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Abstract

Trust management is a form of distributed access control
using distributed policy statements. Since one party may
delegate partial control to another party, it is natural to
ask what permissions may be granted as the result of pol-
icy changes by other parties. We study security properties
such as safety and availability for a family of trust manage-
ment languages, devising algorithms for deciding the possi-
ble consequences of certain changes in policy. While trust
management is more powerful in certain ways than mecha-
nisms in the access matrix model, and the security proper-
ties considered are more than simple safety, we find that in
contrast to the classical HRU undecidability of safety prop-
erties, our primary security properties are decidable. In
particular, most properties we studied are decidable in poly-
nomial time. Containment, the most complicated security
property we studied, is decidable in polynomial time for the
simplest TM language in the family. The problem becomes
coNP-hard when intersection or linked roles are added to
the language.

1 Introduction

Trust Management (TM) is an approach to access con-
trol in decentralized distributed systems with access con-

trol decisions based on policy statements made by multi-
ple principals. A key aspect of trust management is delega-
tion: a principal may transfer limited authority over one or
more resources to other principals. Since delegation gives
a certain degree of control to a principal that may be only
partially trusted, a natural security concern is whether a re-
source owner still has some guarantees about who can ac-
cess their resources. If we think of the union of all policies
of all principals as the state of a TM system, then a resource
owner always has control over some part of the state, but
not necessarily all parts. In this paper, we consider these-
curity analysisproblem, which asks what accesses may be
allowed or prevented by prospective changes in the state of
a TM system.

A few definitions are useful for stating the security anal-
ysis problem more precisely. In general, a TM language has
a syntax for specifyingpolicy statementsand queries, to-
gether with a semantic relatioǹ. We call a setP of policy
statements astateof a TM system. Given a stateP and a
queryQ, the relationP ` Q means thatQ is true inP.
WhenQ arises from an access request,P ` Q means that
accessQ is allowed inP; a proof demonstratingP ` Q is
then called aproof-of-compliance.

Recognizing that a principal or a coalition of cooperat-
ing principals may control only a part of the global state,
we assume there is arestriction rule, R, that defines the
uncontrolled changes of state that are possible. For exam-
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ple, the principal in question may consider the part of the
state controlled by fully trusted principals to be fixed, while
considering that other principals may remove some policy
statements and/or add new ones. Given a stateP and a re-
striction ruleR, we writeP 7→R P ′ if the change fromP to
P ′ is allowed byR, andP ∗7→R P ′ if a sequence of zero or
more allowed changes leads fromP toP ′. If P ∗7→R P ′, we
say thatP ′ isR-reachablefrom P , or simplyP ′ is reach-
able, whenP andR are clear from context.

Definition 1 LetP be a state,R a restriction rule, andQ a
query. Anexistential security analysis querytakes the form:
Does there existP ′ such thatP ∗7→R P ′ andP ′ ` Q? When
the answer is affirmative, we sayQ is possiblegivenP and
R. A universal security analysis querytakes the form: For
everyP ′ such thatP ∗7→R P ′, doesP ′ ` Q? If so, we say
Q is necessarygivenP andR.

Here are some motivating examples of security analysis
queries.

Simple Safety (Existential) Does there exist a reachable
state in which a (presumably untrusted) principal has
access to a resource?

Simple Availability (Universal) In every reachable state,
does a (presumably trusted) principal have access to
a resource?

Bounded Safety (Universal) In every reachable state, is
the set of all principals that have access to a resource
bounded by a given set of principals?

Containment (Universal) In every reachable state, does
every principal that has one property (e.g., has access
to a resource) also have another property (e.g., being
an employee)? A query of this form can express safety
or availability (e.g., by interchanging the two example
properties in the previous sentence).

Simple safety queries were first formalized in [9] in the
context of the well-known access matrix model [11]. The
model in [9] is commonly know as the HRU model. In the
general HRU model,safety analysis, i.e., answering sim-
ple safety queries, is undecidable [9]. A number of pro-
tection models were developed to address this, for exam-
ple, the take-grant model [17], the Schematic Protection
Model [19], and the Typed Access Matrix model [20]. The
other kinds of queries listed above were not considered in
these previous works. Since some of our queries are about
availability rather than safety, we use the termsecurity anal-
ysisrather than safety analysis.

Security analysis is especially relevant in TM systems,
which focus on delegation. While the use of delegation
greatly enhances flexibility, it may also reduce the control

that a principal has over the resources it owns. Therefore a
resource owner who is considering delegating control over
access rights needs assistance in assessing the potential con-
sequences. Who could get access? Who could be denied?
These simple questions lead to the security analysis queries
considered here.

Security analysis is needed when the state of a TM sys-
tem may change in the future. It is also useful when the
global state of a TM system is fixed, but only partially
known. Such partial knowledge is typical in distributed sys-
tems, and TM is no exception. For instance, previously un-
known statements may be presented along with new access
requests. Thus, although the global state does not change,
one’s view of that state is changing. To understand the po-
tential consequences of candidate delegation acts, one needs
to consider as-yet-unknown policy statements that could ex-
ist.

To the best of our knowledge, security analysis for TM
systems has not been investigated previously as such. In
this paper, we define a precise model for security analysis
in trust management. The policy language we consider is
a slightly simplified (yet expressively equivalent) version of
theRT0 language [16]. We call the languageSRT , for Sim-
plified RT0. All the security analysis queries listed above
are considered. While the TM language we are studying
supports delegation and is more expressive than the access
matrix model in certain ways, and the kinds of queries we
are considering are more general, somewhat surprisingly,
answering these queries are decidable. Simple safety, sim-
ple availability, and bounded safety queries can all be an-
swered in time polynomial in the size ofP. Containment
queries can be more expensive, depending on which pol-
icy language features are used. We show that, forBRT , a
sub-language ofSRT that has simple delegation, contain-
ment queries can be answered in polynomial time. Adding
intersection toBRT increases the complexity of answer-
ing containment queries to coNP-complete. For the case of
SRT , which is obtained by adding an additional linked-role
feature, answering containment queries is still decidable (in
coNEXP).

The rest of this paper is organized as follows. In Sec-
tion 2, we define the model we use to study security analysis
in TM. In Section 3, we handle simple safety, simple avail-
ability, and bounded safety queries. In Section 4, we present
results about containment queries. We discuss related work
in Section 5, and conclude in Section 6. An appendix con-
tains proofs that are not included in the main body.

2 Instantiating The Security Analysis Prob-
lem

The abstract definition of security analysis in Defini-
tion 1 has three parameters: the language used to express
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P, the form of queryQ, and the restriction ruleR. In this
section, we instantiate the security analysis problem with
specific parameters, discuss our choices, and give an exam-
ple that will be used throughout the paper.

2.1 Syntax of The TM Language

The policy language we consider isSRT , a slightly sim-
plified version ofRT0 [16]. As inRT0, the basic constructs
of SRT includeprincipals and role names. In this paper,
we useA, B, D, E, F , X, Y , andZ, sometimes with sub-
scripts, to denote principals. A role name is a word over
some given standard alphabet. We user, u, andw, some-
times with subscripts, to denote role names. Arole takes
the form of a principal followed by a role name, separated
by a dot, e.g.,A.r andX.u. A role defines a set of princi-
pals who are members of this role. Each principalA has the
authority to define who are the members of each role of the
formA.r. An access control permission is represented as a
role as well; for example, thatB is a member of the role of
A.r may represent thatB has the permission to do actionr
on the objectA.

There are four types of policy statements inSRT , each
corresponding to a different way of defining role member-
ship:

• Type-1: A.r ←− D
This statement means thatA definesD to be a member
of A’s r role.

• Type-2: A.r ←− B.r1
This statement means thatA defines itsr role to in-
clude (all members of)B’s r1 role. This represents a
delegation fromA to B, sinceB may affect who is a
member of the roleA.r by issuing statements.

• Type-3: A.r ←− A.r1.r2
We callA.r1.r2 a linked role. This statement means
thatA definesA.r to includeB.r2 for everyB that is
a member ofA.r1. This represents a delegation from
A to all the members of the roleA.r1.

• Type-4: A.r ←− B1.r1 ∩B2.r2

We callB1.r1 ∩B2.r2 an intersection. This statement
means thatA definesA.r to include every principal
who is a member of bothB1.r1 andB2.r2. This repre-
sents partial delegations fromA toB1 and toB2.

A role expressionis a principal, a role, a linked role, or
an intersection. We say that each policy statementdefines
the roleA.r. Given a setP of policy statements, we define
the following: Principals(P) is the set of principals inP,
Names(P) is the set of role names inP, andRoles(P) =
{A.r | A ∈ Principals(P), r ∈ Names(P)}.

The languageSRT simplifiesRT0 in that type-4 state-
ments inSRT allow the intersection of only two roles; in
RT0, the intersection may containk components, each can
be a principal, a role, or a linked role.RT0 statements us-
ing such intersections can be equivalently expressed inSRT
by introducing new intermediate roles and additional state-
ments. This simplification helps simplify the proofs in this
paper. When studying containment queries, we consider the
following sub-languages ofSRT : BRT (for BasicRT0),
which has only type-1 and 2 statements,LRT (for Linking
RT0), which has type-1, 2, and 3 statements, andNRT (for
iNtersectionRT0), which has type-1, 2, and 4 statements.

The four types of statements inSRT cover the most com-
mon delegation relationships in existing TM languages such
as theRT family of Role-based Trust-management lan-
guages [16, 15, 14], SPKI/SDSI [6, 4], and KeyNote [2].
SRT captures the basic forms of delegation relationships in
theRT framework, though it does not cover manifold roles.
The sub-languageLRT can be viewed as a simplified yet
expressively equivalent version of SDSI. SDSI allows long
linked names, which, as observed in [16], can be broken up
by introducing new role names and statements. With the ex-
ception of thresholds, the delegation relationships (though,
not the s-expression-based representation of permission) in
SPKI’s 5-tuples, can be captured by using type-1 statements
and a restricted form of type-2 statements. A SPKI 5-tuple
in whichA delegates a permissionr toB can be represented
asA.r ←− B. A SPKI 5-tuple in whichA delegatesr toB
and allowsB to further delegater can be represented as two
SRT statements:A.r ←− B andA.r ←− B.r. Threshold
structures in SPKI can be implemented by intersections, as
noted in [12]. Similar analogies can be drawn for KeyNote.

