of an individual and is sure that ak-anonymous tableT contains the record of the individual, he cannot
determine which record inT corresponds to the individual with a probability greater than1/k.

Although thek-anonymity model does not consider sensitive attributes, aprivate dataset typically contains
some sensitive attributes that are not part of the quasi-identifier. For instance, in patient table,Diagnosisis
considered a sensitive attribute. For such datasets, the key consideration of anonymization is the protection
of individuals’ sensitive attributes. However, thek-anonymity model does not provide sufficient protection
in this setting, as it is possible to infer certain individuals’ sensitive attribute values without precisely re-
identifying their records. For instance, consider ak-anonymized table where all records in an equivalence
class have the same sensitive attribute value. Although none of these records can be uniquely matched with
the corresponding individuals, their sensitive attributevalue can be inferred with probability1. Recently,
Machanavajjhala et al. [16] pointed out such inference issues in thek-anonymity model and proposed the
notion of `-diversity. Several formulations of̀-diversity are introduced in [16]. In its simplest form, the
`-diversity model requires that records in each equivalenceclass have at least` distinct sensitive attribute
values. As this requirement ensures that every equivalenceclass contains at least` distinct sensitive attribute
values, the risk of attribute disclosure is kept under1/`. Note that in this case, thè-diversity requirement
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also ensures̀-anonymity, as the size of every equivalence class must be greater than or equal tò. Although
simple and intuitive, modified datasets based on this requirement could still be vulnerable to probabilistic
inferences. For example, consider that among the` distinct values in an equivalence class, one particular
value appears much more frequently than the others. In such acase, an adversary may conclude that the
individuals contained in the equivalence class are very likely to have that specific value. A more robust
diversity is achieved by enforcing entropy`-diversity [16], which requires every equivalence class tosatisfy
the following condition.

−
∑

s∈S

p(e, s) log p(e, s) > log `

whereS is the domain of the sensitive attribute andp(e, s) represents the fraction of records ine that have
sensitive values. Although entropỳ -diversity does provide stronger privacy, the requirementmay sometimes
be too restrictive. For instance, as pointed out in [16], in order for entropỳ -diversity to be achievable, the
entropy of the entire table must also be greater than or equalto log `.

Recently, a number of anonymization models have been proposed. In [26], Xiao and Tao observed that`-
diversity cannot prevent attribute disclosure, when multiple records in the table corresponds to one individual.
They proposed to have each individual specify privacy policies about his or her own attributes. In [13], Li
et al. observed that̀-diversity is neither sufficient nor necessary for protecting against attribute disclosure.
They proposedt-closeness as a stronger anonymization model, which requires the distribution of sensitive
values in each equivalence class to be analogous to the distribution of the entire dataset. In [15], Li and
Li considered the adversary’s background knowledge in defining privacy. They proposed an approach for
modeling the adversary’s background knowledge by using data mining techniques on the data to be released.

2.2 Anonymization Techniques

Thek-anonymity (and̀ -diversity) requirement is typically enforced throughgeneralization, where real val-
ues are replaced with “less specific but semantically consistent values” [21]. Given a domain, there are
various ways to generalize the values in the domain. Intuitively, numeric values can be generalized into in-
tervals (e.g., [11 − 20]), and categorical values can be generalized into a set of possible values (e.g.,{USA,
Canada, Mexico}) or a single value that represents such a set (e.g., North-America). As generalization makes
data uncertain, the utility of the data is inevitably downgraded. The key challenge of anonymization is thus
to minimize the amount of ambiguity introduced by generalization while enforcing anonymity requirement.

Various generalization strategies have been developed. Inthe hierarchy-based generalizationschemes,
a non-overlapping generalization-hierarchy is first defined for each attribute in the quasi-identifier. Then an
algorithm in this category tries to find an optimal (or good) solution which is allowed by such generalization
hierarchies. Here an optimal solution is a solution that satisfies the privacy requirement and at the same time
minimizes a desired cost metric. Based on the use of generalization hierarchies, the algorithms in this category
can be further classified into two subclasses. In thesingle-level generalizationschemes [11, 19, 21], all the
values in a domain are generalized into a single level in the corresponding hierarchy. This restriction could
be a significant drawback in that it may lead to relatively high data distortion due to excessive generalization.
Themulti-level generalization[8, 9] schemes, on the other hand, allows values in a domain tobe generalized
into different levels in the hierarchy. Although this leadsto much more flexible generalization, possible
generalizations are still limited by the imposed generalization hierarchies.

Another class of generalization schemes is thehierarchy-free generalizationclass [3, 2, 12, 4].Hierarchy-
free generalizationschemes do not rely on the notion of pre-defined generalization hierarchies. In [3], Ba-
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yardo et al. propose an algorithm based on a powerset search problem, where the space of anonymizations
(formulated as the powerset of totally ordered values in a dataset) is explored using a tree-search strategies.
In [2], Aggrawal et al. propose a clustering approach to achievek-anonymity, which clusters records into
groups based on some distance metric. In [12], LeFevre et al.transform thek-anonymity problem into a
partitioning problem and propose a greedy approach that recursively splits a partition at the median value
until no more split is allowed with respect to thek-anonymity requirement. Byun et al.[4], on the other hand,
introduce a flexiblek-anonymization approach which uses the idea of clustering to minimize information loss
and thus ensures good data quality.

On the theoretic side, optimalk-anonymity has been proved to be NP-hard fork ≥ 3 [17]. Furthermore,
the curse of dimensionality also calls for more effective anonymization techniques, as shown in [1] that,
when the number of quasi-identifier attributes is high, enforcing k-anonymity necessarily results in severe
information loss, even fork = 2.

Recently, Xiao and Tao [25] propose Anatomy, a data anonymization approach that divides one table into
two for release; one table includes original quasi-identifier and a group id, and the other includes the associa-
tions between the group id and the sensitive attribute values. Koudas et al. [10] explore the permutation-based
anonymization approach and examine the anonymization problem from the perspective of answering down-
stream aggregate queries.

3 Problem Formulation

In this section, we start with an example to illustrate the problem of inference. We then describe our notion
of incremental dissemination and formally define a privacy requirement for it.

