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Abstract

When releasing microdata for research purposes, one needs to preserve the privacy of re-
spondents while maximizing data utility. An approach that has been studied extensively
in recent years is to use anonymization techniques such as generalization and suppression
to ensure that the released data table satisfies the k-anonymity property. A major thread
of research in this area aims at developing more flexible generalization schemes and more
efficient searching algorithms to find better anonymizations (i.e., those that have less infor-
mation loss).

This paper presents three new generalization schemes that are more flexible than exist-
ing schemes. This flexibility can lead to better anonymizations. We present a taxonomy of
generalization schemes and discuss their relationship. We present enumeration algorithms
and pruning techniques for finding optimal generalizations in the new schemes. Through
experiments on real census data, we show that more-flexible generalization schemes pro-
duce higher-quality anonymizations and the bottom-up works better for small k values and
small number of quasi-identifer attributes than the top-down approach.
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1 Introduction

Organizations, industries and governments are increasingly publishing microdata
(i.e., data that contain unaggregated information about individuals) for data mining
purposes, e.g., for studying disease outbreaks or economic patterns. While the re-
leased datasets provide valuable information to researchers, they also contain sensi-
tive information about individuals whose privacy may be at risk. A major challenge
is to limit disclosure risks to an acceptable level while maximizing data utility. To
limit disclosure risk, Samarati et al. (1998); Sweeney (2002 b,a) introduced the k-
anonymity privacy requirement, which requires each record in an anonymized table
to be indistinguishable with at least k-1 other records within the dataset, with re-
spect to a set of quasi-identifier attributes. To achieve the k-anonymity requirement,
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Workclass

Government Private  Self-employed Unemployed

State-gov Local-gov Federal-gov Private Inc Notlnc  Without Pay Never worked

Fig. 1. A value generalization hierarchy for the attribute work-class.

Samarati et al. (1998); Sweeney (2002 b) used both generalization and suppression
for data anonymization. Generalization replaces a value with a “less-specific but
semantically consistent” value. Tuple suppression removes an entire record from
the table. Unlike traditional privacy protection techniques such as data swapping
and adding noise, information in a k-anonymized table through generalization and
suppression remains truthful.

A major thread of research in the area of data anonymization aims at generating k-
anonymous tables with better data quality (i.e., less information loss). This thread of
research has resulted in a number of generalization schemes. Each generalization
scheme defines a space of valid generalizations. A more flexible scheme allows
a larger space of valid generalizations. Given a larger solution space, an optimal
generalization in the space is likely to have better data quality. A larger space also
requires a better search algorithm.

Samarati et al. (1998); Sweeney (2002 b) used a generalization scheme that utilizes

a value generalization hierarchy (VGH) for each attribute. In a VGH, leaf nodes cor-
respond to actual attribute values, and internal nodes represent less-specific values.
Figure 1 shows a VGH for the work-class attribute. In the scheme in Samarati et al.
(1998); Sweeney (2002 b), values are generalized to the same level of the hierarchy.
One effective search algorithm for this scheme is Incognito, due to LeFevre et al.
(2005). lyengar (2002) proposed a more flexible scheme, which also uses a fixed
VGH, but allows different values of an attribute to be generalized to different lev-
els. Given the VGH in Figure 1, one can generalize Without Pay and Never Worked
to Unemployed while not generalizing State-gov, Local-gov, or Federal-gov. lyen-
gar (2002) used genetic algorithms to perform a heuristic search in the solution
space. Recently, Bayardo et al. (2005) introduced a more flexible scheme that does
not need a VGH. Instead, a total order is defined over all values of an attribute,
and any order-preserving partition (i.e., no two blocks in the partition overlap) is a
valid generalization. This scheme has a much larger solution space than previous
schemes. Bayardo et al. (2005) used the approach in Rymon (1992) to systemat-
ically enumerate all anonymizations and the OPUS framework by Webb (1995)
to search for the optimal anonymization. They developed several effective pruning
techniques to reduce the search space that needs to be explored.

The work in this paper is motivated by three observations. First, the scheme pro-



posed by Bayardo et al. (2005) requires a total order on the attribute values. How-
ever, it is difficult to define a total order for a categorical attribute and such a total
order limits the possible solutions. For example, consider the attribute in Figure 1,
assume that one orders the values from left to right; then generalizations that com-
bine State-gov and Federal-gov but not Local-gov are not considered in this scheme.
Second, a VGH reflects valuable information about how one wants the data to be
generalized; this is not utilized in Bayardo et al. (2005). Again consider Figure 1,
it is more desirable to combine State-gov with Local-gov than with Private. There-
fore, one may combine State-gov with Private only when all values under Govern-
ment have been combined together. In other words, one could use VGHs to elim-
inate some undesirable generalizations. Third, the search algorithm in Bayardo et
al. (2005) is a top-down approach, which starts from the most general generaliza-
tion, and gradually specializes it. Such an approach works well when the value & is
large. For smaller k, a bottom-up search is likely to find the optimal generalization
faster.

In this paper, we improve the current state of the art by proposing three new gener-
alization schemes. Given a categorical attribute, these schemes allow any partition
of an unordered set of values to be treated as a valid generalization. They also al-
low a VGH to be used to eliminate some undesirable generalizations. We present
a taxonomy of existing generalization schemes and the new schemes proposed in
this paper, and analyze the relationship among them.

We also develop an approach for systematically enumerating all partitions in an
unordered set. Bayardo et al. (2005) used algorithms developed in the artificial in-
telligence community (Rymon (1992)) for enumerating all partitions in an ordered
set. As we could not find an existing algorithm for the unordered case, we devel-
oped an enumeration algorithm. We believe that such an algorithm may be useful
in other contexts.

We perform experiments to compare the performance of these generalization schemes
and demonstrate that optimal k-anonymizations can be obtained for various gener-
alization schemes and flexible generalization schemes can produce better-quality
datasets at the cost of reasonable performance degradation. We find the optimal
anonymization in a bottom-up manner. Comparing with the performance of top-
down methods in Bayardo et al. (2005), we conclude that bottom-up methods are
more suitable for smaller £ values while top-down methods are more suitable for
larger k values.