Although SRT is limited in that role names are con-
stants, extending role names inSRT to have internal struc-
tures does not change the nature of security analysis. As we
will see, security analysis is mostly affected by the structure
of the delegation relationships. We believe that many re-
sults and techniques developed forSRT can be carried over
to more expressive languages, e.g.,RT1 [15], which adds
to RT0 the ability to have parameterized roles,RTC

1 [13],
which further adds constraints toRT1, and, to a certain ex-
tent, SPKI/SDSI and KeyNote.

The security analysis problem inSRT is quite nontriv-
ial. Semantics and inferencing of SDSI, which is essen-
tially the sub-languageLRT , has been extensively stud-
ied [1, 4, 8, 10, 12, 16]. Some of these works only consider
answering queries in a fixed state. Some considered univer-
sal queries where no restriction is placed on how the state
may grow [1, 8]. The most interesting case of security anal-
ysis, i.e., answering queries with restrictions placed on state
changes, has not been studied in these previous works.
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2.2 Semantics of the TM Language

We give a formal characterization of the meaning of a
setP of policy statements by translating each policy state-
ment into a datalog clause. (Datalog is a restricted form
of logic programming (LP) with variables, predicates, and
constants, but without function symbols.) We call the re-
sulting program thesemantic programof P. We use the LP-
based approach to define semantics because we will formu-
late safety computation rules by using a similar approach,
and the LP-based approach generalizes easily to the case in
which role names contain parameters (see [15]).

Definition 2 (Semantic Program) Given a setP of policy
statements, thesemantic program, SP(P), of P, has one
ternary predicatem. Intuitively,m(A, r,D) represents that
D is a member of the roleA.r. SP(P) is constructed as
follows. (Symbols that start with “?” represent logical vari-
ables.)

For eachA.r←−D in P, add
m(A, r,D) (m1)

For eachA.r←−B.r1 in P, add
m(A, r, ?Z) :− m(B, r1, ?Z) (m2)

For eachA.r←−A.r1.r2 in P, add
m(A, r, ?Z) :− m(A, r1, ?Y ), m(?Y, r2, ?Z) (m3)

For eachA.r←−B1.r1 ∩B2.r2 in P, add
m(A, r, ?Z) :− m(B1, r1, ?Z), m(B2, r2, ?Z) (m4)

A datalog program is a set of datalog clauses. Given a
datalog program,LP, its semantics can be defined through
several equivalent approaches. The model-theoretic ap-
proach viewsLP as a set of first-order sentences and uses
the minimal Herbrand model as the semantics. We write
SP(P) |= m(X,u, Z) whenm(X,u, Z) is in the minimal
Herbrand model ofSP(P). This semantics corresponds ex-
actly to the set-theoretic semantics ofRT0 in [16].

We now summarize a standard fixpoint characterization
of the minimal Herbrand model, which we will use in the
proofs in this paper. Given a datalog programLP, let
LPinst be the ground instantiation ofLP using constants in
LP; the immediate consequence operator, TLP , is defined
as follows. Given a set of ground logical atomsK, TLP(K)
consists of all logical atoms,a, such thata :− b1, . . . , bn ∈
LPinst, wheren ≥ 0, and eithern = 0 or bj ∈ K
for 1 ≤ j ≤ n. The least fixpoint ofTLP , denoted by
TLP ↑ω, can be constructed as follows. DefineTLP ↑0= ∅
andTLP↑i+1= TLP(TLP↑i) for i ≥ 0. This defines an in-
creasing sequence of subsets of a finite set. Thus there exists
anN such thatTLP(TLP↑N ) = TLP↑N. TLP↑N is easily
shown to beTLP↑ω, which is identical to the minimal Her-
brand model ofLP [18]; therefore,SP(P) |= m(X,u, Z)
if and only ifm(X,u, Z) ∈ TSP(P)↑ω.

It has been shown that the minimal Herbrand model of
LP can be computed in time linear in the size ofLPinst [5].

If the total size ofLP is M , then there areO(M) con-
stants inLP. Assuming that the number of variables in each
clause is bounded by a constant,v, the number of instances
of each clause is thereforeO(Mv), so the size ofLPinst is
O(Mv+1). Thus, the worst-case complexity of evaluating
SP(P) isO(|P|3), since|SP(P)| = O(|P|) and each rule
in SP(P) has at most two variables.

2.3 Queries

In this paper, we consider the following three forms of
queryQ:

• Form-1: A.r w {D1, . . . , Dn}
Intuitively, this means that all the principals
D1, . . . , Dn are members ofA.r. Formally,
P ` A.r w {D1, . . . , Dn} if and only if
{Z | SP(P) |= m(A, r, Z)} ⊇ {D1, . . . , Dn}.

• Form-2: {D1, . . . , Dn} w A.r
Intuitively, this means that the member set ofA.r is
bounded by the given set of principals. Formally,P `
A.r w {D1, . . . , Dn} if and only if {D1, . . . , Dn} ⊇
{Z | SP(P) |= m(A, r, Z)}.

• Form-3(role inclusion): X.u w A.r
Intuitively, this means that all the members ofA.r are
also members ofX.u. Formally,P ` X.u w A.r
if and only if {Z | SP(P) |= m(X,u, Z)} ⊇ {Z |
SP(P) |= m(A, r, Z)}.

Simple safety and simple availability queries are special
cases of form-1 queries; they have the formA.r w {D}.
Simple safety queries are existential, and simple availability
queries are universal. Bounded safety queries are universal
form-2 queries. Containment queries are universal form-3
queries.

2.4 Restriction Rules on State Changes

Before discussing how we model restrictions on changes
in policy state, we consider one possible motivating sce-
nario. Suppose that the users within an organization control
certain principals, and that these principals delegate partial
control to principals outside the organization. By using se-
curity analysis, the organization can ensure that these dele-
gations do not violate desired security properties, which are
specified by a collection of security analysis queries. In this
usage of the analysis, roles defined by principals within the
organization can be viewed as unchanging, since the anal-
ysis will be repeated before any future candidate change is
made to those roles. Roles defined by principals outside the
organization, however, may change in arbitrary ways, since
they are beyond the organization’s control.
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To model such control over roles, we use restriction rules
of the formR = (GR,SR), which consist of a pair of finite
sets of roles. (In the rest of the paper we drop the subscripts
from G andS, asR is clear from context.)

• Roles in G are called growth-restricted (or g-
restricted); no policy statements defining these roles
can be added. Roles not inG are calledgrowth-
unrestricted(or g-unrestricted).

• Roles inS are calledshrink-restricted(or s-restricted);
policy statements defining these roles cannot be re-
moved. Roles not inS are calledshrink-unrestricted
(or s-unrestricted).

One example ofR is (∅, ∅), under which every role is
g/s-unrestricted, i.e., both g-unrestricted and s-unrestricted.
Under thisR, all three forms of queries have trivial an-
swers. Another example isR = (∅,Roles(P)), i.e., ev-
ery role may grow with out restriction, and no statement
defining roles inRoles(P) can be removed. This models
the case of having incomplete knowledge of a fixed policy
state. A third example, corresponding to the scenario dis-
cussed above, isR = (G,S), whereG = S = {X.u |
X ∈ {X1, . . . , Xk}, u ∈ Names(P)}, i.e., X1, . . . , Xk

are trusted (controlled); therefore, every roleX.u such that
X ∈ {X1, . . . , Xk} is restricted, all other roles are unre-
stricted. If a principalX does not appear inR, then for ev-
ery role namer, by definitionX.r is g/s-unrestricted. This
models the fact that the roles of unknown principals may be
defined arbitrarily.

We allow some roles controlled by one principal to be
g-restricted while other roles controlled by the same prin-
cipal to be g-unrestricted. This provides more flexibility
than simply identifying principals as trusted and untrusted,
and permits one in practice to perform security analysis only
when changing certain roles. Similarly, we allow a role to be
both g-restricted and s-unrestricted, which has the effect of
making a safety check necessary when modifying the defi-
nition of the role only if adding a new statement.

The above kinds of restrictions arestaticin the sense that
whether or not a state-change step is allowed byR does not
depend on the current state. A dynamic restriction could,
for instance, haveB.r2 be g-restricted ifB is a member of
A.r1, which depends on the current state. Security analy-
sis with dynamic restrictions is potentially interesting future
work.

2.5 An Example

Example 1 The system administrator of a company, SA,
controls access to some resource, which we abstractly de-
note by SA.access. The company policy is the following:
managers always have access to the resource, managers can

delegate the access to other principals, but only to employ-
ees of the company. HR is trusted for defining employees
and managers. The stateP consists of the following state-
ments:

SA.access←− SA.manager
SA.access←− SA.delegatedAccess∩ HR.employee
SA.manager←− HR.manager
SA.delegatedAccess←− SA.manager.access
HR.employee←− HR.manager
HR.employee←− HR.programmer
HR.manager←− Alice
HR.programmer←− Bob
HR.programmer←− Carl
Alice.access←− Bob

Given the aboveP, Alice and Bob have access, Carl does
not. One possible restriction rule hasG = { SA.access,
SA.manager, SA.delegatedAccess, HR.employee} and
S = { SA.access, SA.manager, SA.delegatedAccess,
HR.employee, HR.manager}. We now list some example
queries, together with the answers:

A simply safety query:
Is “SA.accessw {Eve}” possible? (Yes.)

A simple availability query:
Is “SA.accessw {Alice}” necessary? (Yes.)

A bounded safety query:
Is “{Alice, Bob} w SA.access” necessary. (No.)

A containment query:
Is “HR.employeew SA.access” necessary? (Yes.)

3 Answering Form-1 and Form-2 Queries

SRT and its sub-languages are all monotonic in the sense
that more statements will derive more role memberships
(i.e., logical atoms of the formm(A, r,D)). This follows
from the fact that the semantic program is a positive logic
program. Form-1 queries are monotonic; given a form-1
queryQ, if P ` Q, then for everyP ′ such thatP ⊆ P ′,
P ′ ` Q. Form-2 queries are anti-monotonic; given a form-
2 queryQ, if P ` Q, then for everyP ′ ⊆ P, P ′ ` Q.

