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The process of introducing security controls into a sensitive task, which we call secure task design

in this paper, consists of two steps: high-level security policy design and low-level enforcement

scheme design. A high-level security policy states an overall requirement for a sensitive task. One
example of a high-level security policy is a separation of duty policy, which requires a task to be

performed by a team of at least k users. Unlike low-level enforcement schemes such as security

constraints in workflows, a separation of duty policy states a high-level requirement about the
task without referring to individual steps in the task. While extremely important and widely

used, separation of duty policies state only requirements on the number of users involved in the

task and do not capture the requirements on these users’ attributes. In this paper, we introduce a
novel algebra that enables the formal specification of high-level policies that combine requirements

on users’ attributes with requirements on the number of users motivated by separation of duty
considerations. We give the syntax and semantics of the algebra and study algebraic properties of

its operators. After that, we study potential mechanisms to enforce high-level policies specified in

the algebra and a number of computational problems related to policy analysis and enforcement.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—Access controls;
F.4.3 [Mathematical Logic And Formal Languages]: Formal Languages; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems—Complexity of proof procedures; K.6.5 [Man-
agement of Computing and Information Systems]: Security and Protection

General Terms: Security, Theory, Verification

1. INTRODUCTION

Sensitive tasks, such as declassifying a secret document or releasing funds, require secu-
rity controls, such as approval from appropriate authority or double verification, to prevent
abuse and fraud. The process of introducing security controls into a sensitive task, which
we call secure task design in this paper, consists of two steps: the high-level policy design
and the low-level enforcement design. In policy design, a security officer evaluates the
risks, effects, and sensitivity of the task and determines which users should be involved in
the task. Security officers have the authority to design security policies, but they are not
required to have detailed knowledge of the actual steps through which the tasks are carried
out. For instance, a security officer may determine that two managers must be involved
in releasing a confidential document to a business partner. But he/she may not know the
detailed steps of document releasing, which may include document retrieval, preparation,
approval, and transportation. In enforcement design, a system designer designs a mecha-
nism to model and control the execution of the business task in compliance with a given
high-level security policy. A popular enforcement approach is security constraints in work-
flows. A workflow divides a task into a number of well-defined steps, and there are security
constraints on users performing these steps. In contrast to security officers, system design-
ers have detailed knowledge of task execution. They know what are the steps that must be
performed to complete a task and who should be responsible for those steps. And they need
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Fig. 1. Secure task design and the deployment of its output

to take into account efficiency, quality of service, and other practical restrictions. Finally,
the output of a secure task design procedure is implemented and deployed in a security
management solution, such as IBM Tivoli Identity Manager. Figure 1 briefly illustrates the
procedure of secure task design.

As the focus of the first step of secure task design, a high-level security policy states an
overall requirement that must be satisfied by any set of users that together complete a task.
A well-known high-level security policy is Separation of Duty (SoD), which is widely rec-
ognized as a fundamental principle in computer security [Clark and Wilson 1987; Saltzer
and Schroeder 1975]. In its simplest form, the principle states that a sensitive task should
be performed by two different users acting in cooperation. The concept of SoD has long
existed before the information age; it has been widely used in, for example, the banking
industry and the military, sometimes under the name “the two-man rule”. More generally,
an SoD policy requires the cooperation of at least k different users to complete a task.
SoD has been identified as a high-level mechanism that is “at the heart of fraud and error
control” [Clark and Wilson 1987].

In many situations, however, it is not enough to require only that k different users be
involved in a sensitive task; there are also minimal qualification requirements for these
users. For example, one may want to require users involved in a task to be physicians,
certified nurses, certified accountants, or directors of a company. Partly due to the lack of
a concise-yet-expressive language for specifying such high-level security policies, people
usually skip the formal specification of high-level security policies (perhaps expressing
high-level security policies in a natural language) and specify qualification requirements
at the level of enforcement mechanism. For example, if a designer believes that a task
should involve a manager and two clerks, he/she may create a workflow with three steps
and require two clerks to each perform Step 1 and Step 3, and a manager to perform Step
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However, formal specification of high-level security policies provides a number of im-

portant advantages. First of all, formal specification minimizes the possibility of mis-
understanding between policy designers and system designers. Using a natural language
could lead to ambiguity and misinterpretation, and are thus inappropriate to specify secu-
rity policies, as a flaw in a policy could lead to major security breaches. Second, formal
specification facilitates the analysis of security policies. Given a formal policy specification
language, we may develop tools to analyze formally-specified policies, such as checking
whether certain groups of users satisfy a policy, so as to detect policies that are too restric-
tive or too permissive when compared to actual needs in practice. It is beneficial to detect
design flaws at an early stage, because low-level enforcement schemes, which contain exe-
cution details of tasks, are usually more difficult to analyze than high-level policies. As we
will see in Example 2 in Section 3.2, low-level enforcement schemes such as workflows
with security constraints may involve other factors in addition to security requirements,
which complicates the analysis on those enforcement schemes. Finally, formal specifica-
tion of high-level policies allows us to develop tools to verify whether a low-level enforce-
ment scheme is compliant with a high-level security policy. For example, a workflow may
contain branches and loops; it is important to verify that no route in the workflow bypasses
the high-level security policy. As manual verification is time-consuming and error-prone,
formal verification tools are highly desirable.

In this paper, we introduce a novel algebra that enables the formal specification of high-
level policies that combine qualification requirements with quantity requirements moti-
vated by separation of duty considerations. A term in our algebra specifies a requirement
on sets of users (we call these usersets). A high-level policy, which associates a task
with a term in the algebra, requires that all sets of users that complete an instance of the
task satisfy the term. Our algebra has four binary operators: t,u,�,⊗, and two unary
operators ¬,+. An SoD policy that requires 3 different users can be expressed using
the term (All ⊗ All ⊗ All), where All is a keyword that refers to the set of all users. A
policy that requires either a manager or two different clerks is expressed using the term
(Manager t (Clerk⊗ Clerk)).

We define the syntax and semantics of terms in the algebra, and study the algebraic
properties of the operators. We then discuss enforcement mechanisms for policies specified
in the algebra, such as static enforcement and dynamic enforcement. Furthermore, we
study computational problems related to analysis and enforcement of policies specified in
the algebra. These problems are: 1) the Term Satisfiability (TSAT) problem, which asks
whether a term can be satisfied at all; 2) the Userset-Term Satisfaction (UTS) problem,
which asks whether a userset (i.e. a set of users) satisfies a term; 3) the Userset-Term
Safety (SAFE) problem, which asks whether a userset contains a subset that satisfies a
term; and 4) the Static Safety Checking (SSC) problem, which asks whether an access
control state is (statically) compliant with a high-level security policy.

Finally, some operators in our algebra are similar to the ones in regular expressions. A
regular expression describes a set of strings, while a term in our algebra describes a set
of sets. As a fundamental tool for defining sets of strings, regular expressions are used
in many areas. Analogically, because our algebra is about the fundamental concept of
defining sets of sets, we conjecture that, besides expressing security policies, the algebra
could be used (perhaps with extensions) in other areas where set specification is desired.
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The remainder of the paper is organized as follows. We introduce the syntax and se-
mantics of the algebra in Section 2. We then discuss different enforcement mechanisms
for policies specified in the algebra in Section 3. In Sections 4, 5, and 6, we study compu-
tational problems related to analysis and enforcement of policies. In Section 7, we discuss
extensions to the syntax of the algebra, the relationship between the algebra and regular
expressions, as well as limitations of the expressive power of the algebra. Finally, we dis-
cuss related work in Section 8 and conclude with Section 9. Proofs not included in the
main body are included in the appendices unless otherwise stated.

2. THE ALGEBRA

In this section, we introduce an algebra for expressing high-level security policies.

2.1 Syntax, Semantics, and Examples

In our definition of the algebra, we use the notion of roles. We use a role to denote a
set of users that have some common qualification or common job responsibility. We em-
phasize, however, that the algebra is not restricted to Role-Based Access Control (RBAC)
systems [Sandhu et al. 1996]. In our algebra, a role is simply a named set of users. The
notion of roles can be replaced by groups or user attributes. We use U to denote the set of
all users, andR to denote the set of all roles.

DEFINITION 1 [TERMS IN THE ALGEBRA]. Terms in the algebra are defined as fol-
lows:

—An atomic term takes one of the following three forms: a role r ∈ R, the keyword All,
or a set S ⊆ U of users.

—An atomic term is a unit term; furthermore, if φ1 and φ2 are unit terms, then ¬φ1,
(φ1 u φ2) and (φ1 t φ2) are also unit terms.

—A unit term is a term; if φ is a unit term, then φ+ is a term; if φ1 and φ2 are terms, then
(φ1 t φ2), (φ1 u φ2), (φ1 ⊗ φ2), and (φ1 � φ2) are also terms.

The unary operator ¬ has the highest priority, followed by the unary operator +, then by
the four binary operators (namely u, t, �, ⊗), which have the same priority.

We now give several simple example terms to illustrate the intuition behind the operators
in the algebra. The term “(ManageruAccountant)” requires a user that is both a Manager
and an Accountant. The term “(Manager u ¬{Alice,Bob})” requires a user that is a
manager, but is neither Alice nor Bob; here, the sub-term “¬{Alice,Bob}” implements a
blacklist. The term “(Physician t Nurse)” requires a user that is either a Physician or
a Nurse. The term “(Manager � Clerk)” requires a user who is a Manager and a user
who is a Clerk; in particular, when one user is both a Manager and a Clerk, that user by
himself also satisfies the requirement. The term “((All⊗All)⊗All)” requires three different
users. The keyword All allows us to refer to the set of all users. The term “Accountant+”
requires a set of one or more users, where each user in the set is an Accountant.

To formally assign meanings to terms, we need to first assign meanings to the roles used
in the term. For this, we introduce the notion of configurations.

DEFINITION 2 [CONFIGURATIONS]. A configuration is given by a pair 〈U,UR〉,
where U denotes the set of all users in the configuration, and UR ⊆ U × R determines
role memberships. When (u, r) ∈ UR, we say that u is a member of the role r.
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Note that in a configuration 〈U,UR〉, UR should not be confused with the user-role as-
signment relation UA in RBAC. When an RBAC system has both UA and a role hierarchy
RH , the two relations UA and RH together determine UR.

When describing the UR relation, we often use Ur to denote the set of users assigned to
role r, i.e. Ur = {u | (u, r) ∈ UR}.

DEFINITION 3 [SATISFACTION OF A TERM]. Given a configuration 〈U,UR〉, we say
that a userset X ⊆ U satisfies a term φ under 〈U,UR〉 if and only if one of the following
holds1:

—The term φ is the keyword All, and X is a singleton set {u} such that u ∈ U .
—The term φ is a role r, and X is a singleton set {u} such that (u, r) ∈ UR.
—The term φ is a set S of users, and X is a singleton set {u} such that u ∈ S.
—The term φ is of the form ¬φ0 where φ0 is a unit term, and X is a singleton set that does

not satisfy φ0.
—The term φ is of the form φ+

0 where φ0 is a unit term, and X is a nonempty userset such
that for every u ∈ X , {u} satisfies φ0.

—The term φ is of the form (φ1 t φ2), and either X satisfies φ1 or X satisfies φ2.
—The term φ is of the form (φ1 u φ2), and X satisfies both φ1 and φ2.
—The term φ is of the form (φ1 ⊗ φ2), and there exist usersets X1 and X2 such that
X1 ∪X2 = X , X1 ∩X2 = ∅, X1 satisfies φ1, and X2 satisfies φ2.

—The term φ is of the form (φ1 � φ2), and there exist usersets X1 and X2 such that
X1 ∪X2 = X , X1 satisfies φ1, and X2 satisfies φ2. This differs from the definition for
⊗ in that it does not require X1 ∩X2 = ∅.

For example, given the term (Manager � Clerk), and the configuration 〈U =
{Alice,Bob}, UR〉, in which UR is such that: UManager = {Alice} and UClerk =
{Alice,Bob}, we have {Alice} satisfies the term and {Alice ,Bob } also satisfies the term.

Intuitively, a configuration 〈U,UR〉 represents the access control state of an organiza-
tional unit, a term φ defines the security requirement of a sensitive task T , and X ⊆ U is a
set of users in the organizational unit who are about to perform T . X satisfying φ indicates
that the set of users meet the security requirement of T . Also, it is clear from Definition 3
that no term can be satisfied by an empty set.

The following examples help illustrate that one can express sophisticated policies in the
algebra.

—{Alice,Bob,Carl} ⊗ {Alice,Bob,Carl}
This term is satisfied by any two users out of the list of three.

—(Accountant t Treasurer)+

This term requires that all participants must be either an Accountant or a Treasurer.
But there is no restriction on the number of participants except that the number is non-
zero.

—((Manager� Accountant)⊗ Treasurer)
This term is satisfied by a userset consisting of a Manager, an Accountant, and a
Treasurer; the first two requirements can be satisfied by a single user.

1We sometimes say X satisfies φ, and omit “under 〈U,UR〉” when the configuration is clear from the context.
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—((Physician t Nurse)⊗ (Manager u ¬Accountant))
This term is satisfied by a userset consisting of two different users, one of who is either
a Physician or a Nurse, and the other is a Manager, but not an Accountant.

—((Manager� Accountant� Treasurer) u (Clerk u ¬{Alice,Bob})+)
This term is satisfied by a userset consisting of a Manager, an Accountant and a
Treasurer. In addition, everybody in the userset must be a Clerk and must not be
Alice or Bob.

2.2 Satisfaction Trees

When a userset X satisfies a term φ under a configuration 〈U,UR〉, some subterms of φ
are satisfied by subsets of X . We formalize this by the notion of a satisfaction tree. A
satisfaction tree serves as an evidence of X satisfying φ that can be easily verified.

DEFINITION 4 [SATISFACTION TREE]. Given a term φ and a configuration 〈U,UR〉,
we say that T is a satisfaction tree of φ under 〈U,UR〉 if and only if the following three
conditions hold.

(1) T is a syntax tree of φ, where each inner node of T denotes a binary operator in φ,
and each leaf node denotes a sub-term of φ that is either a unit term or takes the form
φ+

0 . That is, sub-terms of the form φ+
0 are not not further decomposed in T and are

represented as leaves.
(2) Each node N in T is labeled with a (possibly empty) set of users, which is denoted as

LT (N), and the following rules hold for every node N in T . We denote N1 and N2

as the left and right children of N , respectively.
—When N is a leaf node representing a unit term φ0: either LT (N) = ∅ or LT (N) =
{u} satisfies φ0 under 〈U,UR〉.

—WhenN is a leaf node representing a sub-term φ+
0 : either LT (N) = ∅ or LT (N) =

X satisfies φ+
0 under 〈U,UR〉.

—When N represents t: either (LT (N) = LT (N1) ∧ LT (N2) = ∅) or (LT (N) =
LT (N2) ∧ LT (N1) = ∅).

—When N represents u: LT (N) = LT (N1) = LT (N2).
—When N represents �: LT (N) = LT (N1) ∪ LT (N2), and (LT (N) 6= ∅) ⇒

(LT (N1) 6= ∅ ∧ LT (N2) 6= ∅), where⇒ denote logic implication.
—When N represents⊗: LT (N) = LT (N1)∪LT (N2), LT (N1)∩LT (N2) = ∅, and

(LT (N) 6= ∅)⇒ (LT (N1) 6= ∅ ∧ LT (N2) 6= ∅).
(3) LT (Nr) 6= ∅, where Nr is the root of the tree T .

According to the conditions in the above definition, it can be easily shown thatLT (N) ⊆
LT (N ′), when N ′ is an ancestor of N in the satisfaction tree T .

Intuitively, in a satisfaction tree T , a node is either labeled with a userset that satisfies the
sub-term represented by the sub-tree of T rooted at the node, or labeled with ∅, indicating
that the node is in a branch connected by t and the sub-term represented by that branch
does not need to be satisfied (because the other branch is satisfied). The following lemma
formalizes this intuition.

LEMMA 1. Let T be a satisfaction tree of φ under 〈U,UR〉, for each node N in T ,
if LT (N) 6= ∅, then LT (N) satisfies the sub-term of φ represented by the sub-tree of T
rooted at N .
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The following theorem relates the existence of a satisfaction tree for a term φ with the
satisfiability of φ.

THEOREM 2. Given a configuration 〈U,UR〉 and a term φ, a userset X satisfies φ
under 〈U,UR〉 if and only if there exists a satisfaction tree of φ such that LT (Nr) = X ,
where Nr is the root of T .

The proofs of Lemma 1 and Theorem 2 are given in Appendix A.

2.3 Evaluating a Term to a Set of Usersets

Given a configuration 〈U,UR〉 and a term φ, φ may be satisfied by multiple usersets, thus
we can say that φ evaluates to a set of usersets.

DEFINITION 5 [VALUE OF A TERM]. Given a configuration 〈U,UR〉 and a term φ,
S〈U,UR〉(φ) denotes the set of all usersets that satisfy φ under 〈U,UR〉, and is called the
value of term φ under the configuration.

EXAMPLE 1. Consider the term φ = ((Manager � Accountant �
Treasurer) u (Clerk u ¬{Alice,Bob})+) and the configuration 〈U =
{Alice,Bob,Carl ,Doris,Elaine,Frank}, UR〉, in which UR is such that:

UManager = {Alice,Doris,Elaine}
UAccountant = {Doris,Frank}
UTreasurer = {Bob,Carl ,Doris}
UClerk = {Alice,Bob,Carl ,Doris,Frank}.