The rest of the paper is organized as follows. We present new generalization schemes
and a taxonomy of these schemes in Section 2. In Section 3, we give enumera-

tion algorithms for the three new generalization schemes. Cost metrics and pruning

rules are discussed in Section 4.4 and experimental results are given in Section 5.

We discuss related work in Section 6 and conclude in Section 7.



2 A Taxonomy of Generalization Schemes

In this section, we describe some notations and discuss generalization schemes and
their relationship. We also present a taxonomy of these generalization schemes.

2.1 Preliminaries

The attribute domain of an attribute is the set of all values for the attribute. An
attribute generalization g for an attribute is a function that maps each value in the
attribute domain to some other value. The function ¢ induces a partition among all
values in the attribute’s domain. Two values v; and v; are in the same partition if
and only if g(v;) = g(v;).

An anonymization of a dataset D is a set of attribute generalizations {g, ..., gm }
such that there is one attribute generalization for each attribute in the quasi-identifier.
Atuplet = (vy, ..., v,,) in D is transformed into a new tuple t' = (g1(v1), .-, g (Vm))-

Another anonymization technique is tuple suppression, which removes the entire
record from the table. Tuple suppression can be very effective when the dataset
contains outliers. By removing outliers from the table, much less generalization is
needed and the overall data quality improves. Tuple suppression can be incorpo-
rated into the framework of generalization by first transforming the dataset D into
a new dataset D’ using anonymization g and then deleting any tuples in D’ that
fall into an equivalence class of size less than k. Anonymizations that do not al-
low suppression can be modeled by assigning the penalty of a suppressed tuple to
be infinity. Before discussing algorithms for finding optimal anonymizations, we
investigate several generalization schemes.

2.2 Existing Generalization Schemes

Basic Hierarchical Scheme (BHS) Earlier work on k-anonymity focuses on the
Basic Hierarchical Scheme (BHS), for example, LeFevre et al. (2005); Sweeney
(2002 a); Samarati et al. (1998). In BHS, all values are generalized to the same
level of the VGH. Thus the number of valid generalizations for an attribute is the
height of the VGH for that attribute. For example, there are 3 valid generalizations
for the attribute work-class in Figure 1. As BHS has a very small space for valid
generalizations, it is likely to suffer from high information loss due to unnecessary
generalizations. This motivated the development of other more flexible generaliza-
tion schemes.

Group Hierarchical Scheme (GHS) Iyengar (2002) proposed a more-flexible



Group Hierarchical Scheme (GHS). Unlike BHS, GHS allows different values of
one attribute to be generalized to different levels. In GHS, a valid generalization is
represented by a “cut” across the VGH, i.e., a set of nodes such that the path from
every leaf to the root encounters exactly one node (the value corresponding to the
leaf will be generalized to the value in that node). GHS allows a much larger space
of valid generalizations than BHS. For example, for the VGH in Figure 1, there
are 2* + 1 = 17 valid generalizations.! GHS is likely to produce better-quality
anonymizations than BHS. However, the solution space is still limited by the VGH,
and the quality of the resulted dataset depends on the choice of the VGH.

Ordered Partitioning Scheme (OPS) The fact that the quality of the resulted
dataset depends on the choice of VGHs motivated the Ordered Partitioning Scheme
(OPS) by Bayardo et al. (2005). OPS does not require predefined VGHs. Instead,
a total order is defined over each attribute domain. Generalizations are defined by
a partition according to the ordering. For example, a partition of the age attribute
domain is given in Figure 2.

|10-19|20-29 30-39 | 40-49 | 50-59 60—69|?0—79 |80—89|

Fig. 2. Partition on continuous attribute Age.

Suppose an attribute domain contains n values, the total number of generalizations
is 2”1, For example, the total number of valid generalizations for the work-class
attribute in Figure 1 is 27 = 128. While the solution space is exponentially large,
Bayardo et al. (2005) showed the feasibility of finding the optimal solution in OPS
through a tree-search strategy exploiting both systematic enumerating and cost-
based pruning.

2.3  New Generalization Schemes

We propose three new generalization schemes, each of which aims at producing
higher-quality datasets by allowing a larger solution space while incorporating se-
mantic relationships among values in an attribute domain.

Set Partitioning Scheme (SPS) OPS requires a pre-defined total order over the
attribute domain. While it is natural to define a total order for continuous attributes,
defining such a total order for categorical attributes is more difficult. Moreover, this

1 Except for the most general generalization, each “cut” contains a subset of the four nodes
in the middle layer and some nodes on the leaf layer. Thus the total number of “cuts” is one
plus the number of subsets of the four nodes in the middle layer.



total order unnecessarily imposes constraints on the space of valid generalizations.
Consider Figure 1, suppose the total order is defined using the left-to-right order,
then OPS does not allow generalizations that combine State-gov and Federal-gov
but not Local-gov; OPS also does not allow generalizations that combine the three
values { Private, Without Pay, Never Worked}, without Inc and Not inc.

We propose the Set Partitioning Scheme (SPS), in which generalizations are defined
without the constraint of a predefined total order or a VGH; each partition of the
attribute domain represents a generalization. In Section 3, we discuss in detail how
to enumerate all valid generalizations in SPS. The number of different partitions
of a set with n elements is known as the Bell number Rota (1964), named in honor
of Eric Temple Bell. They satisfy the recursion formula: B,, 11 = >}, (Z) By. The
first few Bell numbers are: By = By = 1, By = 2, B3 = 5, B4y = 15, B = 52, ....
There are By = 4140 generalizations for the work-class attribute shown in Figure 1,
as compared to 128 generalizations in OPS.

Guided Set Partitioning Scheme (GSPS) SPS does not take into account the se-
mantic relationship among values of an attribute domain. For example, the three
values State-gov, Local-gov, and Federal-gov are semantically related while State-
gov and Private are not.

