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ABSTRACT

A high-level security policy states an overall requirement for a sen-
sitive task. One example of a high-level security policy is a separa-
tion of duty policy, which requires a sensitive task to be performed
by a team of at least users. It states a high-level requirement

about the task without the need to refer to individual steps in the
task. While extremely important and widely used, separation of
duty policies state only quantity requirements and do not capture
qualification requirements on users involved in the task. In this

paper, we introduce a novel algebra that enables the specification

different users acting in cooperation. The concept of SoD has long
existed before the information age; it has been widely used in, for
example, the banking industry and the military, sometimes under
the name “the two-man rule”. More generally, an SoD policy re-
quires the cooperation of at ledstifferent users to complete the
task. SoD has been identified as a high-level mechanism that is
“at the heart of fraud and error control” [7]. An SoD policy is a
high-level policy in the sense that it does not restrict which users
are allowed to carry out the individual steps in a sensitive task, but
rather states an overall requirement that must be satisfied by any

of high-level policies that combine qualification requirements with S€t Of users that together complete a task. In many situations, it

guantity requirements motivated by separation of duty considera-
tions. A high-level policy associates a task with a term in the alge-

bra and requires that all sets of users that perform the task satisfy. L . o
)}nvolved to be physicians, certified nurses, certified accountants, or

the term. We give the syntax and semantics of the algebra and stud
algebraic properties of its operators. We also study several compu-
tational problems related to the algebra.

Categories and Subject Descriptors

D.4.6 [Operating System$: Security and Protection-Access con-
trols; K.6.5 [Management of Computing and Information Sys-
temg: Security and Protection; F.2.2Apalysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Prob-
lems—Complexity of proof procedures

General Terms
Security, Theory, Languages

Keywords

Access Control, Separation of Duty, Policy Design

1. INTRODUCTION

Separation of Duty (SoD) is widely recognized as a fundamen-
tal principle in computer security [7, 18]. In its simplest form, the
principle states that a sensitive task should be performed by two
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is not enough to require only th&tdifferent users be involved in
a sensitive task; there are also minimal qualification requirements
for these users. For example, one may want to require users that are

directors of a company. Because a high-level SoD policy states
only a quantity requirement and does not express such qualifica-
tion requirements, existing work addresses this by specifying such
requirements at individual steps of a task. For example, if a pol-
icy requires a manager and two clerks to be involved in a task, one
may divide the task into three steps and require two clerks to each
perform step 1 and step 3, and a manager to perform step 2.

Specifying such requirements at the lower level of steps, how-
ever, results in the loss of the following important advantages of-
fered by a higher-level policy. First, as the specification abstracts
away details of how a task is implemented, a higher-level policy is
likely to be closer to organizational policy guidelines. It would thus
be easier for administrators to specify and understand such poli-
cies. Second, a high-level policy can be specified even before the
actual steps involved in a task are designed. In fact, a formal spec-
ification of task-level policies may help in the process of designing
steps to implement the task. Third, a task-level policy is often more
flexible than a corresponding step-level policy, which can be more
restrictive than necessary. For example, to enforce a task-level pol-
icy that requires a manager and two clerks, a step-level policy may
require a manager to execute a particular step, which is too restric-
tive. Finally, a higher-level policy specification allows flexibility in
the choice of the mechanism for enforcing the policy. For example,
one can use either static enforcement or dynamic enforcement. In
static enforcement, one ensures that any set of users that together
have enough permissions to perform the task satisfy the high-level
policy. In dynamic enforcement, one records the history of who
performs which steps in a task instance. When policies have to be
associated with steps in a task, all the advantages discussed above
are lost.

In this paper we introduce a novel algebra that enables the spec-
ification of high-level policies that combine qualification require-



ments with quantity requirements motivated by separation of duty °
considerations. A term in our algebra specifies a requirement on
sets of users (we call these usersets). A high-level policy, rather
than referring to the steps, simply associates a task with atermin ®
the algebra. This policy requires that all sets of users that complete

an instance of the task satisfy the term. Our algebra has four binary
operatorstJ, M, ®, ®, and two unary operators, +. An SoD pol-

icy that requires3 different users can be expressed using the term

An atomic terntakes one of the following three forms: arole
r € R, the keywordAll, or a setS C U of users.

An atomic term is aterm; furthermore, if¢1 and ¢2 are
terms, them gy, ¢, (¢1 U ¢2), (¢1 11 ¢2), (61 ® ¢2), and
(1 © ¢2) are also terms, with the following restriction: For
—¢1 or ¢ to be a termg; must be aunit term that is, it
must not contain’, ®, or ®.

(All @ All ® All), whereAll is a keyword that refers to the set of
all users. A policy that requires either a manager or two different The unary operator has the highest priority, followed by the unary
clerks is expressed using the tefManager LI (Clerk ® Clerk)). operator+, then by the four binary operators (namelyL, ©, ®),

We define the syntax and semantics of terms in the algebra, andwhich have the same priority.
study the algebraic properties of the operators. We show that all
four binary operators are commutative and associative. We also
show that™ and U distribute over each other and bathand ®
distribute overl. The four binary operators result ir2 ordered
pair of operators. For the eight pairs other than the four mentioned
above, distributivity does not hold.

We then study the Term Satisfiabilitf §AT) problem and the
Userset-Term SatisfactiordTS) problem. TheTSAT problem
asks whether a given term is satisfiable at all. We showTiS&T
is NP-complete in general and remaidéP-complete in certain
sub-algebras with only a subset of the operators. We also identify
a sub-algebra whose satisfiability problem is efficiently solvable.

We now give several simple example terms to illustrate the intu-
ition behind the operators in the algebra. The te(Mahager M
Accountant)” requires a user that is both Manager and an
Accountant. The term (Manager M —{Alice, Bob})" requires
a user that is a manager, but is neither Alice nor Bob; here,
the sub-term “{ Alice, Bob}" implements a blacklist. The term
“(PhysicianlINurse)” requires a user that is eithePaysician
or aNurse. The term {Manager ® Clerk)” requires a user who is
aManager and a user who is @lerk; however, when one user is
both aManager and aClerk, that user by itself also satisfies the re-
quirement. The term({All@ All) ® All)” requires3 different users.

The UTS problem asks whether a userset satisfies a term. We ;I'he keywordA+I,I’ allows us to refer fo the set of all users. The term
Accountant™” requires a set of one or more users, where each

show that thdJTS problem isSNP-complete in general. To better - .
user in the set is aficcountant.

understand the properties of the operators, we also study computa- . . . .
brop P y P To formally assign meanings to terms, we need to first assign

tional complexities for thaJTS problem in all sub-algebras with . 1o the rol din the t For thi introd th
only a subset of the operators. We identify syntactic restrictions so meanings to the roles used in the term. For this, we introduce the
notion of configurations.

that even for terms with all six operators, as long as they satisfy
these restrictiond) TS can be solved efficiently. We also presenta  pefinition 2 (Configurations) A configurationis given by a pair

heuristic algorithm for solvingJ TS in the general case, and show (U, UR), whereU denotes the set of all users in the configuration,
that for terms whose size is not very large, even if they do notsatisfy 544 7R 17 x R determines role memberships. Whenr) €
the syntactic restriction&) TS can be solved in reasonable amount UR. we gay thai, is a member of the role.

of time.
Finally, some operators in our algebra are similar to the ones in  Note that in configuratiotU, UR), UR should not be confused
regular expressions. A regular expression describes a set of stringswith the user-role assignment relatidiid in RBAC. When an
while a term in our algebra describes a set of sets. The relationshipsRBAC system has botlvA and a role hierarchz H, the two rela-
between the two are discussed. tions UA and RH together determin&R.
The remainder of the paper is organized as follows. We introduce
the syntax and semantics of the algebra in Section 2. We study theDefinition 3 (Satisfaction of a Term) Given a configuration
TSAT problem in Sections 3 and th&TS problem in Section 4. In (U, UR), we say that a usersat satisfiesa term¢ under(U, UR)
Section 5, we discuss limitations of the algebra and extensions toif and only if one of the following holds
it, as well as the relationship with regular expressions. We discuss
related work in Section 6 and conclude with Section 7. Proofs not o
included in the main body are included in the appendices.