3.1 Motivating Examples

Let us revisit our previous scenario where a hospital is required to provide the anonymized version of its
patient records to a disease control agency. As previously discussed, to assure data quality, the hospital
anonymizes the patient table whenever it is augmented with new records. To make our example more con-
crete, suppose that the hospital relies on a model where boththek-anonymity and̀ -diversity are considered;
therefore, a ‘(k, `)-anonymous’ dataset is a dataset that satisfies both thek-anonymity and̀ -diversity require-
ments. The hospital initially has a table like the one in Figure 1 and reports to the agency its (2, 2)-anonymous
table shown in Figure 2. As shown, the probability of identity disclosure (i.e., the association between indi-
vidual and record) and attribute disclosure (i.e., the association between individual and diagnosis) are kept
under1/2 in the dataset, respectively. For example, even if an attacker knows that the record of Tom, who
is a 21-year-old male, is in the released table, he cannot learn about Tom’s disease with a probability greater
than1/2 (although he learns that Tom has either asthma or flu). At a later time, three more patient records
(shown inItalic) are inserted into the dataset, resulting the table in Figure 3. The hospital then releases a new
(2, 2)-anonymous table as depicted in Figure 4. Observe that Tom’sprivacy is still protected in the newly
released dataset. However, not every patient’s privacy is protected from the attacker.

Example 1 “Alice has cancer!” Suppose the attacker knows that Alice, who is in her late twenties, has
recently been admitted to the hospital. Thus, he knows that Alice’s record is not in the old dataset in Figure 2,
but in the new dataset in Figure 4. From the new dataset, he learns only that Alice has one of{Asthma, Flu,
Cancer}. However, by consulting the previous dataset, he can easilydeduce that Alice has neither asthma nor
flu (as they must belong to patients other than Alice). He now infers that Alice has cancer.
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Example 2 “Bob has alzheimer!”The attacker knows that Bob is 52 years old and has long been treated in
the hospital. Thus, he is sure that Bob’s record is in both datasets in Figures 2 and 4. First, by studying the
old dataset, he learns that Bob suffers from either alzheimer or diabetes. Now the attacker checks the new
dataset and learns that Bob has either alzheimer or heart disease. He can thus conclude that Bob suffers from
alzheimer. Note that three other records in the new dataset are also vulnerable to similar inferences.

As shown in the examples above, anonymizing a dataset without considering previously released infor-
mation may enable various inferences.

3.2 Incremental data dissemination and privacy requirement

Let T be a private table with a set of quasi-identifier attributesQ and a sensitive attributeS. We assume
thatT consists of person-specific records, each of which corresponds to a unique real-world individual. We
also assume thatT continuously grows with new records and denote the state ofT at timei asTi. For the
privacy of individuals, eachTi must be “properly” anonymized before being released to public. Our goal is
to address both identity disclosure and attribute disclosure, and we adopt an anonymity model2 that combines
the requirements ofk-anonymity and̀ -diversity as follows.

Definition 1 ((k, c)-Anonymity ) Let tableT be with a set of quasi-identifier attributesQ and a sensitive
attributeS. With respect toQ, T consists of a set of non-empty equivalence classes, where∀ e ∈ T , record
r ∈ e ⇒ r[Q] = e[Q]. We say thatT is (k, c)-anonymouswith respect toQ if the following conditions are
satisfied.

1. ∀ e ∈ T, |e| ≥ k, wherek > 0.

2. ∀ e ∈ T, ∀ s ∈ S, |{r|r∈e∧r[S]=s}|
|e| ≤ c, where0 < c ≤ 1.

The first condition ensures thek-anonymity requirement, and the second condition enforcesthe diversity
requirement in the sensitive attribute. In its essence, thesecond condition dictates that the maximum confi-
dence of association between any quasi-identifier value anda particular sensitive attribute value inT must
not exceed a thresholdc.

At a given timei, only an (k, c)-anonymous version ofTi, denoted aŝTi, is released to public. Thus,
users, including potential attackers, may have access to a series of (k, c)-anonymous tables,̂T1, T̂2, . . ., where
|T̂i| ≤ |T̂j | for i < j. As every released table is (k, c)-anonymous, by observing each table independently, one
cannot associate a record with a particular individual withprobability higher than1/k or infer any individual’s
sensitive attribute with confidence higher thanc. However, as shown in Section 3.1, it is possible that one
can increase the confidence of such undesirable inferences by observing the difference between the released
tables. For instance, if an observer can be sure that two (anonymized) records in two different versions indeed
correspond to the same individual, then he may be able to use this knowledge to infer more information than
what is allowed by the (k, c)-anonymity protection. If such a case occurs, we say that there is an inference
channel between the two versions.

Definition 2 (Cross-version inference channel) Let Θ = {T̂1, . . . , T̂n} be the set of all released tables for
private tableT , whereT̂i is an (k, c)-anonymous version released at timei, 1 ≤ i ≤ n. Letθ ⊆ Θ andT̂i ∈ Θ.
We say that there existscross-version inference channelfrom θ to T̂i, denoted asθ � T̂i, if observing tables
in θ andT̂i collectively increases the risk of either identity disclosure or attribute disclosure in̂Ti higher than
1/k or c, respectively.

2A similar model is also introduced in [24].
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When data are disseminated incrementally, it is critical toensure that there is no cross-version inference
channel among the released tables. In other words, the data provider must make sure that not only each
released table is free of undesirable inferences, but also no released table creates cross-version inference
channels with respect to the previously released tables. Weformally define this requirement as follows.

Definition 3 (Privacy-preserving incremental data dissemination) Let Θ = {T̂0, . . . , T̂n} be the set of all
released tables of private tableT , whereT̂i is an (k, c)-anonymous version ofT released at timei, 0 ≤ i ≤ n.
Θ is said to beprivacy-preservingif and only if @ (θ, T̂i) such thatθ ⊆ Θ, T̂i ∈ Θ, andθ � T̂i.

4 Cross-version Inferences

We first describe potential attackers and their knowledge that we assume in this paper. Then based on the
attack scenario, we identify three types of cross-version inference attacks in this section.