To incorporate such semantic information, we propose the Guided Set Partitioning
Scheme (GSPS), which generalizes data based on the VGHs. GSPS defines a gener-
alization g to be valid if whenever two values from different groups are generalized
to the same value v, all values in that two groups should all be generalized to v.
If we define the semantic distance between two values to be the height of the low-
est common ancestor of the two values in the VGH, then the intuitive idea behind
GSPS is that if two values x and y are in one partition, then any value that is seman-
tically closer to x than y must also be in the same partition. (The same applies to
any value that is semantically closer to y than x.) Note that a value that has the same
semantical distance to x as y does not need to be in the same partition. For example,
consider the VGH for work-class attribute shown in Figure 1, if Local-gov and Inc
are combined together, then the five values (State-gov, Local-gov, Federal-gov, Inc,
Not Inc) must be in the same partition while the other three values do not need to
be in that partition.

We can view SPS as a special case of GSPS. GSPS becomes SPS when the VGH
is degenerated, i.e., a VGH that has only two levels: one root at the root level and
all values at the leaf level. However, with the constraints imposed by VGHs, un-
desired generalizations that do not maintain sematic relationship among values of
an attribute domain can be eliminated while the time needed to find an optimal
anonymization reduces as the search space is smaller.

While both GSPS and GHS use VGHs, they are different in a number of ways. GHS
requires that values in the same group be generalized to the same level; whereas in



GSPS, values in the same group can be generalized to different levels. GSPS allows
a larger space of valid generalizations than GHS does. When no VGH is provided
(or one uses the degenerated VGH), there are only two valid generalizations in
GHS, while the number of valid generalizations in GSPS is maximized to be the
same as in SPS.

Guided Ordered Partitioning Scheme (GOPS) Similar to SPS, OPS does not
keep semantic relationship among values in an attribute domain. Consider the age
attribute, one may consider [20-29] and [30-39] to be two different age groups
and two values in the two groups should not be in the same partition unless the two

groups are merged in order to achieve a desired level of anonymity. Thus, partitions
such as [28-32] are prohibited.

To impose these semantic constraints, we propose the Guided Ordered Partitioning
Scheme (GOPS). GOPS defines a generalization g to be valid such that if two values
z and y (x < y) from two different groups are in the same partition p,, any value
between the least element in x’s group and the largest element in y’s group must
also be in p,.

The relationship between GOPS and OPS is the same as that between GSPS and
SPS. GOPS reduces to OPS when a degenerated VGH is used.

Generalization Schemes

| | ‘

Hierarchy-based Partition-based Guided Partition-based

) v L 4 v h b

BHS GHS OPS SPS GOPS GSPS

Fig. 3. A taxonomy of generalization schemes

2.4 Putting it All Together

Figure 3 shows a taxonomy of the generalization schemes. We now analyze the
relationship among them with regard to the space of valid generalizations. Given
two generalization schemes g; and gs, the notation g; < g, means that the space of
valid generalizations allowed by g is a proper subset of the space of valid general-
izations allowed by g». We then have the following relationship:

BHS< GHS~< GOPS. It is easy to see that if all values are generalized to the same
level, values in the same group are also generalized to the same level. Also, if we
define the total order among all values with respect to the hierarchy. For the “work-
class” attribute, we can define the total order: State-gov<Local-gov<Federal-gov<



Private<Inc<Not Inc<Without Pay<Never worked. Then we can easily see that
any valid generalization in GHS is also valid in GOPS.

GOPS~< OPS < SPS. When no hierarchies are defined, GOPS becomes OPS. When
no orderings are defined, OPS becomes SPS. Hierarchies and orderings add more
constraints to the definition of valid generalizations.

GOPS< GSPS< SPS. When no orderings are defined, GOPS becomes GSPS.
When no hierarchies are defined, GSPS becomes SPS. Hierarchies and orderings
add more constraints to the definition of valid generalizations.

The partial order relationship among the six generalization schemes is shown in
Figure 4.

BHS

OPS GSPsS

SPS

Fig. 4. “Solution space” relationship

We point out that one can use a combination of generalization schemes for different
attributes. For example, one can use SPS for categorical attributes and OPS for
continuous attributes.

3 Enumeration Algorithms

We now study how to find the optimal anonymizations in the three new general-
ization schemes: SPS, GSPS and GOPS. To find the optimal anonymization in a
scheme, we need to systematically enumerate all anonymizations allowed by the
scheme and find the one that has the least cost. The problem of identifying an opti-
mal anonymization in OPS has been framed in Bayardo et al. (2005) as searching
through the powerset of the set of all attribute values, which can be solved through
the OPUS framework in Webb (1995). OPUS extends a systematic set-enumeration



search strategy in Rymon (1992) with dynamic tree arrangement and cost-based
pruning for solving optimization problems. The set-enumeration strategy system-
atically enumerates all subsets of a given set through tree expansion. See Bayardo
et al. (2005) for a description of the algorithm.

In Section 3.1 we present our algorithm for enumerating all generalizations of a
single attribute in SPS using tree expansion. In Section 3.2, we present an algo-
rithm for enumerating all anonymizations in SPS. We describe how to adapt the
algorithms for GOPS and GSPS in Section 3.3.

3.1 An enumeration algorithm for a single attribute in SPS

Let > be the domain of one attribute. In SPS, each generalization for the attribute
corresponds to one partition of >. A partition of X is a family of mutually disjoint
sets S1, 99, ..., S, such that ¥ = 57 U Sy U ... U S,,. Our objective is to enumerate
all partitions on X without visiting any partition more than once. We use breadth-
first search (BFS) strategy to build an enumeration tree of all partitions of >. The
root of the tree is the partition in which each value itself is in a set; this represents
the most specific generalization, where no value is generalized. Each child of the
node is generated by merging two sets in the partition into one set. The challenge is
to generate each partition exactly once. Before describing the algorithm, we show
the partition enumeration tree for the alphabet {1,2,3,4} in Figure 5. This may help
understand the key ideas underlying the enumeration algorithm.