The term¢ is the keywordAll, and X is a singleton sefu}
such that, € U.

5 THE ALGEBRA . '(I';e?n;eémg}izs- aroler, andX is a singleton sefu} such that

In this section, we introduce our algebra for expressing high-

level security policies. e The termg¢ is a setS of users, andX is a singleton sefu}

. such that, € S.
2.1 Syntax and Semantics

In our definition of the algebra, we use the notion of roles. We
use a role to denote a set of users that have some common qualifi-
cation or common job responsibility. We emphasize, however, that
the algebra is not restricted to Role-Based Access Control (RBAC)
systems [21]. In our algebra, a role is simply a named set of users.
The notion of roles can be replaced by groups or user attributes.
We uself to denote the set of all users, aRdto denote the set of .
all roles.

e The term¢ is of the form—¢o whereg, is a unit term, and
X is a singleton set that does not satigfy

e The term¢ is of the form¢Z whered, is a unit term, and
X is a nonempty userset such that for evene X, {u}
satisfiespo.

The termg is of the form(¢:1 U ¢2), and eitherX satisfies
¢1 or X satisfiesps.

Definition 1 (Terms in the Algebra) Terms in the algebra are de-

We sometimes say satisfiesp, and omit “undefU, UR)” when
fined as follows:

it is clear from the context.



e The termg is of the form(¢, M ¢2), and X satisfies botfy,
andgs.

e The termg is of the form(¢: ® ¢2), and there exist usersets

X1 and Xz suchthatX; U Xe = X, X1 N Xo =0, X3
satisfiesp,, and X, satisfiesp,.

e The termg is of the form(¢1 ® ¢2), and there exist usersets

X, and X, such thatX; U X; = X, X; satisfiesp,, and
X satisfiesp,. This differs from the definition fog in that
it does not requireX; N X5 = 0.

For example, given the terifffanager ® Clerk), and the con-
figuration(U = {Alice, Bob, Carl}, UR), in which UR is such
that: Uvanager = {Alice} and Ucierk = {Alice, Carl}, where
U. = {u | (u,7) € UR}, we have{Alice} satisfies the term,
{Alice,Carl } also satisfies the term, bytAlice, Bob } and
{Bob,Carl } do not satisfy the term.

2.2 Examples

The following examples help illustrate the expressive power of

the algebra.
o {Alice, Bob, Carl} @ { Alice, Bob, Carl}
This term requires any two users out of the list of three.

e (Accountant LI Treasurer)™

This term requires that all participants must be either an

Accountant Or a Treasurer. But there is no restriction
on the number of participants.

e ((Manager ® Accountant) ® Treasurer)
This term requires &anager, an Accountant, and a

Treasurer; the first two requirements can be satisfied by

a single user.

e ((Physicianll Nurse) ® (Manager M —Accountant))

This term requires two different users, one of which is either

aPhysician Or aNurse, and the other is 8lanager, but
not anAccountant.

e ((Manager ® Accountant © Treasurer) I (Clerk MM
—{ Alice, Bob})™")

This term requires alanager, an Accountant and a
Treasurer.
Clerk and must not bellice or Bob.

Definition 4 (Value of a term) Given a configuratiogU, UR) and

atermg, we useSy,ur) (¢) to denote the set of all usersets that

satisfy$ under(U, UR), and call this thezalueof term¢ under the
configuration.

Consider the term¢ = ((Manager ©® Accountant ©
Treasurer) M (Clerk M—{ Alice, Bob})") and the configuration
(U = {Alice, Bob, Carl, Doris, Elaine, Frank}, UR), in which
UR is such that:

Utanager = {Alice, Doris, Elaine}

Uiccountant = {Doris, Frank}

Urreasurer = {Bob, Carl, Doris}

Ucrerx = {Alice, Bob, Carl, Doris, Frank}.

The sub-tern{Clerk M —{ Alice, Bob})" means that only subsets

of { Carl,Doris,Frank } may satisfyp. We have

Sw,ury(¢) = {{Doris}, {Carl, Doris}, {Doris, Frank},
{Carl, Doris, Frank} }

That is, there are four usersets that satisfy the t&rm

In addition, everybody involved must be a

2.3 Algebraic Properties

We now introduce the notion of equivalence among terms, which
enables us to study the algebraic properties of the operators in the
algebra.

Definition 5 (Term Equivalence) We say that two termg; and
¢2 areequivalentdenoted byp1 = ¢2) when for every usersef
and every configuratiofU, UR), X satisfiesp, under(U, UR) if
and only if X satisfiesp, under(U, UR). In other wordsgp: = ¢2
if and On|y if V(U, UR> S(U7 UR) (¢1) = S(U, UR) (¢)2) .

Using a straightforward induction on the structure of terms, one
can show that ifhy = ¢, then, for any terny in which ¢; occurs,
let ¢’ be the term obtained by replacing gnone or more occur-
rences ofp; with ¢2, we havep = ¢’.

Theorem 1. The operators have the following algebraic proper-
ties:

1. The operatorsl, M, ®, ® are commutative and associative.
That is, for each op € {U,N,®,®}, and any terms
¢1, (;52, and ¢3, we have(qbl op (bz) = ((]52 op (Z)1) and
((¢1 0p ¢2) op ¢3) = (1 0p (P2 0P ¢3)).

2. The operators] and 1 distribute over each other. That is,
(p1U(p2Me3)) = ((¢1U2) M (1 U¢3)) and (¢ M (2 L
#3)) = ((¢1 M d2) U (¢1 M ¢3)).

3. The operator® distributes over. That is, (¢1 © (¢2 U
#3)) = ((¢1 © ¢2) U (¢1 © ¢3)).

4. The operator® distributes overl. That is, (¢1 ® (¢2 U
#3)) = ((¢1 @ ¢2) U (¢1 @ ¢3)).

5. No other ordered pair of binary operators have the distribu-
tive property. (There are 12 such pairs altogether; the four
of them listed above have the distributive property.)

6. (¢1 M) = (¢ No3)

7. DeMorgan’s Law:—(¢1M¢2) = (md1U—p2), ~(d1Lgp2) =
(=1 M —=p2)

See Appendix A for the proof of the above theorem, which also
gives a counter example for each case that the distributive property
does not hold.

Because of the associativity properties, in the rest of this paper
we omit parentheses in a term when doing so does not cause any
confusion.

We now describe some other facts about the operators, to further
illustrate the operators and their relationships.

e Any userset that satisfigg M ¢2) also satisfie§p: L ¢2),
but not the other way around.

e Any userset that satisfig® M ¢2) also satisfiegd: © ¢-2),
but not the other way around.

e Any userset that satisfi¢s; ® ¢2) also satisfiegp, © ¢2),
but not the other way around.

e Any userset that satisfies” LI ¢5 also satisfie$p, LI ¢2) ™,
but not the other way around.

If X satisfies(¢p] U ¢7 ), thenX satisfies eithep] or ¢7 .
Without loss of generality, assume th’étsatisfieszbf. Then,
foreveryu € X, {u} satisfiesp;, and thus satisfiep: ¢z ).
Hence, X satisfies(¢; U ¢2)". For the other direction, if
{u1} satisfiesp; but not¢s, and{u2} satisfiesp, but not
é1, then{uz, uo} satisfies¢1 Ll ¢2)™ but note; U ¢7 .



2.4 Rationale of the Design of the Algebra

there is less chance for making mistakes and one is more confident

We now discuss the rationale for some of the design decisions that the term expresses the intended policy.

for the algebra.

Monotonicity SoD policies satisfy the property of monotonicity;
that is, if an SoD policy requires two users to perform a task, then
having three or more users certainly satisfies this policy. Simi-
larly, one may want a security algebra like ours to also satisfy the
monotonicity property; that is, if a usersat satisfies a terny,
then any superset of also satisfiegp. McLean [15] adopts this
property in his security algebra fé¥-person policies.