The sub-term (Clerk u¬{Alice,Bob})+ blacklists Alice and Bob so that only subsets of
{Carl ,Doris,Frank} may satisfy φ. We have

S〈U,UR〉(φ) = { {Doris}, {Carl ,Doris}, {Doris,Frank}, {Carl ,Doris,Frank} }

That is, there are four usersets that satisfy the term φ.

2.4 Algebraic Properties

We now introduce the notion of equivalence among terms, which enables us to study the
algebraic properties of the operators in the algebra.

DEFINITION 6 [TERM EQUIVALENCE]. We say that two terms φ1 and φ2 are equiva-
lent (denoted by φ1 ≡ φ2) when for every userset X and every configuration 〈U,UR〉, X
satisfies φ1 under 〈U,UR〉 if and only if X satisfies φ2 under 〈U,UR〉. In other words,
φ1 ≡ φ2 if and only if ∀〈U,UR〉

[
S〈U,UR〉(φ1) = S〈U,UR〉(φ2)

]
.

Using a straightforward induction on the structure of terms, one can show that if φ1 ≡
φ2, then, for any term φ in which φ1 occurs, let φ′ be the term obtained by replacing in φ
one or more occurrences of φ1 with φ2, we have φ ≡ φ′.

THEOREM 3. The operators have the following algebraic properties:

(1) The operators t,u,�,⊗ are commutative and associative. That is, for each op ∈
{t,u,�,⊗}, and any terms φ1, φ2, and φ3, we have (φ1 op φ2) ≡ (φ2 op φ1) and
((φ1 op φ2) op φ3) ≡ (φ1 op (φ2 op φ3)).

(2) The operators t and u distribute over each other. That is, (φ1 t (φ2 u φ3)) ≡ ((φ1 t
φ2) u (φ1 t φ3)) and (φ1 u (φ2 t φ3)) ≡ ((φ1 u φ2) t (φ1 u φ3)).
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(3) The operator� distributes over t. That is, (φ1�(φ2tφ3)) ≡ ((φ1�φ2)t(φ1�φ3)).
(4) The operator⊗ distributes over t. That is, (φ1⊗(φ2tφ3)) ≡ ((φ1⊗φ2)t(φ1⊗φ3)).
(5) No other ordered pair of binary operators has the distributive property. (There are 12

such pairs altogether; the four of them listed above have the distributive property.)
(6) (φ1 u φ2)+ ≡ (φ+

1 u φ
+
2 )

(7) DeMorgan’s Law: ¬(φ1 u φ2) ≡ (¬φ1 t ¬φ2), ¬(φ1 t φ2) ≡ (¬φ1 u ¬φ2)

See Appendix A for the proof of the above theorem, which also gives a counterexample
for each case that the distributive property does not hold.

Because of the associativity properties, in the rest of this paper we omit parentheses in a
term when doing so does not cause any confusion.

We now describe some other facts about the operators, to further illustrate the operators
and their relationships.

—Any userset that satisfies (φ1uφ2) also satisfies (φ1tφ2), but not the other way around.
—Any userset that satisfies (φ1uφ2) also satisfies (φ1�φ2), but not the other way around.
—Any userset that satisfies (φ1⊗φ2) also satisfies (φ1�φ2), but not the other way around.
—Any userset that satisfies φ+

1 tφ
+
2 also satisfies (φ1tφ2)+, but not the other way around.

Proofs to the first three relationships are straightforward. Here, we prove the last one. If
X satisfies (φ+

1 tφ
+
2 ), thenX satisfies either φ+

1 or φ+
2 . Without loss of generality, assume

that X satisfies φ+
1 . Then, for every u ∈ X , {u} satisfies φ1 and thus satisfies (φ1 t φ2).

Hence, X satisfies (φ1 t φ2)+. For the other direction, if {u1} satisfies φ1 but not φ2, and
{u2} satisfies φ2 but not φ1, then {u1, u2} satisfies (φ1 t φ2)+ but not φ+

1 t φ
+
2 .

2.5 Rationale of the Design of the Algebra

We now discuss the rationale underlying some of the decisions we made in designing the
algebra.

Monotonicity. SoD policies satisfy the property of monotonicity; that is, if an SoD policy
requires two users to perform a task, then having three or more users certainly satisfies this
policy. Similarly, one may want a security algebra like ours to also satisfy the monotonicity
property; that is, if a userset X satisfies a term φ, then any superset of X also satisfies φ.
McLean [McLean 1988] adopts this property in his security algebra for N -person policies.

Our algebra is designed to support both monotonic policies and policies that are not
monotonic. For example, the term (Accountant⊗ Accountant) can be satisfied only by
a set of two users; a set that contains more than two users cannot satisfy the term. More
generally, in Definition 3, term satisfaction is defined in such a way that every user in the
userset is used to satisfy certain component of the term. No “extra” user is allowed.

We have considered a design having the monotonicity property, in which we call the
notion of satisfaction in Definition 3 “strict satisfaction” and define that a userset X sat-
isfies a term φ if and only if X contains a subset that strictly satisfies φ. We chose our
current design over the one that has the monotonicity property because the current design
is more expressive. Consider the following example. When one says that “a task requires
two Accountants”, this may mean one of the following three policies:

(1) The task must be performed by a set of two users, both of whom are Accountants.
A group containing more (or less) than two people is not allowed.
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(2) The task must be performed by a set that contains two Accountants. In particular, a
userset that contains two Accountants and a third user who is not an Accountant is
allowed to perform the task.

(3) The task must be performed by a set of two or more Accountants. In particular, a
set of three Accountants can perform the task, but a set of two Accountants and
one non-Accountant cannot. This ensures that everyone involved in the task has the
qualification of an Accountant.

Policies 1 and 3 cannot be expressed using an algebra that has the monotonicity property.
Suppose that one tries to use a term φ to express policy 1 (or policy 3) in an algebra that has
the monotonicity property, then a set X of two Accountants satisfies φ. By monotonicity
property, any superset of X also satisfies φ. This violates the intention of policies 1 and 3.
More generally, a monotonic algebra cannot express policies that disqualify usersets that
contain extra users, nor can it express security requirements in the form of “all involved
users must meet certain qualification requirements”.

By dropping the monotonicity property, our algebra is able to express all the three poli-
cies. Policy 1 is expressed using the term (Accountant ⊗ Accountant). Policy 2 is
expressed using the term ((Accountant ⊗ Accountant) � All+). Note that the term
All+ can be satisfied by any nonempty userset. Policy 3 is expressed using the term
(Accountant⊗ Accountant+).
Restrictions on “¬” and “+”. The syntax of our algebra (Definition 1) restricts that
the two operators “¬” and “+” be applied only to unit terms, i.e., those terms that do
not contain �, ⊗, or +. The motivation for this design decision is the psychological
acceptability principle [Saltzer and Schroeder 1975]. We would like each operator to have
a clear and intuitive meaning so that when one writes down a policy as a term, there is less
chance to make mistakes and one is more confident that the term expresses the intended
policy.

When ¬ is applied to a unit term, it expresses negative qualification about a single user;
this has a clear meaning; the term ¬φ0 means a user that does not satisfy φ0. However,
if ¬ is applied to a term that involves �, ⊗, or +; then the meaning becomes less clear.
Consider the term ¬(Accountant� Manager). Any userset of size three does not satisfy
(Accountant� Manager); therefore, it should satisfy ¬(Accountant� Manager), even
if every user in the userset is both an Accountant and a Manager. It is unclear to us what
kind of real-world security policies such a term expresses.

The term φ+
0 , when φ0 is a unit term, has a clear meaning; it means that every user must

satisfy φ0. The same term, when φ0 involves operators such as � and ⊗, has at least two
possible meanings. One is to interpret + as the closure operator of �, that is, a userset X
satisfies φ+

0 if and only ifX can be divided into a number of (possibly overlapping) subsets
such that each subset satisfies φ0. The other is to interpret + as the closure operator for ⊗,
that is, a userset X satisfies φ+

0 if and only if X can be divided into a number of mutually
disjoint subsets such that each subset satisfies φ0. The two meanings coincide when φ0

is a unit term. We could use two operators, one for each meaning, and allow them to be
applied to non-unit terms. However, this adds complexity to the algebra and we have not
seen a need for this. For simplicity and usability, we chose to allow + only be applied to
unit terms. The algebra can be extended to have two closure operators that can be applied
to non-unit terms, if a need for them arises in other application domains.
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3. ENFORCING POLICIES SPECIFIED IN THE ALGEBRA

Once a high-level security policy has been specified in the algebra, we may proceed to
enforcement design step. Before doing so, it is beneficial to perform certain analyses on
the high-level policy to detect design flaws at an early stage.

A basic level of sanity check is to determine whether a term is satisfiable at all, as a term
that cannot be satisfied in any configuration is probably not what a policy author intended.
We define the Term Satisfiability (TSAT) problem for such an analysis. A problem similar
to TSAT is the Term-Configuration Satisfiability (TCSAT) problem, which asks whether
a term is satisfiable under a given configuration. This is useful when determining whether
a term is meaningful in the current configuration of an organization. Formal definitions of
TSAT and TCSAT are given in below, and we will study their computational complexity
in Section 4.

DEFINITION 7 [TSAT]. Given a term φ, the Term Satisfiability (TSAT) problem deter-
mines whether there exists a configuration 〈U,UR〉 and a userset X such that X satisfies
φ under 〈U,UR〉.

DEFINITION 8 [TCSAT]. Given a term φ and a configuration 〈U,UR〉, the Term-
Configuration Satisfiability (TCSAT) problem determines whether there exists a userset
X that satisfies φ under 〈U,UR〉.

Besides basic sanity checks on satisfiability, it is useful to select a number of targeted
usersets and determine whether these usersets satisfy the term. If a set of users who are
expected to perform the task guarded by the policy does not satisfy the term, the policy
is too restrictive; if a set of users who should not be able to perform the task satisfies
the term, the policy is too permissive. In either case, the policy is flawed and must be
redesigned. We define the Userset-Term Satisfaction (UTS) problem for such an analysis.
The computational complexity of UTS will be studied in Section 5.

DEFINITION 9 [UTS]. Given a term φ, a configuration 〈U,UR〉, and a userset X ,
the Userset-Term Satisfaction (UTS) problem determines whether X satisfies φ under
〈U,UR〉.

It is worth mentioning that UTS and TCSAT are related problems: given a configuration
and a term, UTS is a decisional problem which asks whether a given userset satisfies the
term, while TCSAT can be solved by searching for a userset in the configuration that
satisfies the term.

If a high-level security policy passes all the tests, we need to enforce the policy cor-
rectly. A high-level security policy can be enforced statically or dynamically. In static en-
forcement, one ensures that in a configuration, any set of users who together have enough
permissions to perform the task satisfy the high-level policy. In dynamic enforcement, one
records the history of who performs which steps in a task instance and determines whether
the set of users involved in the task instance satisfies the policy. In the rest of this section,
we discuss these two enforcement approaches.

3.1 Static Enforcement

Static enforcement can be achieved either directly or indirectly. In direct static enforce-
ment, one verifies whether an access control state is safe with respect to a high-level se-
curity policy. In indirect static enforcement, one specifies constraints so that any access
control state satisfying the constraints is safe with respect to the policy.
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Direct static enforcement of SoD policies, which are a subclass of the policies that can
be specified in the algebra, has been studied in [Li et al. 2007]. It has been shown that
checking whether an access control state statically satisfies an SoD policy, i.e., whether ev-
ery set of users who together have all the permissions for the task contains at least k users,
is coNP-complete [Li et al. 2007]. As SoD policies can be specified in the algebra, direct
statement enforcement of policies in the algebra requires solving an intractable problem.
Computationally expense notwithstanding, we argue that the study of direct enforcement
of static high-level policies is necessary for the following reasons. First, direct static en-
forcement is the most simple and straightforward enforcement mechanism for high-level
security policies. Its performance will be used as a benchmark for comparison when eval-
uating other enforcement mechanisms. Second, even though direct static enforcement is
computationally intractable in theory, it is interesting and necessary to study its perfor-
mance for instances that are likely to occur in practice. Third, direct enforcement cannot
be entirely replaced by indirect enforcement. It is oftentimes difficult or even impossible
to create efficiently-verifiable constraints to precisely capture a high-level policy. For ex-
ample, Li et al. studied indirect enforcement by using Static Mutually Exclusive Roles
(SMER) to enforce SoD policies in the context of role-based access control (RBAC), and
showed that there exist SoD policies such that no set of SMER constraints can precisely
capture them [Li et al. 2007]. Most of the time, the set of constraints created for a secu-
rity policy is more restrictive than the policy itself. That is to say, some access control
states that are safe with respect to the security policy will be ruled out by the constraints.
In situations where precise enforcement is desired, direct enforcement may be the only
option.

Direct static enforcement requires solving the Static Safety Checking (SSC) problem,
which we formally define through the following definitions.

DEFINITION 10 [STATE]. An access control system state is given by a triple
〈U,UR,UP〉, where UR ⊆ U ×R determines user-role memberships and UP ⊆ U × P
determines user-permission assignment, where P is the set of all permissions.

Note that a state 〈U,UR,UP〉 uniquely determines a configuration 〈U,UR〉 used by
term satisfaction. Hence, we may discuss term satisfaction in a state without explicitly
mentioning the corresponding configuration. Note also that a user may be assigned a per-
mission directly or indirectly (e.g. via role membership), and the relation UP has taken
both ways into consideration.

We say that a userset X covers a set P of permissions if and only if the following holds:
{ p | ∃u ∈ X[(u, p) ∈ UP ] } ⊇ P.

Next, we define the notion of safety in direct static enforcement. As we mentioned ear-
lier, the idea of static enforcement is that, by careful design of access control states, one
can guarantee that every set of users who together have enough permissions to complete
a task satisfies the security policy of the task, and thus runtime checking is unnecessary.
While introducing no runtime overhead, static enforcement has a limitation, that is, only
monotonic security policies can be enforced statically. The reason is that permission cover-
age is monotonic with respect to usersets. In other words, if X covers P , then any superset
of X also covers P . However, as we emphasized in Section 2.5, term satisfaction does not
have the monotonicity property. In order to specify monotonic policies, we may use terms
in the form of (φ � All+). A userset U satisfies (φ � All+) if and only if U contains a
subset that satisfies φ.
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When static enforcement is the only enforcement approach, all policies need to be im-
plicitly monotonic to be enforceable. We thus introduce the notion of static safety, which
implicitly assumes each term means its monotonic closure.

DEFINITION 11 [STATIC SAFETY]. A high-level security policy is given as a pair
sp〈P, φ〉, where P ⊆ P is a set of permissions and φ is a term in the algebra. An ac-
cess control state 〈U,UR,UP〉 is statically safe with respect to sp〈P, φ〉, if and only if,
for every userset X that covers P , X satisfies the monotonic closure of φ (i.e. X satisfies
(φ � All+)). If a state is statically safe with respect to a policy, we say that it satisfies the
policy.

Note that in the above definition, we require that, for each userset X that covers P , X
satisfies the monotonic closure of φ rather than φ itself. Equivalently, an access control
state is statically safe with respect to sp〈P, φ〉 if and only if for every userset X that covers
P , there exists X ′ ⊆ X , such that X ′ satisfies φ.

The problem of checking static safety is defined as follows; its computational complexity
will be studied in Section 6.1.

DEFINITION 12 [SSC]. Given a static safety policy sp〈P, φ〉, the problem of determin-
ing whether a given state 〈U,UR,UP〉 is statically safe with respect to sp〈P, φ〉 is called
the Static Safety Checking (SSC) problem.

Note also that Definition 11 does not require 〈U,UR,UP〉 to contain a userset that
covers P in sp〈P, φ〉. If a state does not contain any userset that covers P , then it trivially
satisfies sp〈P, φ〉. Checking whether there exists a userset in 〈U,UR,UP〉 that covers P
can be done in linear time with respect to the size of UP .

To check static safety, one needs to determine whether a set of users contains a subset
that satisfy a term. This problem is defined as follows.

DEFINITION 13 [SAFE]. Given a term φ, a configuration 〈U,UR〉, and a userset X , a
userset X is safe with respect to a term φ under configuration 〈U,UR〉, if and only if there
exists X ′ ⊆ X such that X ′ satisfies φ under 〈U,UR〉.

The Userset-Term Safety (SAFE) problem determines whether X is safe with respect to
a term φ under configuration 〈U,UR〉.

SAFE can be viewed as a special case of UTS, becauseX is safe with respect to φ if and
only if X satisfies (φ� All+); however, it may be solved more efficiently when treated as
a separate problem. The computational complexity of SAFE will be studied in Section 6.

We point out that SAFE is technically the same problem as TCSAT, even though they
are motivated by different purposes. In SAFE, we ask whether a userset X contains a
subset that satisfies φ under 〈U,UR〉, where X ⊆ U . Since users in U/X are irrelevant
in answering such a question, the problem is equivalent to whether X contains a subset
that satisfies φ under 〈X,UR〉, which is the same as whether there is a userset in the
configuration 〈X,UR〉 that satisfies φ.

As we mentioned earlier, static enforcement can only enforce security policies with
the monotonicity property. To enforce non-monotonic policies, we may use a dynamic
enforcement scheme.