<{1H2}{3H4}>

<{1,2H{3H4}> <{1H{2,3}{4}> <{1,3H{2H4}> <{1H{2}{3,4}> <{1}{2,4}{3}> <{1,4{2}{3}>

AN

<{1,2 3}{4}> <{1,2}{3,4)> <{1,2,4}{3}> <{1}{2,3,4}> <{1,3}{2,4}> <{1,3.412}> <{1,442,3}>

<{1, 2 3,4)>
Fig. 5. Partition enumeration tree over alphabet {1,2,3,4}

Given a node that has partition P = (51,...,5;), a child node of P is generated
by merging two sets S; and S; (1 < 7 < ¢ < t) in P. If all pairs of S; and 5
are allowed to be merged, then a partition may be encountered multiple times. The
challenge is to identify under which conditions can S; and S; merge so that each
each partition is generated exactly once.

The algorithm is given in Figure 6. The key component of the algorithm is the
Child_Nodes procedure which finds all the child nodes of a given partition P. In the



Enumeration_Algorithm
Input: An attribute domain S
Output: The set of all partitions on S
Initialize the partition P=(S, S, ..S;,)
s.t. each set contains one element.
Insert P into queue
R=10
while the queue is not empty do
P = first item removed from queue
T = Child_Partitions(P)
for each partition P' in T do
Insert P’ to queue
R=RUP
return R

Child _Partitions
Input: A partition P=(S5, ..., S¢) on S
Output: The set of child partitions of P
T=90
for i=2 to tdo
if S; contains one element e then
for j=i-1to 1 do
if e > any element in S; then
T =TU{(5%,S,...5;_1,
Sj @) SZ', Sj+1, ...S,L',l,

Sit1,y St}
else break
if S; has two or more elements
then break

return T

Fig. 6. Enumeration Algorithm for A Single Attribute

algorithm, two sets S; and \S; can be merged if and only if all three of the following
conditions are satisfied. For each of the condition, we briefly explain the intuition

behind it.

(1) S; contains a single element e. Suppose that S; = {ej, e}, then the child
partition with S; and S; merged can be generated elsewhere in the tree with
S; first merged with {e; } and then with {e,}.

(2) Each set in between (i.e., Sji1, ..

., S;_1) contains a single element. Suppose

there is a £ such that j + 1 < k£ < ¢ — 1 and S} contains more than one
element, then elsewhere in the tree, we have a partition in which Sy, is replaced
by several sets, each of which contains exactly one element. The partition with
S; and S; merged will be generated there.

(3) Each element in S; is less than e. Suppose that S; = {e1, e2} withe; < e < ey,
then the partition with .S; and S; merged can be generated elsewhere in the tree
with {e; } first merged with {e} and then with {e, }. Note that S; must contain
an element that is less than e, because S; comes before .5;.

For each set 5; in P, the algorithm checks if .S; contains more than one element. If
so, .S; cannot be merged with any set preceding it. Otherwise(.S; contains exactly
one element e), the algorithm checks preceding sets .S; of S;, starting from S;_;. If
every element in S; is less than e, a new child partition is generated by removing
S; and S;, and adding S; U \S; as the jth element of the partition. Otherwise(some
element in \S; is larger than e), S; cannot be merged with any set preceding S;. If
S; contains more than one element, S; cannot be merged with any set preceding S

either.

Example 1 Consider the partition ({1},{2,3},{4},{5}). This partition has three




child partitions by merging {4} with {2,3}, or merging {5} with {4}, or merging
{5} with {2,3}. The resulted partitions are ({1},{2,3,4},{5}), ({1},{2,3},{4,5})
and ({1},{2,3,5},{4}).

Example 2 Consider the partition ({1,4},{2},{3},{5}). This partition has four
children by merging {3} with {2}, or merging{5} with {3}, or merging {5} with
{2}, or merging {5} with {1,4}. The resulted partitions are ({1,4},{2,3},{5}),
({1,4}.{2}.{3.5}), ({1.4},{2.5}.{3}), and {{1,4,5},{2}.{3}).

The following theorem states the correctness of the algorithm.

Theorem 1 The algorithm in Figure 6 enumerates all partitions of S in a system-
atic manner, i.e., each partition of S is enumerated exactly once.

Proof Sketch: Consider a partition P = ({ai1, a12...a14, }, {@21, azo, ...a2s, }, ...,
{as1,a52,...as, }}) of S, such that (1) a;; < aj fori = 1,2,..sand 1 < j <
E<t.(2)ay < ap forl < j < k < s. We show that there is exactly one
valid sequence of merging that result in this partition; this show that the partition is
generated exactly once in the tree.

In order to make the proof concise, we denote “merging e with the set s” as (e, s).
Then we give an order of merging that results in P from the initial partition F,:
<G12, {a11}>, <a13, {(111, Cl12}>, s <Cl1t1, {fln, ai2, ---G1t171}>, <G22, {(121}>,

<CL23, {a217G22}>, S <a2t27 {a217a22, ~-~Gzt2—1}>, e <Gs27 {a31}>, <Gs37 {as1,as2}>,
vy (A, s, g, g, 1 }).

We can easily see that all >;_, (¢, — 1) merges are valid and therefore the partition
P i1s enumerated in our algorithm.

We can show that the above ordering is unique through two observations:

(1) a;; must be merged before a;;, forany ¢ = 1,2, ..sand 1 < 5 < k < ¢;. Since
a;; < a;; and a;; cannot be merged with a set that contains a;, which is a
larger element than a;;.

(2) a;, must be merged before aj, forany 1 < i < 57 < 5,1 < p < s; and
1 < g < s;. Two cases are identified:
® a;, < aj,. Since if an element is merged, any other elements before it cannot

be merged, we see that a;, must be merged first.
® a;, > aj,. Since an element cannot be merged with any set before a set
which contains more than one element, a,;, must be merged earlier than a;,.

We have shown that our algorithm enumerates all partitions on S and each partition
is enumerated exactly once. The enumeration algorithm is thus systematic.