Intuitively, universal form-1 (simple availability) queries
and existential form-2 queries can be answered by consid-
ering the lower bound of role memberships. A role’s lower
bound is the set of principals that are members of the role
in every reachable state. BecauseR is static, there exists
a minimal state that is reachable fromP andR, which is
obtained fromP by removing all statements defining s-
unrestricted roles. We denote this state byP|R. Clearly,
P|R is reachable; furthermore,P|R ⊆ P ′ for every reach-
ableP ′. SinceSRT is monotonic, one can compute the
lower bound by computing the role memberships inP|R.
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Similarly, existential form-1 (simple safety) queries and
universal form-2 (bounded safety) queries can be answered
by computing an “upper bound” of role memberships. The
upper bound of a role is the set of principals that could be-
come a member of the role in some reachable state. In-
tuitively, such bounds can be computed by considering a
“maximal reachable state”. However, such a “state” is not
well-defined since it would contain an infinite set of policy
statements, and we only allow a state to contain a finite set
of policy statements. We will show that one can simulate
the “maximal reachable state” by a finite state and derive
correct answers.

3.1 The Lower Bound

Definition 3 (The Lower Bound Program) Given P and
R, the lower bound programfor them,LB(P,R), is con-
structed as follows:

For eachA.r←−D in P|R, add
lb(A, r,D) (b1)

For eachA.r←−B.r1 in P|R, add
lb(A, r, ?Z) :− lb(B, r1, ?Z) (b2)

For eachA.r←−A.r1.r2 in P|R, add
lb(A, r, ?Z) :− lb(A, r1, ?Y ), lb(?Y, r2, ?Z) (b3)

For eachA.r←−B1.r1 ∩B2.r2 in P|R, add
lb(A, r, ?Z) :− lb(B1, r1, ?Z), lb(B2, r2, ?Z) (b4)

The worst-case complexity of evaluating the lower bound
program isO(|P|3).

Observe that the above lower bound program is essen-
tially the same as the semantic program for the minimal
stateP|R. They differ in that anywhereLB(P,R) uses
the predicatelb, SP(P|R) uses the predicatem. Therefore,
we have the following fact.

Fact 3.1 LB(P,R) |= lb(A, r,D) if and only if
SP(P|R) |= m(A, r,D).

Proposition 3.2 LB(P,R) |= lb(A, r,D) if and only if for
everyP ′ such thatP ∗7→R P ′, SP(P ′) |= m(A, r,D).

Proof. The “only if” part: If LB(P,R) |= lb(A, r,D),
then from Fact 3.1,SP(P|R) |= m(A, r,D). For everyP ′
that is reachable,P|R ⊆ P ′. Furthermore, the language
SRT is monotonic; therefore,SP(P ′) |= m(A, r,D).

The “if” part: if for every reachableP ′, SP(P ′) |=
m(A, r,D), thenSP(P|R) |= m(A, r,D), sinceP|R is
reachable. From Fact 3.1,LB(P,R) |= lb(A, r,D).

Proposition 3.2 means that the lower bound program can
be used to answer universal form-1 queries and existential
form-2 queries. We have not found an intuitive security
meaning of existential form-2 queries, but include answer-
ing method for them here for completeness.

Corollary 3.3 Given P and R, a form-1 queryA.r w
{D1, . . . , Dn} is necessary if and only ifLB(P,R) |=
lb(A, r,Di) for everyi, 1 ≤ i ≤ n.

Corollary 3.4 Given P and R, a form-2 query
{D1, . . . , Dn} w A.r is possible if and only if
{D1, . . . , Dn} ⊇ {Z | LB(P,R) |= lb(A, r, Z)}.

Proof. For the “if” part, we must show that if
{D1, . . . , Dn} ⊇ {Z | LB(P,R) |= lb(A, r, Z)}, then
there exists a reachableP ′ such that eachD satisfying
P ′ |= m(A, r,D) also satisfiesD ∈ {D1, . . . , Dn}. It is
easily seen by using Fact 3.1 thatP|R is such aP ′.

The “only if” part follows from Proposition 3.2 as fol-
lows. Suppose there existsZ such thatLB(P,R) |=
lb(A, r, Z) andZ 6∈ {D1, . . . , Dn}. By Proposition 3.2,
for every reachableP ′, SP(P ′) |= m(A, r, Z); therefore,
the query is not possible.

Consider Example 1. The simple availability query
“is SA.access w {Alice} necessary” is true when
SA.access, SA.manager, and HR.manager are s-
restricted, since then the statements “SA.access←−
SA.manager”, “SA.manager←− HR.manager”, and
“HR.manager←− Alice” exist in the minimal state. On
the other hand, it is not necessary that Bob has access,
even when SA.delegatedAccess, HR.employee, and
HR.programmer are also s-restricted, since Alice could
remove her statement “Alice.access←− Bob”.

3.2 The Upper Bound

To compute the upper bound of roles, we introduce the
following notion: A role isg-unboundedif for every prin-
cipal Z, there exists a reachableP ′ such thatSP(P ′) |=
m(A, r, Z). In other words,A.r could have every principal
as its member. A g-unrestricted role is clearly g-unbounded.
A g-restricted role may also be g-unbounded, as it may be
defined to include a g-unbounded role.

The following fact about g-unbounded roles says that one
only needs to consider one principal that does not occur in
P (instead of every principal) to determine whether a role is
g-unbounded.

Fact 3.5 GivenP, R, a roleA.r, and a principalE that
does not occur inP,A.r is g-unbounded if and only if there
exists a reachable stateP ′ such thatSP(P ′) |= m(A, r,E).

See Appendix A.1 for the proof. We now show how to
compute the upper bound, which simulates an infinite state.

Definition 4 (The Upper Bound Program) Given P,
R = (G,S), their upper bound program,UB(P,R), is
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constructed as follows. (> is a special principal symbol not
occurring inP,R, or any queryQ.)

Add
ub(>, ?r, ?Z) (u)

For eachA.r ∈ Roles(P)− G, add
ub(A, r, ?Z) (u0)

For eachA.r←−D in P, add
ub(A, r,D) (u1)

For eachA.r←−B.r1 in P, add
ub(A, r, ?Z) :− ub(B, r1, ?Z) (u2)

For eachA.r←−A.r1.r2 in P, add
ub(A, r, ?Z) :− ub(A, r1, ?Y ), ub(?Y, r2, ?Z) (u3)

For eachA.r←−B1.r1 ∩B2.r2 in P, add
ub(A, r, ?Z) :− ub(B1, r1, ?Z), ub(B2, r2, ?Z) (u4)

The computational complexity for evaluatingUB(P,R)
isO(|P|3). Note thatRoles(P) hasO(|P|2) elements, since
there areO(|P|) principals andO(|P|) role names inP.
Therefore, there areO(N2) instance rules of(u0); however,
each such rule has only one variable.

Proposition 3.6 Given anyP, R = (G,S), A.r ∈
Roles(P), andZ ∈ Principals(P) ∪ {>}, UB(P,R) |=
ub(A, r, Z) if and only if there existsP ′ such thatP ∗7→R P ′
andSP(P ′) |= m(A, r, Z).

See Appendix A.1 for the proof. From Fact 3.5 and
Proposition 3.6, we have the following.

Corollary 3.7 A role A.r is g-unbounded if and only if
UB(P,R) |= ub(A, r,>).

Corollary 3.8 GivenP andR = (G,S), a form-1 query
A.r w {D1, . . . , Dn} is possible if and only if one
of the following three conditions hold: (1)A.r 6∈ G,
(2) UB(P,R) |= ub(A, r,>), or (3) UB(P,R) |=
ub(A, r,Di) for everyi, 1 ≤ i ≤ n.

Proof. WhenA.r 6∈ Roles(P), the second and the third
condition will not hold; the query is possible if and only if
A.r is g-unrestricted, i.e.,A.r 6∈ G. WhenA.r ∈ Roles(P),
the first condition implies the second condition. Condition
(2) or (3) both imply that the query is possible. If none of the
three conditions holds, the query is not possible. Condition
(2) is needed to deal with the case that some of theDi’s in
the query do not occur inP.

Corollary 3.9 GivenP andR = (G,S), a form-2 query
{D1, . . . , Dn} w A.r is necessary if and only ifA.r ∈ G
and{D1, . . . , Dn} ⊇ {Z|UB(P,R) |= ub(A, r, Z)}.

Consider Example 1 again and observe that the pol-
icy is not safe according to either the simple safety query

or the bounded safety query. One reason is that the
role HR.manager is g-unrestricted, meaning that new man-
agers may be added. Another reason is that the role
HR.programmer is g-unrestricted; therefore, new program-
mers may be added and access may be delegated to them.
However, if the company knows that Eve is an enemy, then
the company probably will not hire Eve as a manager or a
programmer.

In fact, simple safety is quite unnatural: to use it ef-
fectively, one has to be able to identify the principals that
should never have access, the number of such principals
could be arbitrary large. Bounded safety is also unnatural,
one does not know, for example, who in the future the com-
pany will hire as a manager. A more natural policy is to
ensure that, for example, only employees of the company
are allowed to access the resource. This can be done by
using form-3 queries.

4 Answering Universal Form-3 Queries

Form-3 queries (i.e., role inclusion queries) are nei-
ther monotonic nor anti-monotonic. Given a form-3 query
X.u w Z.w and three statesP ′ ⊆ P ⊆ P ′′, it is possible
thatP ` Q, but bothP ′ 6` Q andP ′′ 6` Q. As a result, the
approach taken with form-1 and form-2 queries is not appli-
cable here. We cannot simply look at a specific minimal (or
maximal) state and answer the query.

In this paper, we restrict our attention to universal role in-
clusion queries. We have not found meaningful readings of
existential role inclusion queries in terms of security prop-
erties. We say that a roleX.u containsanother roleA.r
if X.u w A.r is necessary, i.e.,X.u includesA.r in ev-
ery reachable state. And we call the problem of answering
containment queriescontainment analysis.