Our algebra is designed to support both monotonic policies
and policies that are not monotonic. for example, the term
(Accountant ® Accountant) can be satisfied only by a set of

When- is applied to a unit term, it expresses negative qualifica-
tion about one user; this has a clear meaning; the tepgmeans a
user that does not satisfy;. However, if— is applied to a term that
involves®, ®, or +; then the meaning becomes unclear. Consider
the term—(Accountant ® Manager). Any userset of size three
does not satisffAccountant © Manager); therefore, it should
satisfy—(Accountant © Manager), even if every user in the user-
set is both amccountant and aManager. It is unclear to us what
kind of real-world security policies such a term expresses.

The term%*, when¢o is a unit term, has a clear meaning; it
means that every user must satigfy. The same term, whegy
involves operators such asand®, has at least two possible mean-

two users; a set that contains more than two users cannot satisfyings_ One is to interpret- as the closure operator of, that is, a

the term. More generally, in Definition 3, term satisfaction is de-

usersetX satisfiespq if and only if X can be divided into a num-

fined in such a way that every user in the userset is used 1o salisfype of ossibly overlappingsubsets such that each subset satisfies

certain component of the term. No “extra” user is allowed.

We have considered a design having monotonicity property, in
which we call the notion of satisfaction in Definition 3 “strict sat-
isfaction” and define a usersé&f satisfies a termy if and only
if X contains a subset that strictly satisfigs The monotonicity
property follows directly. We chose our current design over the
one that has monotonicity because it is more expressive. Conside
the following example. When one says that “a task requires two
Accountants”, this may mean one of the following three policies:

1. The task must be performed by a set of two users, both of
who areAccountants. A group containing more (or less)
than two people is not allowed.

. The task must be performed by a set that contains two
Accountants. In particular, a userset that contains two
Accountants and a third user who is not aftcountant
is allowed to perform the task.

. The task must be performed by a set of two or more
Accountants. In particular, a set of threfccountants can
perform the task, but a set of tw@countants and one non-
Accountant cannot. This ensures that everyone involved in
the task has the qualification of @acountant.

I

0. The other is to interpret as the closure operator fe, that
is, a usersel satisfiesy if and only if X can be divided into a
number ofdisjoint subsets such that each subset satigfiesThe
two meanings coincide whepy is a unit term. We could use two
operators, one for each meaning, and allow them to be applied to
non-unit terms. However, this adds complexity to the algebra and
we have not seen the need for this. For simplicity and usability, we
chose to allowt+- only be applied on unit terms. The algebra can
be extended to have two closure operators that can be applied to
non-unit terms, if the need for them arises in the future.

2.5 Enforcing Policies Specified in the Algebra

To use the algebra to specify high-level security policies, the ad-
ministrators first identify sensitive tasks and then for each sensitive
task, specify a term such that every set of users that together per-
form the task must satisfy the term. For instance, a simple SoD
policy that requires at least two users to perform the task can be
specified agAll ® All*). Our algebra also allows the specifica-
tion of more sophisticated policies based on user qualifications. In
summary, a security policy is a pditask, ), whereg is a term; it
means that only usersets that satigfgan performiask.

Once a policy is specified, it needs to be enforced. Enforcement
techniques for policies in this algebra can benefit from research in
enforcement techniques for Separation of Duty policies [8, 13, 16,

Policies 1 and 3 cannot be expressed using an algebra that hag0, 22]. We say that a policytask, ¢) is monotonic if the term

the monotonicity property. Suppose that one tries to use ageom
express policy 1 (or policy 3) in an algebra that has the monotonic-
ity property, then a seX of two Accountants satisfiesy. By
monotonicity property, any superset&falso satisfieg. This vio-
lates the intention of policies 1 and 3. More generally, a monotonic

¢ is monotonic, i.e., if a userseX satisfiesp, then any superset
of X also satisfieg). A monotonic policy can be enforced either
statically or dynamically, whereas a policy that is not monotonic
cannot be enforced statically.

To statically enforce a policytask, ¢), one identifies the set

algebra cannot express policies that disqualify usersets that contairef all permissions that are needed to perform the task, and re-
extra users, nor can it express security requirements in the form ofqguires that any userset such that users in the set together possess

“all involved users must satisfy certain requirements”.
By dropping the monotonicity property, our algebra is able to

express all the three policies. Policy 1 is expressed using the termP = {p1,---

(Accountant®Accountant). Policy 2 is expressed using the term
((Accountant ® Accountant) ® All™). Note that the termAll™

all these permissions satisfies the tetmThat is, one definesta-

tic safety policieseach of which takes the forsp(P, ¢), where

,Pn} is a set of permissions. Such a policy means
that any userset such that all users in the set together have all per-
missions inP must satisfyp. Note that if a userset has all permis-

can be satisfied by any nonempty userset. Policy 3 is expressedsions inP, then its superset also has all permission8jtherefore,

using the tern{Accountant ® Accountant™).

w_n
=

Restrictions on and “ +” The syntax of our algebra (Defini-
tion 1) restricts that the two operators™and “+" be applied only

to unit terms, i.e., those terms that do not contairng, or +. The
motivation for this design decision is the psychological acceptabil-
ity principle [18]. We would like each operator to have a clear and

intuitive meaning so that when one writes down a policy as a term,

static enforcement is only for monotonic policies.

To dynamically enforce a policytask, ¢), one identifies the
steps in performing the task. And the system maintains a history
of each instance of a task, which includes information on who has
performed which step. For any task instance, one can compute the
set of users (denoted &§,..:) who have performed at least one
step on the instance. Before a useperforms a step on the in-
stance, the system checks to ensure that there exists a superset of



Upast U{u} that can satisfy upon finishing all steps of the task. In
particular, ifu is about to perform the last step of the task instance,
it is required by the policy thdl,.s: U{u} satisfiesp. An example

on dynamic enforcement of polid¢ask, ¢) is given as follow:

A company has a high-level policyPurchase, (Manager ©®
(Clerk ® Clerk))) which states that &Manager and two
Clerks are required to purchase supplies for the company. The
task Purchase consists of three steps which afakeOrder,
PrepareCheck and SignCheck.  Step-specific requirements
state thatMakeOrder must be performed bylanager, while
PrepareCheck and SignCheck may be performed by either
Manager Or Clerk. SupposeAlice is aManager who made an
order and now tries to prepare a check for the orderAlite is
a Clerk, then the system will allow her to do so. The reason
is that as long as &lerk different from Alice (say Bob) signs
the check later{ Alice, Bob} satisfies the high-level requirement
(Manager ® (Clerk ® Clerk)). If Alice is not aClerk, then she

3.1 The Term Satisfiability (TSAT) Problem

As the algebra supports negation, it is not surprising that un-
satisfiable terms exist. A simple example of a term that is not
satisfiable is(r 1 —r). Another source of unsatisfiable terms
is the use of explicit sets of users in a term. For example, the
term ({ Alice, Bob} M {Carl}) is not satisfiable. However, even
if a term does not contain negation or explicit sets of users, it
may still be unsatisfiable. An example of such a termpis=
(r1 M (r2 ® r3)), whereri, 72 andrs are roles. In the example,

r is satisfiable only by a singleton userset, &ng® r3) is satis-
fiable only by a userset of cardinali®y Therefore, there does not
exist any userset that satisfigs

In this section, we show thatSAT is NP-complete in general.
We identify the source of intractability by identifying two special
cases that ar&NP-hard. One special case involves the negation
operator, and the other involves explicit sets of users. In the next
section, we show that for terms that are free of negation and explicit

is not allowed to sign the check she prepared. The reason is that nOgets of usersTSAT can be efficiently solved.

matter who signs the check in futuréjice plus that person cannot
satisfy the high-level requireme(ianager ® (Clerk ® Clerk)).
Note that if Alice performed both the first step and the second step,

then she is precluded from performing the last step as two different

Clerks are required to complete the task.

Dynamic enforcement can enforce both monotonic policies and
policies that are not monotonic. It is also more flexible than static
enforcement. Enforcement of high-level policies specified in the
algebra generates many interesting open technical problems.

3. TWO TERM SATISFIABILITY PROB-
LEMS
Given the definitions of terms and term satisfaction, the follow-
ing problems naturally arise.

The Term Satisfiability (TSAT) Problem: Given a term¢, de-
termine whether there exists a configurati@h UR) and a
usersetX such thatX satisfiesp under(U, UR).