Anonymization_ Enumeration
Input: A set of attribute domains
Output: A set of all anonymizations
Initialize the node of to the most specific
partition, and AS contains all attributes
Insert the initial node to queue
R=10
while the queue is not empty do
N = first item removed from queue
T = Child_Nodes(N)
for each node N’ in T do
Insert N’ to queue

Child_Nodes
Input: A tree node /N (an anonymization
(Py, Py, ...P,,) and an applicator set AS)
Output: All child nodes of node NV
T=90
for each applicator i in AS do
parSet=Child_Partitions(F;)
for each partition P in parSet do
Create a new child node N’
Set anonymization of N/ to be
(P1,..P,_1,P,P1,..Py)
Set the applicator set of N’ to be AS

R=RUN if P is the most generalized partition
return R then remove ¢ from AS of N’
T=TUN'
return T

Fig. 7. Enumeration Algorithm for Anonymizations

3.2 An anonymization enumeration algorithm for SPS

Recall that an anonymization is a set of attribute generalizations { Py, P, ..P,,}
consisting of one attribute generalization per attribute. In this section, we build
an enumeration tree to enumerate all possible anonymizations. Each node in the
enumeration tree has m attribute generalizations (one for each attribute) and an
applicator set. An applicator set is an ordered subset of {1,...,m}, denoting the
order in which the attributes are to be expanded. By applying each applicator in the
applicator set of a node, we obtain a set of children of that node. For example, the
first set of children of a node is the set of anonymizations created by generalizing
the attribute specified by the first applicator. A child of a node inherits all other
applicators and inherits the applicator that has been applied if the attribute corre-
sponding to the applicator can still be generalized. Figure 8 shows an enumeration
tree of two attributes with three and two values, respectively.

Figure 7 shows an algorithm using Breadth-First Search (BFS) strategy to system-
atically enumerate all possible anonymizations. The Anonymization_Enumeration
procedure uses a queue structure. Each time a node is removed from the queue,
all its children computed by the C'hild_N odes procedure are inserted to the queue.
The Child_Nodes procedure applies each applicator in the applicator set to the
anonymization and calls the C'hild_Partitions procedure in Figure 6 to find all
child partitions of the given partition. This child partition replaces the original par-
tition in the anonymization and the applicator set is updated according to whether
the child partition can still be generalized or not.



{<{ah{bl{ck><{1}.{2}>} AS={1,2}

{<{a.bh{ck<{1L{2}>} AS={12} {<{al{b.c}><{1},{2}>} AS={2} {<{a.ch{b}><{1}.{2}>} AS={2} {<{ah{b}{c}><{1,2>} AS={}

{<labc}><{11{2)>} AS={2}  (<{a,b}h{c}>,<(1.2)>} AS={}  (<{a}.{b.c}>,<{1,2}>} AS=(} {<{a.ch{b}>,<{1,2}>} AS=(}

{<{a,b,c}>,<{1,2}>} AS={}

Fig. 8. Enumeration Tree of Anonymizations with Two Attributes.

Example 3 Consider a node {({1,2},{3},{4}), ({1},{2})} with AS = {1,2}.
By applying the first applicator 1, we obtain three child nodes, namely, {({1,2,3},
{ah), {11 20 H {125 {341, ({1} {2h)}, and {{({1, 2,4}, {3}), ({1}, {2}) }-
By applying the second applicator 2, we obtain one child nodes, namely, {({1,2},
{3}, {4}), ({1,2})}. Therefore, this node has four child nodes in total.

3.3 Enumeration Algorithms for GSPS and GOPS

The enumeration algorithm for SPS described in Section 3.1 and 3.2 can be adapted
for GSPS. The only difference is that when we expand a node, we examine each
of its child nodes to see if this child node represents a valid generalization with re-
spect to the VGH or not. If yes, the child node is added to the queue. Otherwise, the
algorithm identifies all sets of attribute values that need to be merged to get a valid
generalization and check whether such merging is allowed according to the three
conditions described in Section 3.1. If such merging is allowed, then a new node
is created. This enumeration approach remains systematic and complete. GSPS al-
lows fewer valid generalizations than SPS since undesired generalizations that vi-
olate the VGHs are regarded as invalid generalizations in GSPS. GSPS becomes
SPS when degenerated VGHs are used. Therefore, GSPS is a more sophisticated
scheme than SPS.

Example 4 Consider the work-class hierarchy in Figure 1 and the partition ({1},
{2,3},{4},{5,6},{7},{8}). In SPS, this partition has 4 child partitions. But in
GSPS, this partition has only 1 child partition by merging {8} with {7}. The re-
sulted partition is: ({1},{2,3},{4},{5,6},{7,8}). The other 3 child partitions are
invalid with regard to the hierarchy.

Enumeration algorithm for OPS can also be adapted for GOPS using the same
approach.

Example 5 Consider the work-class hierarchy in Figure 1 and the partition ({1},
{2,3},{4},{5,6},{7},{8}). In OPS, this partition has 2 child partitions. But in
GOPS, this partition has only 1 child partition by merging {8} with {7}. The re-
sulted partition is: ({1},{2,3},{4},{5,6},{7,8}).



4 Cost Metrics and Cost-based Pruning

In this section, we discuss several cost metrics and compare them in terms of effec-
tiveness in measuring information loss. We then employ cost-based pruning rules
to reduce the search space.

4.1 Cost Metrics

To model an optimal anonymization, we need a cost metric to measure the data
quality of the resulted dataset. One widely used metric is the discernibility metric
(DM) in Bayardo et al. (2005), which assigns a penalty to each tuple according
to the size of the equivalence class that it belongs to. If the size of the equivalence
class FE is no less than k, then each tuple in F gets a penalty of | F'|(the number of
tuples in E). Otherwise each tuple is assigned a penalty of | D|(the total number of
tuples in the dataset). In other words,

Com= ). |EP+ > |E|D]

VEs.t.|E|>k VEs.t.|E|<k

DM measures the discernibility of a record as a whole. We propose Hierarchical
Discernibility Metric (HDM), which captures the notion of discernibility among
attribute values. For example, consider the work-class attribute in Figure 1, suppose
50 records have value Inc and 200 records have value Not-inc. If values Inc and Not-
inc are combined (e.g., generalized to Self-employed), we would expect a larger
information loss for value Inc than for value Not-Inc.