The case that one ofX.u andA.r is not inRoles(P) is
uninteresting. IfA.r 6∈ Roles(P), thenX.u containsA.r
if and only if A.r is g-restricted. IfA.r ∈ Roles(P) and
X.u 6∈ Roles(P), thenX.u containsA.r if and only ifA.r
has an upper bound that is empty. In the rest of this sec-
tion, we only consider the case that bothX.u andA.r are in
Roles(P).

Intuitively, there are two cases in which a roleX.u con-
tains a roleA.r. The first case is that this containment is
forced by the statements that are inP. For example, if a
statementX.u←− A.r exists and cannot be removed, then
X.u containsA.r. A containment may be forced by a chain
of credentials. Forced containment can be computed simi-
larly to role memberships.

In the second case, containment is caused by the nonex-
istence of statements inP. In the extreme case, ifA.r has
no definition and is g-restricted, thenA.r is contained in
every role, since the member set ofA.r is empty in every
reachable state. To compute this kind of containment, ob-

7



serve that a g-restricted roleA.r is contained in another role
X.u if every definition ofA.r is contained inX.u. If A.r
has no definition at all, then it is contained in every role.
However, a straightforward translation of this into a posi-
tive logic program does not work. Consider the following
example:P = {A.r ←− B.r1, A.r ←− D, B.r1 ←−
A.r, X.u ←− D} andR is such thatG = {A.r,B.r1}
andS = {A.r,B.r1, X.u}. In anyP ′ that isR-reachable
from P, the member sets ofA.r andB.r1 are always{D},
and so both roles are contained byX.u. A straightforward
positive logic program cannot derive this, sinceX.u con-
tainsA.r only if it containsB.r1 and vice versa. As a re-
sult, neither containment relationship will be in the minimal
model. To deal with this problem, we take the approach to
prove non-containment using the minimal model of a logic
program, and derive containment using negation-as-failure.
Intuitively, X.u containsA.r unless we can find a witness
entity E that is a member ofA.r in some state but not a
member ofX.u in the same state.

Intuitively, containment queries that have the flavor of
availability should be proven by forced containment. That
a manager always has access to a resource should be due
to a credential chain forcing this. In Example 1, SA.access
contains HR.manager as long as SA.access and SA.manager
are s-restricted. On the other hand, policy statements are
unlikely to force everyone who has access to a resource
to be an employee; the orientation of the forced contain-
ment does not naturally correspond to this practical depen-
dency. In Example 1, HR.employee contains SA.access
as long as SA.access and SA.manager are g-restricted and
HR.employee is s-restricted. This is because, as long as no
new rule defining SA.access or SA.mamnager is added, any
member of SA.access is either a member of HR.manager
or a member of HR.employee; if furthermore, the statement
“HR.employee←− HR.manager” cannot be removed, then
HR.employee contains SA.access.

4.1 Answering Containment Queries inBRT

Recall that the languageBRT has only type-1 and type-2
statements.

Definition 5 (The Role Containment Program forBRT )
Given aBRT stateP andR, the role containment program,
BCP(P,R), includes the lower bound programLB(P,R)
in Definition 3. In addition, it defines two predicates:fc/4
andnc/4. An atomfc(X,u, Z,w) means thatX.u is forced
to containZ.w. An atomnc(X,u, Z,w) means thatX.u
does not containZ.w. The programBCP(P,R) is derived
from LB(P,R) as follows.

Add
fc(?X, ?u, ?X, ?u) (c)

For eachA.r←−B.r1 in P|R, add
fc(A, r, ?Z, ?w) :− fc(B, r1, ?Z, ?w) (c2)

For eachA.r ∈ Roles(P)− G, add
nc(?X, ?u,A, r) :− ∼ fc(?X, ?u,A, r) (n0)

For eachA.r ∈ G, do the following:
For eachA.r←−D in P, add

nc(?X, ?u,A, r) :− ∼ fc(?X, ?u,A, r),
∼ lb(?X, ?u,D) (n1)

For eachA.r←−B.r1 in P, add
nc(?X, ?u,A, r) :− ∼ fc(?X, ?u,A, r),

nc(?X, ?u,B, r1) (n2)

Rules(c) and(c2) are straightforward. The intuition behind
(n0) is that forX.u to contain a g-unrestricted roleA.r,X.u
has to be forced to containA.r, since arbitrary new mem-
bers may be added toA.r. The intuition behind(n1) is that,
sinceA.r containsD, if X.u’s lower bound does not con-
tainD, andX.u is not forced to containA.r, thenX.u does
not containA.r. The “∼ fc” part is needed, since it may be
the case thatA.r←−D can be removed andX.u ←− A.r
exists and cannot be removed, in which caseD may not be
in X.u’s lower bound. Rule(n2) means thatX.u does not
containA.r if it does not containB.r1 and is not forced to
containA.r.

We now discuss the semantics of the logic program
BCP(P,R), which uses negation-as-failure, but in a strat-
ified manner. Given a logic programLP, a predicatep (di-
rectly) depends on another predicateq if p is defined using
q in the body. A predicatep negatively depends onq if
∼q (the negation ofq) is used to definep. For example, in
BCP(P,R), fc depends on itself,nc depends on itself and
negatively depends onfc andlb. A program isstratified if
the predicates defined in it can be classified into strata such
that each predicate depends only on predicates in the same
or lower strata and negatively depends only on predicates in
lower strata. A program without negation is trivially strati-
fied, as no predicate depends negatively on any predicate at
all. The programBCP(P,R) is also stratified. Predicates
in the first stratum arelb andfc, and the only predicate in
the second stratum isnc.

Most commonly accepted semantics for logic program-
ming with negation-as-failure agree on stratified programs.
Given a stratified datalog programLP, letLP1∪· · ·∪LPs

be a partition ofLPInst such thatLPj consists of clauses
defining predicates in thej’th stratum; we callLP1 ∪
· · · ∪ LPs a stratification ofLPInst. The semantics is
obtained by first computing the minimal Herbrand model
of LP1 and then use this model to determine truthfulness
of negative literals inLP2 while computing a fixpoint for
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LP1 ∪ LP2, and so on. Formally, we define an operator
Φ, which is parameterized by a ground logic programLP ′
and a set of ground atomsM . Given a set of ground logical
atomsK, ΦLP′,M (K) consists of all ground logic atoms,a,
such thata :− b1, . . . , bn,∼bn+1, . . . ,∼bn+m ∈ LP ′ and
bi ∈ K andbn+j 6∈ M . Given a logic programLP and
LP1 ∪ · · · ∪ LPs a stratification ofLPInst, defineΓ1

LP to
beΦLP1,∅↑ω, i.e., the least fixpoint ofΦLP1,∅. DefineΓk+1

LP
to beΦLP1∪···∪LPk+1,Γk

LP
↑ω for 1 ≤ k ≤ s − 1. Then the

model ofLP is Γs
LP . EachΓi

LP can be calculated in poly-
nomial time, so the semantics of a stratified program can
also be computed in polynomial time.

The following lemma says that thefc predicate inBCP
is always sound for role containment, and it is complete
when the second role is g-unrestricted.

Lemma 4.1 Given aBRT stateP, R, two rolesX.u and
A.r, if BCP(P,R) |= fc(X,u,A, r), thenX.u contains
A.r. If X.u containsA.r andA.r is g-unrestricted, then
BCP(P,R) |= fc(X,u,A, r).

See Appendix A.2 for the proof. The following proposition
says that role containment inBRT can be answered by us-
ing the programBCP(P,R).

Proposition 4.2 Given aBRT stateP, R, and two roles
X.u andA.r in Roles(P), BCP(P,R) |= nc(X,u,A, r) if
and only ifX.u does not containA.r.

See Appendix A.2 for the proof.

4.2 Complexity Results for Containment Analysis
in NRT , LRT , and SRT

NRT adds toBRT type-4 statements. Intersections in
type-4 statements have the effect of conjunction. A role
can be defined by multiple statements, which have the ef-
fect of disjunction. As a result,NRT can simulate formulas
in propositional logic, and answering containment queries
subsumes determining validity of propositional formulas,
which is coNP-complete.

Theorem 4.3 Containment analysis inNRT is coNP-
complete.

See Appendix A.3 for the proof. The coNP-hard part is
by reducing the monotone 3SAT problem, which is NP-
complete, to the complement of containment analysis in
NRT .

LRT adds toBRT type-3 statements. Linked roles in
type-3 statements add the ability to simulate logical con-
junction. Recall that the semantic rule for type-3 statements,
(m3), has a conjunction in the body, similar to that for type-
4 statements,(m4).

Theorem 4.4 Containment analysis inLRT is coNP-hard.

See Appendix A.3 for the proof. We now give an up-
per bound on the computational complexity of containment
analysis inSRT . This shows that containment analysis in
SRT (and thus the sub-languageLRT ) is decidable.

Theorem 4.5 Containment analysis inSRT is in coNEXP.

See Appendix A.3 for the proof.

5 Discussions and Related Work

We have shown that containment analysis is intractable
in NRT , LRT , andSRT . This means that it is extremely
unlikely that we will find an algorithm that is both sound
and complete, and also has a worst-case polynomial time
complexity. However, heuristic approaches are still possi-
ble. For example, it is not difficult to extend our LP-based
approach for containment analysis inBRT to the case of
LRT andSRT , such that containment relationships in Ex-
ample 1 can be proved correctly. A possible approach is
to use a sound but incomplete method and a complete but
unsound method together to approximate the exact answer.
Such a heuristic approach may be useful in practice, as it
can give an exact answer in most cases. How to evaluate the
effectiveness of such methods is interesting future work.

On the other hand, we have shown that in our TM model,
simple safety queries can be solved efficiently. As discussed
in Section 1, security analysis in the form of simple safety
queries has been studied in the HRU model [9], and shown
to be undecidable there. In this section we study the rela-
tionships between the two models, arguing informally that
the HRU model does not include our TM model as a special
case, and showing that there is an intuitive reason why se-
curity analysis in our model is decidable. We also seek to
clarify the relationship between how trusted users are mod-
elled in the two approaches. After this discussion of related
work in safety analysis, we go on to discuss related work in
trust management.