4.1 Attack scenario

We assume that the attacker has been keeping track of all the released tables; he thus possesses a set of
released tables{T̂0, . . . , T̂n}. We also assume that the attacker has the knowledge of who is and who is not
contained in each table; that is, for each anonymized tableT̂i, the attacker also possesses a population table
Ui which contains the explicit identifiers and the quasi-identifiers of the individuals inT̂i. This may seem to
be too farfetched at first glance; however, we assume the worst case, as we cannot rely on attacker’s lack of
knowledge. Also, such knowledge is not always difficult to acquire for a dedicated attacker. For instance,
consider medical records released by a hospital. Although the attacker may not be aware of all the patients,
he may know when target individuals in whom he is interested (e.g., local celebrities) are admitted to the
hospital. Based on this knowledge, the attacker can easily deduce which tables may include such individuals
and which tables may not. Another, perhaps the worst, possibility is that the attacker may collude with an
insider who has access to detailed information about the patients; e.g., the attacker could obtains a list of
patients from a registration staff3. Thus, it is reasonable to assume that the attacker’s knowledge includes
the list of individuals contained in each table as well as their quasi-identifier values. However, as all the
released tables are (k, c)-anonymous, the attacker cannot infer the individuals’ sensitive attribute values with
a significant probability, even utilizing such knowledge. Therefore, the goal of the attacker is to increase
his/her confidence of attribute disclosure (i.e., abovec) by comparing the released tables all together. In the
remainder of this section, we describe three types of cross-version inferences that the attacker may exploit in
order to achieve this goal.

4.2 Notations

We first introduce some notations we use in our discussion. Let T be a table with a set of quasi-identifer
attributesQ and a sensitive attributeS. Let A be a set of attributes, whereA ⊆ (Q ∪ S). ThenT [A] denotes
the duplicate-eliminating projection ofT onto the attributesA. Let ei = {r0, . . . , rm} be an equivalence
class inT , wherem > 0. By definition, the records inei all share the same quasi-identifier value, andei[Q]
represents the common quasi-identifier value ofei. We also use similar notations for individual records; that
is, for recordr ∈ T , r[Q] represents the quasi-identifier value ofr andr[S] the sensitive attribute value ofr.

3Nowadays, about 80% of privacy infringement is committed byinsiders.
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In addition, we useT 〈A〉 to denote the duplicate-preserving projection ofT . For instance,ei〈S〉 represents
the multiset of all the sensitive attribute values inei. We also use|N | to denote the cardinalities of setN .

Regardless of recoding schemes, we consider a generalized value as a set of possible values. Suppose
thatv is a value from domainD andv̂ a generalized value ofv. Then we denote this relation asv � v̂, and
interpret̂v as a set of values where(v ∈ v̂) ∧ (∀vi ∈ v̂, vi ∈ D). Overloading this notation, we say thatr̂ is
a generalized version of recordr, denoted asr � r̂, if (∀qi ∈ Q, r[qi] � r̂[qi]) ∧ (r[S] = r̂[S]). Moreover,
we say that two generalized valuesv̂1 andv̂2 arecompatible, denoted aŝv1 ./ v̂2, if v̂1 ∩ v̂2 6= ∅. Similarly,
two generalized recordŝr1 andr̂2 are compatible (i.e.,̂r1 ./ r̂2) if ∀qi ∈ Q, r̂i[qi] ∩ r̂j [qi] 6= ∅. We also say
that two equivalence classese1 ande2 are compatible if∀qi ∈ Q, e1[qi] ∩ e2[qi] 6= ∅

4.3 Difference attack

Let T̂i = {e0,1, . . . , e0,n} and T̂j = {e1,1, . . . , e1,m} be two (k, c)-anonymous tables that are released at
time i andj (i 6= j), respectively. As previously discussed in Section 4.1, weassume that an attacker knows
who is and who is not in each released table. Also knowing the quasi-identifier values of the individuals in
T̂i andT̂j, for any equivalence classe in eitherT̂i or T̂j, the attacker knows the individuals whose records
are contained ine. Let I(e) represent the set of individuals ine. With this information, the attacker can now
perform difference attacks as follows. LetEi andEj be two sets of equivalence classes, whereEi ⊆ T̂i and
Ej ⊆ T̂j. If ∪e∈Ei

I(e) ⊆ ∪e∈Ej
I(e), then setD = ∪e∈Ej

I(e)−∪e∈Ei
I(e) represents the set of individuals

whose records are inEj , but not inEi. Furthermore, setSD = ∪e∈Ej
e〈S〉 − ∪e∈Ei

e〈S〉 indicates the set of
sensitive attribute values that belong to those individuals in D. Therefore, ifD contains less thank records,
or if the most frequent sensitive value inSD appears with a probability larger thanc, the(k, c)-anonymity
requirement is violated.

TheDirectedCheckprocedure in Figure 5 checks if the first table of the input is vulnerable to difference
attack with respect to the second table. Two tablesT̂i andT̂j are vulnerable to difference attack if at least one
of DirectedCheck(T̂i, T̂j) andDirectedCheck(T̂j, T̂i) returns true.

TheDirectedCheckprocedure enumerates all subsets ofT̂i, and for each setE, the procedure callsGet-
MinSetsprocedure in Figure 6 to get the minimum setE′ of equivalence classes in̂Tj that contains all the
records inE. We call suchE′ theminimum covering setof E. The procedure then checks whether there is
vulnerability between the two equivalence classesE andE′. As the algorithm checks all the subsets ofT̂i,
the time complexity is exponential (i.e, it isO(2n), wheren is the number of equivalence classes inT̂i). As
such, for large tables with many equivalence classes, this brute-force check is clearly unacceptable. In what
follows, we discuss a few observations that result in effective heuristics to reduce the space of the problem in
most cases.

Observation 1 Let E1 andE2 be two sets of equivalence classes inT̂i, andE′
1 andE′

2 be their minimal
covering sets in̂Tj, respectively. IfE1 andE2 are not vulnerable to difference attack, andE′

1 ∩E′
2 = ∅, then

we do not need to consider any subset ofT̂i which containsE1 ∪ E2.