Given an attribute generalization g and its corresponding partition P, suppose that
a record has value v for this attribute, and v is in the group e € P. We quantify
the information loss for generalizing v in this record. Let N be the total number of
records. Let N, be the number of records that have values in the group e. Let N, be
the number of records that have value v. In our metric, generalizing values from v
to e leads to a penalty of (N, — N, ) /(N — N,). For the earlier example, suppose the
total number of records is 1000, generalizing Inc to Self-employed gets a penalty of
(250 — 50) /(1000 — 50) = 4/19 while the penalty is (250 — 200) /(1000 — 200) =
1/16 when Not-inc is generalized to Self-employed.

The penalty for a single attribute is between 0 and 1. No penalty is incurred when
the value is not generalized and a penalty of 1 is incurred when the value is gener-
alized to the most general value. The penalty for a record is the average penalty for
each attribute. Therefore, it is also between 0 and 1.



4.2 A Comparison of Cost Metrics

Before we present cost-based pruning techniques, we give a brief comparison of
DM and HDM. First and foremost, they differ in that DM calculates discernibility
at tuple level, whereas HDM calculates discernibility at cell level. To more clearly
understand their similarities and differences, we consider their effect when the data
has only one attribute in the quasi-identifier.

When we generalize two values v4 and vg to a more general value v, both metrics
assign a larger penalty for the value where fewer records have that value. Suppose
that there are n 4 records with value v4 and np records with value vy, and we
generalize v4 and vp to v where there are nc = n4 +npg records having value ve.
Using DM, the extra penalty for records with v,4 is nc — n 4 while the extra penalty
for records with v is nc — np. If ng > npg, then records with vg will get a larger
penalty than those with v 4. The same is true for HDM, where the extra penalty for
records with v is (nc — na)/(n —na) =1 — (n — ng)/(n — na) and the extra
penalty for vg is (nc —ng)/(n —ng) =1 — (n —ng)/(n — ng). Here, n is the
total number of records in the table. If n4 > np, then vp will get a larger penalty
than v 4. In this aspect, the two metrics are consistent with each other.

The two metrics differ in that HDM considers the relative frequency of a value in
the overall table while DM relies only on the relative frequency of a value in the
group. In other words, HDM considers the total number of records in the whole
table in assigning a penalty to a value while DM does not. Recall that the average
penalty for generalizing v 4 to v in DM is ng—n 4. Therefore, for DM, generalizing
a value where 2 records have that value to a group of 4 records is exactly the same
for generalizing a value where 1000 records have that value to a group of 1002
records. However, intuitively, the first value should get a larger penalty. Our HDM
metric captures that aspect.

Another difference between DM and HDM is that DM is defined on one table
whereas HDM is defined based on one generalization. We can also define HDM
based on one table as follows. Suppose there are n4 records with value v,4, and
in one table 77, v, is generalized to v4; where there are n 4, records with value
v41. Then, the cost associated with table 7} on value v4; is defined as n41/(n —
n4). Generalizing v4 to v4; will then take cost (n4; — n4)/(n — na), which is
exactly what we have defined for HDM. Generalizing v4; to v4o will take cost
(nas —na1)/(n —ny). The sum of the two costs is (naz — na)/(n — n4), which
is exactly the cost for generalizing v directly to v4o. This shows that our HDM
metric satisfies the addition property.



4.3 Cost-based Pruning

Using the cost metrics, we can compare the data quality of a dataset produced
by an anonymization. The optimal anonymization is defined as one that results
in the least cost. To find the optimal anonymization, the naive way may traverse
the whole enumeration tree using some standard strategies such as DF'S or BF'S.
But such an algorithm is impractical when the number of possible anonymizations
becomes exponentially large. Some pruning heuristics must be applied in order to
reduce the search space and make the algorithm practical. Significant performance
improvement can be achieved if we can effectively prune parts of the enumeration
tree that will not produce an optimal solution.

In Bayardo et al. (2005), the authors identified a number of pruning rules using a
branch and bound approach. Their pruning algorithm first tries to prune the node
itself. A node can be pruned only when we are assured that none of its descendants
could be optimal. This decision can be made by the lower-bound cost computation,
which calculates the lowest cost possible for any node in the subtree rooted at that
node. When a node is encountered, the lowest cost for the subtree rooted at that
node is computed and compared with the current best cost. If it is no less than
the current best cost, the whole subtree rooted at that node can be pruned. If the
node cannot be pruned, the algorithm employes useless value pruning which tries
to prune value from the applicator set which cannot lead to a better anonymization.

In our bottom-up approach, these two pruning rules can be applied. Starting from
the original data, we use BFS to go through the anonymization enumeration tree
built in the previous section. We keep track of the current best cost and compare
with the lower-bound cost of each node we encounter to decide whether the node
can be pruned or not. If not, we compare the lower-bound cost of a new node by
applying one of the applicators to decide whether the applicator can be pruned from
the applicator set or not.

The key component of the pruning framework is the lower-bound cost computa-
tion, which calculates the lowest cost possible for any node in a subtree. In this
section, we first describe how to estimate the lower-bound cost that nodes in a sub-
tree can have. Then we discuss several new pruning techniques that can be used to
dramatically cut down the search space.

4.3.1 Lower-bound Cost Computation for HDM

The lower-bound cost of a node N is an estimate of the lowest cost possible for
any node in the subtree rooted at V. The lower-bound cost can be used to decide
whether a whole subtree can be pruned, i.e., if the lower-bound cost of NV is no less
than the current best cost, then the whole subtree rooted at N can be pruned.