5.1 Comparison with the HRU Access Matrix
Model

In the HRU model [9], aprotection systemhas a finite
set of rights and a finite set of commands. Aconfigura-
tion of a protection system is an access control matrix, with
rows corresponding to subjects, and columns corresponding
to objects; each cell in the matrix is a set of rights. A com-
mand takes the form of “if a list of conditions hold, execute
a sequence of primitive operations.” Each condition tests
whether a right exists in a cell in the matrix. There are six
kinds of primitive operations: enter a right into a specific
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cell in the matrix, delete a right from a cell in the matrix,
create a new subject, create a new object, destroy an ex-
isting subject, and destroy an existing object. A command
may be parameterized, with parameters being subjects or
objects. In [9], Harrison et al. proved that for the HRU
model, the safety question is undecidable, by showing that
any Turing machine can be simulated by a protection sys-
tem. For a fixed set of mono-operational commands, safety
can be determined in time polynomial of the size of the ac-
cess control matrix. However, if commands are a parameter
to the problem, the safety problem is NP-complete.

In our model, given a stateP, the minimal Herbrand
model ofSP(P) is a set of ground logical atoms. An atom
m(A, r,D) means thatD is a member ofA’s r role. When
A represents a resource, this can be viewed asD having the
right r overA. Therefore, one can view principals as both
subjects and objects and view role names as rights. This de-
fines a straightforward mapping between the semantics ofP
and an access matrix. If all we have are type-1 statements,
then adding (or removing)A.r←−D corresponds to adding
(or removing)r to the cell on rowD and columnA. Adding
a type-2 statementA.r←− B.r1 can be viewed as adding
a trigger program, which for each rowD, use parameters
A,B,D to execute the following command: “a2(x, y, z)
{ if r1 in cell (y, z), add r to cell (x, z) }”. Note that
this trigger program needs to be executed whenever the ma-
trix changes. For example, if afterA.r←−B.r1 is added,
addingB.r1←−E will need to result inr being added to the
cell (A,E). The statementA.r←−B.r1 givesB the power
to add things toA’s column, which represents a delegation.
Similarly, adding a type-3 statementA.r←−A.r1.r2 can be
viewed as adding a trigger program that executes the follow-
ing command with parametersA,D,E for everyD andE:
“a3(x, y, z) { if r1 in cell (x, y), andr2 in cell (y, z), add
r to cell (x, z) }”. Adding type-4 statement can be viewed
in a similar manner. It is not clear how to model removing
a statement using this approach.

There might be other ways of encoding our TM model
in the HRU access matrix model, but the above encoding
seems quite natural. From it, we make the following obser-
vations.

It seems unlikely that the HRU model subsumes the TM
model as a special case. First, in the TM model, creating and
removing principals are implicit. A principal can be viewed
as created if it is used. A principal is considered removed
if no statement mentions it. One could view the matrix as
having an infinite number of rows and columns; however,
only finitely many cells are nonempty. Second, one step
of change in the TM model corresponds to executing many
(one for every object when adding a type-2 or 4 statement,
or one for every pair of objects when adding a type-3 state-
ment) simple commands in the HRU model. Third, triggers
need to be used in order to achieve the effect of propagation.

The last two are the main power of the TM model, and they
do not exist in the HRU model.

That our TM model cannot subsume the HRU model is
immediate from the complexity bounds. The underlying
reason is that the HRU commands we use to partially sim-
ulate our TM model have fixed schemas, instead of being
arbitrary programs. As a result, we can exploit the prop-
erties of these fixed schemas. This seems to be the main
reason that safety analysis, or the even more powerful con-
tainment analysis, is decidable in our model, but not in the
HRU model.

Handling Trusted Subjects

Intuitively, a specific protection system is “safe” if access to
resources without concurrence of the owner is impossible.
However, protection systems often allow the owner to share
rights to the resources. In that sense, they are not safe; the
HRU model uses a weaker notion of safety: a user should
be able to tell whether what he is about to do can lead to
the further leakage of that right to untrusted subjects. The
following is quoted from [9].

To avoid a trivial “unsafe” answer becauses him-
self can confer generic rightr, we should in most
circumstances deletes itself from the matrix. It
might also make sense to delete from the matrix
any other “reliable” subjects who could grantr,
but whoms “trusts” will not do so. It is only by
using the hypothetical safety test in this manner,
with “reliable” subjects deleted, that the ability
to test whether a right can be leaked has a use-
ful meaning in terms of whether it is safe to grant
a right to a subject.

Note that deleting a “reliable” subject from the matrix is
stronger than stopping it from granting a right. Deleting a
subject from the matrix will prevent the analysis from suc-
cessfully simulating the execution of commands that check
rights in the row or column corresponding the subject. How-
ever, it is inappropriate to ignore such commands: they may
add undesirable rights and they may be initiated by “unre-
liable” subjects. In such cases, a system that is safe after
the “reliable” subjects are removed is not safe in the actual
system, even if “reliable” subjects do not initiate any com-
mand.

In our TM model, the restriction ruleR represents the in-
tuitive notion that certain principals are trusted. In practice,
principals are controlled by users. When principals repre-
sent resources, the controller is the subject who controls ac-
cess to the resource. When principals represent public keys,
the controller is the user who knows the private key.
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5.2 Related Work in Trust Management

To our knowledge, no prior work investigates secu-
rity analysis for trust management systems in the sense
of verifying security properties that consider state changes
in which (parametric) restrictions are placed on allowed
changes. In [3], a state transition model is used for com-
paring the expressive power of different access control
mechanisms such as access control lists and trust manage-
ment. There, security analysis is not the purpose. The
languageSRT is closely related to SDSI, whose seman-
tics and evaluation has been the subject of many previous
works [1, 4, 8, 10, 12, 16]. One main difference our work
has is that we consider restricted state changes. We now list
some similarities. The semantic approach we use is very
similar to the semantics in [8]. Both [1] and [8] consider
role inclusion queries in additional to membership queries.
In some sense, they try to answer queries that hold when
arbitrary new statements could be added, i.e., every role is
g-unrestricted and s-restricted; the case that some roles are
g-restricted is not considered. In [10], evaluating queries
given a set of SDSI statements is reduced to model check-
ing pushdown systems; there, only a fixed set of SDSI state-
ments is considered, which are encoded as transition rules
in the automata. Other works [4, 12, 16] do not handle role
inclusion queries or consider restricted state changes.

6 Conclusion

Trust management systems such asRT allow indepen-
dent principals to delegate partial authority over resources.
While this is useful in many situations, delegation also
raises the possibility of unanticipated and undesirable ac-
cess. If Alice delegates access to her friend Bob, how can
she be sure that Bob does not give permissions to her enemy
Carol? We address this question by studying several forms
of safety and availability properties, including general con-
tainment queries that capture both safety and availability.

Although the trust management primitives we consider
are more expressive than some aspects of the HRU model
[9], our main results show that persistence of nontrivial
safety and availability properties may be algorithmically
tractable. Specifically, form-1 queries and form-2 queries,
both involving containment between a role and a fixed set
of principals, can be answered using datalog programs that
run in polynomial time. For general role inclusion queries,
we look at several cases involving different policy sub-
languages. ForBRT , which only allows membership and
delegation policy statements, containment for all reachable
states is computable by a stratified datalog program with
negation in polynomial time. ForNRT , which isBRT plus
intersection, the problem becomes coNP-complete. Intu-
itively, the reason is that multiple statements about a role

represent disjunction, while intersection of roles provides
a corresponding form of conjunction. ForSRT , which in-
cludes role linking, role containment for all reachable pol-
icy states remains decidable, but our current upper bound is
coNEXP (or double-exponential time).

We believe that security analysis is a critical problem
for trust management. While combining policy statements
from independent principals has practical appeal, the flexi-
bility of distributed policy comes at a price. An individual
or organization that owns a resource no longer has a direct
way to determine who may be able to access the resource
in the future. The key to providing assurance to trust man-
agement users is to develop security analysis methods. The
present paper identifies and solves certain security analysis
problems, but much remains to be done. In more technical
terms, the full impact of linked roles on containment anal-
ysis is not yet clear. Our complexity bounds on contain-
ment analysis forLRT andSRT are not tight.1 Although
containment analysis has no efficient algorithm in the worst
case, there may be tractable subcases or useful heuristics.
We also leave open for future work the consequences of
more intricate restriction on policy changes. For example,
it may be useful to impose restrictions that depend on the
current policy, possibly formulated as policy invariants in
some specification language.
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A Proofs

A.1 Proofs of Fact 3.5 and Proposition 3.6

Fact 3.5: GivenP, R, a roleA.r, and a principalE that
does not occur inP,A.r is g-unbounded if and only if there
exists a reachable stateP ′ such thatSP(P ′) |= m(A, r,E).

Proof. The “only if” part follows from the definition of g-
unbounded roles.

In the “if” part, becauseSRT is monotonic, we can as-
sume without loss of generality thatP ′ is derived fromP
by adding some statements; letP ′ = P ∪ P1. Given any
principalZ, one can replace withZ all occurrence ofE in
the bodies of statements inP1, obtaining a new set of state-
ments,P2. Let P ′′ = P ′ ∪ P2. P ′′ is reachable fromP
because it modifies the definitions of the same roles as does
P ′. We show thatSP(P ′′) |= m(A, r, Z) by using induc-
tion oni to show that for allA.r, if m(A, r,E) ∈ TSP(P′)↑i,
thenSP(P ′′) |= m(A, r, Z). The basis is trivially satis-
fied becauseTSP(P′) ↑0= ∅. In the step,m(A, r,E) ∈
TSP(P′) ↑i+1. This must be due to one of the four rules
in SP(P ′), (m1), (m2), (m3), or (m4), which gives us the
four following cases:

Case(m1): A.r←− E ∈ P ′. By construction ofP ′′,
A.r ←− Z ∈ P ′′. SP(P ′′) |= m(A, r, Z) follows from
(m1).

Case(m2): A.r ←− B.r1 ∈ P ′ andm(B, r1, E) ∈
TSP(P′) ↑i. The induction hypothesis now gives us
SP(P ′′) |= m(B, r1, Z), from which SP(P ′′) |=
m(A, r, Z) follows by (m2).