The fact thatE1 andE2 are not vulnerable to difference attacks means that sets (E′
1−E1) and (E′

2−E2)
are both(k, c)-anonymous. As the minimum covering set ofE1 ∪E2 is E′

1 ∪E′
2, andE′

1 andE′
2 are disjoint,

(E′
1 ∪E′

2)− (E1 ∪E2) is also(k, c)-anonymous. This also implies that if eachE1 andE2 is not vulnerable
to difference attack, then neither is any set containingE1 ∪E2. Based on this observation, we can modify the
method in Figure 5 as follows. In each time we union one more element to a subset to create larger subsets,
we check if their minimum covering sets are disjoint. If theyare, we do not insert the unioned subset to the
queue. Note that this also prevents all the sets containing the unioned set from being generated.
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Observation 2 Let E1 andE2 be two sets of equivalence classes inT̂i, andE′
1 andE′

2 be their minimal
covering sets inT̂j, respectively. IfE′

1 = E′
2, then we only need to check ifE1 ∪ E2 is vulnerable to

difference attack.

In other words, we can skip checking if each ofE1 andE2 is vulnerable to difference attack. This is
because unlessE1 ∪ E2 is vulnerable to difference attack,E1 andE2 are not vulnerable. Thus, we can save
our computational effort as follows. When we insert a new subset into the queue, we check if there exists
another set with the same minimum covering set. If such a set is found, we simply merge the new subset with
the found set.

Observation 3 Consider the method in Figure 5. Suppose thatT̂i was released after̂Tj ; that is, T̂i contains
some records that are not in̂Tj. If equivalence classe ∈ T̂j contains all such records, then we do not need to
consider that equivalence class for difference attack.

It is easy to see that ife ∈ T̂i contains some record(s) thatT̂j do not, the minimum covering set ofe
is an empty-set. Sincee itself must be(k, c)-anonymous,e is safe from difference attack. Based on this
observation, we can purge all such equivalence classes fromthe initial problem set.

4.4 Intersection attack

The key idea ofk-anonymity is to introduce sufficient ambiguity into the association between quasi-identifier
values and sensitive attribute values. However, this ambiguity may be reduced to an undesirable level if the
structure of equivalence classes are varied in different releases. For instance, suppose that the attacker wants
to know the sensitive attribute of Alice, whose quasi-identifier value isqA. Then the attacker can select a
set of tables,θ+

A , that all contain Alice’s record. As the attacker knows the quasi-identifier of Alice, he does
not need to examine all the records; he just needs to considerthe records that may possibly correspond to
Alice. That is, in eacĥTi ∈ θ+

A , the attacker only need to consider an equivalence classei ⊆ T̂i, where
qA � ei[Q]. Let EA = {e0, . . . , en} be the set of all equivalence classes identified fromθ+

A such that
qA � ei[Q], 0 ≤ i ≤ n. As everyei is (k, c)-anonymous, the attacker cannot infer Alice’s sensitive attribute
value with confidence higher thanc by examining eachei independently. However, as every equivalence class
in EA contains Alice’s record, the attacker knows that Alice’s sensitive attribute value,sA, must be present
in every equivalence class inEA; i.e., ∀ei ∈ EA, sA ∈ ei〈S〉. This implies thatsA must be found in set
SIA =

⋂
ei∈EA

ei〈S〉. Therefore, if the most frequent value inSIA appears with a probability greater than
c, then the sensitive attribute value of Alice can be inferredwith confidence greater thanc.

The pseudo-code in Figure 7 provides an algorithm for checking the vulnerability to the intersection
attack for given two (k, c)-anonymous tables,̂T0 andT̂1. The basic idea is to check every pair of equivalence
classesei ∈ T̂0 andej ∈ T̂1 that contain the same record(s).

4.5 Record-tracing attack

Unlike the previous attacks, the attacker may be interestedin knowing who may be associated with a par-
ticular attribute value. In other words, instead of wantingto know what sensitive attribute value a particular
individual has, the attacker now wants to know which individuals possess a specific sensitive attribute value;
e.g., the individuals who suffer from ‘HIV+’. Letsp be the sensitive attribute value in which the attacker is
interested and̂Ti ∈ Θ be the table in which (at least) one record with sensitive valuesp appears. AlthougĥT
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may contain more than one record withsp, suppose, for simplicity, that the attacker is interested in a partic-
ular recordrp such that(rp[S] = sp) ∧ (rp ∈ ei). As T̂ is (k, c)-anonymous, when the attacker queries the
population tableUi with rp[Q], he obtains at leastk individuals who may correspond torp. Let Ip be the set
of such individuals. Suppose that the attacker also possesses a subsequently released tableT̂j (i < j) which
includesrp. Note that in each of these tables the quasi-identifier ofrp may be generalized differently. This
means that if the attacker can identify from̂Tj the record corresponding torp, then he may be able to learn
additional information about the quasi-identifier of the individual corresponding torp and possibly reduce
the size ofIp. There are many cases where the attacker can identifyrp in T̂j. However, in order to illustrate
our point clearly, we show some simple cases in the followingexample.

Example 3 The attacker knows thatrp must be contained in the equivalence class ofT̂j that is compatible
with rp[Q]. Suppose that there is only one compatible equivalence class, ei+1 in T̂j (see Figure 8 (i)). Then
the attacker can confidently combine his knowledge on the quasi-identifier ofrp; i.e., rp[Q] ← rp[Q] ∩

ei+1[Q]. Suppose now that there are more than one compatible equivalence classes in̂Ti+1, sayei+1 and
e′i+1. If sp ∈ ei+1[S] and sp /∈ e′i+1[S], then the attacker can be sure thatrp ∈ ei+1 and updates his
knowledge ofrp[Q] asrp[Q] ∩ ei+1[Q]. However, ifsp ∈ ei+1[S] andsp ∈ e′i+1[S], thenrp could be in
eitherei+1 ande′i+1 (see Figure 8 (ii)). Although the attacker may or may not determine which equivalence
class containsrp, he is sure thatrp ∈ ei+1 ∪ e′i+1; therefore,rp[Q]← rp[Q] ∩ (ei+1[Q] ∪ e′i+1[Q]).