3.2 Dynamic Enforcement

Similar to static enforcement, dynamic enforcement can be achieved either directly or in-
directly as well.
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To directly enforce a policy 〈task , φ〉, one identifies the steps in performing the task.
The system maintains a history of each instance of the task, which includes information
on who have performed which steps. For any task instance, one can compute the set of
users (denoted as Upast) who have performed at least one step of the instance. Before
a user u performs a step of the instance, the system checks to ensure that there exists a
superset of Upast ∪ {u} that can satisfy φ upon finishing all steps of the task. In particular,
if u is about to perform the last step of the task instance, it is required by the policy that
Upast ∪ {u} satisfies φ. As we will see in Section 5, checking whether a userset satisfies a
term is computationally expensive. In practice, people usually use workflows with security
constraints to indirectly enforce high-level security policies.

In the rest of this section, we give an example of the secure task design process. The
example demonstrates how to use a workflow as an indirect dynamic enforcement scheme
for a high-level security policy specified in the algebra. We would like to point out that
in the design of workflows, a designer may take efficiency, quality of service, and other
practical restrictions into account in addition to security requirements.

EXAMPLE 2. Company XYZ newly established a plan to share some of its classified
documents with its business partners. As the task (denoted as Ts) involves disclosure of
classified documents, it is considered to be sensitive by XYZ and has to go through a
security design procedure. The first step is the high-level policy design, which is performed
by a security officer Alice . After evaluating the risks and effects of Ts, Alice decides that
at least two Managers must be involved in the task. She then creates a high-level security
policy (Manager⊗ Manager)� All+ for Ts.

The second step is to design a workflow to model Ts in compliance with the high-level
security policy. This is performed by a system designer Bob. Ts consists of four physical
steps: 1) a business partner coordinator (denoted as Coordinator) receives a request
from a business partner; 2) a document administrator (denoted as DocAdmin) retrieves
the document from company archives; 3) a DocAdmin performs pre-releasing preparation
on the document, such as anonymizing certain items; 4) a Coordinator sends the post-
preparation document to the business partner. To begin with, Bob creates a workflow W1

with the four physical steps of Ts, which is shown in Figure 2-a. He then introduces two
additional steps into W1 so as to comply with the security policy (Manager⊗Manager)�
All+. He adds two steps to W1 so that a classified document will not be retrieved until
two Managers have approved the request on disclosure. Furthermore, in order to provide
better quality of service, Bob adds a binding of duty constraint to the workflow so that the
coordinator who received the request is responsible to send the document to the business
partner. The final workflow W2 modeling Ts is shown in Figure 2-b. It can be verified that
any team of users who completes W2 must satisfy (Manager⊗ Manager)� All+.

It is interesting future work to study how to verify whether a workflow is compliant with
a high-level security policy specified in the algebra. In the upcoming sections, we will
study the computational problems (i.e. TSAT, TCSAT, UTS, SAFE and SSC) defined in
this section. As we have seen, these problems are important in the analysis and enforce-
ment of high-level security policies, and are of both theoretical and practical interest.

4. TWO TERM SATISFIABILITY PROBLEMS

In this section, we study the computational complexities of TSAT and TCSAT.
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a.  A workflow (W1) consisting of physical steps of the task on releasing classified documents to 
corporate partners.  Request and Send are authorized to the role Coordinator, while 
Retrieval and Preparation are authorized to DocAdmin. 

Constraint 1: Approve_A and Approve_B must be performed by different users 

Constraint 2: Request and Send must be performed by the same user 

b.  A workflow (W2) consisting of physical steps, security-oriented steps and constraints in 
compliance with a high-level security policy.  Approve_A and Approve_B are authorized to 
Manager and may be performed in parallel.  Constraint 2 is specified for the purpose of 
quality of service. 

Fig. 2. Workflows in Example 2

4.1 The Term Satisfiability (TSAT) Problem

As the algebra supports negation, it is not surprising that unsatisfiable terms exist. A simple
example of a term that is not satisfiable is (ru¬r). Another source of unsatisfiable terms is
the use of explicit sets of users in a term. For example, the term ({Alice,Bob} u {Carl})
is not satisfiable. However, even if a term does not contain negation or explicit sets of
users, it may still be unsatisfiable. An example of such a term is φ = (r1 u (r2 ⊗ r3)),
where r1, r2 and r3 are roles. In the example, r1 is satisfiable only by a singleton userset,
and (r2 ⊗ r3) is satisfiable only by a userset of cardinality 2. Therefore, there does not
exist a userset that satisfies φ.

We now show that TSAT is NP-complete in general. We identify the source of in-
tractability by identifying two special cases that are NP-hard. One special case (Lemma 4
below) involves the negation operator, and the other (Lemma 5 below) involves explicit
sets of users. In Section 4.2, we show that for terms that are free of negation and explicit
sets of users, TSAT can be efficiently solved.

LEMMA 4. TSAT over terms built using only roles and the operators ¬, u, and t is
NP-hard.

LEMMA 5. TSAT over terms built using only explicit sets of users and the operators u,
t, and � is NP-hard.

To show that TSAT is in NP, we need the following lemma, which shows that if a term
is satisfiable, then there exists an evidence of polynomial size.

LEMMA 6. If a term φ is satisfiable, then there exists a userset U and a configuration
〈U,UR〉, such that U satisfies φ under 〈U,UR〉, |U | ≤ |φ| and |UR| ≤ |φ|2, where |φ| is
the number of occurrences of atomic terms in φ.
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THEOREM 7. TSAT is NP-complete.

Please refer to Appendix B.1 for the proofs of Lemmas 4, 5, 6 and Theorem 7.

4.2 TSAT for the Sub-Algebra Free of Negation and Explicit Sets of Users

Lemmas 4 and 5 show that if a term involves negation or explicit sets of users, then deter-
mining whether it is satisfiable or not may be intractable. We now study the term satisfiabil-
ity problem for terms that are free of explicit sets of users and negation. For convenience,
we call such terms SNF (Set-and-Negation Free) terms. The following lemma states an
important property of terms that are free of negation.

LEMMA 8. Let φ be a term that does not contain the operator ¬. If userset X satisfies
φ under configuration 〈U,UR〉, then X satisfies φ under configuration 〈U,UR′〉, where
UR ⊂ UR′.

Lemma 8 essentially states that, for terms that are free of negation, satisfaction is mono-
tonic with respect to user-role assignment. The proof of the lemma is straightforward and
is omitted from the paper.

We have the following theorem.

THEOREM 9. Checking whether an SNF term is satisfiable is in P.

To prove Theorem 9, we first introduce the notion of characteristic sets for SNF terms
in Definition 14. Definition 14 essentially gives an algorithm to compute the characteristic
set of a given SNF term. Then, we show that the algorithm given in Definition 14 is a
polynomial time algorithm. Finally, we prove an important property of characteristic set,
that is, an SNF term is satisfiable if and only if its characteristic set is non-empty. To
determine whether an SNF term is satisfiable, we can run a polynomial-time algorithm to
compute its characteristic set and check whether the characteristic set is empty or not.

To begin with, we introduce the notion of characteristic sets. A key observation is that,
in order to satisfy a term, a userset must be of certain size. For example, (r1 � (r2 ⊗ r3))
can be satisfied by a set of 2 or 3 users, but not by a set containing 1 or 4 or any other
number of users. We thus call {2, 3} the characteristic set of the term (r1 � (r2 ⊗ r3)).

DEFINITION 14 [CHARACTERISTIC SET]. The characteristic set of an SNF term φ,
which is denoted as C(φ), is a set of natural numbers computed as follows:

—C(All) = C(r) = {1}, where r is a role
—C(φ1 t φ2) = C(φ1) ∪ C(φ2)
—C(φ1 u φ2) = C(φ1) ∩ C(φ2)
—C(φ+) = {i | i ∈ [1,∞)}, where φ is a unit term free of explicit sets of users and

negations
—C(φ1 � φ2) = {i | ∃ c1 ∈ C(φ1) ∃ c2 ∈ C(φ2) [max(c1, c2) ≤ i ≤ c1 + c2 ]}
—C(φ1 ⊗ φ2) = { c1 + c2 | c1 ∈ C(φ1) ∧ c2 ∈ C(φ2) }

An integer k is called a characteristic number of φ if and only if k ∈ C(φ).

Note that the above definition states how to compute the characteristic set of a given
SNF term. As examples, we give the characteristic sets of some terms in below.

—C(All⊗ All⊗ All) = {3}
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—C(Manager� Accountant)⊗ Treasurer) = {2, 3}
The term (Manager� Accountant) can be satisfied by two users as well as by a single
user who is both a Manager and an Accountant. An additional user is needed to satisfy
Treasurer.

—C((Clerk t Accountant)⊗ (Clerk u Manager)) = {2}
One user is required for (Clerk t Accountant), and for (Clerk u Manager), and the
⊗ mandates that the two terms be satisfied by different users.

—C((Manager�Accountant�Treasurer)uClerk+) = {1, 2, 3}∩{i|i ∈ [1,∞)} =
{1, 2, 3}

Given a term φ, computing C(φ) requires at most 2|φ| − 1 steps according to the algo-
rithm in Definition 14, where |φ| is the number of occurrences of atomic terms in φ and
φ contains |φ| − 1 binary operators. A step in the algorithm may require such operations:
set union, set intersection, computing the sums of all pairs of elements from two different
sets. If the size of intermediate results (which are sets) is bounded by |φ|, then each step
can be performed in polynomial time, and thus the algorithm finishes in polynomial time.
However, when a term contains +, its characteristic set could be an infinite set. Fortunately,
the following Lemma 10 shows that if C(φ) is an infinite set, it must always contain all the
numbers that are greater than |φ|. In this case, we do not have to deal with infinitely many
elements in a characteristic set individually, as {|φ|+ 1, |φ|+ 2, . . . } can be treated as one
unit during computation.

LEMMA 10. Let φ be an SNF term and |φ| be the number of occurrences of atomic
terms in φ. One of the following two cases holds:

—C(φ) ⊆ {1, 2, . . . , |φ|}
—C(φ) = W ∪ {|φ|+ 1, |φ|+ 2, . . . }, where W ⊆ {1, 2, . . . , |φ|}

With Lemma 10, we can prove the following lemma. The proofs of Lemmas 10 and 11
are given in Appendix B.2.

LEMMA 11. Given an SNF term φ, C(φ) can be computed in polynomial time with
respect to |φ|.

The following theorem states an important property of characteristic sets.

THEOREM 12. Given an SNF term φ and a positive integer k, there exists a userset U
of size k and a configuration such that U satisfies φ under the configuration, if and only if
k is a characteristic number of φ (i.e. k ∈ C(φ)).

The proof of Theorem 12 is given in Appendix B.2.

COROLLARY 13. An SNF term φ is satisfiable if and only if C(φ) 6= ∅

With Lemma 11 and the above corollary, we can see that TSAT over SNF terms is in P.
Another usage of characteristic set is to determine whether a term satisfies some minimal

SoD requirements. If the smallest characteristic number of the term is k, then no k − 1
users can satisfy the term.

Finally, we can extend the notion of characteristic set to non-SNF terms by defining
C(¬φ) = {1}, where φ is a unit term, and C(S) = {1}, where S is an explicit set of users.
But in that case, it is no longer true that for every integer k ∈ C(φ), there is a userset of
ACM Journal Name, Vol. V, No. N, Month 20YY.



· 17

size k that satisfies φ. For example, C ({Alice,Bob} u {Carl}) = C({Alice,Bob}) ∩
C({Carl}) = {1}, even though the term ({Alice,Bob} u {Carl}) is not satisfiable. But
it remains true that for any userset X that satisfies a term φ, |X| ∈ C(φ).

4.3 The Term-Configuration Satisfiability (TCSAT) Problem

We have discussed the TSAT problem, which asks whether a term is satisfiable at all. We
now examine the TCSAT problem, which asks whether a term is satisfiable under a certain
configuration. When a security officer comes up with a term for a high-level security policy
of a task, he/she may want to know whether there exists a set of users that satisfies the term
and hence is able to perform the task under the current configuration.

Observe that TCSAT is equivalent to TSAT for terms using only explicit sets of users
but not roles or the keyword All. Given an instance of TCSAT, which consists of a term
φ and a configuration 〈U,UR〉, one can replace each role (or the keyword All) in φ with
the corresponding set of users in the configuration, which results in a new term φ′. In this
case, φ′ is independent of configuration, and φ is satisfiable under 〈U,UR〉 if and only
if φ′ is satisfiable. Therefore, it follows from Lemma 5 and Theorem 7 that TCSAT is
NP-complete; this is stated in the following theorem.

THEOREM 14. TCSAT is NP-complete.

We mentioned earlier that TCSAT is equivalent to SAFE. In Section 6 we will examine
the computational complexities of SAFE when only some subsets of operators are allowed.
Those results for SAFE apply to TCSAT as well.

5. THE USERSET-TERM SATISFACTION (UTS) PROBLEM

In this section, we study the computational complexities of the Userset-Term Satisfaction
(UTS) problem, which asks: Given a configuration 〈U,UR〉, a userset X , and a term
φ, whether X satisfies φ under 〈U,UR〉? We will show that UTS in the most general
case (i.e., arbitrary terms in which all operators are allowed) is NP-complete. In order
to understand how the operators affect the computational complexities, we consider sub-
algebras in which only some subset of the six operators {¬,+,u,t,�,⊗} is allowed.
For example, UTS〈¬,+,t,u〉 denotes the sub-case of UTS where φ does not contain
operators� or⊗, while UTS〈⊗〉 denotes the sub-case of UTS where⊗ is the only kind of
operator in φ. UTS〈¬,+,t,u,�,⊗〉 denotes the general case. Observe that unlike in the
case of TSAT, whether to allow explicit sets of users in a term or not does not affect the
computational complexities of UTS, because a fixed configuration is given in UTS, and
one can thus replace each occurrence of a role in the term with the explicit set of the role’s
members.

THEOREM 15. The computational complexities of UTS and its subcases are given in
Table I.

The proof of Theorem 15 is done in two parts. First, in Appendix C.1, we prove
that the five cases UTS〈t,�〉, UTS〈u,�〉, UTS〈t,⊗〉, UTS〈u,⊗〉, and UTS〈�,⊗〉 are
NP-hard by reducing the NP-complete problems SET COVERING, DOMATIC NUMBER,
and SET PACKING to them. Second, in Appendix C.2, we prove that the general case
UTS〈¬,+,t,u,�,⊗〉 is in NP. In Section 5.1, we identify a wide class of syntacti-
cally restricted terms for which the UTS problem is tractable. The class of restricted terms
subsumes all the cases listed as in P in Table I.
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¬ + t u � ⊗ Complexity Reduction
X X X X X X NP-complete

X X NP-complete Set Covering
X X NP-complete Set Packing

X X NP-complete Set Covering
X X NP-complete Set Covering

X X NP-complete Domatic Number
X X X X P
X X X P
X X X P

Table I. Various sub-cases of the Userset Term Satisfaction (UTS) problem and the cor-
responding time-complexity. Time-complexity of all other subcases can be deduced from
the subcases shown in the table.

5.1 UTS is Tractable for Terms in Canonical Forms

From Table I, UTS is NP-complete in all but one sub-algebras that contain at least two
binary operators; however, using any one binary operator by itself remains tractable. In this
subsection, we show that if a term satisfies certain syntactic restrictions, then even if all
operators appear in the term, one can still efficiently determine whether a userset satisfies
the term.

DEFINITION 15 [CANONICAL FORMS FOR TERMS]. The canonical forms for terms
are defined as follows:

—A term is in level-1 canonical form (called a 1CF term) if it is t or t+, where t is a unit
term. Recall that a unit term can use the operators ¬, u, and t. We call t the base of the
1CF term.

—A term is in level-2 canonical form (called a 2CF term) if it consists of one or more
sub-terms that are 1CF terms, and these sub-terms are connected only by the operator u.

—A term is in level-3 canonical form (called a 3CF term) if it consists of one or more
sub-terms that are 2CF terms, and these sub-terms are connected only by the operator
⊗.

—A term is in level-4 canonical form (called a 4CF term) if it consists of one or more
sub-terms that are 3CF terms, and these sub-terms are connected only by the operator
�.

—A term is in level-5 canonical form (called a 5CF term) if it consists of one or more
sub-terms that are 4CF terms, and these sub-terms are connected only by operators in
the set {t,u}.

We say that a term is in canonical form if it is in level-5 canonical form. Observe that
any term that is in level-i canonical form is also in level-(i + 1) canonical form for any
i ∈ [1, 4].

To check whether a term φ is in canonical form, one parses φ into a syntax tree and then
traverses the tree in a depth-first manner to see if any syntactical restriction described in
Definition 15 is violated. This can be done in polynomial time in the size of φ.
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THEOREM 16. Given a term φ in canonical form, a set X of users, and a configuration
〈U,UR〉, checking whether X satisfies φ under 〈U,UR〉 can be done in polynomial time.

PROOF. Recall that, by definition, X satisfies φ1 u φ2 if and only if X satisfies both
φ1 and φ2, and X satisfies φ1 t φ2 if and only if X satisfies either φ1 or φ2. Therefore,
to determine whether X satisfies a 5CF term, one can first determine whether X satisfies
each of the 4CF sub-terms, and then combine these results using logical conjunction and
disjunction.

For a 1CF term φ, if it is a unit term, then it is straightforward to determine whether X
satisfies φ, because a unit term can be satisfied only by a singleton set, and because of the
definitions of u and t. If φ is of the form t+, where t is a unit term, then one just needs to
determine whether each user in X satisfies t. Therefore, one can efficiently check whether
X satisfies a 1CF term.

Given a 2CF term, if at least one sub-term is a unit term, then one can get an equivalent
1CF term by removing all occurrences of +. For example, (t1u t+2 ) is equivalent to t1u t2.
Given a 2CF term where all sub-terms have +, it may be rewritten as an equivalent 1CF
term, according to algebraic properties. For example, (t+1 u t

+
2 ) is equivalent to (t1 u t2)+.