Case (m3): A.r ←− A.r1.r2 ∈ P ′ and
m(A, r1, B),m(B, r2, E) ∈ TSP(P′) ↑i for some B.
The induction hypothesis now gives usSP(P ′′) |=
m(B, r2, Z). Fromm(A, r1, B) ∈ TSP(P′) ↑i, we have
SP(P ′) |= m(A, r1, B), which gives usSP(P ′′) |=
m(A, r1, B) by monotonicity of SRT . We now have
SP(P ′′) |= m(A, r, Z) by (m3).

Case (m4): A.r ←− B1.r1 ∩ B2.r2 ∈ P ′ and
m(B1, r1, E),m(B2, r2, E) ∈ TSP(P′) ↑i. This case pro-
ceeds similarly to case(m2) above.

Proposition 3.6: Given anyP, R = (G,S), A.r ∈
Roles(P), andZ ∈ Principals(P) ∪ {>}, UB(P,R) |=
ub(A, r, Z) if and only if there existsP ′ such thatP ∗7→R P ′
andSP(P ′) |= m(A, r, Z).

Proof. The “only if” part (Soundness): IfUB(P,R) |=
ub(A, r, Z), considerP ′ = P ∪ {X.u ←− Z |X.u ∈
Roles(P) − G}. We show by induction oni that if
ub(A, r, Z) ∈ TUB(P,R) ↑i, thenSP(P ′) |= m(A, r, Z).
The basis is trivial. In the step,ub(A, r, Z) ∈
TUB(P,R) ↑i+1, one of the rules inUB(P,R) is used to
derive this. Case(u) is impossible, asA 6= >. Case(u0):

A.r ∈ Roles(P) − G, by construction ofP ′, A.r←−Z ∈
P ′. So SP(P ′) |= m(A, r, Z) follows immediately by
(m1). Case(u1): A.r ←− Z ∈ P ⊆ P ′. In this case,
SP(P ′) |= m(A, r, Z) also follows immediately by(m1).

Case (u2): A.r ←− B.r1 ∈ P ⊆ P ′ and
ub(B, r1, Z) ∈ TUB(P,R) ↑i. The induction assump-
tion now gives usSP(P ′) |= m(B, r1, Z), from which
SP(P ′) |= m(A, r, Z) follows by (m2).

Case (u3): A.r ←− A.r1.r2 ∈ P ⊆ P ′
and ub(A, r1, B), ub(B, r2, Z) ∈ TUB(P,R) ↑i for
some B. The induction assumption now gives us
SP(P ′) |= m(A, r1, B),m(B, r2, Z), from which
SP(P ′) |= m(A, r, Z) follows by (m3).

Case (u4): A.r ←− B1.r1 ∩ B2.r2 ∈ P ⊆
P ′ and ub(B1, r1, Z), ub(B2, r2, Z) ∈ TUB(P,R) ↑i.
The induction assumption now gives usSP(P ′) |=
m(B1, r1, Z),m(B2, r2, Z), from which SP(P ′) |=
m(A, r, Z) follows by (m4).

The “if” part (Completeness): Suppose that there exists
a reachable stateP ′ such thatSP(P ′) |= m(A, r, Z). If
A.r 6∈ G, thenUB(P,R) |= ub(A, r, Z) from (u0). For the
case in whichA.r ∈ G, we use induction oni to show that
if m(A, r, Z) ∈ TSP(P′)↑i, thenUB(P,R) |= ub(A, r, Z).
The basis is trivial. In the step, there are four cases. Case
(m1): A.r←−Z ∈ P ′. FromA.r ∈ G, we haveA.r←−
Z ∈ P. So UB(P,R) |= ub(A, r, Z) follows by using
(u1).

Case(m2): A.r ←− B.r1 ∈ P ′ andm(B, r1, Z) ∈
TSP(P′) ↑i. The induction hypothesis gives us
UB(P,R) |= ub(B, r1, Z), from which we obtain the
desiredUB(P,R) |= ub(A, r, Z) by (u2).

Case (m3): A.r ←− A.r1.r2 ∈ P ′ and
m(A, r1, B),m(B, r2, Z) ∈ TSP(P′) ↑i for some
B. The induction hypothesis gives usUB(P,R) |=
ub(A, r1, B), ub(B, r2, Z), from which we obtain the
desiredUB(P,R) |= ub(A, r, Z) by (u3).

Case (m4): A.r ←− B1.r1 ∩ B2.r2 ∈ P ′ and
m(B1, r1, Z),m(B2, r2, Z) ∈ TSP(P′)↑i. This case is sim-
ilar to the ones above.

A.2 Proof of Lemma 4.1 and Proposition 4.2

We introduce the following terminology for the proof.
The programBCP(P,R) has a stratification of two strata.
Define BCP1 to be the ground instantiation of clauses
defininglb andfc in BCP(P,R), andBCP2 to the ground
instantiation of clauses definingnc. (We useBCP instead
of BCP(P,R) for succinctness.) We writeBCP |= a if
a ∈ Γ2

BCP . Whena is a ground instance offc or lb, we write
BCP |=i a if a ∈ ΦBCP1,∅↑i. Whena is a ground instance
of nc, we writeBCP |=i a is a ∈ ΦBCP1∪BCP2,Γ1

BCP
↑i.

Lemma 4.1: Given aBRT stateP, R, two rolesX.u and
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A.r, if BCP(P,R) |= fc(X,u,A, r), thenX.u contains
A.r. If X.u containsA.r andA.r is g-unrestricted, then
BCP(P,R) |= fc(X,u,A, r).

Proof. Soundness: IfBCP |= fc(X,u,A, r), then there
exists an integeri such thatBCP |=i fc(X,u,A, r). In-
duction on i. The basis is trivial, asΦBCP1,∅ ↑0= ∅.
Consider the step; eitherc or (c2) is used to deduce that
BCP |=i+1 fc(X,u,A, r). Case(c): it must be that
X.u = A.r, so it is trivial thatX.u containsA.r. Case
(c2): X.u←−B.r1 ∈ P|R andBCP |=i fc(B, r1, A, r).
By induction hypothesis,B.r1 containsA.r. Furthermore,
X.u←−B.r1 exists in every reachable state; therefore,X.u
containsA.r.

Completeness: SupposeX.u containsA.r andA.r is
g-unrestricted. ConsiderP ′ = P|R ∪ (A.r ←− E),
in which E does not occur inP. Observe thatX.u in-
cludesA.r is true, sinceP ′ is reachable. SinceSP(P ′) |=
m(A, r,E), it must be thatm(X,u,E) ∈ TSP(P′) ↑i for
somei. To complete the proof, we use induction oni to
show that for eachY.u, if m(Y, u,E) ∈ TSP(P) ↑i, then
BCP |= fc(Y, u,A, r). Basis is trivial. In the step, one
of (m1) and (m2) is used to deduce thatm(Y, u,E) ∈
TSP(P′) ↑i+1. Case(m1): Y.u ←− E ∈ P ′, it must
be thatY.u = A.r, sinceE does not occur inP. From
(c), BCP |= fc(Y, u,A, r). Case (m2): Y.u ←−
Y1.u1 ∈ P ′, andm(Y1, u1, E) ∈ TSP(P′) ↑i. By def-
inition of P ′, Y.u ←− Y1.u1 ∈ P|R. From (c2),
fc(Y, u, ?Z, ?w) :− fc(Y1, u1, ?Z, ?w) ∈ BCP . By induc-
tion hypothesis,BCP |= fc(Y1, u1, A, r), clearlyBCP |=
fc(Y, u,A, r).

Before proving Proposition 4.2, we first prove two aux-
iliary lemmas. Readers may wish to read the main proof
first and refer to the two lemmas when they needed. The
following lemma is used to prove the soundness of(n1).

Lemma A.1 Assume we are givenP in BRT ,R, two roles
X.u andA.r, and a principalD such thatSP(P|R) 6|=
m(X,u,D). LetP ′ = P|R ∪ {A.r←−D}. If SP(P ′) |=
m(X,u,D), thenBCP |= fc(X,u,A, r).

Proof. We use induction oni to prove that for anyZ.w such
thatSP(P|R) 6|= m(Z,w,D), if m(Z,w,D) ∈ TSP(P′)↑i,
thenBCP |= fc(Z,w,A, r).

The basis is trivial. In the step, one of(m1) and(m2) is
used to derivem(Z,w,D) ∈ TSP(P′) ↑i+1. Case(m1):
Z.w ←− D ∈ P ′. It must be thatZ.w = A.r, since
it cannot be thatZ.w ←− D ∈ P|R. By (c), BCP |=
fc(Z,w,A, r). Case(m2): Z.w ←− Z1.w1 ∈ P ′ and
m(Z1, w1, D) ∈ TSP(P′) ↑i. It follows that Z.w ←−
Z1.w1 ∈ P|R, by definition ofP ′. And it follows that
SP(P|R) 6|= m(Z1, w1, D), since otherwiseSP(P|R) |=
m(Z,w,D), which is contradictory. Now, by induction hy-

pothesis,BCP |= fc(Z1, w1, A, r), so the desired result
holds by(c2).

The following lemma says that(n2) is sound.

Lemma A.2 Assume we are given aBRT stateP,R, and
three rolesX.u, A.r, B.r1, such thatA.r←− B.r1 ∈ P,
BCP(P,R) 6|= fc(X,u,A, r), andX.u does not contain
B.r1. ThenX.u does not containA.r.

Proof. Since X.u does not containB.r1, there ex-
ists a reachable stateP ′ and a principalE such that
SP(P ′) |= m(B, r1, E) andSP(P ′) 6|= m(X,u,E). We
now construct aP ′′ such thatSP(P ′′) |= m(A, r,E) and
SP(P ′′) 6|= m(X,u,E). P ′′ is obtained fromP ′ by first
removing anyZ.w ←− Z1.w1 ∈ P ′ − P|R such that
SP(P ′) 6|= m(Z1, w1, E), and then addingA.r←− B.r1.
Clearly,P ′′ is reachable. By induction on howm(A, r,E)
is proven inSP(P ′), it is easy to show thatSP(P ′′) |=
m(A, r,E).