After updatingrp[Q] with T̂j , the attacker can reexamineIp and eliminate individuals whose quasi-
identifiers are no longer compatible with the updatedrp[Q]. When the size ofIp becomes less thank, the
attacker can infer the association between the individualsin Ip andrp with a probability higher than1/k.

In the above example, when there are more than one compatibleequivalence classes{ei+1,1, ..., ei+1,r} in
T̂i+1, we say that the attacker updatesrp[Q] asrp[Q]∩ (∪1≤j≤rei+1,j). While correct, this is not a sufficient
description of what the attacker can do, as there are cases where the attacker can notice that some equivalence
classes inT̂i+1 cannot containrp. For example, letr1 ∈ ei,1 andr2 ∈ ei,2 be two records in̂Ti, both
takingsr as the sensitive value (see Figure 9(i)). Suppose thatT̂i+1 contains a single equivalence classei+1,1

that is compatible tor1 and two compatible equivalence classesei+1,1 andei+1,2 that are compatible tor2.
Althoughr2 has two compatible equivalence classes, the attacker can besure thatr2 is included inei+1,2, as
the record withsr in ei+1,1 must correspond tor1. Figure 9(ii) illustrates another case of which the attacker
can take advantage. As shown, there are two records inei,1 that takesr as the sensitive value. Although the
attacker cannot be sure that each of these records is contained inei+1,1 or ei+1,2, he is sure that one record is
in ei+1,1 and the other inei+1,2. Thus, he can make an arbitrary choice and update his knowledge about the
quasi-identifiers of the two records accordingly. Using such techniques, the attacker can make more precise
inference by eliminating equivalence classes inT̂i+1 that are impossible to containrr.

We now describe a more thorough algorithm that checks two (k, c)-anonymous tables for the vulnerability
to the record-tracing attack. First, we construct a bipartite graphG = (V, E), whereV = V1 ∪ V2 and each
vertex inV1 represents a record in̂Ti, and each vertex inV2 represents a record in̂Ti+1 that is compatible
with at least one record in̂Ti. We defineE as the set of edges from vertices inV1 to vertices inV2, which
represents possible matching relationships. That is, if there is an edge fromri ∈ V1 to rj ∈ V2, this means
that recordsri andrj may both correspond to the same record although they are generalized into different
forms. We create such edges betweenV1 andV2 as follows. For each vertexr ∈ V1, we find fromV2 the set
of recordsR where∀ri ∈ R, (r[Q] ./ ri[Q]) ∧ (r[S] = ri[S]). If |R| = 1 andr′ ∈ E, then we create an
edge fromr to r′ and mark it with〈d〉, which indicates thatr definitelycorresponds tor′. If |R| > 1, then
we create an edge fromr and everyr′i ∈ R and mark it with〈p〉 to indicate thatr plausiblycorresponds to
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r′i. Now given the constructed bipartite graph, the pseudo-code in Figure 10 removes plausible edges that are
not feasible and discovers more definite edges by scanning through the edges.

Note that the algorithm above does not handle the case illustrated in Figure 9(ii). In order to address
such cases, we also performs the following. For each equivalence classe1,i ∈ T̂i, we find fromT̂j the set of
equivalence classesE where∀e2,j ∈ E, e1,i[Q] ./ e2,j[Q]. If the same number of records with any sensitive
values appear in bothe1,i andE, we remove unnecessary plausible edges such that each of such records in
e1,i has a definite edge to a distinct record inE.

After all infeasible edges are removed, each recordr1,i ∈ V1 is associated with a set of possibly matching
records{r2,j , . . . , r2,m} (j ≤ m) in V2. Now we can follow the edges and compute for each recordr1,i ∈ T̂i

the inferrable quasi-identifierr′1,i[Q] = r1,i[Q] ∩ (
⋃

`=j,...,m r2,`[Q]). If any inferred quasi-identifer maps

to less thank individuals in the population tableUi, then tableT̂i is vulnerable to the record-tracing attack
with respect tôTj.

It is worth noting that the key problem enabling the record-tracing attack arises from the fact that the
sensitive attribute value of a record, together with its generalized quasi-identifier, may uniquely identify the
record in different anonymous tables. This issue can be especially critical for records with rare sensitive
attribute values (e.g., rare diseases) or tables where every individual has a unique sensitive attribute value
(e.g., DNA sequence).

5 Inference Prevention

In this section, we describe our incremental data anonymization which incorporates the inference detection
techniques in the previous section. We first describe our data/history management strategy which aims to
reduce the computational overheads. Then, we describe the properties of our checking algorithms which
make them suitable for existing data anonymization techniques such as full-domain generalization [11] and
multidimensional anonymization [12].

5.1 Data/history management

Consider a newly anonymized table,T̂i, which is about to be released. In order to check whetherT̂i is vul-
nerable to cross-version inferences, it is essential to maintain some form of history about previously released
datasets,Θ = {T̂0, . . . , T̂i−1}. However, checking the vulnerability in̂Ti against each table inΘ can be
computationally expensive. To avoid such inefficiency, we maintain a history table,Hi at timei, which has
the following attributes.

• RID : is a unique record ID (or the explicit identifier of the corresponding individual). Assuming that
eachT̂i also containsRID (which is projected out before being released),RID is used to joinHi and
T̂i.

• TS(Time Stamp) : represents the time (or the version number) when the record is first released.

• IS (Inferable Sensitive values) : stores the set of sensitive attribute values with which the record can be
associated. For instance, if recordr is released in equivalence classei of T̂i, thenr[IS]i ← (r[IS]i−1∩
ei〈S〉). This field is used for checking vulnerability to intersection attack.