Hence, any 2CF term can be transformed into an equivalent 1CF term. We assume that the
transformation is performed whenever applicable so that we don’t need to consider 2CF
terms explicitly.

Given a 3CF term P = (φ1 ⊗ · · · ⊗ φm), where each φi is a 1CF term. Let us first
consider a special case that each φi is a unit term ti. In this case, one can determine whether
X satisfies φi by solving the following bipartite graph maximal matching problem. One
constructs a bipartite graph such that one set of nodes consists of users in X and the other
consists of the m unit terms t1, t2, . . . , tm; and there is an edge between u ∈ X and ti if
and only if {u} satisfies ti. One then computes a maximal matching of the graph (which
can be done in polynomial time); if the size of the matching is max(|X|,m), then X
satisfies P ; otherwise, X does not satisfy P .

The case that a 3CF term contains + is more complicated, as is the case for a 4CF term.
The proof for the 4CF case (which subsumes the 3CF case) is long and offers limited new
insights. We thus leave the proof in Appendix C.3.

Terms in canonical forms appear to be general enough to specify many high-level secu-
rity policies in practice. We arrive at these canonical forms by excluding the intractable
cases used in the NP-hardness proofs, and by studying how to efficiently handle terms
involving the binary operators.

6. THE USERSET-TERM SAFETY (SAFE) PROBLEM AND
THE STATIC SAFETY CHECKING (SSC) PROBLEM

In this section, we study the Userset-Term Safety (SAFE) problem and the Static Safety
Checking (SSC) problem.

As we have pointed out in Section 4.3, SAFE is technically equivalent to TCSAT, even
though the two problems are motivated by different purposes. Since TCSAT is NP-
complete, SAFE is NP-complete in general.

Also, SAFE is related to yet different from UTS. SAFE asks whether X is safe with
respect to a term φ under a configuration; this is monotonic in that if X is safe, then any
superset of X is also safe. However, UTS is not monotonic. This difference has subtle
but important effects. For example, under SAFE, the operator � is equivalent to logical
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¬ + t u � ⊗ Complexity Reduction
X X X X X X NP-complete

X X NP-complete Set Packing
X X NP-complete Set Covering
X X NP-complete Set Covering

X X NP-complete Domatic Number
X X X X P
X X X X P
X X X P

Table II. Various sub-cases of the Userset-Term Safety (SAFE) problem and the corre-
sponding time-complexity. Time-complexity of all other subcases can be deduced from
the subcases shown in the table. The complexity results in the table also apply to TCSAT,
as TCSAT is technically equivalent to SAFE.

conjunction, that is, X is safe with respect to φ1 � φ2 if and only if X is safe with respect
to both φ1 and φ2. This is because X is safe with respect to φ1 � φ2 if and only if X
contains a subset X0 that is the union of two subsets X1 and X2 such that X1 satisfies φ1

and X2 satisfies φ2. This is equivalent to X containing two subsets X1 and X2 such that
X1 satisfies φ1 and X2 satisfies φ2. In contrast, the operator � is different from logical
conjunction under UTS. That X satisfies φ1 � φ2 does not imply X satisfies both φ1

and φ2. For example, {u1, u2} satisfies All � All, but does not satisfy All, because term
satisfaction is not monotonic. Another difference regards the operator u. The operator u is
equivalent to logical conjunction under UTS, by definition of term satisfaction. However,
u is stronger than logical conjunction under SAFE. That X is safe with respect to φ1 u φ2

implies that X is safe with respect to both φ1 and φ2, but the other direction is not true.
For example, given UR = {(u1, r1), (u2, r2)}, X = {u1, u2} is safe with respect to both
r1 and r2, but is not safe with respect to r1 u r2.

Because of these and other differences, the computational complexity results about UTS
do not imply computational complexity results for SAFE. In the rest of this section, we
give the computational complexities of SAFE and its subcases, and compare them with
those of UTS. Similar to the discussion of UTS in Section 5, we consider all sub-algebras
in which only some subset of the six operators in {¬,+,u,t,�,⊗} is allowed.

THEOREM 17. The computational complexities of SAFE and its subcases are given in
Table II.

Please refer to Appendix D for proofs of the above theorem. In the appendix, we first
prove that the three cases SAFE〈¬,+,u,t〉, SAFE〈¬,+,t,�〉, and SAFE〈¬,+,⊗〉 are
in P. As we mentioned at the beginning of the section, SAFE is NP-complete in general,
which implies that all of its subcases are in NP. Hence, to prove all the NP-completeness
results, it suffices to prove that the four cases SAFE〈u,�〉, SAFE〈t,⊗〉, SAFE〈u,⊗〉, and
SAFE〈�,⊗〉 are NP-hard.

Comparing Table II with Table I, we found that the computational complexities of all
subcases of SAFE are the same as those of UTS except for the subcase in which only
operators in {¬,+,t,�} are allowed. SAFE〈¬,+,t,�〉 is in P, while UTS〈t,�〉 is
NP-hard. Intuitively, UTS〈t,�〉 is computationally more expensive than SAFE {t,�}
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¬ + t u � ⊗ Complexity Reduction
X X X X X X NP-hard, coNP-hard, in coNPNP

X X coNP-hard Validity
X X NP-hard SAFE〈u,�〉

X coNP-complete Set Covering
X X X X P
X X X P

Table III. Various sub-cases of the Static Safety Checking (SSC) problem and the corre-
sponding time-complexity. Time-complexity of all other subcases can be deduced from the
subcases shown in the table.

for the following reason: given a term φ = (φ1 � · · · � φm) and a userset U , U is safe
with respect to φ if and only if U is safe with respect to φi for every i ∈ [1,m]. In other
words, for SAFE, one may check whether U is safe with respect to φi independently from
φj (i 6= j). However, when it comes to UTS, such independency no longer exists and one
has to take into account whether every user in U is used to satisfy some φi in the term φ.

6.1 Static Safety Checking (SSC) Problem

Given a high-level security policy sp〈P, φ〉, the Static Safety Checking (SSC) problem
asks whether a given state 〈U,UR,UP〉 is statically safe with respect to sp〈P, φ〉. We
study the computational complexities of SSC, and consider all subcases where only some
subset of the operators in {¬,+,u,t,�,⊗} is allowed. We show that the general case of
SSC is both NP-hard and coNP-hard and is in coNPNP, which is a complexity class in
Polynomial Hierarchy. The proof of the following theorem is given in Appendix E.

THEOREM 18. The computational complexities of SSC and its subcases are given in
Table III.

7. DISCUSSIONS

In this section we discuss potential extensions to the syntax of the algebra, the relationship
between the algebra and regular expressions, and the limitations of the algebra’s expressive
power.

7.1 Extensions to the Syntax of the Algebra

In this paper, we have defined the basic operators in the algebra and examined their prop-
erties. We now discuss some additional operators that could be added to the algebra as
syntactic sugars.

As discussed in Section 2.5, SoD policies are monotonic, as are policies in McLean’s
formulation of N -person policies [McLean 1988]; our algebra supports both monotonic
policies and policies that are not monotonic. To express a monotonic policy that requires
a task to be performed by a userset that either satisfies a term φ or contains a subset that
satisfies φ, one can use (φ � All+). As monotonic policies may be quite common, we
introduce a unary operator5 as a syntactic sugar. That is,5φ is defined to be (φ�All+).

Besides monotonic policies, another type of policy mentioned in Section 2.5 states that
every user involved in a task must satisfy certain requirements and there need to be at least
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a certain number of users involved. Let φ be a unit term that expresses the requirements.
A policy that requires two or more users that satisfy φ can be expressed as ((φ⊗φ)�φ+).
To simplify the expression of these policies, we define φ2+ as a syntactic sugar for ((φ ⊗
φ)� φ+). In general, φk+ means that at least k (k ≥ 2) users are required and every user
involved must satisfy φ.

Similar to the above, φk is a syntactic sugar for a term using operator ⊗ to connect k
unit terms φ. For instance, Accountant3 is defined as (Accountant ⊗ Accountant ⊗
Accountant). More generally, φk states that exactly k users are required and every user
involved must satisfy φ. Writing a term in φk rather than (φ ⊗ · · · ⊗ φ) explicitly states
that all the k sub-terms connected together by ⊗ are the same. This makes the policy more
succinct and easier to process.

7.2 Relationship with Regular Expressions

The syntax of terms in our algebra may remind readers of regular expressions. A regular
expression is a string that describes or matches a set of strings, while a term in the algebra
is a string that describes or matches a set of sets. Given an alphabet, a regular expression
evaluates to a set of strings. Given a configuration, a term in our algebra evaluates to a set
of sets. In the following, we compare our algebra with regular expressions.

For example, the regular expression “a(b|c)[̂ abc]+” matches all strings that start with the
letter a, followed by either b or c, and then by one or more symbols that are not in {a, b, c}.
A term that is close in spirit to the regular expression is {a}⊗ ({b} t {c})⊗ (¬{a, b, c})+,
which is satisfied by all sets that contain a, either b or c, and one or more symbols that are
not in {a, b, c}.

From the example, one can draw some analogies between the operators in regular ex-
pressions and the ones in our algebra. The operator | in regular expressions is similar to
t. Concatenation in regular expression may seem to be related to ⊗. One clear differ-
ence is that concatenation is order sensitive, whereas ⊗ is not, because a string is order
sensitive but a set is not. A more subtle difference comes from the property that ⊗ re-
quires the two sub-terms be satisfied by disjoint sets. For instance, {a} ⊗ {a} cannot be
satisfied by any set. The usage of negation in regular expressions is similar to negation in
the algebra; in both cases, negation can be applied only to an expression corresponding to
a single element. In regular expression, the closure operator (∗ or +) can be applied to
arbitrary sub-expressions. Our algebra requires that repetition (using operator +) can only
be applied to unit terms. As we discussed in Section 2.5, since the algebra is proposed for
security policy specification, we impose such restriction so as to clearly capture real-word
security requirements. If the algebra is used in areas other than security policy specifica-
tion, it is certainly possible to release such restriction so that the algebra can define a wider
range of sets. The remaining binary operators � and u have the flavor of set intersection,
which does not have counterparts in regular expressions.

Observe that determining whether a string satisfies a regular expression is in NL-
complete, where NL stands for Nondeterministic Logarithmic-Space, and is contained in
P. On the other hand, determining whether a userset satisfies a term is NP-complete, even
if the term uses only t and ⊗ or only t and �. It appears that this increase in complexity
is due to the unordered nature of sets. Checking a string against a regular expression can
be performed from the beginning of a string to its end; on the other hand, there is no such
order in checking a set against a term in the algebra.
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As a fundamental tool for defining sets of strings, regular expression is used in many
areas. Analogically, because our algebra is about the fundamental concept of defining
sets of sets, we conjecture that, besides expression of security policies, the algebra could
be used in other areas where set specification is desired. For example, we may use the
algebra to specify some sorts of reaction formula, in which each element must have certain
properties and in some cases we may be able to choose among several properties. For
another example, our algebra could be used to specify digital-right-management licenses
that entitle users to play a set of songs. An example of such licenses is, Alice can play
a song in Album A once, and two other songs in either Album B or Album C. Barth and
Mitchell studied how to specify such licenses using linear logic in [Barth and Mitchell
2006].

7.3 Limitations of the Algebra’s Expressive Power

It is well-known that using regular expression, one cannot express languages that require
counting to an unbounded number; for example, one cannot express all strings over the
alphabet {a, b} that contain the same number of a’s as of b’s.

Similarly, the algebra as defined in Section 2.1 cannot express a policy that requires a
set of users in which the number of members of r1 equals the number of members of r2.
The proof is similar to that of the Pumping Lemma in regular language. We illustrate the
sketch of the proof here. Assume, for the purpose of contradiction, that there exists a term
φ in the algebra that is satisfied only by usersets with an equal number of members of r1
and members of r2. Let X1 be a userset consisting of n users who are members of r1
but not r2, and X2 be another userset consisting of n users who are members of r2 but
not r1, where n > |φ|. Let X = X1 ∪ X2. By assumption, X satisfies φ. Let T be the
satisfaction tree of φ, whose root is labeled with X . Since |X| > |φ|, T must have leaves
corresponding to sub-terms in the form of φ+

0 . Also, since n > |φ|, there must exist a leaf
N1 with φ1 = φ+

2 and LT (N1) contains a user u ∈ X1 that does not appear in usersets
labeling leaves without +. We may now “pump” (i.e. add) another m copies of u to every
node in T whose associated userset contains u. By following the rules in Definition 4, it
can be proved that the tree T ′, which is acquired from T after pumping, is a satisfaction
tree of φ. Note that the root of T ′ is labeled with X ′, which contains n + m members of
r1 and n members of r2. According to Theorem 2, X ′ satisfies φ, which is a contradiction
to the assumption.

If we allow the application of + to non-unit terms and define it as follows:

φ+ def
= φ t (φ⊗ φ) t (φ⊗ φ⊗ φ) t . . .

then we can express the policy that requires an equal number of members of r1 and mem-
bers of r2 using the term

[(r1 u r2) t ((r1 u ¬r2)⊗ (r2 u ¬r1)) t (¬r1 u ¬r2)]+

Note that the subterm ((r1 u ¬r2)⊗ (r2 u ¬r1)) matches one user who is a member of r1
but not r2 with a user who is a member of r2 but not r1.

Even with the extension, however, there are sets of usersets that cannot be expressed.
For example, one cannot express a policy that requires that the number of users who are r1
equals the square of the number of users who are r2. 2 Further discussions of expressive

2Intuitively, since + does not record the number of users, there is no way for a term to compute the square of the
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power and more general algebras are interesting future research topics and are beyond the
scope of this paper.

8. RELATED WORK

The concept of SoD has long existed in the physical world, sometimes under the name
“the two-man rule”, for example, in the banking industry and the military. To our knowl-
edge, in the information security literature the notion of SoD first appeared in Saltzer and
Schroeder [Saltzer and Schroeder 1975] under the name “separation of privilege.” Clark
and Wilson’s commercial security policy for integrity [Clark and Wilson 1987] identified
SoD along with well-formed transactions as two major mechanisms of fraud and error con-
trol. Nash and Poland [Nash and Poland 1990] explained the difference between dynamic
and static enforcement of SoD policies. In the former, a user may perform any step in a
sensitive task provided that the user does not also perform another step on that task. In the
latter, users are constrained a-priori from performing certain steps.

Sandhu [Sandhu 1990; 1988] presented Transaction Control Expressions, a history-
based mechanism for dynamically enforcing SoD policies. A transaction control expres-
sion associates each step in the transaction with a role. By default, the requirement is such
that each step must be performed by a different user. One can also specify that two steps
must be performed by the same user. In Transaction Control Expressions, user qualification
requirements are associated with individual steps in a transaction, rather than a transaction
as a whole.

Li et al [Li et al. 2007] studied both direct and indirect enforcement of static separation
of duty (SSoD) policies. They showed that directly enforcing SSoD policies is intractable
(NP-complete). They also discussed using static mutually exclusive roles (SMER) con-
straints to indirectly enforce SSoD policies. They defined what it means for a set of SMER
constraints to precisely enforce an SSoD policy, characterize the policies for which such
constraints exist, and show how they are generated. In Section 3, we study the enforcement
of policies specified in our algebra, which include SoD policies as a sub-class; however,
our computational results (those on SSC) are on direct static enforcement only.

There exists a wealth of literature on constraints in the context of RBAC [Ahn and
Sandhu 1999; 2000; Crampton 2003; Gligor et al. 1998; Jaeger 1999; Jaeger and Tidswell
2001; Simon and Zurko 1997; Tidswell and Jaeger 2000]. They either proposed and classi-
fied new kinds of constraints [Gligor et al. 1998; Simon and Zurko 1997] or proposed new
languages for specifying sophisticated constraints [Ahn and Sandhu 1999; 2000; Cramp-
ton 2003; Jaeger and Tidswell 2001; Tidswell and Jaeger 2000]. Most of these constraints
are motivated by SoD and are variants of role mutual exclusion constraints, which may
declare two roles to be mutually exclusive so that no user can be a member of both roles.

Workflow systems have been widely studied in the literature as well. Atluri and
Huang [Atluri and Huang 1996] proposed an access control model and temporal con-
straints for workflow environments. Bertino et al. [Bertino et al. 1999] proposed a language
for specifying static and dynamic constraints for separation of duty in role-based work-
flow systems. Other workflow models have been proposed in [Atluri and Warner 2005;
Crampton 2005; Tan et al. 2004; Wang and Li 2007]. In these workflow models, steps are
authorized to roles and security requirements are enforced by inter-step constraints. Ex-
ample constraints are “Step 1 and Step 2 must be performed by different users” and “Step

number of users in a userset.
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2 must be performed by the manager of the person who performed Step 1”. These models
contribute to the study of low-level enforcement mechanism in security design of business
process, while our paper focuses on high-level security policy design.

McLean [McLean 1988] introduced a framework that includes various mandatory ac-
cess control models. Security models are instances of the framework; and they differ in
which users are allowed to change the security levels. These models form a boolean al-
gebra. McLean also looked at the issue of N -person policies, where a policy may allow
multiple subjects acting together to perform some action. McLean adopted the monotonic-
ity requirement in such N -person policies. McLean [McLean 1988] does not discuss how
to specify N -person policies, and the examples in the paper list explicitly the usersets that
are allowed access. Our algebra, on the other hand, is about how to define policies that
require multiple users with qualification requirements.