This asks whether the terghis satisfiable at all. This pro-

Lemma 2. TSAT for unit terms using only roles and the operators
—, M, andlU is NP-hard.

Lemma 3. TSAT for terms using only usersets and the operators
M, U, and® is NP-hard.

Theorem 4. TSAT is NP-complete.

See Appendix B.1 for the proofs of Lemmas 2 and 3 and Theo-
rem4.

3.2 TSAT for the Sub-Algebra Free of Nega-
tion and Explicit Sets of Users

Lemmas 2 and 3 show that if a term involves negation or ex-
plicit sets of users, then determining whether it is satisfiable or not
may be intractable. We now study the term satisfiability problem
for terms that are free of explicit sets of users and negation. For
convenience, we call such tertddlF (Userset-and-Negation Free)
terms

One property of UNF terms is that if a usersgt satisfies a

vides a basic level of sanity check, as a term that cannot be term ¢ under configuratiofU, UP), then X also satisfies un-

satisfied in any configuration is probably not what a policy
author intended.

The Term-Configuration Satisfiability (TCSAT) Problem:
Given a term¢ and a configurationU, UR), determine
whether there exists a usersat that satisfies¢p under
(U, UR).
This asks whether a termis satisfiable under a given con-
figuration. This is useful when determining whether a term
is meaningful in the current configuration.

The Userset-Term Satisfaction TS) Problem: Given a term
¢, a configuration(U, UR), and a userseiX, determine
whetherX satisfiesp under(U, UR).

This is probably the most fundamental problem related to
the algebra. When an administrator specifies a policy that

der(U’, UP"), whereU C U" and UP C UP'. That s, because a
UNF term does not have the negation operator, theXi gatisfies
the term under a configuration, enlarging the configuration will not
makeX fail to satisfy the term.

A key observation is that, in order to satisfy a term, a userset
must be of certain size. For example: © (r2 ® r3)) can be
satisfied by a set df or 3 users, but not by a set dfor 4 users.
This observation leads us to introduce the notion of characteristic
numbers of a UNF term.

Definition 6 (Characteristic Numbers)Given a UNF termp and

a positive integetk, we say thatc is a characteristic numbenof

¢ when there exists a userset of sizéhat satisfiegp under some
configuration. A termy may have more than one characteristic
numbers. We usé€'(¢) to denote the set of all characteristic num-
bers of¢ and call it thecharacteristic sebf ¢.

associates a sensitive task with a term; this means that every

set of users that together perform an instance of the task must

satisfy the term. To enforce this policy, one needs to check

It follows from the definition that a UNF term is satisfiable if
and only ifC(¢) # 0.

whether a userset satisfies the term and to forbid users intpeqrem 5. The characteristic set of a UNF term can be computed

the set to finish the task if it does not satisfy the term. This
requires solving th&TS problem.

In this section we will studf SAT andTCSAT. TheUTS prob-
lem will be studied in Section 4.

as follows:
e C(All) = C(r) = {1}, wherer isarole
o C(g1U¢2) = C(h1) UC(¢2)



e C(p1 Mep2) = C(d1) NC(d2) the corresponding set of users in the configuration, which results
in a new termy’. In this caseg’ is independent of configuration,

 C(¢7) = {i | i € [1,00)}, whereg is a unit term free of a4 4 is satisfiable undefU, UR) if and only if ¢’ is satisfiable.

usersets and negations Therefore, it follows from Lemma 3 and Theorem 4 tR&SAT is
e C(p1©¢2) ={i|Fc1 € C(p1) T2 € Cgo) NP-complete; this is stated in the following theorem.
[maz(ci,c2) <i<er+ ez} Theorem 6. TCSAT is NP-complete.
e C(p1®@p2) ={citca|c1 €C(d1) N c2 €C(¢2) }

4, THE USERSET-TERM SATISFACTION
The proof for the theorem is in Appendix B.2. We now illustrate (UTS) PROBLEM
the computation of characteristic set according to the theorem using

some examples. In Section 3, we have studied the problems of determining

whether a term is satisfiable at all, as well as whether a term is

e C(All® All® All) = {3} satisfiable under a given configuration. In this section, we study
the Userset-Term Satisfactiod TS) Problem, which asks given a
e C(Manager ® Accountant) ® Treasurer) = {2, 3} configuration(U, UR), a usersefX, and a termp, whetherX sat-
The term(Manager ® Accountant) can be satisfied by two  isfies¢ under(U, UR). We will show thatUTS in the most gen-
users as well as by a single user who is botMaaager eral case (i.e., arbitrary terms in which all operators are allowed)
and anAccountant. An additional user is needed to satisfy is NP-complete. In order to understand how the operators af-
Treasurer. fect the computational complexity, we consider all sub-algebras in
which only some subset of the six operatérs +,M, L, ®,®} is
e C((Clerk U Accountant) ® (Clerk Manager)) = {2} allowed. For exampleUTS(—, +, L, M) denotes the sub-case of
Only one user is required for bofitlerk Ll Accountant) UTS where¢ does not contain operatos or ®, while UTS(®)
and (Clerk M Manager), and the® mandates that these denotes the sub-case S where® is the only kind of operator
users must be different from one another. in ¢. UTS{—,+,U,M,®,®) denotes the general case. Observe
N that unlike in the case 6f SAT, whether or not to allow explicit
o C((Manager © Accountant © Treasurer) MClerk") = sets of users in a term does not affect the computational complexity
{1,2,3} N {ili € [1,00)} = {1,2,3} of UTS, because a fixed configuration is giverU'S and one can

g . L . . always replace each role with the corresponding set of users.
For the unsatisfiable term considered earlier in this section,

namely(ry M (r2 ® 73)), we observe thaC(r1 M (r2 ® r3)) = Theorem 7. The computational complexities fofT'S and its sub-
{1} n{2} = 0. cases are given in Figure 1.

In Appendix B.3 we show that computin@(¢) using a straight-
forward algorithm that follows Theorem 5 takes at most quadratic ~ The proof of Theorem 7 is done in three parts. First, in Ap-
time. pendix C.1, we prove that the five cadd¢$S(L, ®), UTS(M, ®),

One can us€’(¢) to determine whethep satisfies some mini- ~ UTS(U, ®), UTS(M, ®), andUTS(®, ®) areNP-hard by reduc-
mal SoD requirements. If the smallest characteristic number of a ing theNP-complete problemSET COVERING, DOMATIC NUM-
term is at leask, then we know that né — 1 users can satisfy the =~ BER, and SET PACKING to them. Second, in Appendix C.2, we
term. prove that the general caslTS(—, +,L,M, ®, ®) is in NP. Fi-

We can extend the method of calculating the characteristic hally, the tractable cases are discussed in Section 4.1, where we
set stated in Theorem 5 to non-UNF terms as well, by defin- identify a wide class of syntactically restricted terms for which the
ing C(—~¢) = {1}, where¢ is a unit term, and”(S) = 1, UTS problem is tractable. The class of restricted terms subsumes
where S is a set of users. But in that case, it is no longer true all the cases listed as 1 in Figure 1.
that for every integeic € C(¢), there is a userset of size

that satisfiesé. For example,C ({Alice, Bob} M {Carl)) — 41 IEJTS is Tractable for Terms in Canonical
C({Alice, Bob}) N C({Carl}) = {1}, even though the term orms

({Alice, Bob} M {Carl}) is not satisfiable. It remains true that From Figure 1UTS is NP-complete in general in all but one
for any usersetX that satisfies a term, | X| € C(#). In other sub-algebras that contain at least two binary operators; however,
words,C(¢) gives an upperbound on the actual set of characteris- using any one binary operator by itself remains tractable. In this
tic numbers ofp. subsection, we show that if a term satisfies certain syntactic restric-

. . o tions, then even if all operators appear in the term, one can still
3.3 The Term-Configuration Satisfiability efficiently determine whether a userset satisfies the term.