• IQ (Inferable Quasi-identifier) : keeps track of the quasi-identifiers into which the record has previously
been generalized. For instance, for recordr ∈ T̂i, r[IQ]i ← r[IQ]i−1 ∩ r[Q]. This field is used for
checking vulnerability to record-tracing attack.
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The main idea ofHi is to keep track of the attacker’s accumulated knowledge on each released record.
For instance, valuer[IS] of recordr ∈ Hi−1 indicates the set of sensitive attribute values that the attacker
may be able to associate withr prior to the release of̂Ti. This is indeed the worst case as we are assuming
that the attacker possesses every released table, i.e.,Θ. However, as discussed in Section 4.1, we need to be
conservative when estimating what the attacker can do. Using H , the cost of checkinĝTi for vulnerability
can be significantly reduced; for intersection and record-tracing attacks, we check̂Ti againstHi−1, instead
of everyT̂j ∈ Θ4.

5.2 Incorporating inference detection into data anonymization

We now discuss how to incorporate the inference detection algorithms into secure anonymization algorithms.
We first consider the full-domain anonymization, where all values of an attribute are consistently generalized
to the same level in the predefined generalization hierarchy. In [11], LeFevre et al. propose an algorithm that
finds minimal generalizations for a given table. In its essence, the proposed algorithm is a bottom-up search
approach in that it starts with un-generalized data and tries to find minimal generalizations by increasingly
generalizing the target data in each step. The key property on which the algorithm relies is the generalization
property: given a tableT and two generalization strategiesG1, G2 (G1 � G2), if G1(T ) is k-anonymous,
thenG2(T ) is alsok-anonymous5. Although intuitive, this property is critical as it guarantees the optimality
to the discovered solutions; i.e., once the search finds a generalization level that satisfies thek-anonymity
requirement, we do not need to search further.

Observation 4 Given a tableT and two generalization strategiesG1, G2 (G1 � G2), if G1(T ) is not
vulnerable to any inference attack, then neither isG2(T ).

The proof is simple. As each equivalence class inG2(T ) is the union of one or more equivalence classes
in G1(T ), the information about each record inG2(T ) is more vague than that inG1(T ); thus,G2 does not
create more inference attacks thanG1. Based on this observation, we modify the algorithm in [11] as follows.
In each step of generalization, in addition to checking the(k, c)-anonymity requirement, we also check for
the vulnerability to inference. If either check fails, thenwe need to further generalize the data.

Next, we consider the multidimensionalk-anonymity algorithm proposed in [12]. Specifically, the algo-
rithm consists of the following two steps. The first step is tofind a partitioning scheme of thed-dimensional
space, whered is the number of attributes in the quasi-identifier, such that each partition contains more than
k records. In order to find such a partitioning, the algorithm recursively splits a partition at the median value
(of a selected dimension) until no more split is allowed withrespect to thek-anonymity requirement. Note
that unlike the previous algorithm, this algorithm is a top-down search approach, and the quality of the search
relies on the following property6: given a partitionp, if p does not satisfy thek-anonymity requirement, then
any sub-partition ofp does not satisfy the requirement.

Observation 5 Given a partitionp of records, ifp is vulnerable to any inference attack, then so is any sub-
partition ofp.

Suppose that we have a partitionp1 of the dataset, in which some records are vulnerable to inference
attacks. Then, any further cut ofp1 will lead to a dataset that is also vulnerable to inference attacks. This

4In our current implementation, difference attack is still checked against every previously released table.
5This property is also used in [16] for`-diversity and is thus applicable for (k, c)-anonymity.
6It is easy to see that the property also holds for any diversity requirement.
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is based on the fact that any further cut onp1 leads to de-generalization of the dataset; thus, it revealsmore
information about each record thanp1. Based on this observation, we modify the algorithm in [12] as follow.
In each step of partition, in addition to checking the(k, c)-anonymity requirement, we also check for the
vulnerability to inference. If either check fails, then we do not need to further partition the data.

6 Experiments

The main goal of our experiments is to show that our approach effectively prevents the previously discussed
inference attacks when data is incrementally disseminated. We also show that our approach produces datasets
with good data quality. We first describe our experimental settings and then report our experimental results.

6.1 Experimental Setup

6.1.1 Experimental Environment

The experiments were performed on a2.66 GHz IntelIV processor machine with1 GB of RAM. The oper-
ating system on the machine was Microsoft Windows XP Professional Edition, and the implementation was
built and run in Java 2 Platform, Standard Edition 5.0. For our experiments, we used the Adult dataset from
the UC Irvine Machine Learning Repository [18], which is considered a de facto benchmark for evaluating
the performance of anonymization algorithms. Before the experiments, the Adult data set was prepared as
described in [3, 9, 12]. We removed records with missing values and retained only nine of the original at-
tributes. In our experiments, we considered{age, work class, education, marital status, race, gender, native
country, salary} as the quasi-identifier, andoccupationattribute as the sensitive attribute.

6.1.2 Data quality metrics

The quality of generalized data has been measured by variousmetric. In our experiment, we measure the
data quality mainly based onAverage Information Loss(AIL, for short) metric proposed in [4]. The basic
idea ofAIL metric is that the amount of generalization is equivalent tothe expansion of each equivalence
class (i.e., the geometrical size of each partition). Note that as all the records in an equivalence class are
modified to share the same quasi-identifer, each region indeed represents the generalized quasi-identifier of
the records contained in it. Thus, data distortion can be measured naturally by the size of the region covered
by each equivalence class. Following this idea, Information Loss (IL for short) measures the amount of data
distortion in an equivalence class as follows.

Definition 4 (Information loss) [4] Let e={r1, . . . , rn} be an equivalence class whereQ={a1, . . . , am}.
Then the amount of data distortion occurred by generalizinge, denoted byAIL(e), is defined as:

AIL(e) = |e| ×
∑

j=1,...,m

|Gj|
|Dj |

where|e| is the number of records ine, and|Dj | the domain size of attributeaj. |Gj | represents the amount of
generalization in attributeaj (e.g., the length of the shortest interval which contains all theaj values existing
in e).

Based onIL, theAIL of a given tableT̂ is computed as:AIL(T̂ ) = (
∑

e∈T̂
IL(e)) / |T |. The key

advantage ofAIL metric is that it precisely measures the amount of generalization (or vagueness of data),
while being independent from the underlying generalization scheme (e.g, anonymization technique used or
generalization hierarchies assumed). For the same reason,we also use the Discernibility Metric (DM ) [3] as
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another quality measure in our experiment. Intuitively,DM measures the quality of anonymized data based
on the size of the equivalence classes, which indicates how much records are indistinguishable from each
other.