Abadi et al. [Abadi et al. 1993] developed a calculus for access control in distributed
systems. The calculus allows compound principals to be formed from basic ones using
two operations ∧ (and) and | (quoting). Some principals are groups, when a principal u is
a member of a group g, then u speaks for g. One can express multi-user policies in this
calculus. An access control policy is specified as an access control list (ACL), where each
entry is an expression in the calculus. The ∧ corresponds to � in our algebra. That is, if
an ACL entry contains g1 ∧ g2, then a single user that is a member of both g1 and g2 is
allowed access, as are two users such that one is a member of g1 and the other is a member
of g2. The t operator in our algebra can be partially supported in the calculus by having
multiple ACL entries, which has the effect of supporting logical OR, but only at the top
level. The other operators ¬, +, u and ⊗ cannot be expressed in the calculus.

Several algebras have been proposed for combining security policies. These include the
work by Bonatti et al. [Bonatti et al. 2000; 2002], Wijesekera and Jajodia [Wijesekera and
Jajodia 2003], Pincus and Wing [Pincus and Wing 2005]. These algebras are designed for
purpose that are different from ours; therefore, they are quite different from our algebra.
Each element in their algebra is a policy that specifies what subjects are allowed to access
which resources, whereas each element in our algebra maps to a user.

The two operators � and ⊗ in our algebra are taken from the RT family of role-based
trust-management languages designed by Li et al. [Li et al. 2002]. In [Li et al. 2002],
the notion of manifold roles was introduced, which are roles that have usersets, rather
than individual users, as their members. The two operators ⊗ and � are used to define
manifold roles. This paper differs in that we propose to combine these two operators
together with four other operators t, u, ¬, and + (which are not in RT ) in an algebra for
specifying high-level security policies. In addition, we also study the algebraic properties
of these operators, the satisfaction problems, and the term satisfiability problem related to
the algebra.

Readers who are familiar with description logic (DL) may find similarities between the
algebra and DL. However, there is a fundamental difference between the two: a term in
DL describes a set of individuals, while a term in the algebra describes a set of sets of
individuals. A concept in DL defines a set of individuals, which corresponds to a role in
the algebra; a “role” in DL defines a binary relation between individuals. DL supports
operators ¬,u and t, which stand for complement of concepts, intersection of concepts
and union of concepts, respectively. If we interpret a unit term in our algebra as a set of
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individuals3, then unit terms may be viewed as a strict subset of terms in DL. But in general
case, there is no operator in DL that corresponds to operators +,� and ⊗ in our algebra.
Hence, computational complexity problems studied in this paper are not directly related to
those in DL.

9. SUMMARY

While separation of duty policies are extremely important and widely used, they state only
quantity requirements and cannot capture qualification requirements on users involved in
the task. We have introduced a novel algebra that enables the specification of high-level
policies that combine qualification requirements with quantity requirements motivated by
separation of duty considerations. Our algebra has two unary and four binary operators,
and is expressive enough to specify a large number of diverse policies. We have studied
algebraic properties of these operators and discussed low-level enforcement mechanisms
for high-level policies, such as static enforcement and dynamic enforcement. Furthermore,
several computational problems related to the algebra have been studied. Finally, as our
algebra is about the general concept of sets of sets, we conjecture that it will prove to be
useful in other contexts as well.
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A. PROOFS OF THEOREMS IN SECTION 2

Proof of Lemma 1
Given a node N in T , let Φ(N) be the sub-term of φ represented by the sub-tree rooted

at N . In the following, we prove by induction that for every node N , if LT (N) 6= ∅, then
LT (N) satisfies Φ(N).

Base case: When N is a leaf node, by Definition 4, LT (N) is either ∅ or it satisfies
Φ(N). Since LT (N) 6= ∅, LT (N) satisfies Φ(N).

Inductive case: Assume that the statement holds for both children N1 and N2 of N and
LT (N) 6= ∅.

—WhenN represents u: According to Definition 4, LT (N) = LT (N1) = LT (N2). Since
LT (N) 6= ∅, LT (N1) and LT (N2) are non-empty. By inductive assumption, LT (N1)
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and LT (N2) satisfy Φ(N1) and Φ(N2), respectively. Since Φ(N) = Φ(N1) u Φ(N2),
by Definition 3, LT (N) satisfies Φ(N).

—When N represents t: According to Definition 4, LT (N) = LT (N1) or LT (N) =
LT (N2). Without loss of generality, assume that LT (N) = LT (N1). Since LT (N) 6=
∅, LT (N1) is non-empty. By inductive assumption, LT (N1) satisfies Φ(N1). Since
Φ(N) = Φ(N1) t Φ(N2), by Definition 3, LT (N) satisfies Φ(N).

—When N represents �: According to Definition 4, LT (N) = LT (N1) ∪ LT (N2), and
since LT (N) 6= ∅, LT (N1) and LT (N2) are also non-empty. By inductive assumption,
LT (N1) and LT (N2) satisfy Φ(N1) and Φ(N2), respectively. Since Φ(N) = Φ(N1) u
Φ(N2), by Definition 3, LT (N) satisfies Φ(N).

—When N represents ⊗: This is very similar to the above case.

Proof of Theorem 2
Clearly, if there exists a satisfaction tree of φ with root labeled X , then X satisfies φ.

Now we show the other direction. If a userset X satisfies φ under 〈U,UR〉, we construct
a satisfaction tree for φ. First of all, we construct the syntax tree T of φ and label its root
with X . We then recursively label other nodes in T in a top-down manner. Let N be an
inner node labeled with a non-empty userset. We label the children N1 and N2 of N in the
following manner.

—When N represents u: We label N1 and N2 with LT (N). This satisfies the rules spec-
ified in Definition 4. Since LT (N) satisfies Φ(N) and Φ(N) = Φ(N1) u Φ(N2), we
have LT (N1) = LT (N) satisfies Φ(N1) and LT (N2) = LT (N) satisfies Φ(N2).

—When N represents t: Since LT (N) satisfies Φ(N) and Φ(N) = Φ(N1) t Φ(N2),
either LT (N) satisfies Φ(N1) or LT (N) satisfies Φ(N2). Without loss of generality,
assume that LT (N) satisfies Φ(N1). We label N1 with LT (N) and N2 with ∅. We also
label all the nodes in the sub-tree rooted at N2 with ∅. This satisfies the rules specified
in Definition 4.

—When N represents �: Since LT (N) satisfies Φ(N) and Φ(N) = Φ(N1) � Φ(N2),
according to Definition 3, we have non-empty sets X1 and X2 such that LT (N) =
X1 ∪ X2 and X1 satisfies Φ(N1) and X2 satisfies Φ(N2). We label N1 with X1 and
N2 with X2. Since LT (N) = X1 ∪ X2, the labeling satisfies the rules specified in
Definition 4.

—When N represents ⊗: we label it in ways similar to the above case.

According to the above, when X satisfies φ, we can construct a satisfaction tree whose
root is labeled with X .

Proof of Theorem 3 on Algebraic Properties

(1) The operators t,u,⊗,� are commutative and associative.
This is straightforward from Definition 3.

(2) The operator t distributes over u.
If a userset X satisfies (φ1 t (φ2 uφ3)), then either X satisfies φ1, or X satisfies both
φ2 and φ3. It follows that X satisfies ((φ1 t φ2) u (φ1 t φ3)).
If X satisfies ((φ1tφ2)u (φ1tφ3)), then X satisfies (φ1tφ2) and (φ1tφ3). There
are only two cases: (1) X satisfies φ1; and (2) X satisfies both φ2 and φ3. In either
case, X satisfies (φ1 t (φ2 u φ3)).
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The operator u distributes over t.
If X satisfies (φ1 u (φ2 t φ3)), then X satisfies both φ1 and (φ2 t φ3), which means
X satisfies either φ2 or φ3. It follows that X satisfies ((φ1 u φ2) t (φ1 u φ3)).
If X satisfies ((φ1 u φ2) t (φ1 u φ3)), then either (1) X satisfies (φ1 u φ2) or (2) X
satisfies (φ1 u φ3). In both cases, X satisfies φ1; furthermore, X satisfies either φ2 or
φ3. It follows that X satisfies (φ1 u (φ2 t φ3)).

(3) The operator � distributes over t.
If X satisfies (φ1 � (φ2 t φ3)), then there exist X1 and X2 such that X1 ∪X2 = X ,
X1 satisfies φ1, and X2 satisfies (φ2 t φ3). By Definition 3, X2 satisfies φ2 or φ3. In
the former case, X satisfies (φ1 � φ2), which implies that X satisfies ((φ1 � φ2) t
(φ1 � φ3)), as desired. The argument is analogous if X2 satisfies φ3 but not φ2.
If X satisfies ((φ1�φ2)t (φ1�φ3)), then either X satisfies (φ1�φ2) or X satisfies
(φ1 � φ3). Without loss of generality, assume that X satisfies (φ1 � φ2), then there
exist X1, X2 such that X1 ∪X2 = X , X1 satisfies φ1 and X2 satisfies φ2. Therefore,
X2 satisfies (φ2 t φ3), and consequently, X satisfies (φ1 � (φ2 t φ3)) as desired.

(4) The operator ⊗ distributes over t.
If X satisfies (φ1 ⊗ (φ2 t φ3)), X can be partitioned into two disjoint sets X1 and
X2 such that X1 satisfies φ1 and X2 satisfies φ2 or φ3. In this case, by definition, X
satisfies (φ1 ⊗ φ2) or (φ1 ⊗ φ3), which means X satisfies ((φ1 ⊗ φ2) t (φ1 ⊗ φ3)).
For the other direction, ifX satisfies ((φ1⊗φ2)t(φ1⊗φ3)), it satisfies either (φ1⊗φ2)
or (φ1 ⊗ φ3). Without loss of generality, assume that X satisfies (φ1 ⊗ φ2). Then, X
can be partitioned into two disjoint sets X1 and X2 such that X1 satisfies φ1 and X2

satisfies φ2. By definition, X2 satisfies (φ2 t φ3). Therefore, X satisfies (φ1 ⊗ (φ2 t
φ3)).

(5) No other ordered pair of operators have the distributive property.
We show a counterexample for each case. In the following, Ur = {u|(u, r) ∈ UR}.
(a) The operator � does not distribute over u.

If X satisfies (φ1 � (φ2 u φ3)), then X also satisfies ((φ1 � φ2) u (φ1 � φ3)).
However, the other direction of implication does not hold. Counterexample: Let
Ur1 = {u1, u2}, Ur2 = {u1}, and Ur3 = {u2}, then {u1, u2} satisfies ((r1 �
r2) u (r1 � r3)), but does not satisfy (r1 � (r2 u r3)).

(b) The operator u does not distribute over �. Neither direction holds.
Counterexample: Let Ur1 = Ur3 = {u1} and Ur2 = Ur4 = {u2}, let φ1 =
(r1 � r2), then {u1, u2} satisfies (φ1 u (r3 � r4)), but does not satisfy ((φ1 u
r3)� (φ1 u r4)).
Counterexample: Let Ur1 = {u1, u2}, Ur2 = {u1}, and Ur3 = {u2}, then
{u1, u2} satisfies ((r1 u r2)� (r1 u r3)), but does not satisfy (r1 u (r2 � r3)).

(c) The operator t does not distribute over �.
If X satisfies (φ1 t (φ2 � φ3)), then X satisfies ((φ1 t φ2)� (φ1 t φ3)).
However, the other direction of implication does not hold. Counterexample: Let
Ur1 = {u1, u2}, Ur2 = {u1} and Ur3 = {u1}, then {u1, u2} satisfies ((r1 t
r2)� (r1 t r3)), but does not satisfy (r1 t (r2 � r3)).

(d) The operator t does not distribute over ⊗. Neither direction holds.
Counterexample: Let Ur1 = {u1, u2}, Ur2 = {u1} and Ur3 = {u1}, then
{u1, u2} satisfies ((r1 t r2)⊗ (r1 t r3)) , but does not satisfy (r1 t (r2 ⊗ r3)).
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Counterexample: Let Ur1 = Ur2 = Ur3 = {u1}, then {u1} satisfies (r1 t (r2 ⊗
r3)), but does not satisfy ((r1 t r2)⊗ (r1 t r3)).

(e) The operator ⊗ does not distribute over u.
If X satisfies (φ1 ⊗ (φ2 u φ3)), then X satisfies ((φ1 ⊗ φ2) u (φ1 ⊗ φ3)).
However, the other direction of implication does not hold. Counterexample: Let
Ur1 = {u1, u2}, Ur2 = {u1} and Ur3 = {u2}, then {u1, u2} satisfies ((r1 ⊗
r2) u (r1 ⊗ r3)), but does not satisfy (r1 ⊗ (r2 u r3)).

(f) The operator u does not distribute over ⊗. Neither direction holds.
Counterexample: Let Ur1 = {u1, u2}, Ur2 = {u1} and Ur3 = {u2}, then
{u1, u2} satisfies ((r1 u r2)⊗ (r1 u r3)), but does not satisfy (r1 ⊗ (r2 u r3)).
Counterexample: Let Ur1 = Ur3 = {u1} and Ur2 = Ur4 = {u2}, and let
φ1 = (r1 � r2), then {u1, u2} satisfies (φ1 u (r3 ⊗ r4)), but does not satisfy
((φ1 u r3)⊗ (φ1 u r4)).

(g) The operator � does not distribute over ⊗. Neither direction holds.
Counterexample: Let Ur1 = {u1, u4}, Ur2 = {u2} and Ur3 = {u3},
then {u1, u2, u3, u4} satisfies ((r1 � r2) ⊗ (r1 � r3)), but does not satisfies
(r1 � (r2 ⊗ r3)).
Counterexample: Let Ur1 = {u1}, Ur2 = {u1} and Ur3 = {u2}, then {u1, u2}
satisfies (r1 � (r2 ⊗ r3)), but does not satisfy ((r1 � r2)⊗ (r1 � r3)).

(h) The operator ⊗ does not distribute over �.
If X satisfies (φ1 ⊗ (φ2 � φ3)), then X satisfies ((φ1 ⊗ φ2)� (φ1 ⊗ φ3)).
However, the other direction of implication does not hold. Counterexample: Let
Ur1 = {u1, u2}, Ur2 = {u2} and Ur3 = {u1}, then {u1, u2} satisfies ((r1 ⊗
r2)� (r1 ⊗ r3)), but does not satisfy (r1 ⊗ (r2 � r3)).

(6) (φ1 u φ2)+ ≡ (φ+
1 u φ

+
2 ).

If a userset X satisfies (φ1 u φ2)+, then for every u ∈ X , {u} satisfies (φ1 u φ2) and
thus satisfies φ1 and φ2. Hence, X satisfies φ+

1 and φ+
2 , which means that X satisfies

(φ+
1 u φ

+
2 ).

If X satisfies (φ+
1 u φ

+
2 ), then X satisfies both φ+

1 and φ+
2 . For every u ∈ X , {u}

satisfies both φ1 and φ2. Hence, X satisfies (φ1 u φ2)+.
(7) DeMorgan’s Law: ¬(φ1 u φ2) ≡ (¬φ1 t ¬φ2), ¬(φ1 t φ2) ≡ (¬φ1 u ¬φ2)

The proof is straightforward by definition of ¬,u and t.

B. PROOFS OF THEOREMS IN SECTION 4

In the following proofs, (opkφ) denotes k copies of φ connected together by operator
op and (opn

i=1ri) denotes (r1 op . . . op rn). Given R = {r1, . . . , rm}, (opR) denotes
(r1 op . . . op rm).

B.1 Proof of Lemma 4, Lemma 5, and Theorem 7

Proof of Lemma 4
To prove that TSAT over terms built using only roles, ¬, u, and t is NP-hard, we

reduce the NP-complete SAT problem to it. Given a propositional logic formula e, let
{v1, . . . , vn} be the set of propositional variables that appear in e. Construct a term φ
by substituting every occurrence of vi (i ∈ [1, n]) in e with the atomic term ri, every
occurrence of ¬vi (i ∈ [1, n]) with ¬ri, and replacing logical AND with u and logical OR
with t. The result is a unit term. By Definition 3, a term without �,⊗ and + can be
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satisfied by singletons only. If φ is satisfiable, then there exists a configuration 〈U,UR〉
and a user u such that {u} satisfies φ. We can construct a truth assignment T in which vi is
TRUE if and only if (u, ri) ∈ UR. It is clear that e evaluates to TRUE under T . Similarly, if
there exists a truth assignment T such that e evaluates to TRUE under T , we can construct
UR in which u is a member of ri if and only if vi is TRUE in T . In that case, {u} satisfies
φ under 〈U,UR〉. Therefore, e is satisfiable if and only if φ is satisfiable.

Proof of Lemma 5
To prove that TSAT over terms built using only explicit sets of users, u, t, and� is NP-

hard, we reduce the NP-complete SET COVERING problem to it. In the SET COVERING
problem, we are given a finite set U = {u1, . . . , un}, a family F = {U1, . . . , Um} of
subsets of U , and an integer k no larger than m, and we ask whether there is a sub-family
F ′ ⊆ F of sets whose union is U and |F ′| ≤ k.

We view each element in U as a user. For every j ∈ [1,m], we construct a term
φj =

⊙
{{ui} | ui ∈ Uj}; that is, φj = {uj1} � {uj2} � · · · � {ujx

}, where
Uj = {uj1 , uj2 , . . . , ujx}. It is clear that φj can only be satisfied by Uj . Finally, we
construct a term φ = ((

⊙
k(
⊔m

i=1 φi)) u (
⊙n

i=1{ui})). Since (
⊙n

i=1{ui}) can be satis-
fied only by U , U is the only userset that may satisfy φ.