(TCSAT) Problem
We have discussed tHESAT problem, which asks whether a
term is satisfiable at all. We now examine th€SAT problem,
which asks whether a term is satisfiable under a certain Configura- e Atermisin level-1 canonical fornﬁca”ed an 1CF term) if it

Definition 7 (Canonical Forms for Terms)The canonical forms
for terms are defined as follows:

tion. When a company comes up with a new security requirement ist ort*, wheret is a unit term. Recall that a unit term can
for a task, it may want to know whether there exists a set of users use the operators, M, andL. We callt the baseof the 1CF
that satisfies the new requirement and hence can perform the task term.
under the current configuration of the company.

Observe thall CSAT is equivalent toT SAT for the terms using e Atermisin level-2 canonical fornfcalled a 2CF term) if it
explicit sets of users but not roles or the keywdal. Given an consists of one or more sub-terms that are 1CF terms, and
instance ofT CSAT, which consists of a term and a configuration (when there are two or more sub-terms) these sub-terms are

(U, UR); one can replace each role (or the keywatt in ¢ with connected only by the operator



UTS<_|7 +7 |_|7 |_|7 ®7 ®>

NP-complete
UTS(—, +, L, UTS{U, ®) UTS(m, ®) UTS{U, ®) UTS(M, ®) UTS(G, ®)
inP NP-complete NP-complete NP-complete NP-complete NP-complete
UTS(—, +, L) UTS(—, +,1) UTS(—, +,®) UTS(—, +,®)
inP inP inP inP

Figure 1: Various sub-cases of the Userset Term Satisfactiot{TS) problem and the corresponding time-complexity. Some sub-cases
are omitted from the figure, as their time-complexities are implied from what are in the figure.

e Atermisin level-3 canonical fornfcalled a 3CF term) if it by solving the following bipartite graph maximal matching prob-
consists of one or more sub-terms that are 2CF terms, andlem. One constructs a bipartite graph such that one set of nodes
(when there are two or more sub-terms) these sub-terms areconsists of users iX and the other consists of the unit terms
connected only by the operater. t1,t2, - ,tm; and there is an edge betweenc X andt; if and

o ) . only if {u} satisfieg;. One then computes a maximal matching of

e Atermisin level-4 canonical fornfcalled a 4CF term) if it the graph (which can be done in polynomial time); if it has size the
consists of one or more sub-terms that are 3CF terms, and ggme asnax(|X|,m), thenX satisfiesP; otherwise,X does not
these sub-terms are connected only by the opetator satisfy P.

The case that a 3CF term containds more complicated, so is
the case for a 4CF term. Because of space limitation, we give the
proof for the case of a 4CF term (which subsumes the case for a
3CF term) in Appendix C.3.

e Aterm isin level-5 canonical fornfcalled a 5CF term) if it
consists of one or more sub-terms that are 4CF terms, and
these sub-terms are connected only by operators in the set

{u,M}.

We say that a term i canonical formif it is in level-5 canonical
form. Observe that any term that is in levietanonical form is also
in level-(i 4 1) canonical form for any € [1, 4].

Terms in canonical form appear to be general enough to specify
many high-level security policies in practice. We arrive at these
canonical forms by excluding the intractable cases involving com-
binations of multiple operators in different ordering, and by study-
ing how to handle each binary operator individually and examining

Theorem 8. Given a termy in canonical form, a seX of users, N : .
mp how combinations of them can still be handled efficiently.

and a configuratioU, UR), checking whetheK satisfiesp under

(U, UR) can be done in polynomial time. 4.2 An Algorithm for UTS
PrROOF We first recall that, by definitionX satisfiesp: M ¢2 We have shown that for terms that are in canonical forms, it is ef-
if and only if X satisfies bothp; and¢2, and X satisfiesp, U ¢2 ficient to check whether a userset satisfies them or not. However, it

if and only if X satisfies eithep, or ¢>. Therefore, to determine  is not necessary to restrict the use of the algebra to only such terms.

whetherX satisfies a 5CF term, one can first determine whelher  Even if one writes policies that use terms that are not in canonical

satisfies each of the 4CF sub-terms, and then combine these resultforms, these terms may not be in the pathological cases that lead

using logical conjunction and disjunction. to intractability, or they may not be very large. We now present
For a 1CF termy, if it is a unit term, then it is straightforward  a heuristic algorithm folJTS that works for all terms. We show

to determine whetheX satisfies¢, because a unit term can be through experimental results that this algorithm works well for in-

satisfied only by a singleton set, and because of the definitians of stances ofJ TS with complicated terms and relative large usersets.

andLl. If ¢ is of the formt™, wheret is a unit term, then one just To determine whether a usersétsatisfies a termp under a con-
needs to determine whether each useKisatisfiest. Therefore, figuration(U, UR), our algorithm first computes the syntax tfEe
one can efficiently check whethéf satisfies an 1CF term. of ¢. Given the syntax tree, there are two approaches. The first one

Given a 2CF term, if at least one sub-term is a unit term, then is top-down processing. One starts withand the root of the syn-
one can get an equivalent 1CF term by removing all occurrencestax tree; if the root is the operatar, then for each subséf; C X,
of *. For examplet; M t3) is equivalent tot; M t2. Given a one recursively checks wheth&r satisfies the left child, and if it
2CF term where all sub-terms haVefrom the algebraic property, does, one tries alk; C X such thatX; U X2 = X and checks
it is equivalent a 1CF term. For example; mt}) is equivalent whether X, satisfies the right child. Other operators can be han-
to (¢1 M ¢2)*. Hence, any 2CF term can be revised to an equiva- dled similarly. The second approach is bottom-up processing. One
lent 1CF term. We assume that the revision is performed wheneverstarts with unit terms. For each unit term, one calculates all subsets
applicable so that we don't need to consider 2CF terms explicitly. of X that satisfy the term. One then goes bottom-up to calculate
Given a 3CF termP = (¢1 ® - - - ® ¢»m), Where eachp; is an those for each node in the syntax tree.
1CF term. Let us first consider a special case that éadéh a unit Our algorithm combines top-down processing with bottom-up
term¢;. In this case, one can determine whetbérsatisfiese; processing. It first performs bottom-up processing until encounter-



ing nodes such that bottom-up processing becomes too expensived.2  Relationship with Regular Expressions
For example, if each user in a sgtcan satisfyt, then nodet™

can be satisfied by the!¥! — 1 non-empty subsets df ; so we The syntax of terms in our algebra may remind readers of reg-

avoid bottom-up processing far. After the bottom-up phase ular expressions. A regular expression is a string that describes or

the algorithm performs top-down search. When the search encoun_matches a set of strings, while a term in'the algebra is a string that
ters a node that has been bottom-up processed, it can perform 41€Scribes or maiches a set of sets. Given an alphabet, a regular
lookup. Our algorithm also includes several optimizations to im- €XPression evaluates eset of strings Given a configuration, a
prove top-down search. For example, it computes the characteristict€"™ in our algebra evaluates doset of setsin the following, we
set for each sub-term so as to prune the subsetstbfitneed tobe ~ OMPpare our algebra with regular expressions. o
checked:; it also sorts sub-termsg@fccording to the size of their For example, the regular expressiar{b|c) [abc| ™" matches all
characteristic sets so that sub-terms that are “harder to be satisfieqSt1ings that start with the letter, followed by eitherb or ¢, and
are processed first. Fhen by one or more symbols that are .noi{.m b,c}. Aterm that

We prototyped both the above algorithm and the algorithm for 1S close in spirit to the regular expressioryis} © ({b} U {c}) ®
terms in canonical forms, and have performed some experiments.(714,,¢})", which is satisfied by all sets that containeitherb
Our prototypes are written in Java, and our experiments were car-°F ¢ @nd one or more symbols that are no{in b, c}. -
ried out on a Workstation with a 3.2GHz Pentium 4 CPU and _ From the example, one can draw some analogies between the
512MB RAM. Some of our experimental results are presented in operators in regular expressions and the ones in our algebra. The

Table 1. As we can see in TableUTS is efficiently solvable for ~ ©OPerator in regular expressions is similar ta Concatenation in
terms in canonical form. Furthermore, our algorithm for canonical rﬁgular expression rnayc'iseem re[qte«iztol?ne clear dn;ference 1S
form scales well over the size of userset, as in Test 2 and Test 3,t"at concatenation Is order sensitive, whereas not, because a

increasing userset size from 25 to 50 only results in 1 millisecond’s String is order sensitive but a set is not. A more subtle difference

increment on runtime. Finally, experimental data in Test 4 and Test COMes from the property thatrequires the two sub-terms be satis-