Calculating the lower-bound cost for DM is described in Bayardo et al. (2005). We
now describe how to calculate lower-bound cost for HDM. Let A be an ancestor of
node N. We denote the penalty assigned to record r at node N as penalty(N,r).
Let r; be a record that is not suppressed by A. We observe that r; is also not
suppressed by N. Moreover, the equivalence class that contains r; at A is a sub-
set of the equivalence class that contains r; at N and therefore penalty(N,r;) >
penalty(A, ). Let ro be a record that is suppressed by A. Then r, may be sup-
pressed by N or not. penalty(N,rs) can be as small as 0.

Based on the above argument, we can compute the low-bound cost of node A as

penalty(A,r) if r is not suppressed
reD | 0 otherwise

Since the applicability of pruning rules is dependent on what cost metric is used.
Here, we identify the properties that a cost metric should have so that the pruning
rules are applicable:

(1) Penalty for a suppressed record should be at least as high as that for an unsup-
pressed record.

(2) If an unsuppressed record is generalized, the penalty for that record increases
after the generalization.

This two requirements on cost metric are both sufficient and necessary for the prun-
ing rules to be applicable. Below we identify two kinds of pruning rules: node
pruning and applicator pruning.

4.4 New Pruning Techniques

In this paper, we introduce a new type of pruning technique: useful applicator prun-
ing. This category of rules tries to identify applicators that must be applied in order
to reach an optimal solution and prune nodes that do not generalize on that ap-
plicator. Such an applicator is called useful. Then we can prune nodes that do not
include that applicator. The following criteria identifies useful applicators.

Useful applicators can be identified by checking whether the applicator is the only
one that can lead to a k-anonymized table. Specifically, if for any combination of
applicators other than v, there exists a record r such that r falls into an equivalence
class of size less than £, then v is a useful applicator since only by generalizing
on v we can have a k-anonymized table without suppressing record r. However,
this has the limitation that we require all records satisfy k-anonymity property and
suppression is not allowed.



For our pruning techniques to be effective, it is imperative that we find an anonymiza-
tion close to the optimal anonymization early, since it can then be used to eliminate
a large number of suboptimal anonymizations. We propose two techniques that
can be used effectively to identify an anonymization that is close to the optimal
anonymization, i.e., find a cost that is close to the best cost:

Seeding Seeding involves the initialization of the best cost. The initial best cost can
be set as the cost associated with the original dataset(e.g., |D|*|D| for DM and |D|
for HDM). However, more pruning can be done if the initial best cost value can be
estimated more precisely. For example, the initial best cost can be estimated using
costs associated with a set of randomly selected nodes.

Modified BFS Search Strategy We modify the simple BFS search strategy to
achieve this. One solution is that when we find a node whose lower-bound cost
is smaller than the current best cost, we do not immediately add all its children to
the queue. Instead, we add that node to the queue for later re-consideration. Since
the cost associated with that node has already been computed, it is available when
it is retrieved from the queue for the second time. At that point, since the current
best cost may have decreased, it is likely that the lower-bound cost of that node is
larger than the current best cost, in which case the whole subtree rooted at that node
can be pruned.

During our search process, we often need to select a node from the queue or an
applicator from the applicator set as the next node or applicator for consideration.
The choice of a good node or application selection order would eliminate a large
number of nodes or application from examination.

Node Rearrangement At each step of the search algorithm, we choose one node
from the queue for consideration. In simple BFS, we choose the node at the front
of the queue to be the next node for consideration. A better approach is to choose
the node with smallest lower-bound cost, with the hope that the best cost can be
identified more quickly.

Applicator Rearrangement Once we decide to consider a node, we need to apply
one applicator to get its children. But which applicator to use is a subjective issue.
One approach is to order all the applicators according to ascending order of how
many equivalence classes are merged by generalizing on that applicator. A good
choice of the next applicator to be applied can improve the performance of the
algorithm; otherwise, good anonymizations are distributed uniformly among the
search tree.

We will evaluate and compare the effectiveness of different pruning techniques in
cutting down the search space in the experiment.



S Experiments

The goal of the experiments is to compare the performance (both in terms of effi-
ciency and data quality) of different generalization schemes, the efficiency of the
bottom-up approach and the top-down approach, and the effectiveness of different
pruning techniques. To achieve this goal, we implemented all six generalization
schemes and performed experiments using a real-world dataset.

5.1 Experimental Setup

The dataset used in the experiments is the adult dataset from the UC Irvine machine
learning repository, which is comprised of data collected from the US census. We
used nine attributes of the dataset, as shown in the following figure. Records with
missing values are eliminated and there are 30162 valid records in total. The dataset
used in the experiment is described in Figure 9. The algorithms are implemented in
JAVA and experiments are run on a 3.4GHZ Pentium 4 machine with 2GB Physical
Memory Space.

Attribute Type # of values | Height
1| Age Numeric 74 5
2 | Work-class Categorical | 8 3
3 | Education Categorical | 16 4
4 | Country Categorical | 41 3
5 | Marital_Status | Categorical | 7 3
6 | Race Categorical | 5 3
7 | Gender Categorical | 2 2
8 | Occupation Sensitive 14 3
9 | Salary Sensitive 2 2

Fig. 9. Description of the Adult dataset used in the experiment

5.2 Experimental Results

We use coarse partitioning on the age attribute, where the domain was pre-partitioned
into 15 intervals, with each interval containing exactly a 5-year range. Using coarse
partitioning, the search space is reduced dramatically while still large enough to de-
fine the optimal anonymization.
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Fig. 10. Efficiency comparisons of the bottom-up approach and the top-down approach.

Efficiency comparisons of the bottom-up approach and the top-down approach.
Our first experiment compares the efficiency of the bottom-up approach with that
of the top-down approach. We first compare the two approaches using fixed four QI
values: { Age, Marital _Status, Race, Gender}. Figure 10(a) shows the Efficiency
of the bottom-up approach and the top-down approach with varied k values using
OPS and SPS. As we can see, the bottom-up approach runs faster than the top-down
approach for small k values like 2 or 3. However, for larger £ values like 10, 15 or
20, the top-down approach finds the optimal anonymization faster. This is because
for smaller k values, the original dataset does not need to be generalized much in
order to achieve k-anonymity. Therefore, a bottom-up approach which starts from
the original dataset would find the optimal anonymization faster. On the contrary,
for larger k values, a top-down approach would run faster since the dataset has to
be generalized much to achieve k-anonymity.