We now demonstrate that φ is satisfiable if and only if there are no more than k sets
in family F whose union is U . On the one hand, if φ is satisfiable, then it must be satis-
fied by U . In this case, U satisfies (

⊙
k(
⊔m

i=1 φi)), which means that there exist k sets
U ′1, . . . , U

′
k such that

⋃k
i=1 U

′
i = U and each U ′i satisfies (

⊔m
i=1 φi). Since φi can be

satisfied only by Ui ∈ F , we have U ′j ∈ F for every j ∈ [1, k]. The answer to the
SET COVERING problem is thus “yes”. On the other hand, without loss of generality, as-
sume that

⋃k
i=1 Ui = U . We have, for every i ∈ [1, k], Ui satisfies φi and thus satisfies

(
⊔m

i=1 φi). Therefore, U satisfies (
⊙

k(
⊔m

i=1 φi)). Since U also satisfies (
⊙n

i=1{ui}), U
satisfies ((

⊙
k(
⊔m

i=1 φi)) u (
⊙n

i=1{ui})).

Proof of Lemma 6
First, assume that a userset X satisfies φ under 〈U,UR〉. According to Theorem 2, there

exists a satisfaction tree T of φ under 〈U,UR〉 and LT (Nr) = X . Now, we show that
if |X| > |φ|, then there must exist X ′ ⊆ X such that X ′ satisfies φ under 〈U,UR〉 and
|X ′| ≤ |φ|. In the following, we construct a satisfaction tree T ′ of φ based on T .

Initially, X ′ = ∅. For every leaf node Ni of T , if LT (Ni) 6= ∅, then we arbitrarily select
u ∈ LT (Ni) and add u toX ′. Since the number of leaves in T is no larger than |φ|, we have
|X ′| ≤ |φ|. Also, X ′ ⊆ X because LT (Ni) ⊆ LT (Nr) = X according to Definition 4.
Next, for every nodeN in T , we relabelN withLT ′(N) such thatLT ′(N) = LT (N)∩X ′.
When the relabeling is done, we acquire a new tree T ′. In particular, the root of T ′ is
labeled with X ∩X ′ = X ′. Now, we show that T ′ is a satisfaction tree by proving that it
satisfies the conditions in Definition 4. Given a node N in T , we denote Φ(N) as the sub-
term of φ that is represented by the sub-tree rooted at N . When LT (N) = ∅, LT ′(N) = ∅.
In the following, we only discuss the cases when LT (N) 6= ∅.

—When N is a leaf node: If Φ(N) is a unit term, then LT (N) must be a singleton and
the only user in LT (N) must have been added to X ′. Thus, we have LT ′(N) = LT (N)
which satisfies Φ(N). Otherwise, Φ(N) is in the form of φ+

1 . LT (N) satisfying φ+
1

indicates that every user in LT (N) satisfies φ1. Since at least one user in LT (N) has
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been added to X ′, LT ′(N) = LT (N)∩X ′ is a non-empty subset of LT (N). Therefore,
LT ′(N) satisfies φ+

1 .
—WhenN represents u: Because LT (N) = LT (N1), we have LT ′(N) = LT (N)∩X ′ =
LT (N1) ∩ X ′ = LT ′(N1). Similarly, LT (N) = LT (N2) implies that LT ′(N) =
LT ′(N2).

—When N represents t: If LT (N) = LT (N1), we have LT ′(N) = LT (N) ∩ X ′ =
LT (N1) ∩ X ′ = LT ′(N1). Otherwise, if LT (N) = LT (N2), we can prove similarly
that LT ′(N) = LT ′(N2). Therefore, LT ′(N) = LT ′(N1) or LT ′(N) = LT ′(N2).

—When N represents �: Because LT (N) = LT (N1) ∪ LT (N2), we have LT ′(N) =
LT (N) ∩ X ′ = (LT (N1) ∪ LT (N2)) ∩ X ′ = (LT (N1) ∩ X ′) ∪ (LT (N2) ∩ X ′) =
LT ′(N1) ∪ LT ′(N2).

—When N represents ⊗: Similar to the above, we have LT (N) = LT ′(N1) ∪ LT ′(N2).
Also, LT (N1) ∩ LT (N2) = ∅ indicates that LT ′(N1) ∩ LT ′(N2) = ∅.

Therefore, T ′ is a satisfaction tree for φ. And since the root of T is labeled with X ′, X ′

satisfies φ according to Theorem 2.
According to the above argument, if φ is satisfiable, then there exists a setX ′ of no more

than |φ| users and a configuration 〈U,UR〉, such that X ′ satisfies φ under 〈U,UR〉. Users
not in X ′ can be removed from the configuration without affecting the satisfaction of φ.
Also, those roles in UR that do not appear in φ can be removed too. Since there are no
more than |φ| roles in φ and there are no more than |φ| users in X ′, we have |UR| ≤ |φ|2.
Therefore, the lemma holds.

Proof of Theorem 7
Since we have already proved that certain subcases of TSAT are NP-hard, to prove the

theorem, we just need to show that the problem is in NP. Given a term φ, a nondetermin-
istic Turing machine may guess a configuration 〈U,UR〉, a userset X , and a satisfaction
tree T whose root is labeled with X . According to Lemma 6, the size of X and 〈U,UR〉
is bounded by |φ|2. Also, according to Theorem 2, X satisfies φ if and only if there is a
satisfaction tree of φ whose root is labeled with X . There are no more than 2|φ| − 1 nodes
in T and the size of the set labeling a node is bounded by |X|. Therefore, the size of T is
polynomial in the size of input. The Turing machine may verify whether T is a satisfaction
tree by following the rules specified in Definition 4. It is clear that the verification can be
done in polynomial time by following the structure of T . Therefore, TSAT is in NP.

B.2 Proof of Lemma 10, Lemma 11, and Theorem 12

Proof of Lemma 10
Proof by induction on the structure of term φ.
Base case: When φ = r or φ = All, we have C(φ) = {1} ⊆ {1, 2, . . . , |φ|}. Otherwise,

when φ is in the form of φ+
1 where φ1 is a unit term, according to Definition 14, we have

C(φ) = {i|i ∈ [1,∞)} = W ∪ {|φ|+ 1, |φ|+ 2, . . . }, where W = {1, 2, . . . , |φ|}.
Inductive case: When φ is in the form of (φ1 op φ2), assume that the lemma holds

for φ1 and φ2. Let W1 denote a subset of {1, 2, . . . , |φ1|} and W2 denote a subset of
{1, 2, . . . , |φ2|}. We have the following three cases:

Case 1: Both C(φ1) and C(φ2) are finite. Let C(φ1) = W1 and C(φ2) = W2. Since
|φ| = |φ1| + |φ2|, it follows from Definition 14 that C(φ) ⊆ {1, 2, . . . , |φ|}, because for
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any c1 ∈ C(φ1) and c2 ∈ C(φ2), c1 + c2 ≤ |φ1|+ |φ2| = |φ|.
Case 2: Exactly one of C(φ1) and C(φ2) is an infinite set. Without loss of generality,

assume that C(φ1) = W1 and C(φ2) = W2 ∪{|φ2|+ 1, |φ2|+ 2, . . . }. We compute C(φ)
according to op :

— op = t: C(φ) = C(φ1) ∪ C(φ2) = W1 ∪W2 ∪ {|φ2| + 1, |φ2| + 2, . . . } = W1 ∪
W2 ∪ {|φ2|+ 1, . . . , |φ|} ∪ {|φ|+ 1, |φ|+ 2, . . . }, in which W1 ∪W2 ∪ {|φ2|, . . . , |φ|}
is a subset of {1, 2, . . . , |φ|}.

—op = u: C(φ) = C(φ1)∩C(φ2) is a subset ofW1, which is a subset of {1, 2, . . . , |φ|}.
— op = �:

C(φ) ={i | ∃c1 ∈W1 ∃c2 ∈W2 [max(c1, c2) ≤ i ≤ c1 + c2]}
∪ {max(min(W1), |φ2|+ 1),max(min(W1), |φ2|+ 1) + 1, . . . }

={i | ∃c1 ∈W1 ∃c2 ∈W2 [max(c1, c2) ≤ i ≤ c1 + c2]}
∪ {max(min(W1), |φ2|+ 2, . . . , |φ|} ∪ {|φ|+ 1, |φ|+ 2, . . . }

Note that {i | ∃c1 ∈ W1 ∃c2 ∈ W2 [max(c1, c2) ≤ i ≤ c1 + c2]} ∪
{max(min(W1), |φ2| + 1), . . . , |φ|} is a subset of {1, 2, . . . , |φ|}, as c1 + c2 ≤
|φ1|+ |φ2| = |φ|.

— op = ⊗:

C(φ) = {c1 + c2|c1 ∈W1 ∧ (c2 ∈W2 ∨ c2 ∈ [|φ2|,∞))}
= {c1 + c2|c1 ∈W1 ∧ c2 ∈W2} ∪ {min(W1) + |φ2|+ 1,min(W1) + |φ2|+ 2, . . . }
= {c1 + c2|c1 ∈W1 ∧ c2 ∈W2} ∪ {min(W1) + |φ2|+ 1, . . . , |φ|} ∪ {|φ|+ 1, |φ|+ 2, . . . }

Note that {c1 + c2|c1 ∈ W1 ∧ c2 ∈ W2} ∪ {min(W1) + |φ2|, . . . , |φ|]} is a subset of
{1, 2, . . . , |φ|}.

Case 3: Both C(φ1) and C(φ2) are infinite sets, where C(φ1) = W1∪{i|i ∈ [|φ1|,∞)}
and C(φ2) = W2 ∪ {i|i ∈ [|φ2|,∞)}. The argument is similar to Case 2. We omit the
details here.

Proof of Lemma 11
When φ = All or φ = r or φ = φ+

1 , C(φ) can be computed in constant time according
to Definition 14.

There are |φ| − 1 binary operators in φ. Hence, to prove the lemma, we just need to
prove that, given C(φ1) and C(φ2), C(φ) can be computed in time polynomial in the size
of |φ|, where φ = (φ1 op φ2).

According to Lemma 10, we may represent the characteristic set of a term φ as a tuple.
Let W ⊆ {1, . . . , |φ|}. When C(φ) = W , we represent C(φ) as a tuple 〈|φ|,W, 0〉;
when C(φ) = W ∪ {|φ| + 1, |φ| + 2, . . . }, we represent C(φ) as a tuple 〈|φ|,W, 1〉. In
other words, the last element (either 0 or 1) of the tuple indicates whether C(φ) contains
{|φ|+ 1, |φ|+ 2, . . . } or not.

Given C(φ1) and C(φ2), we represent them as tuples 〈|φ1|,W1, f1〉 and 〈|φ2|,W2, f2〉,
where f1, f2 ∈ {0, 1}. Now, we show that computing the tuple-representation 〈|φ|,W, f〉
of C(φ) can be done in polynomial time. Note that |φ| = |φ1| + |φ2|. We just need to
determine W and f .
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—Case f1 = f2 = 0: According to Definition 14, it is clear that f = 0. Computing
W from W1 and W2, by following Definition 14, involves set union/intersection or
computing the sums of pairs of elements, which can be done in O(|φ1| · |φ2|).

—Case f1 = 0 and f2 = 1: According to Definition 14, if op = u, then f = 0; otherwise,
f = 1. ComputingW fromW1 andW2∪{|φ2|+1, . . . , |φ|} can be done inO(|φ1|·|φ|).

—Case f1 = 1 and f2 = 0: Similar to the above.
—Case f1 = 1 and f2 = 1: According to Definition 14, we have f = 1. Computing W

from W1 ∪ {|φ1|+ 1, . . . , |φ|} and W2 ∪ {|φ2|+ 1, . . . , |φ|} can be done in O(|φ|2).

In summary, computing C(φ) takes polynomial time.

Proof of Theorem 12
Given a term φ, let C ′(φ) be the set of all integers k’s such that there is a userset of size

k that satisfies φ under some configuration. We would like to prove that C ′(φ) ≡ C(φ).
We prove this by induction on the structure of φ.

Base case: when φ = All, φ is satisfied by any userset that is singleton; when φ = r,
φ is satisfied by a singleton containing a user who is a member of r. Hence, we have
C ′(All) = C ′(r) = {1}. According to Definition 14, C ′(φ) ≡ C(φ).

Inductive case: assume that C ′(φ) ≡ C(φ) when |φ| < k, where |φ| is the number of
atomic terms in φ. When |φ| = k, we have:

—Case φ = φ1 t φ2: It follows from the definition of satisfaction (Definition 3) that
C ′(φ1 t φ2) = C ′(φ1) ∪ C ′(φ2). By inductive assumption, C ′(φ1) ≡ C(φ1) and
C ′(φ2) ≡ C(φ2). According to Definition 14, we have C ′(φ) ≡ C(φ).

—Case φ = φ1 u φ2: It follows from Definition 3 that C ′(φ1 u φ2) ⊆ C ′(φ1) ∩ C ′(φ2).
In the following, we prove that C ′(φ1 u φ2) ⊇ C ′(φ1) ∩ C ′(φ2), where φ1 and φ2 are
free of negation and explicit sets of users.
Assume that X1 is a size-k userset that satisfies φ1 under configuration 〈U,UR1〉 and
X2 is a size-k userset that satisfies φ2 under configuration 〈U,UR2〉. Since φ1 and
φ2 do not contain explicit sets of users, the names of users are not important. Hence,
we can assume that X1 = X2. Also, since φ1 does not contain negation, X1 still
satisfies φ1 even if we assign more roles to users inX1. Therefore,X1 satisfies φ1 under
〈U,UR1 ∪ UR2〉. Also, X1 (which is equivalent to X2) satisfies φ2 under 〈U,UR1 ∪
UR2〉. Therefore, X1 satisfies φ1 u φ2. Since |X1| = k, we have k ∈ C ′(φ1 u φ2).
Hence, C ′(φ1 u φ2) ⊇ C ′(φ1) ∩ C ′(φ2).
In summary, we have C ′(φ1 u φ2) = C ′(φ1) ∩ C ′(φ2). By inductive assumption,
C ′(φ1) ≡ C(φ1) and C ′(φ2) ≡ C(φ2). According to Definition 14, we have C ′(φ) ≡
C(φ).

—Case φ = φ+
0 : It follows from the computation of C ′(All), C ′(r), C ′(φ1 t φ2) and

C ′(φ1uφ2) that C ′(φ0) = {1}, where φ0 is a unit term free of explicit sets of users and
negation. Given a configuration 〈U,UR〉 and a singleton {u1} such that {u1} satisfies
φ0, we create u2, . . . , un such that ui (i ∈ [2, n]) is assigned to precisely the same set of
roles as u1. In this case, {u1, . . . , un} satisfies φ+

0 . In other words, φ+
0 may be satisfied

by n users for any n ≥ 1. That is to say, C ′(φ+
0 ) = {i | i ∈ [1,∞)}. According to

Definition 14, we have C ′(φ) ≡ C(φ).
—Case φ = φ1 � φ2: Let X be a userset that satisfies (φ1 � φ2). There exist X1 and X2

such that X1 satisfies φ1, X2 satisfies φ2, and X1 ∪X2 = X . By the definition of C ′,
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there exist c1 ∈ C ′(φ1) and c2 ∈ C ′(φ2) such that |X1| = c1 and |X2| = c2. Hence,
max(c1, c2) ≤ |X| ≤ c1 + c2.
Given c1 ∈ C ′(φ1) and c2 ∈ C ′(φ2), there exist X1 and X2 such that X1 satisfies
φ1 under 〈U1,UR1〉, X2 satisfies φ2 under 〈U2,UR2〉, |X1| = c1 and |X2| = c2.
For any integer k ∈ [max(c1, c2), c1 + c2], we may name users in such a way that
|X1 ∩ X2| = c1 + c2 − k. In this case, X = X1 ∪ X2 satisfies (φ1 � φ2) under
〈U1 ∪ U2,UR1 ∪UR2〉 and |X| = k.
In summary, C ′(φ1 � φ2) = { i | ∃ c1 ∈ C ′(φ1) ∃ c2 ∈
C ′(φ2) [max(c1, c2) ≤ i ≤ c1 + c2 ]}. By inductive assumption, C ′(φ1) ≡ C(φ1) and
C ′(φ2) ≡ C(φ2). According to Definition 14, we have C ′(φ) ≡ C(φ).

—Case φ = φ1 ⊗ φ2: On the one hand, userset X satisfies (φ1 ⊗ φ2) if and only if
there exist X1 and X2 such that X1 ∪ X2 = X , X1 ∩ X2 = ∅ and X1, X2 satisfy
φ1, φ2 respectively. By definition of C ′, we have |X1| ∈ C ′(φ1) and |X2| ∈ C ′(φ2).
Therefore, |X| = (|X1|+ |X2|) ∈ { c1 + c2 | c1 ∈ C ′(φ1) ∧ c2 ∈ C ′(φ2) }.
On the other hand, given any c1 ∈ C ′(φ1) and c2 ∈ C ′(φ2), by definition of C ′, there
exist X1 and X2 that satisfy φ1 and φ2 under 〈U1,UR1〉 and 〈U1,UR1〉 respectively,
such that |X1| = c1 and |X2| = c2. Name the users in such a way that X1 ∩X2 = ∅.
We have X = X1 ∪ X2 satisfies (φ1 ⊗ φ2) under 〈U1 ∪ U2,UR1 ∪ UR2〉, where
|X| = |X1|+ |X2| = c1 + c2.
In summary, C ′(φ1 ⊗ φ2) = { c1 + c2 | c1 ∈ C ′(φ1) ∧ c2 ∈ C ′(φ2) }. By inductive
assumption, C ′(φ1) ≡ C(φ1) and C ′(φ2) ≡ C(φ2). According to Definition 14, we
have C ′(φ) ≡ C(φ).