5 indicates thaUTS can be solved quickly even for complicated  1ed by disjoint sets. For instancy } © {a} cannot be satisfied by

terms that are not in canonical form. any set. The usage of negation in regular expressions is similar to
Further improvements and optimizations can be made to our al- €gation in the algebra; in both cases, negation can be applied only

gorithms and prototypes; they are beyond the scope of this paper.t‘? an expression corresponds to a single element. In rggular expres-

Our goal here is to verify thay TS can be solved in reasonable ~ SION. the closure operatox fr -+) can be applied to arbitrary sub-

amount of time for complicated terms, even though the problem is €XPressions. Our algebra requires that repetition (using operator
NP-complete in general. can only be applied to unit terms. As we discussed in Section 2.4,

since the algebra is proposed for security policy specification, we
impose such restriction so as to clearly capture real-word security
5. DISCUSSIONS AND OPEN PROBLEMS requirements. If the algebrais used in areas other than security pol-

In this section we discuss a few small extensions to the alge- jcy specification, it is certainly possible to relax such restriction so
bra, the similarities and differences with regular expressions, and that the algebra can define a wider range of sets. The remaining bi-
expressive power limitations of the algebra. nary operators> andr1 have flavor of set intersection, which does

. not have counterparts in regular expressions.
5.1 Extensions to the Algebra Observe that drz)etermining(‘]J whethgr a string satisfies a regular ex-

In this paper, we have defined the basic operators in the algebrapression is inNL-complete, wher& L stands for Nondeterminis-
and examined their properties. We now discuss some additional tic Logarithmic-Space‘ and is containedkh On the other hand,
operators that could be added to the algebra as syntactic sugars. determining whether a userset satisfies a terfNB-complete,

As discussed in Section 2.4, SoD policies are monotonic, as areeven if the term uses only and® or only U and®. It appears
policies in McLean's formulation ofV-person policies [15]; our  that this increase in complexity is due to the unordered nature of
algebra supports both monotonic policies and pO“CieS that are Not sets. Checking a String against a regu|ar expression can be per-
monotonic. To express a monotonic policy that requires a task to formed from the beginning of a string to its end; on the other hand,

be performed by a userset that either satisfies a ¢eoncontains there is no such order in checking a set against a term in the algebra.
a subset that satisfies one can usép ® All*). As monotonic As a fundamental tool for defining sets of strings, regular expres-

policies may be quite common, we introduce a unary oper#or  sjon is used in many areas. Analogically, because our algebra is
as a syntactic sugar. That ig,¢ is defined to bé¢p © All™). about the fundamental concept of defining sets of sets, we conjec-

~ Besides monotonic policies, another type of policies mentioned ture that, besides expression of security policies, the algebra could
in Section 2.4 is policies stating that every user involved in a task pe used in other areas where set specification is desired.
must satisfy certain requirement and there need to be at least a cer-

tain number of users involved. Letbe a unit term that expresses 5 3  Limitations of the Algebra’s Expressive

the requirement. A policy that requir@sor more users that sat- Power

isfy ¢ can be expressed & ® ¢) © ¢1). To simplify the ex-

pression of these policies, we defipd" as a syntactic sugar for It is well-known that using regular expression, one cannot ex-

(¢ ® ¢) ® ¢T). In general "+ means that at leadt (k > 2) press languages that require counting to an unbounded number; for

users are required and every user involved must satisfy example, one cannot express all strings over the alph@hét}
Similar to the abovey” is a syntactic sugar for a term using op- that contain the same numberd@$ as ofb’s.

erator® to connectt unit termsg. For instanceAccountant?® is Similarly, the algebra as defined in Section 2.1 cannot express a

defined agAccountant ® Accountant ® Accountant). More policy that requires equal number of users whoraras those that

generally " states that exactly users are required and every user arer,. However, if we allow the application ef to non-unit terms

involved must satisfy. Using¢” rather thar(¢ ® - - - ® ¢) explic- and define it as follows:

itly states that all thé: sub-terms connected together ®yare the .
same. This makes the policy more succinct and easier to process. ot of PU(pRP)U(dRPpRO)L---



Term In CF? | Userset Sizg Runtime (ms)

1 (r1Nr2) @ (r1Urs) ® 7 rs @ 75 @ All) Yes 5 <1
2/ (mNr)@rs®(riUrs) ") ©(ra® (-r1)7))) | Yes 25 15
3 (i Nr)@rs@(riUrs)T) o (ra® (-r1)7))) | Yes 50 16
4 ((((r ®r2)m+(r3@r5)) @+(r1 Urs)) ® AlIT) No 15 16
5 (((r1 ﬂrg) ®rs®Al )®(TGHT1)® No 50 219

(r ©@ (-r1@ra)" ©ra) N (r2 U —rs)™))

Table 1: A table that shows the runtime of testing whether a userset satisfies a term.

then we can express the policy that requires equal number of users McLean [15] introduced a framework that includes various
who arer; as those that are, using the term mandatory access control models. These models differ in which
+ T 4 users are allowed to change the security levels. They form a
(r1Ar2)" @ ((r1 M =r2) @ (r2 M =r))™ @ (2 M =)™ boolean algebra. McLean also looked at the issu¥-gferson poli-
Even with the extension, there are sets of usersets that cannot beies, where a policy may allow multiple subjects acting together to
expressed. For example, it seems unlikely that one can express @erform some action. McLean adopted the monotonicity require-
policy that requires that the number of users who are member of mentin suchV-person policies.
r1 is the same as the square of the number of users whasare Several algebras have been proposed for combining security
Further discussions of expressive power and more general algebragolicies. These include the work by Bonatti et al. [5, 6], Wije-
are interesting future research topics and are beyond the scope ofekera and Jajodia [24], Pincus and Wing [17]. These algebras are

this paper. designed for purpose that are different from ours; therefore, they
are quite different from our algebra. Each element in their algebra
6. RELATED WORK is a policy that specifies what subjects are allowed to access which

. . ) resources, whereas each element in our algebra maps to a user.
The concept of SoD has long existed in the physical world, some- 114 two operators and® in our algebra are taken from the

times under the name “the two-man rule”, for example, in the bank- g tamily of role-based trust-management languages designed by
ing industry and the military. To our knowledge, in the information | j ot 51 [14]. In [14], the notion of manifold roles was introduced,
security literature the notion of SoD first appeared in Saltzer and \hich are roles that have usersets, rather than individual users, as
Schroeder [18] under the name “separation of privilege.” Clark ihair members. The two operatatsand® are used to define man-

and Wilson’s commercial security policy for integrity [7] identified ity roles. This paper differs in that we propose to combine these
SoD along with well-formed transactions as two major mechanisms . operators together with four other operatarsr, —, and -+

of fraud and error control_. Nash anq Poland [16] explained the_ o_Iif- (which are notinRT) in an algebra for specifying high-level secu-
ference between dynamic and static enforcement of SoD policies. rity policies. In addition, we also study the algebraic properties of

In the former, a user may perform any step in a sensitive task pro- \haqe gperators, the satisfaction problems, and the term satisfiabil-
vided that the user does not also perform another step on that datq,(y problem related to the algebra.