To prove thatSP(P ′′) 6|= m(X,u,E), we use induc-
tion on i to prove that for anyZ.w such thatSP(P ′) 6|=
m(Z,w,E), if m(Z,w,E) ∈ TSP(P′′) ↑i, thenBCP |=
fc(Z,w,A, r). The basis is trivial. In the step, one of(m1)
and (m2) is used to derivem(Z,w,E) ∈ TSP(P′′) ↑i+1.
Case(m1): Z.w←− E ∈ P ′′. This is impossible, as this
means thatZ.w←− E ∈ P ′, which is contradictory with
SP(P ′) 6|= m(Z,w,E). Case(m2): Z.w←−Z1.w1 ∈ P ′′
andm(Z1, w1, E) ∈ TSP(P′′)↑i. By definition ofP ′′, either
Z.w = A.r andZ1.w1 = B.r1, or Z.w←− Z1.w1 ∈ P ′.
In the former case,fc(Z,w,A, r) follows from (c). In the
latter case, it follows thatSP(P ′) 6|= m(Z1, w1, E), from
SP(P ′) 6|= m(Z,w,E), and, by induction hypothesis, that
BCP |= fc(Z1, w1, A, r). Now the desired result holds by
(c2), provided we haveZ.w←− Z1.w1 ∈ P|R. This fol-
lows from the construction ofP ′′ and the case assumption
thatm(Z1, w1, E) ∈ TSP(P′′)↑i.

Proposition 4.2: Given aBRT stateP, R, and two roles
X.u andA.r in Roles(P), BCP(P,R) |= nc(X,u,A, r) if
and only ifX.u does not containA.r.

Proof. The “only if” part (Soundness): We use induction on
i to show that ifBCP |=i nc(X,u,A, r), thenX.u does not
containA.r. Basis is trivial. In the step, one of(n0), (n1),
and(n2) is used to derive thatBCP |=i+1 nc(X,u,A, r).
Case (n0): A.r must be g-unrestricted, andBCP |=
∼ fc(X,u,A, r); therefore,BCP 6|= fc(X,u,A, r). From
Lemma 4.1, X.u does not containA.r. Case (n1):
A.r ←− D ∈ P, BCP |= ∼ lb(X,u,D), andBCP |=
∼ fc(X,u,A, r). Then SP(P|R) 6|= m(X,u,D) by
Fact 3.1. LetP ′ = P|R ∪ {A.r←−D}. From Lemma A.1
it follows that SP(P ′) 6|= m(X,u,D); thereforeX.u
does not containA.r. Case(n2): A.r ←− B.r1 ∈ P,
BCP |=n nc(X,u,B, r1), andBCP |= ∼ fc(X,u,A, r).
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By induction hypothesis,X.u does not containB.r1; from
Lemma A.2,X.u does not containA.r.

The “if” part (Completeness): IfX.u does not contain
A.r, then we show thatBCP |= nc(X,u,A, r). WhenA.r
is g-unrestricted. From Lemma 4.1,BCP 6|= fc(X,u,A, r),
and soBCP |= ∼ fc(X,u,A, r). From (n0), BCP |=
nc(X,u,A, r). In the rest of the proof, we only need to
consider the case thatA.r is g-restricted. IfX.u does
not containA.r, then there exists a reachable stateP ′
and a principalE such thatSP(P ′) |= m(A, r,E) and
SP(P ′) 6|= m(X,u,E). We use induction oni to show that
if m(A, r,E) ∈ TSP(P′)↑i, thenBCP |= nc(X,u,A, r).
First observe that, from Lemma 4.1, it follows thatBCP 6|=
fc(X,u,A, r), and soBCP |= ∼ fc(X,u,A, r). The basis
is trivial. In the step, one of(m1) and(m2) is used to de-
duce thatm(A, r,E) ∈ TSP(P′)↑i+1. Case(m1): A.r←−
E ∈ P ′, A.r←−E must be inP sinceA.r is g-restricted.
From Proposition 3.2 andSP(P ′) 6|= m(X,u,E), BCP 6|=
lb(X,u,E), and soBCP |= ∼ lb(X,u,E). From (n1),
BCP(P,R) |= nc(X,u,A, r). Case(m2): A.r ←−
B.r1 ∈ P ′ andm(B, r1, E) ∈ TSP(P′) ↑i. SinceA.r
is g-restricted,A.r ←− B.r1 ∈ P. By induction hy-
pothesis, BCP(P,R) |= nc(X,u,B, r1). Therefore,
BCP(P,R) |= nc(X,u, Z,w) by an instance of(n2).

A.3 Proofs of Theorems 4.3, 4.4, and 4.5

We first prove a lemma that will be used in establishing
lower bounds on the complexity of containment analysis.
The lemma says that if a containment does not hold, then
there exists a counter-example state that only adds type-1
statements toP and only uses role names inP.

Lemma A.3 GivenP andR, two rolesX.u and A.r in
Roles(P), ifX.u does not containA.r, then there exists aP ′
such thatSP(P ′) |= m(A, r,E), SP(P ′) 6|= m(X,u,E),
P ′ − P only has type-1 statements, andP ′ only uses role
names inP.

Proof. If X.u does not containA.r, then there exists aP ′
that SP(P ′) |= m(A, r,E) andSP(P ′) 6|= m(X,u,E).
Given such aP ′, we first deriveP ′′ by replacing every
statementA.r ←− e ∈ P ′ − P, where e is a role, a
linked role, or an intersection, with a set of statements
{A.r←− Y | SP(P ′) |= m(A, r, Y )}. Using induction, it
is straightforward to show that the resulting state computes
the exact same role memberships.

Now P ′′ − P consists of only type-1 statements. From
P ′′, we deriveP ′′′ by removing all type-1 statements that
uses role names (not roles) not appearing inP. For example,
a statementA.v ←− D in P ′′, wherev does not appear in
P, will not be inP ′′′. Using induction, it is straightforward
to show that, for roles inRoles(P), P ′′′ computes the exact

same memberships asP ′′. Intuitively,A.v ←− D can affect
members of roles inRoles(P) unless some type-2, 3, or 4
statement refers to the role namev, which is impossible,
since all type 2, 3, or 4 statements inP ′ are inP, and so do
not usev.

Theorem 4.3: Containment analysis inNRT is coNP-
complete.

Proof. To show coNP-hardness, we reduce the monotone
3SAT problem to the complement of the universal contain-
ment problem inNRT . Monotone 3SAT is 3SAT with each
clause containing either only positive literals or only nega-
tive literals; it is known to be NP-complete [7].

Given an instance of monotone 3SAT:φ = c1 ∧ · · · ∧
c` ∧ c`+1 ∧ · · · ∧ cn, in whichc1, . . . , c` are positive clauses
andc`+1, . . . , cn are negative clauses. Letp1, . . . , ps be all
the propositional variables inφ. For each negative clause
ck = (¬pk1 ∨¬pk2 ∨¬pk3), definedk = (pk1 ∧ pk2 ∧ pk3),
thenck ⇔ ¬dk. Thenφ⇔ c1∧· · ·∧cm∧¬(d`+1∨· · ·∨dn).
The formulaφ is satisfiable if and only ifψ = (c1 ∧ · · · ∧
c`)→ (d`+1∨· · ·∨dn) is not valid. We now constructP,R,
with the goal thatA.d w A.c is necessary if and only ifψ is
valid. In the construction, we use the roleA.pi to denote the
propositional variablepi, A.cj to denote the clausecj , and
A.dk to denote the clausedk. DefineP = P1∪P2∪P3∪P4,
in which

P1 = {A.c ←− A.c1 ∩ A.c′1, A.c′1 ←− A.c2 ∩
A.c′2, · · · , A.c′`−1←−A.c`−1 ∩A.c`}.

P2 = {A.cj←−A.pj1 , A.cj←−A.pj2 , A.cj←−
A.pj3 | 1 ≤ j ≤ `, cj = pj1 ∨ pj2 ∨ pj3}

P3 = {A.d←−A.dk | `+ 1 ≤ k ≤ n}
P4 = {A.dk←−A.pk1 ∩ A.d′k, A.d′k←−A.pk2 ∩

A.pk3 | `+ 1 ≤ k ≤ n, dk = pk1 ∧ pk2 ∧ pk3}
DefineR to be the restriction rule such that all theA.pi’s

are g-unrestricted and s-restricted, and all other roles are
g/s-restricted.

We now show thatA.d w A.c is notnecessary if and only
if ψ is notvalid. First, the “only if” part: IfA.d w A.c is not
necessary, then there exists a reachable stateP ′ and a prin-
cipal E such thatSP(P ′) |= m(A, c,E) andSP(P ′) 6|=
m(A, d,E). Consider the truth assignmentI defined as
follows, for everyi such that1 ≤ i ≤ s, I(pi) = true
if SP(P ′) |= m(A, pi, E), andI(pi) = false otherwise.
Then underI, (c1 ∧ · · · ∧ c`) is true andd`+1 ∨ · · · ∨ dn

is false; thereforeψ is not valid. The “if” part: If ψ is
not valid, then there exists a truth assignmentI such that
(c1 ∧ · · · ∧ c`) is true and(d`+1 ∨ · · · ∨ dn) is false. Con-
siderP ′ = P ∪ {A.pi ←− Z | 1 ≤ i ≤ s ∧ I(pi) = true}.
P ′ is reachable, andSP(P ′) |= m(A, c, Z) andSP(P ′) 6|=
m(A, d, Z).

We now show that containment analysis inNRT is in
coNP. GivenP andR, if X.u does not containA.r, then
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there exists a reachable stateP ′ and a principalE such that,
SP(P ′) |= m(A, r,E) andSP(P ′) 6|= m(X,u,E). From
Lemma A.3, we can assume, without loss of generality, that
P ′ − P consists of only type-1 statements andP ′ uses the
same role names. FromP ′, we constructP ′′ as follows, let
P ′′ = P ′ ∩ P ∪ {Z.w←− E ∈ P ′ | Z.w ∈ Roles(P)}.
Clearly,P ′′ ⊆ P ′ andP ′′ is reachable. By induction on
howm(A, r,E) is proven inSP(P ′), it is easy to see that
SP(P ′′) |= m(A, r,E). The size ofP ′′ is polynomial in
P. This means that if a containment does not hold, then
there exists a short (polynomial in the size of the input pro-
gramP) counterproof such that one can check in polyno-
mial time. This shows that the problem is in coNP. The
method we use to construct the counter exampleP ′′ also
yields an exponential algorithm for determining contain-
ment.