In conclusion, we have C ′(φ) ≡ C(φ) and Theorem 12 holds.

C. PROOFS OF THEOREMS IN SECTION 5

In the following proofs, (opkφ) denotes k copies of φ connected together by operator
op and (opn

i=1ri) denotes (r1 op . . . op rn). Given R = {r1, . . . , rm}, (opR) denotes
(r1 op . . . op rm).

C.1 The five intractability subcases of UTS

LEMMA 19. UTS 〈t,�〉 is NP-hard.

PROOF. We use a reduction from the NP-complete SET COVERING problem [Garey
and Johnson 1979]. In the SET COVERING problem, we are given a finite set S =
{e1, . . . , en}, a family of S’s subsets F = {S1, . . . , Sm}, and an integer k < m, and we
ask whether there exists a sub-family of sets F ′ ⊆ F whose union is S and |F ′| ≤ k. Given
such an instance, our reduction maps each element in S to a user and to a role. We construct
a configuration 〈U,UR〉 such that U = {u1, . . . , un} and UR = {(ui, ri) | i ∈ [1, n]},
and a term φ = (

⊙
k(
⊔m

i=1(
⊙
Ri))), where Ri is a set of roles such that rj ∈ Ri if and

only if ej ∈ Si.
We now demonstrate that U satisfies φ under 〈U,UR〉 if and only if there exist k sets

in F whose union is S. On the one hand, assume that U satisfies φ, by definition. U has
k subsets U1, . . . , Uk such that

⋃k
i=1 Ui = U and every Ui satisfies (

⊔m
i=1(

⊙
Ri)). Ui

satisfies (
⊔m

i=1(
⊙
Ri)) if and only if Ui satisfies a certain (

⊙
Rxi

), where xi ∈ [1,m].
From the construction of Rxi

, Ui satisfies (
⊙
Rxi

) if and only if Ui = {ua | ea ∈ Sxi
}.

Since
⋃k

i=1 Ui = U , we have
⋃k

i=1 Sxi
= S. The answer to the set covering problem is

“yes”.
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On the other hand, assume that there are k sets in F whose union is S. Without loss of
generality, we assume that

⋃k
i=1 Si = S. In this case, we divide U into k sets U1, . . . , Uk

such that Ui = {uj | ej ∈ Si}. Since
⋃k

i=1 Si = S, we have
⋃k

i=1 Ui = U . Furthermore,
since Ui = {uj | ej ∈ Si}, from the construction of Ri, we have Ui satisfies (

⊙
Ri) for

every i ∈ [1, k]. Therefore, U satisfies φ = (
⊙

k(
⊔m

i=1(
⊙
Ri))).

LEMMA 20. UTS 〈u,�〉 is NP-hard.

PROOF. We use a reduction from the NP-complete SET COVERING problem [Garey
and Johnson 1979]. Given S = {e1, . . . , en}, a family of S’s subsets F = {S1, . . . , Sm},
and an integer k < m, our reduction maps each element ej ∈ S to a role rj and each
Si ∈ F to a user ui. We construct a configuration 〈U,UR〉 such that U = {u1, . . . , um}
and UR = {(ui, rj) | ej ∈ Si}, and a term φ = (((

⊙
k All) u (

⊙n
i=1 ri))� (

⊙
m All)).

We now demonstrate that U satisfies φ under 〈U,UR〉 if and only if there exist k sets in
family F whose union is S. On the one hand, assume that U satisfies φ. Since (

⊙
m All)

can be satisfied by any nonempty userset with no more than m users, U always satisfies
(
⊙

m All) and it satisfies φ if and only if there is U ′ ⊆ U such that U ′ satisfies ((
⊙

k All)u
(
⊙n

i=1 ri)). U ′ satisfying (
⊙

k All) indicates that |U ′| ≤ k, while U ′ satisfying (
⊙n

i=1 ri)
indicates that users in U ′ together have membership of all roles in {r1, . . . , rn}. Without
loss of generality, suppose U ′ = {u1, . . . , ut}, where t ≤ k. Because (ui, rj) ∈ UR if
and only if ej ∈ Si, the union of {S1, . . . , St} is S. The answer to the SET COVERING
problem is “yes”.

On the other hand, assume that k subsets in F cover S. Without loss of general-
ity, we assume that

⋃k
i=1 Si = S. From the construction of UR, users u1, . . . , uk to-

gether have membership of all roles in {r1, . . . , rn}. In this case, {u1, . . . , uk} satis-
fies (

⊙n
i=1 ri). Also, {u1, . . . , uk} satisfies (

⊙
k All). Hence, {u1, . . . , uk} satisfies

((
⊙

k All) u (
⊙n

i=1 ri)). (
⊙

m All) is also satisfied by U . Therefore, U satisfies φ.

LEMMA 21. UTS 〈�,⊗〉 is NP-hard.

PROOF. We use a reduction from the NP-complete DOMATIC NUMBER prob-
lem [Garey and Johnson 1979]. Given a graph G(V,E), the Domatic Number problem
asks whether V can be partitioned into k disjoint nonempty sets V1, V2, . . . , Vk, such that
each Vi is a dominating set for G. V ′ is a dominating set for G = (V,E) if for every node
u in V − V ′, there is a node v in V ′ such that (u, v) ∈ E.

Given a graph G = (V,E) and a threshold k, let U = {u1, u2, . . . , un} and R =
{r1, r2, . . . , rn}, where n is the number of nodes in V . Each user in U corresponds to a
node in G, and v(ui) denotes the node corresponding to user ui. UR = {(ui, rj) | i =
j or (v(ui), v(uj)) ∈ E}. Let φ = (

⊗
k(
⊙n

i=1 ri)).
A dominating set in G corresponds to a set of users that together have membership of

all the n roles. U satisfies φ under 〈U,UR〉 if and only if U can be divided into k pairwise
disjoint sets, each of which has role membership of r1, r2, . . . , rn. Therefore, the answer
to the Domatic Number problem is “yes” if and only if U satisfies φ under 〈U,UR〉.

LEMMA 22. UTS 〈⊗,t〉 is NP-hard.

PROOF. We use a reduction from the NP-complete SET PACKING problem [Garey and
Johnson 1979], which asks: Given a finite set S = {e1, . . . , en}, a family of S’s subsets
F = {S1, . . . , Sm}, and an integer k, whether there are k pairwise disjoint elements (which
are sets) in F ? Without loss of generality, we assume that Si 6⊆ Sj when i 6= j. (If
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Si ⊆ Sj , one can remove Sj without affecting the answer.) Let U = {u0, u1, . . . , un},
R = {r1, . . . , rn} and UR = {(ui, ri) | 1 ≤ i ≤ n}. Note that u0 is a user that is not
assigned to any role. We then construct a term φ = ((

⊗
k (
⊔m

i=1 (
⊗
Rj)))⊗ φnonempty),

where Rj = {ri | ei ∈ Sj} and φnonempty = (All t (All⊗ All) t · · · t (
⊗

m All)).
We show that U satisfies φ under 〈U,UR〉 if and only if there are k pairwise disjoint

elements in family F . As the only member of ri is ui, the only userset that satisfies
φi = (

⊗
Rj) is Uj = {ui | ei ∈ Sj}. Hence, a userset X satisfies φ′ = (

⊔m
i=1 φi) if and

only if X equals to some Uj .
Without loss of generality, assume that S1, . . . , Sk are k pairwise disjoint sets. Then,

U1, . . . , Uk are k pairwise disjoint sets of users. U1 satisfies φ1, and thus satisfies φ′.
Similarly, we have Ui satisfies φ′ for every i from 1 to k. Furthermore, since u0 6∈ Ui for
any i ∈ [1, k], we have

⋃k
i=1 Ui ⊂ U . Hence, U can be divided into two nonempty subset⋃k

i=1 Ui and U ′ = U −
⋃k

i=1 Ui such that
⋃k

i=1 Ui satisfies (
⊗

k (
⊔m

i=1 (
⊗
Rj))) and U ′

satisfies φnonempty . In other words, U satisfies φ.
On the other hand, suppose that U satisfies φ. Then, U has a strict subset U ′ with

u0 6∈ U ′, such that U ′ can be divided into k pairwise disjoint sets Û1, . . . , Ûk, such that
each Ûi satisfies φ′. In order to satisfy φ′, Ûi must satisfy a certain φai and hence be
equivalent to Uai

, where ai ∈ [1,m]. The assumption that Û1, . . . , Ûk are pairwise disjoint
indicates that Ua1 , . . . , Uak

are also pairwise disjoint. Therefore, their corresponding sets
Sa1 , . . . , Sak

are pairwise disjoint. The answer to the SET PACKING problem is “yes”.

LEMMA 23. UTS 〈u,⊗〉 is NP-hard.

PROOF. We use a reduction from the NP-complete SET COVERING problem, which
asks: Given a family F = {S1, . . . , Sm} of subsets of a finite set S = {e1, . . . , en} and an
integer k no larger than m, whether there is a subfamily of sets F ′ ≤ F whose union is S
and |F ′| ≤ k?

Given S and F , let U = {u1, u2, . . . , um}, R = {r1, r2, . . . , rn} and UR = {(ui, rj) |
ej ∈ Si}. Let φ = ((un

i=1

(
ri ⊗

(⊗
k−1 All

))
) ⊗ (

⊗
m−k All)). We now demonstrate

that U satisfies φ under 〈U,UR〉 if and only if there are k sets in family F whose union is
S. Without loss of generality, assume that k < m.

First, assume that U satisfies φ. Since (
⊗

m−k All) can be satisfied by any userset with
m − k users, U satisfies φ if and only if there is a size-k subset U ′ of U that satisfies(
ri ⊗

(⊗
k−1 All

))
for every i ∈ [1, n]. This means that users in U ′ together have mem-

bership of all roles in {r1, . . . , rn}. Suppose U ′ = {ua1 , . . . , uak
}, where ai ∈ [1,m].

Because (ui, rj) ∈ UR if and only if ej ∈ Si, the union of {Sa1 , . . . , Sak
} is S. The

answer to the Set Covering problem is “yes”.
Second, without loss of generality, assume that

⋃k
i=1 Si = S. From the construction of

UR, users u1, . . . , uk together have membership of r1, . . . , rn. In this case, {u1, . . . , uk}
satisfies

(
ri ⊗

(⊗
k−1 All

))
for every i ∈ [1, n]. Since k < m, {u1, . . . , uk} is a strict

subset of U . Therefore, U can be divided into two nonempty subset {u1, . . . , uk} and
U − {u1, . . . , uk} such that {u1, . . . , uk} satisfies (un

i=1

(
ri ⊗

(⊗
k−1 All

))
) and U −

{u1, . . . , uk} satisfies (
⊗

m−k All). In other words, U satisfies φ.

C.2 Proof that UTS is in NP

LEMMA 24. UTS 〈¬,+,t,u,�,⊗〉 is in NP.

PROOF. Given a term φ, a configuration 〈U,UR〉 and a userset X , according to Theo-
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rem 2, X satisfies φ if and only if there exists a satisfaction tree of φ whose root is labeled
withX . A non-deterministic Turing machine may guess a satisfaction tree T of φ such that
the root of T is labeled withX . From the proof of Theorem 7, the size of T is polynomial in
the size of φ and verifying whether T is a satisfaction tree can be done in polynomial time
by following the rules in Definition 4. Therefore, UTS 〈¬,+,t,u,�,⊗〉 is in NP.

C.3 The tractable cases

LEMMA 25. UTS for 4CF terms is in P.

PROOF. Given a 4CF term φ = (P1�· · ·�Pn), where for each k such that 1 ≤ k ≤ n,
Pk is a 3CF term of the form (φk,1⊗φk,2⊗· · ·⊗φk,mk

), and each φk,j is a 1CF term. Let
tk,j be the base (which is a unit term) of φk,j . Tk = {tk,1, tk,2, . . . , tk,mk

} is a multiset of
the base of the 1CF terms in Pk.

Given a userset X = {u1, . . . , un} and configuration 〈U,UR〉, we present an algorithm
that determines whether X satisfies φ under 〈U,UR〉.
Step 1 The first step checks that each Pk is satisfied by some subset of X . For each k
such that 1 ≤ k ≤ n, do the following. Construct a bipartite graph G(X,Tk), in which
one partition consists of users in X and the other consists of all the tk,j’s in Tk; and there
is an edge between u ∈ X and tk,j if and only if {u} satisfies tk,j . Compute a maximal
matching of the graph G(X,Tk), if the size of the matching is less than mk, returns “no”,
as this means that X does not contain a subset that satisfies Pk; thus X does not satisfy φ.

Step 2 The second step checks that each user in X can be “consumed” by some unit term
in φ. Let G(A,B) denote the bipartite graph in which one partition, A, consists of users in
X , and the other partition, B, consists of all the tk,j’s in T1 ∪ T2 ∪ · · · ∪ Tn. Furthermore,
for any unit term t that occurs as t+ in φ, we make sure that B has at least |X| copies of t
by adding additional copies of t if necessary. There is an edge between u ∈ A and t ∈ B
if and only if {u} satisfies t. Compute a maximal matching of the graph G(X,T ), if the
matching has size less than |X|, returns “no”.

Step 3 Return “yes”.
It is not difficult to see that if the algorithm returns “no”, then X does not satisfy φ. We

now show that if the algorithm returns “yes”, then X satisfies φ. If the algorithm returns
“yes”, then for each k, the graph G(X,Tk) has a matching of size mk. Let Xk be the set
of users involved in the matching. Xk satisfies Pk. Let X ′ = X1 ∪ X2 ∪ · · · ∪ Xn. If
X ′ = X , then clearly X satisfies φ. If X ′ ⊂ X , then find a user u in X \X ′, and do the
following: Find the term t that is matched with u in the maximal matching computed in
step 2. Such a term must exist, since the matching has size |X|. Without loss of generality,
assume that t appears in P1, and X1 contains a user w that is matched with t; then change
X1 by replacing w with u. Clearly, the new X1 still satisfies P1. Compute X ′ again, and
if X ′ ⊂ X , find another user in X \ X ′ and repeat the previous process. Note that X ′

will grow if w appears in some other Xk. Also observe that, the newly added matching
between u and t will never be removed again in future, because no other user is matched
with t in the maximal matching computed in step 2; as a result, uwill always remain inX ′.
Therefore, after each step, one new user will be added to X ′ and will never be removed.
After at most |X| steps, we will have X ′ = X .
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D. PROOF OF THEOREM 17

Proofs of the P results in Theorem 17
We first prove the following lemma, which will be useful.

LEMMA 26. The following properties hold.

(1) A userset X satisfies a unit term t if and only if X is a singleton and the only user in
X satisfies t.

(2) A userset X satisfies a term t+, where t is a unit term, if and only if every user in X
satisfies t.

(3) If a userset X satisfies a term φ that is built using only ¬,+,u,t, then every user in
X satisfies φ.

(4) A userset X is safe with respect to a 1CF term φ if and only if there exists a user in X
that satisfies t.

PROOF. Properties 1 and 2 follow from the definition of term satisfaction. Observe that
a unit term can be satisfied only by a singleton.

Property 3. The term φ can be decomposed into subterms in 1CF form, connected using
u and t. By definition, X satisfies φ1 u φ2 if and only if X satisfies both φ1 and φ2, and
X satisfies φ1 t φ2 if and only if X satisfies either φ1 or φ2. Identify all 1CF subterms
that X satisfies, it follows from Properties 1 and 2 that each user in X satisfies all these
subterms. Therefore, each user satisfies φ.

Property 4. For the “if” direction, ifX contains a user u that satisfies t, then {u} satisfies
the term φ, and thus X is safe with respect to φ. For the “only if” direction, if X is safe
with respect to φ, thenX contains a subsetX0 that satisfies φ. Any user inX0 must satisfy
t according to Properties 1 and 2.

LEMMA 27. SAFE 〈¬,+,t,�〉 is in P.

PROOF. A userset X is safe with respect to (φ1 t φ2) if and only if either X is safe
with respect to φ1 or X is safe with respect to φ2. Furthermore, X is safe with respect
to (φ1 � φ2) if and only if X is safe with respect to both φ1 and φ2. Therefore, one can
determine whether U is safe with respect to φ, which is built using only the operators in
{¬,+,t,�}, by following the structure of the term until reaching subterms in 1CF. From
Property 4 of Lemma 26, checking whetherU is safe with respect to such a term amounts to
checking whether there exists a user in U that satisfies t, which can be done in polynomial
time.

LEMMA 28. SAFE 〈¬,+,t,u〉 is in P.

PROOF. Given a term φ which is built using only operators in {¬,+,t,u}, we prove
that a userset X is safe with respect to φ if and only if there exists a user u ∈ X such that
u satisfies φ. The “if” direction follows by definition. For the “only if” direction: Suppose
that X contains a nonempty subset X0 that satisfies φ, then by Property 3 of Lemma 26,
every user in X0 satisfies φ; thus X must contain a user that satisfies φ. Therefore, to
determine whether X is safe with respect to φ, one can, for each user in X , check whether
the user satisfies φ. Checking whether one user satisfies a term using only operators in
{¬,+,t,u} can be done in polynomial time.