item. In the latter, users are constrained a-priori from performing
certain steps.
Sandhu [19, 20] presented Transaction Control Expressions, a7' SUMMARY
history-based mechanism for dynamically enforcing SoD policies. ~ While separation of duty policies are extremely important and
A transaction control expression associates each step in the transwidely used, they state only quantity requirements and cannot cap-
action with a role. By default, the requirement is such that each ture qualification requirements on users involved in the task. We
step must be performed by a different user. One can also specifyhave introduced a novel algebra that enables the specification of
that two steps must be performed by the same user. In Transactiorhigh-level policies that combine qualification requirements with
Control Expressions, user qualification requirements are associateduantity requirements motivated by separation of duty considera-
with individual steps in a transaction, rather than a transaction as ations. A high-level policy associates a task with a term in the alge-
whole. bra and requires that all sets of users that perform the task satisfy
There exists a wealth of literature [1, 2, 8, 10, 11, 12, 22, 23] the term. Specifying security policies at the task level has a number
on constraints in the context of RBAC. They either proposed and of advantages over the current approach of specifying such policies
classified new kinds of constraints [10, 22] or proposed new lan- at the individual step level. Our algebra has two unary and four
guages for specifying sophisticated constraints [1, 2, 8, 12, 23]. binary operators, and is expressive enough to specify a large num-
Most of these constraints are motivated by SoD and are variantsber of diverse policies. We have also studied algebraic properties
of role mutual exclusion constraints, which may declare two roles Of these operators and several computational problems related to
to be mutually exclusive so that no user can be a member of both the algebra, including determining whether a term is satisfiable at
roles. all, determining whether a term is satisfiable under a given config-
There has also been recent interest in static and dynamic con-uration, and determining whether a userset satisfies a term under a
straints to enforce separation of duty in workflow systems. Atluri given configuration. As our algebra is about the general concept of
and Huang [3] proposed an access control model for workflow en- sets of sets, we conjecture that it will prove to be useful in other
vironments, which supports temporal constraints. Bertino et al. [4] contexts as well.
proposed a language for specifying static and dynamic constraints
for separation of duty in role-based workflow systems. In these ACknOWIEdgement
works, security requirements are associated with individual steps This work is supported by NSF CNS-0448204 (CAREER: Access
in the workflows. Control Policy Verification Through Security Analysis And Insider



Threat Assessment), and by sponsors of CERIAS. We thank Ma-
hesh V. Tripunitara for helpful discussions. We also thank the
anonymous reviewers for their helpful comments.
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APPENDIX
A. PROOFS FOR THEOREMS IN SEC-
TION 2

Proof for Theorem 1 on Algebraic Properties

1. The operatorsl, M, ®, ® are commutative and associative.
This is straightforward from Definition 3.

. The operator! distributes over.
If a userselX satisfieq¢1U(¢p2M¢3)), then eitherX satisfies
¢1, or X satisfies botlp, and¢s. It follows that X satisfies
((¢1 L ¢2) M (1 U 3)).
If X satisfieq(¢1 U¢p2) M (1 U¢s)), thenX satisfieq ¢ LI
¢2) and(¢1 U ¢3). There are only two cases: (X) satisfies
¢1; and (2) X satisfies bothps and ¢3. In either case X
Satisfies(qﬁl LJ (¢2 M ¢3))
The operator distributes ovet.
If X satisfieq¢1 M (¢2 U ¢3)), thenX satisfies bothy; and
(¢2U¢s), which meansX satisfies eitheg, or ¢s. It follows
that X satisfieq(¢1 M é2) L (¢1 M @3)).
If X satisfies((¢1 M ¢2) U (¢1 M ¢3)), then either (1)X
satisfieg 1 M¢2) or (2) X satisfieg¢1 M ¢3). In both cases,
X satisfiesp:; furthermore, X satisfies eithetys or ¢3. It
follows that X satisfies(¢1 M (¢2 U ¢3)).

The operator distributes over..

If X satisfies(¢1 © (¢2 Ll ¢3)), then there exisK; and X»
such thatX; U X» = X, X; satisfies¢;, and X, satisfies
(¢2 U ¢3). By Definition 3, X satisfiesp, or satisfiesps. In
the former caseX satisfieg¢1 © ¢2), which implies thatX
satisfieg(¢1 ® ¢2) U (¢1 © ¢3)), as desired. The argument
is analogous ifX, satisfiesps but notes,.

3.



If X satisfied(¢1 © ¢2) U (1 © ¢3)), then eitherX satisfies
(1 ©¢2) or X satisfied p1 © ¢3). Without loss of generality,
assume thai satisfies(¢1 © ¢2), then there exisi, X»
such thatX; U X, = X, X, satisfies¢; and X, satisfies
¢2. Therefore X, satisfies(¢2 U ¢3), and consequentlyX
satisfied¢1 © (¢2 U ¢3)) as desired.

. The operator distributes over..

If X satisfies(¢1 ® (¢2 U ¢3)), X can be partitioned into
two disjoint setsX; and X, such thatX; satisfies¢, and
X, satisfiesps or ¢3. In this case, by definitionX satisfies
(p1®¢2) or (p1 @ ¢3), which meansX satisfieg(¢1 ® ¢2)U
(61 ® ¢3)).

For the other direction, iX satisfieq (¢1 ® ¢2) U (1 R3)),
it satisfies eithef¢p1 ® ¢2) or (¢1 ® ¢3). Without loss of
generality, assume thaf satisfies(¢1 ® ¢2). Then,X can
be partitioned into two disjoint sets; and X, such thatX;
satisfiesp; and X, satisfiesp,. By definition, X, satisfies
(¢2 U ¢3). Therefore X satisfieg 1 ® (p2 U ¢3)).

. No other ordered pair of operators have the distributive prop-

erty.

We show a counter example for each case. In the following,

Ur = {u|(u,r) € UR}.

(a) The operator> does not distribute over.
If X satisfies(¢p1 © (¢2 M ¢3)), then X also satisfies
(61 © ¢2) T (91 © ¢3)).
However, the other direction of implication does not
hold. Counter example: LéV,., = {ui,u2}, Ur, =
{u1}, andU,, = {u2}, then{u,,us} satisfies((r1 ®
ro) M (r1 ® r3)), but does not satisfir1 © (r2 Mr3)).
(b) The operator1 does not distribute ovep. Neither direc-
tion holds.
Counter example: Le¥/,, = U,, = {u1} andU,, =
Ur, = {uz2}, letgr = (r1 © r2), then{u;, uz } satisfies
(1M (r3 ®r4)), but does not satisfi(p1 Mr3) © (¢1 M
T'4)).
Counter example: Let,, = {ui,u2}, Ur, = {u1},
andU,, = {uz}, then{u,u} satisfies((r1 M r2) ©
(r1 Mr3)), but does not satisfyr, M (r2 © 73)).
The operatot! does not distribute ovep.
If X satisfies(¢1 U (¢2 © ¢3)), thenX satisfieq (¢ U
$2) © (61 U 63)).
However, the other direction of implication does not
hold. Counter example: Léf,, = {u1,u2}, U, = 0
andU,, = 0, then{u, uz} satisfies(r1 LUr2) ® (r1 U
r3)), but does not strictly satisfir: LI (r2 © r3)).

The operatot ] does not distribute ovep. Neither direc-
tion holds.

Counter example: Let,, = {u1,u2}, Ur, = 0 and
U’f's =0, then{ul, UQ} satisfies((rl LJ 7“2) [ (7“1 LJ 7’3))

, but does not satisfyr: Ll (r2 ® r3)).

Counter example: Let,, = {u1}, Ur, = 0 andU,, =
0, then{u, } satisfieqr:(r2®rs)), but does not satisfy
((7’1 U T’z) ® (7‘1 (] 7'3)).

(e) The operator does not distribute over.

If X satisfied¢1 ® (o2 M ¢3)), thenX satisfieq (¢1 ®
$2) M (¢1 ® $3)).

However, the other direction of implication does not
hold. Counter example: Ld¥,, = {ui,u2}, U, =
{u1} andU,, = {us2}, then{ui,us} satisfies((r; ®
ro) M (r1 ® r3)), but does not satisfyr1 ® (r2 Mr3)).

(c
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(f) The operator1 does not distribute oveb. Neither direc-
tion holds.
Counter example: Léf,., = {u1,u2}, Ur, = {u1}and
Ur, = {UQ}, then{ul, ’u,g} satisfies((m [l ’/‘2) ® (7“1 Il
r3)), but does not satisfyri ® (r2 Mr3)).
Counter example: LeV,, = U, = {u1} andU,, =
Ur4 = {UQ}, and Iet¢1 = (7’1 ® 7‘2), then {ul,uQ}
satisfies(¢1 M (rs ® r4)), but does not satisfy(¢: M
73) ® (¢1 Mra)).