6.2 Experimental Results

We first measured how many records were vulnerable in statically anonymized datasets with respect to the
inference attacks we discussed. For this, we modified twok-anonymization algorithms, Incognito [11] and
Mondrian [12], and used them as ourstatic(k, c)-anonymization algorithms. Using these algorithms, we first
anonymized 5K records and obtained the first “published” datasets. We then generated five more subsequent
datasets by adding 5K more records each time. Then we used ourvulnerability detection algorithms to
count the number of records among these datasets that are vulnerable to each of inference attack. Figure 11
shows the result. As shown, much more records were found to bevulnerable in the datasets anonymized by
Mondrian. This is indeed unsurprising, as Mondrian, takinga multidimensional approach, produces datasets
with much less generalization. In fact, for Incognito, eventhe initial dataset was highly generalized. This
clearly illustrates the unfortunate reality; that is, the more precise data are, the more vulnerable they are to
undesirable inferences.

The next step was to investigate how effectively our approach would work with a real dataset. The main
focus was its effect on the data quality. As previously discussed, in order to prevent undesirable inferences,
one needs to hide more information. In our case, it means thatthe given data must be generalized until there
is no vulnerability to any type of inference attack. We modified the static(k, c)-anonymization algorithms as
discussed in Section 5 and obtained ourinf-checked(k, c)-anonymization algorithms. Note that although we
implemented the full-featured algorithms for difference and intersection attacks, we took a simple approach
for record-tracing attack. That is, we considered all the edges without removing infeasible/unnecessary edges
as discussed in Section 4.5. We also implemented amergeapproach where we anonymize each dataset
independently and merge it with the previously released dataset. Although this approach is secure from any
type of inference attacks, we expected that the data qualitywould be the worst, as merging would inevitably
have a significant effect on generalization (recoding) scheme.

With these algorithms as well as the static anonymization algorithms, we repeated our experiment. As
before, we started with 5K records and increased the datasetby 5K each time. We then checked the vulnera-
bility and measured the data quality of such datasets. We measured the data quality both withAIL andDM ,
and the results are illustrated in Figures 12 and 13, respectively. It is clear that in terms of data quality the
inf-checked algorithm is much superior than the merge algorithm. Although the static algorithms produced
the best quality datasets, these data are vulnerable to inference attacks as previously shown. The datasets
generated by our infchecked algorithm and the merge algorithm were not vulnerable to any type of inference
attack.

We also note that the quality of datasets generated by the inf-checked algorithm is not optimal. This was
mainly due to the complexity of checking for difference attack. Even though our heuristics to reduce the
size of subsets (see Section 4.3) were highly effective in most cases, there were some cases where the size of
subsets grew explosively. As such cases not only caused lengthy execution times, they caused memory blow-
ups. In order to avoid such cases, we set an upper limit threshold for the size of subsets in this experiment.
For example, while our modified algorithm of Incognito is processing a node in the generalization lattice, if
the size of subsets needed to be checked exceeds the threshold, we stop the iteration and consider the node as
a vulnerable node. Similarly, when we encounter such a case while considering a split in Mondrian, we stop
the check and do not consider the split. Note that this approach does not affect the security of data, although
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it may negatively affect the overall data quality. Even if the optimality cannot be guaranteed, we believe that
the data quality seems to be still acceptable, considering the results shown in Figures 12 and 13.

Another important comparison was the computational efficiency of these algorithms. Figure 14 shows
our experimental result for each algorithm. The merge algorithm is highly efficient with respect to execution
time (although it was very inefficient with respect to data quality). As the merge algorithm anonymizes the
same sized dataset each time and merging datasets can be donevery quickly, the execution time is closely
constant. While equipped the heuristics and the data structure discussed in Sections 4.3 and 5.1, the inf-
checked algorithm is still slow. However, considering the previously discussed results, we believe that this is
the price you have to pay for better data quality and reliableprivacy. Also, when compared to our previous
implementation without any heuristics, this is a very promising result.

7 Related Work

The problem of information disclosure [6] has been studied extensively in the framework of statistical
databases. A number of information disclosure limitation techniques [7] have been designed for data pub-
lishing, including Sampling, Cell Suppression, Rounding,and Data Swapping and Perturbation. These tech-
niques, however, compromised data integrity of the tables.Samarati and Sweeney [20, 22, 21] introduced the
k-anonymity approach and used generalization and suppression techniques to preserve information truthful-
ness. A number of static anonymization algorithms [3, 8, 9, 11, 12, 14, 21] have been proposed to achieve
k-anonymity requirement. Optimal k-anonymity has been proved to be NP-hard fork ≥ 3 [17].

While static anonymization has been extensively investigated in the past few years, only a few approaches
address the problem of anonymization in dynamic environments. In [22], Sweeney identified possible infer-
ences when new records are inserted and suggested two simplesolutions. The first solution is that once
records in a dataset are anonymized and released, in any subsequent release of the dataset, the records must
be the same or more generalized. As previously mentioned, this approach may suffer from unnecessarily low
data quality. Also, this approach cannot protect newly inserted records from difference attack, as discussed
in Section 4. The other solution suggested is that once a dataset is released, all released attributes (includ-
ing sensitive attributes) must be treated as the quasi-identifier in subsequent releases. This approach seems
reasonable as it may effectively prevent linking between records. However, this approach has a significant
drawback in that every equivalence class will inevitable have a homogeneous sensitive attribute value; thus,
this approach cannot adequately control the risk of attribute disclosure.

Yao et al. [28] addressed the inference issue when a single table is released in the form of multiple views.
They proposed several methods to check whether or not a givenset of views violates thek-anonymity require-
ment collectively. However, they did not address how to dealwith such violations. Wang and Fung [23] fur-
ther investigated this issue and proposed a top-down specialization approach to prevent record-linking across
multiple anonymous tables. However, their work focuses on the horizontal growth of databases (i.e., addition
of new attributes), and does not address vertically-growing databases where records are inserted. Recently,
Xiao and Tao [27] proposed a new generalization principlem-invariancefor dynamic dataset publishing.
The m-invarianceprinciple requires that each equivalence class in every release contains distinct sensitive
attribute values and for each tuple, all equivalence classes containing that tuple have exactly the same set
of sensitive attribute values. They also introduced thecounterfeit generalizationtechnique to achieve the
m-invariancerequirement.