Theorem 4.4Containment analysis inLRT is coNP-hard.

Proof. As in the proof of Theorem 4.3, we reduce the
monotone 3SAT problem to the complement of universal
role containment inLRT . Similarly, given an instanceφ
of monotone 3SAT, we constructψ = (c1 ∧ · · · ∧ c`) →
(d`+1 ∨ · · · ∨ dn) such thatφ is satisfiable if and only ifψ
is not valid.

We now constructP, R, such thatA.d w A.c is neces-
sary if and only ifψ is valid. DefineP to beP1∪P2∪P3∪
P4 ∪ P5, in which

P1 = {A.c ←− A.c′1.c1, A.c′1 ←−
A.c′2.c2, · · · , A.c′`−2←−A.c′`−1.c`−1, A.c

′
`−1←−A.c`}

P2 = {A.cj←−A.pj1 , A.cj←−A.pj2 , A.cj←−
A.pj3 | 1 ≤ j ≤ `, cj = pj1 ∨ pj2 ∨ pj3}

P3 = {A.d←−A.dk | `+ 1 ≤ k ≤ n}
P4 = {A.dk ←− A.d′k.pk1 , A.d

′
k ←− A.pk2 .pk3 |

`+ 1 ≤ k ≤ n, dk = pk1 ∧ pk2 ∧ pk3}
P5 = {A.pi ←− A | 1 ≤ i ≤ s}

LetR be the restriction rule such that all theA.pi’s are g-
restricted and s-unrestricted, and all other roles mentioned
in P are g/s-restricted.

In every reachable state, the definitions of someA.pi’s
are removed, which correspond to assigning false to some
of the pi’s. In every reachable state,A.c andA.d either
includes onlyA or is empty. A.c includesA if and only
if the corresponding truth assignment makesc1 ∧ · · · ∧ cm
true, andA.d includesA if and only the corresponding truth
assignment makes(dm+1 ∨ · · · ∨ dn) true. Therefore,A.c
containsA.d if and only ifψ is valid.

Theorem 4.5: Containment analysis inSRT is in coNEXP.

Proof. GivenP andR, if a queryX.u w A.r is not nec-
essary, i.e.,X.u does not containA.r, then there exists a
reachable stateP ′ and a principalE such thatSP(P ′) |=
m(A, r,E) andSP(P ′) 6|= m(X,u,E). From Lemma A.3,

we can assume, without lose of generality, thatP ′−P con-
sists of only type-1 statements andP ′ uses the same role
names asP.

Given such aP ′ and E, we show that one can con-
struct another stateP ′′ that has size exponential inP and
SP(P ′′) |= m(A, r,E) andSP(P ′) 6|= m(X,u,E). The
way we constructP ′′ is through collapsing equivalent prin-
cipals inP ′ into one, to be made precise as follows. Let
SigRoles(P,P ′,Q) be{X.u} ∪ {A.r1 | A.r←−A.r1.r2 ∈
P ∩ P ′} ∪ {B1.r1, B2.r2 | A.r ←− B1.r1 ∩ B2.r2 ∈
P ∩ P ′}. Define a binary relation≡ over the principals in
P ′ as follows:Y1 ≡ Y2 if one of the following two condi-
tions are satisfied: (1)Y1 = Y2; (2) Y1, Y2 6∈ Principals(P)
and for every roleZ.w ∈ SigRoles(P,P ′,Q), SP(P ′) |=
m(Z,w, Y1) if and only if SP(P ′) |= m(Z,w, Y2). The re-
lation ≡ is easily seen to be an equivalence relation. For
each equivalence class, we pick one principal in it as a
unique representative; for a given principalY , we use[Y ]
to denote the representative the equivalence class ofY . We
assume that[E] = E. P ′′ is constructed fromP ′ as follows:
for each statement, replace all the principals with their rep-
resentatives, then remove duplicate statements.

GivenP that has sizeN , clearlySigRoles(P,P ′,Q) has
O(N) roles. Therefore, there are in totalM = O(2O(N))
principals inP ′, these principals will result inO(M2N)
new type-1 statements. Therefore, if a containment does
not hold, there exists a counter-example state that has size
exponential inP. Once the state is guessed correctly, it can
be verified in time polynomial in the size of the state. This
shows that the problem is in coNEXP. An obvious algorithm
that has double exponential time complexity is as follows:
first collectSigRoles(P,P,Q) fromX.u and all type-2 and
3 statements fromP, and add one principal for each sub-
set ofSigRoles(P,P,Q), then enumerate all reachable sub-
states to see whether a containment holds.

It remains to prove that our construction ofP ′′ works,
i.e., that SP(P ′′) |= m(A, r,E) and SP(P ′′) 6|=
m(X,u,E).

To proveSP(P ′′) |= m(A, r,E), we use induction to
prove the following claim: For any roleZ.w in Roles(P ′)
andY in P ′, if m(Z,w, Y ) ∈ TSP(P′)↑i, thenSP(P ′′) |=
m([Z], w, [Y ]). The basis is trivial, sinceTSP(P′) ↑0= ∅.
Now consider the step. One of(m1), (m2), (m3), and
(m4) is used to derivem(Z,w, Y ) ∈ TSP(P′)↑i+1. Case
(m1): Z.w←−Y ∈ P ′. By construction ofP ′′, [Z].w←−
[Y ] ∈ P ′′; therefore,SP(P ′′) |= m([Z], w, [Y ]). In the
next three cases, a type-2, 3, or 4 statementA.r←− e exist
in P ′. It must also exist inP, sinceP ′ − P only has type-
1 statements; therefore, principals inA.r←− e are each in
their own equivalence class. The statement must also ex-
ist in P ′′, since the equivalence substitution forA.r ←−
e will not change the statement. Case(m2): Z.w ←−
Z1.w1 ∈ P ′,P,P ′′ andm(Z1, w1, Y ) ∈ TSP(P′)↑i. From
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induction hypothesis,SP(P ′′) |= m([Z1], w1, [Y ]). It
must be that[Z1] = Z1. The claim then follows from
(m2). Case(m3): Z.w ←− Z.w1.w2 ∈ P ′,P,P ′′
and m(Z,w1, F ),m(F,w2, Y ) ∈ TSP(P′) ↑i. It must
be that[Z] = Z. By induction hypothesis,SP(P ′′) |=
m([Z], w1, [F ]), and SP(P ′′) |= m([F ], w2, [Y ]). The
claim follows from(m3). Case(m4): Z.w ←− Z1.w1 ∩
Z2.w2 ∈ P ′,P,P ′′ andm(Z1, w1, Y ),m(Z2, w2, Y ) ∈
TSP(P′)↑i. This case is similar to(m2).

We now prove thatSP(P ′′) 6|= m(X,u,E), by prov-
ing the following claim: for any roleZ.w ∈ Roles(P ′′)
and any principalY in Principals(P ′′), if m(Z,w, Y ) ∈
TSP(P′′) ↑i, then there existsZ ′, Y ′ such that[Z ′] = Z
and [Y ′] = Y andSP(P ′) |= m(Z ′, w, Y ′). Given this
claim, if SP(P ′′) |= m(X,u,E), then there existsX ′ and
E′ in Principals(P ′) such that[X ′] = X, [E′] = E, and
SP(P ′) |= m(X ′, u, E′). SinceX ∈ Principals(P), it
must be thatX ′ = X. And by definition of≡, [E′] = E
means thatE is also a member ofX.u, giving us a contra-
diction with our assumption onP ′.

We now use induction to prove the claim. The basis
is trivial, sinceTSP(P′′) ↑0= ∅. Now consider the step.
One of (m1), (m2), (m3), and (m4) is used to derive
m(Z,w, Y ) ∈ TSP(P′′) ↑i+1. Case(m1): Z.w ←− Y ∈
P ′′. By definition ofP ′′, there existsZ ′.w ←− Y ′ ∈ P ′
such that[Z ′] = Z and [Y ′] = [Y ]. From this we have
SP(P ′) |= m(Z ′, w, Y ′) by (m1). In the following three
cases, a type 2, 3, or 4 statementA.r ←− e of P ′′ is
used; such a statement must be mapped from a type 2, 3,
4 statement inP ′. Since all such statements inP ′ are also
in P and do not change in the mapping,A.r ←− e ∈
P ∩ P ′. Case(m2): Z.w ←− Z1.w1 ∈ P ′′,P,P ′ and
m(Z1, w1, Y ) ∈ TSP(P′′) ↑i. From induction hypothesis,
SP(P ′) |= m(Z ′

1, w1, Y
′) and [Z ′

1] = Z1 and [Y ′] = Y .
BecauseZ1 ∈ Principals(P), it must be thatZ ′1 = Z1.
The conclusion follows from(m2). Case(m3): Z.w←−
Z.w1.w2 ∈ P ′′,P,P ′ andm(Z,w1, F ),m(F,w2, Y ) ∈
TSP(P′′) ↑i for some principalF . By induction hypothe-
sis, SP(P ′) |= m(Z,w1, F

′),m(F ′′, w2, Y
′) and [F ′] =

[F ′′] = F . SinceZ.w1 ∈ SigRoles(P,P ′,Q), by definition
of ≡ applied toF ′ ≡ F ′′, SP(P ′) |= m(Z,w1, F

′′). The
claim follows from(m3). Case(m4): Z.w ←− Z1.w1 ∩
Z2.w2 ∈ P ′′,P,P ′ andm(Z1, w1, Y ),m(Z2, w2, Y ) ∈
TSP(P′′)↑i. By induction hypothesis and the factZ1, Z2 ∈
Principals(P), SP(P ′) |= m(Z1, w1, Y

′),m(Z2, w2, Y
′′)

and [Y ′] = [Y ′′] = Y . By definition of≡, SP(P ′) |=
m(Z2, w2, Y

′). Therefore,SP(P ′) |= m(Z,w, Y ′).

Observe that in the proof, only roles in the body of type-3
and 4 statements need to be collected. This may be used to
explain why containment inBRT is efficiently decidable.
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