LEMMA 29. SAFE 〈¬,+,⊗〉 is in P.
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PROOF. Given a term φwhich does not contain any binary operator but⊗, we show that
determining whether a userset X is safe with respect to φ under a configuration 〈U,UR〉
can be reduced to the maximum matching problem on bipartite graphs, which can be solved
in O(MN) time, where M is the number of edges and N is the number of nodes in
G [Papadimittiou and Steiglitz 1982].

Let s be the number of 1CF terms in φ and t = |X|. Since ⊗ is associative, φ can
be equivalently expressed as (φ1 ⊗ φ2 ⊗ · · · ⊗ φs), where each φi is a 1CF term . Let
X = {u1, . . . , ut}. We construct a bipartite graph G(V1 ∪ V2, E), where each node in V1

corresponds to a 1CF term in φ and each node in V2 corresponds to a user in X . More
precisely, V1 = {a1, . . . , as}, V2 = {b1, . . . , bt}, and (ai, bj) ∈ E if and only if {uj}
satisfies φi. The resulting graphG has s+t nodes andO(st) edges, and can be constructed
in time polynomial in the size of G. Solving the maximal matching problem for G takes
time O((s+ t)st).

We now show that X is safe with respect to φ if and only if the maximal matching in
the graph G has size s. If the maximal matching has size s, then each node in V1 matches
to a certain node in V2, which means that the s 1CF terms in φ are satisfied by s distinct
users in X; thus X contains a subset that satisfies φ. If X is safe with respect to φ, by
definition, there exist s disjoint subsets X1, . . . , Xs such that Xi (i ∈ [1, s]) satisfies φi

and
⋃s

j=1Xj ⊆ X . From our construction of G, we may match a node corresponding to
a user in Xi to the node corresponding to φi. In this case, a maximal matching of size s
exists.

Proving the NP-completeness results in Table II

LEMMA 30. SAFE〈u,�〉 is NP-hard.

PROOF. We use a reduction from the NP-complete SET COVERING problem [Garey
and Johnson 1979]. In the SET COVERING problem, we are given a family F =
{S1, . . . , Sm} of subsets of a finite set S = {e1, . . . , en} and an integer k no larger than
m, and we ask whether there is a subfamily of sets F ′ ⊆ F whose union is S and |F ′| ≤ k.

Given S and F , we construct a configuration 〈U,UR〉 such that (ui, rj) ∈ UR if and
only if ej ∈ Si. Let U = {u1, . . . , um} and φ = ((

⊙
k All) u (

⊙n
i=1 ri)).

We now demonstrate that U is safe with respect to φ under 〈U,UR〉 if and only if there
are no more than k sets in family F whose union is S.

First, if U is safe with respect to φ, by definition, a subset U ′ of U satisfies both
(
⊙

k All) and (
⊙n

i=1 ri). U ′ satisfying (
⊙

k All) indicates that |U ′| ≤ k, while U ′ sat-
isfying (

⊙n
i=1 ri) indicates that users in U ′ together have membership of ri for every

i ∈ [1, n]. Without loss of generality, suppose U ′ = {u1, . . . , ut}, where t ≤ k. Since
(ui, rj) ∈ UR if and only if ej ∈ Si, the union of {S1, . . . , St} is S. The answer to the
SET COVERING problem is “yes”.

Second, without loss of generality, assume that
⋃k

i=1 Si = S. From the construction
of UR, users u1, . . . , uk together have membership of ri for every i ∈ [1, n], which indi-
cates that {u1, . . . , uk} is safe with respect to (

⊙n
i=1 ri). Also, any non-empty subset of

{u1, . . . , uk} satisfies (
⊙

k All). Hence, U is safe with respect to φ.

LEMMA 31. SAFE〈�,⊗〉 is NP-hard.

PROOF. We use a reduction from the NP-complete DOMATIC NUMBER prob-
lem [Garey and Johnson 1979]. Given a graph G(V,E), the Domatic Number problem
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asks whether V can be partitioned into k disjoint sets V1, V2, . . . , Vk, such that each Vi is a
dominating set forG. V ′ is a dominating set forG = (V,E) if for every node u in V −V ′,
there is a node v in V ′ such that (u, v) ∈ E.

Given a graph G = (V,E) and an integer k, let U = {u1, u2, . . . , un} and R =
{r1, r2, . . . , rn}, where n is the number of nodes in V . Each user in U corresponds to
a node in G, and v(ui) denotes the node corresponding to user ui. Let UR = {(ui, rj) |
i = j or (v(ui), v(uj)) ∈ E} and φ = (

⊗
k(
⊙n

i=1 ri)).
A dominating set in G corresponds to a set of users who together have membership

of all the n roles. U is safe with respect to φ if and only if U has a subset U ′ that can be
divided into k pairwise disjoint sets, each of which have role membership of r1, r2, . . . , rn.
Therefore, the answer to the Domatic Number problem is “yes” if and only if U is safe with
respect to φ.

LEMMA 32. SAFE〈⊗,t〉 is NP-hard.

PROOF. We use a reduction from the NP-complete SET PACKING problem [Garey and
Johnson 1979], which asks, given a family F = {S1, . . . , Sm} of subsets of a finite set
S = {e1, . . . , en} and an integer k, whether there are k pairwise disjoint sets in family F .
Without loss of generality, we assume that Si 6⊆ Sj if i 6= j.

Given S and F , let U = {u1, . . . , un}, R = {r1, . . . , rn} and UR = {(ui, ri) | 1 ≤
i ≤ n}. We then construct a term φ = (

⊗
k (
⊔m

i=1 (
⊗
Rj))), where Rj = {ri | ei ∈ Sj}.

We show that U is safe with respect to φ under 〈U,UR〉 if and only if there are k pairwise
disjoint sets in family F .

As the only member of ri is ui, the only userset that satisfies φi = (
⊗
Rj) is Uj =

{ui | ei ∈ Sj}. A userset X satisfies φ′ = (
⊔m

i=1 φi) if and only if X equals to some Uj .
First, without loss of generality, assume that S1, . . . , Sk are k pairwise disjoint sets.

Then, U1, . . . , Uk are k pairwise disjoint sets of users. U1 satisfies φ1, and thus satisfies
φ′. Similarly, Ui satisfies φ′ for every i from 1 to k. Since Ui ⊆ U , U is safe with respect
to φ.

Second, suppose U is safe with respect to φ. Then, U has a subset U ′ that can be divided
into k pairwise disjoint sets Û1, . . . , Ûk, such that Ûi satisfies φi. In order to satisfy φ′, Ûi

must satisfy a certain φai
and hence be equivalent to Uai

. The assumption that Û1, . . . , Ûk

are pairwise disjoint indicates that Ua1 , . . . , Uak
are also pairwise disjoint. Therefore,

their corresponding sets Sa1 , . . . , Sak
are pairwise disjoint. The answer to the Set Packing

problem is “yes”.

LEMMA 33. SAFE 〈u,⊗〉 is NP-hard.

PROOF. We use a reduction from the NP-complete SET COVERING problem, which
asks, given a family F = {S1, . . . , Sm} of subsets of a finite set S = {e1, . . . , en} and an
integer k no larger than m, whether there is a subfamily of sets F ′ ⊆ F whose union is S
and |F ′| ≤ k.

Given S and F , let U = {u1, u2, . . . , um}, R = {r1, r2, . . . , rn} and UR = {(ui, rj) |
ej ∈ Si}. Let φ = (un

i=1

(
ri ⊗

(⊗
k−1 All

))
). We now demonstrate that U satisfies φ

under 〈U,UR〉 if and only if there are k sets in family F whose union is S.
If U is safe with respect to φ, by definition, a subset U ′ of U satisfies

(
ri ⊗

(⊗
k−1 All

))
for every i ∈ [1, n], which indicates users in U ′ together have membership of ri for every
i ∈ [1, n]. For any i ∈ [1, n], U ′ satisfying (ri ⊗ (

⊗
k−1 All)) indicates that |U ′| = k.
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Suppose U ′ = {ua1 , . . . , uak
}. Because (ui, rj) ∈ UR if and only if ej ∈ Si, the union of

{Sa1 , . . . , Sak
} is S. The answer to the SET COVERING problem is “yes”.

On the other hand, without loss of generality, assume that
⋃k

i=1 Si = S. From the
construction of UR, users u1, . . . , uk together have membership of ri for every i ∈ [1, n],
which indicates that {u1, . . . , uk} satisfies φi for every i ∈ [1, n]. Hence, {u1, . . . , uk}
satisfies φ and U is safe with respect to φ.

E. PROOF OF THEOREM 18

LEMMA 34. SSC〈¬,+,t,u,�,⊗〉 is in coNPNP.

PROOF. We show that the complement of SSC〈¬,+,t,u,�,⊗〉 is in NPNP. Because
SAFE is in NP (see Table II), an NP oracle can decide whether a userset is safe with
respect to a term. We construct a nondeterministic Oracle Turing Machine M that accepts
an input consisting of a state 〈U,UR,UP〉 and a policy sp〈P, φ〉 if and only if 〈U,UR,UP〉
is not safe with respect to sp〈P, φ〉. M nondeterministically selects a set U of users in
〈U,UR,UP〉. If U does not cover P , then M rejects. Otherwise, M invokes the NP
oracle to check whether U is safe with respect to φ. If the oracle answers “yes”, then M
rejects; otherwise, M accepts, as it has found a userset that covers P but is not safe with
respect to φ, which violates the static safety policy. The construction of M shows that the
complement of SSC〈¬,+,t,u,�,⊗〉 is in NPNP. Hence, SSC〈¬,+,t,u,�,⊗〉 is in
coNPNP.

LEMMA 35. SSC〈t,�〉 is coNP-hard.

PROOF. We reduce the coNP-complete VALIDITY problem for propositional logic
to SSC〈t,�〉. Given a propositional logic formula ϕ in disjunctive normal form, let
{v1, . . . , vn} be the set of propositional variables in ϕ.

We create a state 〈U,UR,UP〉 with n permissions p1, p2, . . . , pn, 2n users
u1, u

′
1, u2, u

′
2, . . . , un, u

′
n, and 2n roles r1, r

′
1, r2, r

′
2, . . . , rn, r

′
n. We have UP =

{(ui, pi), (u′i, pi) | 1 ≤ i ≤ n} and UR = {(ui, ri), (u′i, r
′
i) | 1 ≤ i ≤ n}. We also

construct a term φ from the formula ϕ by replacing each literal vi with ri, each literal ¬vi

with r′i, each occurrence of ∧ with � and each occurrence of ∨ with t.
Note that X is safe with respect to φ1 t φ2 if and only if X is safe respect to either φ1

or φ2, and X is safe with respect to φ1 � φ2 if and only if X is safe respect to both φ1 and
φ2. Thus the logical structure of φ follows that of ϕ.

We now show that the formula ϕ is valid if and only if 〈U,UR,UP〉 is safe with respect
to the policy sp〈{p1, p2, . . . , pn}, φ〉. On the one hand, if the formula ϕ is not valid, then
there is an assignment I that makes it false. Using that assignment, we construct a userset
X = {ui | I(vi) = true} ∪ {u′i | I(vi) = false}. X covers all permissions in P , but X
is not safe with respect to φ. On the other hand, if 〈U,UR,UP〉 is not safe with respect to
sp〈{p1, p2, . . . , pn}, φ〉, then there exists a set X of users that covers P but X is not safe
with respect to φ. In order to cover all permissions in P , for each i ∈ [1, n], at least one of
ui, u

′
i is in X . Without loss of generality, assume that for each i, exactly one of ui, u

′
i is

in X . (If both ui, u
′
i are in X , we can remove either one, the resulting set is a subset of X

and still covers P .) Then we can derive a truth assignment I from X by setting vi to true
if ui ∈ X and to false if u′i ∈ X . Then the formula evaluates to false, because X is not
safe with respect to φ.

LEMMA 36. SSC〈u,�〉 is NP-hard.
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PROOF. There is a straightforward reduction from SAFE〈u,�〉 to SSC〈u,�〉. Given
a term φ using only operators u or �, in order to check whether a userset X is safe with
respect to φ, we can construct a policy sp〈P, φ〉 and a state 〈U,UR,UP〉 such that X is
the only set of users in the state that covers P . In this case, X is safe with respect to φ if
and only if the state we constructed satisfies sp〈P, φ〉. Since SAFE〈u,�〉 is NP-hard (see
Table II), SSC〈u,�〉 is NP-hard.

LEMMA 37. SSC〈⊗〉 is coNP-hard.

PROOF. We can reduce the NP-complete SET COVERING problem to the complement
of SSC〈⊗〉. In SET COVERING, we are given a family F = {S1, . . . , Sm} of subsets of a
finite set S = {e1, . . . , en} and an integer k, where k is an integer smaller than m and n.
We are asking whether there is a subfamily of sets F ′ ⊆ F whose union is S and |F ′| ≤ k.

Given an instance of the Set Covering problem, construct a state 〈U,UR,UP〉 such that
UR = {(ui, ri) | i ∈ [1,m]} and UP = {(ui, pj) | ej ∈ Si}. Construct a safety policy
sp〈P, φ〉, where P = {p1, . . . , pn} and φ = (

⊗
k+1 All). φ is satisfied by any set of no

less than k + 1 users.
First, if 〈U,UR,UP〉 is safe, no k users together have all permissions in P . In this case,

since ui corresponds to Si, there does not exist k sets in family F whose union is S. The
answer to the Set Covering problem is “no”.

Second, if 〈U,UR,UP〉 is not safe, there exist a set of no more than k users together
have all permissions in P . Accordingly, the answer to the Set Covering problem is “yes”.

Since the SET COVERING problem is NP-complete, we conclude that the complement
of SSC〈⊗〉 is NP-hard. Hence, SSC〈⊗〉 is coNP-hard.

Tractable cases of SSC:

LEMMA 38. SSC〈¬,+,u,t〉 is in P.

PROOF. Given a term φ with operators ¬,+,u and t, construct another term φ′ by
removing + in φ. For example, if φ = ((r1 u r2)+ t r+3 ), then φ′ = ((r1 u r2) t r3).
When only operators ¬,+,u and t are allowed, if a set U of users satisfies φ, then there
exists U ′ ⊆ U such that U ′ satisfies φ′. This indicates that U is safe with respect to φ if
and only if U is safe with respect to φ′. Therefore, in order to show that SSC〈¬,+,u,t〉
is tractable, it suffices to prove that SSC〈¬,u,t〉 is in P.

A term φ′ with operators ¬,u and t may be satisfied only by singleton. A state
〈U,UR,UP〉 is safe with respect to sp〈{p1, . . . , pm}, φ′〉, if and only if for any set U
of users who together have all permissions in {p1, . . . , pm}, there exists a user u ∈ U
such that {u} satisfies φ′. This is equivalent to checking whether there exists a permis-
sion pi (i ∈ [1,m]) such that for every user u having pi, {u} satisfies φ′. The following
algorithm performs such a check.

isSafe(P, φ′, UR, UP)
begin

For each pi in {p1, . . . , pm} do
flag = true;
For each u such that (u, pi) ∈ UP do

If u does not satisfy φ′ then
flag = false;
break;

EndIf;
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EndFor;
If flag then return true;

EndFor;
return false;

end

The worst-case time complexity of the above algorithm isO(m×|U |× t), where t is the
time taken to check whether a singleton satisfies a term with operators ¬,u and t, which
is polynomial in the size of input according to Theorem 15.

LEMMA 39. SSC 〈¬,+,�〉 is in P.

PROOF. The general form of terms built using only ¬,+ and� is (γ1�· · ·�γn), where
γi is of the form r, ¬r, r+ or (¬r)+, where r is a role. Given a term φ with operators ¬,+
and �, construct another term φ′ by removing + in φ. It is clear that if a set U of users
satisfies φ, then there exists U ′ ⊆ U such that U ′ satisfies φ′. This indicates that U is safe
with respect to φ if and only if U is safe with respect to φ′. Therefore, in order to show
that SSC 〈¬,+,�〉 is tractable, it suffices to prove that SSC 〈¬,�〉 is in P.

Given a policy sp〈{p1, . . . , pm}〉, without loss of generality, assume that φ′ = (γ1 �
· · · � γn), where γi = r or ¬r. The following algorithm checks whether 〈U,UR,UP〉 is
safe with respect to φ′.

isSafe(P, φ′, UR, UP)
begin

Γ = {γ1, . . . γn};
For each pi in {p1, . . . , pm} do

Gpi = ∅
For each u such that (u, pi) ∈ UP do

Gpi = Gpi ∪
{ γi ∈ φ′ | u does not satisfy γi; }

EndFor;
Γ = Γ ∩ Gpi

EndFor;
if (Γ == ∅) return true
else return false

end

In the above algorithm, Gpi stores the set of sub-terms in φ′ such that, for every γj ∈
Gpi

, there exists a user who has pi but does not satisfy γj . At the end of the algorithm,
on the one hand, if Γ contains a sub-term γi, it means that for every permissions pj in
{p1, . . . , pn}, there exists a user upj

such that upj
has permission pj but does not satisfy

γi. In this case, the set of users {up1 , . . . , upn
} have all permissions in {p1, . . . , pn} but

does not satisfy γi, and hence does not satisfy φ′. On the other hand, Γ = ∅ indicates that
if users in U have all permissions in {p1, . . . , pn} then every sub-term γi in φ′ is satisfied
by a certain user in U . Therefore, there exists U ′ ⊆ U such that U ′ satisfies φ′.

The worst-case time complexity of the above algorithm is O(m × |U | × t), where t is
the time taken to check whether a singleton satisfies a term with operators ¬ and �, which
is polynomial according to Theorem 15.
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