We also compare the two approaches using varied QI size. Figure 10(b) shows the
performances of the two approaches with regard to different QI size using OPS
and SPS. From the figure, we see that the bottom-up approach outperforms the
top-down approach when QI size is small and the top-down approach works better
when the QI size is large. For smaller QI size, few generalization steps are needed
in order to achieve k-anonymity. Therefore, the bottom-up approach would find the
optimal anonymization faster. On the contrary, when the QI size is large, most of
the attributes have to be generalized to high levels on the taxonomy tree. This is
consistent with the finding by Aggarwal (2005) that large amount of information
has to be lost in order to achieve k-anonymity, especially when the data contains a
large number of attributes.

Efficiency comparisons of different generalization schemes. Our second exper-
iment compares the efficiency of various generalization schemes. We first compare
the efficiency with varied quasi-identifier size, shown in Figure 11(a) with fixed
k = 5. As we expect, the exponentially increasing search space greatly increases
the running time. Also, for the same generalization scheme, the running time in-
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Fig. 11. Efficiency comparisons of the six generalization schemes.

creases as we use a larger quasi-identifier.

We also compare the efficiency of the six generalization schemes with varied k
values. Figure 11(b) shows the experimental results. Since we use a bottom-up
search method, we would expect to find the optimal solution very quickly for small
k values. As we expect, the running time of the generalization schemes increases
as k increases for each generalization scheme. The data reported in Bayardo et al.
(2005) shows that a top-down search method can find the optimal solution quickly
for larger k values. The two search directions thus complement each other.
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Fig. 12. Data quality comparisons of the six generalization schemes.

Data quality comparisons of different generalization schemes. Our third set of
experiment measures the data quality of the resulted dataset produced by the six
generalization schemes, with varied k values. We measure the data quality by com-
puting the cost associated with the anonymized dataset. The cost metrics used here
are DM and HDM discussed in Section 4.1. For the same generalization scheme, the
cost increases as k increases. This can be explained by the fact that a larger £ value
implies higher privacy level, which in turn results in a larger cost. For the same &



value, the cost decreases for the more sophisticated generalization schemes. This
can be explained by the fact that the more sophisticated generalization schemes
allow more valid generalizations and produce a dataset with better data quality.

The experiment results are consistent with our analysis. Figure 12(a) shows the
discernibility metric cost for the six generalization schemes with varied £ values.
Figure 12(b) shows the hierarchical discernibility metric cost for the six general-
ization schemes with varied & values.
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Effectiveness of different pruning techniques. Finally, we experimented with the
effectiveness of different pruning techniques in cutting down the search space. We
test the two classes of techniques described in Section 4.4: (1) seeding & modi-
fied BFS, and (2) node & applicator rearrangement. The results are shown in Fig-
ure 13. As we can see, the use of these two classes of techniques can effectively
the performance in finding the optimal anonymizations. The combination of these
two techniques could reduce the running time by up to 60%. In general, the first
technique is more effective (it can reduce the running time by up to 40%). Thus,
early identification of an anonymization close to the optimal anonymization is an
effective approach to elimination the examination of a large number of suboptimal
anonymizations.

6 Related Work

Many generalization schemes have been proposed in the literature to achieve k-
anonymity. Most of these schemes require predefined value generalization hierar-
chies, for example, Fung et al. (2005); Iyengar (2002); LeFevre et al. (2005); Sama-
rati (2001); Samarati et al. (1998); Wang et al. (2004). Among these schemes, some
require values be generalized to the same level of the hierarchy in LeFevre et al.
(2005); Samarati (2001); Samarati et al. (1998). Iyengar (2002) extends previous



schemes by allowing more flexible generalizations. In addition to these hierarchy-
based schemes, partition-based schemes have been proposed for totally-ordered
domains in Bayardo et al. (2005). These schemes and their relationship with our
proposed schemes are discussed in detail in Section 2.

All schemes discussed above satisfy the “consistency property”, i.e., multiple oc-
currences of the same attribute value in a table are generalized in the same way.
There are also generalization schemes that do not have the consistency property.
In these schemes, the same attribute value in different records may be generalized
to different values. For example, LeFevre et al. (2006) propose Mondrian multidi-
mensional k-anonymity, where each record is viewed as a point in a multidimen-
sional space and an anonymization is viewed as a partitioning of the space into sev-
eral regions. Another technique to achieve k-anonymity requirement is clustering,
e.g., Aggarwal et al. (2006). In this paper, we focus on generalization schemes that
have the consistency property. We feel that the consistency property is a desirable
property for many usages of the data, especially for data mining applications.

On the theoretical side, optimal k-anonymity has been proved to be NP-hard for
k > 3 in Meyerson et al. (2004); Aggarwal et al. (2005), and approximation al-
gorithms for finding the anonymization that suppresses the fewest cells have been
proposed in Meyerson et al. (2004); Aggarwal et al. (2005).

Recently, Machanavajjhala et al. (2006) proposed the notion of /-diversity as an
alternative privacy requirement to k-anonymity. Li et al. (2007) addressed the lim-
itations of /-diversity and proposed the notion of ¢-closeness as a new privacy re-
quirement. The generalization schemes for £-anonymity discussed in this paper can
be adapted for ¢-diversity or ¢-closeness.

7 Conclusions

In this paper, we introduce three new generalization schemes for k-anonymity and
present a taxonomy of generalization schemes. We give enumeration algorithms
for the new generalization schemes and provide pruning rules and techniques to
search for the optimal anonymization using discernibility metric in Bayardo et
al. (2005); Iyengar (2002) and the new metric we proposed in Section 4.1. We
compared the efficiency and data quality of the generalization schemes, the two
approaches (bottom-up and top-down), and the effectiveness of pruning techniques
through experiments on a real census data.
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