In [5], we presented a preliminary limited investigation concerning the inference problem of dynamic
anonymization with respect to incremental datasets. We identified some inferences and also proposed an
approach where new records are directly inserted to the previously anonymized dataset for computational
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efficiency. However, compared to this current work, our previous work has several limitations.The key differ-
ences of this work with respect to [5] are as follows. In [5], we focused only on theinference enabling setsthat
may exist between two tables, while in this work we consider more robust and systematic inference attacks in
a collection of released tables. The inference attacks discussed in this work subsume attacks using inference
enabling sets and address more sophisticated inferences. For instance, our study of the record-tracing attack is
a new contribution in this work. We also provide a detailed descriptions of attacks and algorithms for detect-
ing them. Our previous approach was also limited to the multidimensional generalization. By contrast, our
current approach considers and is applicable to both the full-domain and multidimensional approaches; there-
fore it can be combined with a large variety of anonymizationalgorithms. In this paper we also address the
issue of computational costs in detecting possible inferences. We discuss various heuristics to significantly
reduce the search space, and also suggest a scheme to store the history (of previously released tables).

8 Conclusions

In this paper, we discussed inference attacks against the anonymization of incremental data. In particular,
we discussed three basic types of cross-version inference attacks and presented algorithms for detecting each
attack. We also presented some heuristics to address the efficiency of our algorithms. Based on these ideas,
we developed secure anonymization algorithms for incremental datasets using two existing anonymization
algorithms. We also empirically evaluated our approach by comparing to other approaches. Our experimental
result showed that our approach outperformed other approaches in terms of privacy and data quality.

For the future work, we are working on essential properties (e.g, correctness) of our methods and analysis.
Another interesting direction for the further work is to seeif there are other types of inferences. For instance,
one can devise an attack where more than one type of inferenceare jointly utilized. We also plan to investigate
inference issues in more dynamic environments where deletions and updates of records are allowed.
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NAME AGE Gender Diagnosis

Tom 21 Male Asthma
Mike 23 Male Flu
Bob 52 Male Alzheimer
Eve 57 Female Diabetes

Figure 1: Patient table

AGE Gender Diagnosis

[21 − 25] Male Asthma
[21 − 25] Male Flu
[50 − 60] Person Alzheimer
[50 − 60] Person Diabetes

Figure 2: Anonymous patient table

NAME AGE Gender Diagnosis

Tom 21 Male Asthma
Mike 23 Male Flu
Bob 52 Male Alzheimer
Eve 57 Female Diabetes
Alice 27 Female Cancer
Hank 53 Male Hepatitis
Sal 59 Female Flu

Figure 3: Updated patient table

AGE Gender Diagnosis

[21 − 30] Person Asthma
[21 − 30] Person Flu
[21 − 30] Person Cancer
[51 − 55] Male Alzheimer
[51 − 55] Male Hepatitis
[56 − 60] Female Flu
[56 − 60] Female Diabetes

Figure 4: Updated anonymous pa-
tient table
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DirectedCheck
Input: Two (k, c)-anonymous tableŝTi and T̂j, where T̂i = {ei,1, . . . , ei,m} and T̂j =
{ej,1, . . . , ej,n}

Output: true if T̂i is vulnerable to difference attack with respect toT̂j andfalseotherwise
Q = {(∅, 0)}
while Q 6= ∅

Remove the first elementp = (E, index) from Q
if E 6= ∅

E′ ← GetMinSet(E, T̂j)
if |E′ − E| < k, return true
else if(E′〈S〉 − E〈S〉) does not satisfyc-diversity,return true

for each ` ∈ {index + 1, . . . , m} // generates subsets with size|E|+ 1
insert(E ∪ ei,`, `) into Q

return false

Figure 5: Algorithm for checking if one table is vulnerable to difference attack with respect to another table
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GetMinSet
Input: An equivalence class setE and a tablêT
Output: An equivalence class setE′ ⊆ T̂ that is minimal and contains all records inE
E′ = ∅
while E 6⊆ E′

choose a tuplet in E that is not inE′

find the equivalence classe ⊆ T̂ that containst
E′ = E′ ∪ {e}

return E

Figure 6: Algorithm for obtaining a minimum equivalence class set that contains all the records in the given
equivalence class set
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Check Intersection Attack
Input: Two (k, c)-anonymous tableŝT0 andT̂1

Output: true if the two tables are vulnerable to intersection attack andfalseotherwise
for eachequivalence classe0,i in T̂0

for eache1,j ∈ T̂1 that contains any record ine0,i

if (e0,i〈S〉 ∩ e1,j〈S〉) does not satisfyc-diversity,return true
return false

Figure 7: Algorithm for checking if given two tables are vulnerable to intersection attack
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Figure 8: Record-tracing attacks
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Figure 9: More inference in record-tracing
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RemoveInfeasible Edges
Input: A bipartite graphG = (V, E) whereV = V1 ∪ V2 andE is a set of edges representing
possible matching relationships.
Output: A bipartite graphG′ = (V, E′) whereE′ ⊂ E with infeasible edges removed
E′ = E
while true

change1← false, change2← false
for eachrj ∈ V2

e← all the incoming edges ofrj

if e contains both definite and plausible edge(s)
remove all plausible edges ine from E′, change1← true

if change1 = true
for eachri ∈ V1

e← all the outgoing edges ofri

if e contains only a single plausible edge
mark the edge ine as definite, change2← true

if change2 = false,break
return (V, E′)

Figure 10: Algorithm for removing infeasible edges from a bipartite graph
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Figure 11: Vulnerability to Inference Attacks
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Figure 12: Data Quality: Average Information Loss
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Figure 13: Data Quality: Discernibility Metric
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Figure 14: Execution Time
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