(9) The operator> does not distribute over. Neither di-
rection holds.
Counter example: L&t = {u1,us}, Ur, = {uz2} and
U, = {us}, then{u, us, us, us} satisfieg (r1 ©r2) @
(r1 ®r3)), but does not satisfi€s1 © (r2 ® 73)).
Counter example: LeV,, = {ui}, Ur, = {u1} and
Ura = {uz}, then{uhuz} SatiSfiES(T1 ® (T2 [ 7“3)),
but does not satisf{(r1 © r2) ® (r1 © r3)).

(h) The operator does not distribute ovep.
If X satisfied¢1 ® (p2 © ¢3)), thenX satisfieq (¢1 ®
$2) © (61 ® ¢3)).
However, the other direction of implication does not
hold. Counter example: Ld¥,, = {ui,u2}, U, =
{u2} andU,, = {uw1}, then{ui, u2} satisfies((r; ®
r2) ® (r1 ® r3)), but does not satisfyr, ® (r2 © r3)).

6. (1 Mg2)* = (67 Ne3).
If a usersetX satisfies(¢; M ¢2)", then for everyu € X,
{u} satisfied ¢1M¢2) and thus satisfies: andg.. Hence X
satisfiesp]” andgy, which means thak satisfieg ¢ N7 ).
If X satisfies(¢; M ¢3), thenX satisfies bothy and ¢y .
For everyu € X, {u} satisfies both; and¢.. Hence, X
satisfieg(¢; M ¢2) ™.

7. DeMorgan’s Law:—(¢1Maa) = (=1 L=¢2), (1 Ug2) =
(m¢1 M —¢2)
The proof is straight forward by definition ef, 1 andL!.

B. PROOF FOR THEOREMS IN SEC-
TION 3

In the following proofs,(op, ¢) denotes: copies of¢ connected
together by operatosp and (op}_,7;) denotes(r1 op---op rx).
GivenR = {r1, -+ ,7m}, (opR) denotegri op - - op ).

B.1 Proof for Lemma 2, Lemma 3, and Theo-
rem 4

Proof for Lemma 2: TSAT with just role, —, 1, and LI is NP-
hard.

We reduce théNP-completeSAT problem toTSAT problem
of terms consisting of just role;, M, andU. Given a propositional
logic formulae, let {v1,--- ,v,} be the set of propositional vari-
ables that appear in Construct a unit termp by substituting every
occurrence ob; (¢ € [1,n]) in e with atomic termr;, every occur-
rence of-w; (i € [1, n]) with —r;, and replacing logicaBANDwith
M and logicalORwith LI. By Definition 3, a term withou®, ® and
* can be satisfied by singletons only.dfis satisfiable, then there
exists a configuratiofU, UR) and a user such that{«} satisfies
¢. We can then construct a truth assignmiEnim which v; is TRUE
if and only if (u,r;) € UR. Itis clear thate evaluates taf RUE
underT'. Similarly, if there exists a truth assignmeritsuch that
e evaluates t’RUEunderT, we can constructUR in which u is
a member ofr; if and only if v; is TRUEIn T'. In that case{u}



satisfiesp under(U, UR). Thereforeg is satisfiable if and only if
¢ is satisfiable.

Proof for Lemma 3: TSAT with just userset, M, U, and © is
NP-hard.

We reduce theNP-completeSET COVERING problem to the
TSAT problem of terms consisting of just sets of usérsl, and
®. In the set covering problem, we are given a finite Bet=
{u1, - ,un}, afamily F = {U,--- , U, } of subsets ot/, and
an integerk no larger thann, and we ask whether there dtesets
in family F' whose union idJ.

We view each element iy as a user. For every € [1,m]
we construct aternaﬁj =  {{wi} | wi € U;}; thatis,¢; =
{U’Jl} © {um} (ORRRNO} {UJT} WhereUJ - {uh y Ugoy =y Ujy }
Itis clear thatgy c?:_n only be sa\tﬁsfled by;. Finally, Wy construct
atermg = (. ( ;y )11 Zi{us})). Since( 2, {ui})
can be satisfied onIy by, U |s the only userset that could satisfy
@.

We now demonstrate thdtis satisfiable if and only if there are
no more thank sets in family 7" whose union idJ. On the one
hand, if ¢ is sat|§_fjab|§ then it must be satisfied by In this

case,U satisfies( ,( ;_¢:)), which means that there exibt

sptsUi, - -+, Uy, such that le U/ = U and eachU; satisfies

(I, ¢:). Sinceg; can be satisfied only by; € F', we have

U; € F foreveryj € [1,k|. The answer to th&ET COVERING
problem is thus ° y§s On the other hand, without loss of gener-
ality, assume that * 1 Ui = U We have, for anyi € [L, k],
UJsatf_sfles(;bL and thus satlsfle(s A ¢>LbTheref0re,U satisfies
(3(E Fet ®i))- SlngeU also satlsf|e$ 7 {ui}), U satisfies

(C iz 2y {uad)).

Proof for Theorem 4: TSAT is NP-complete.
Since we have already proved that certain subcas@$SAf is

Let X be a userset that satisfigs © ¢2). There existX; and
X, such thatX; satisfiesp;, X satisfiesps, and X, U X, =
X. By definition of characteristic set, there existe C(¢1)
andcy € C(¢2) such thafX,| = ¢; and|X2| = c2. Hence,
mazx(ci,c2) < |X| < e+ ca.

Givenc; € C(¢1) andez € C(¢2), there existX; and X,
such thatX; satisfiesp: under(Ui, UR1), X. satisfiesps
under(Usz, UR2), | X1| = ¢1 and|X2| = c2. For any integer
k € [maz(c1, c2), c1 +c2], we may name users in such a way
that|X1 N XQ‘ =c1 4+ co — k. InthiscaseX = X; U X,
satisfieg¢1 ©¢2) under(U; UU2, UR U UR3) and| X | = k.

e C(pr1®¢2) ={c1+ecz|c1 €C(g1) N 2 €C(¢2)}
A usersetX satisfies(¢p1 ® ¢2) if and only if there existX;
and X, such thatX; U X> = X, X1 N X2 = 0 and X, X>
satisfy¢1, ¢2 respectively. By definition of characteristic set,
|X1| € C(¢1) and| X2| € C(¢2). Therefore| X | = (| X1|+
|X2|) € {c14+ca|c1 €C(¢d1) N c2 € Clep2) }.
Onthe other hand, given any € C(¢1) andez € C(¢2), by
definition of characteristic number, there exAst and X, that
satisfy ¢1 and ¢, under(U;, UR:) and (U1, UR:) respec-
tively, such thai X1| = ¢1 and|X2| = c2. Name the users
in such a way that; N Xo> = (). We haveX = X; U X»
satisfies(¢1 ® ¢2) under(U; U Uz, UR1 U UR3), where
| X| = [Xa] + | Xo| =1 + ca.

B.3 Proof that computing the characteristic
set takes quadratic time

A straightforward algorithm to computé(¢) is to follow The-

orem 5. We now show that this can be done in time quadratic to

the size ofp, denoted by¢|, which is defined to be the number of
occurrences of atomic terms ¢n Using induction on the structure
of ¢, it is easy to show thaip| is equal to the number of binary

NP-hard, to prove the theorem, we just need to show that the prob- gperators in plus 1. We need the following lemma to prove this.

lemisinNP.

To prove that the problem is INP, we need to show that there
exists a nondeterministic Turing machihéthat is able to generate
a usersefX and a configuratiofU, UR) and then check whether
X satisfiesp under(U, UR) in polynomial time. In Lemma 15,
we show that checking whether a userset satisfies a term under
given configuration is ifNP. In other words, one can design a
nondeterministic Turing machin& that checks whether a userset
satisfies a term in polynomial time. Her&/ is the same asv
except thatM nondeterministically generates userdetand con-
figuration (U, UR) at the very beginning. It is obvious that the
additional stepg// taken can be done in polynomial time.

B.2 Proof for Theorem 5

e C(All) = C(r) = {1} is straightforward.

e ThatC(¢1 U ¢2) = C(¢1) U C(¢2) follows from the defini-
tion of satisfaction (Definition 3).

e ThatC(¢1 M¢2) = C(¢p1) N C(¢2) follows from the defini-
tion of satisfaction (Definition 3).

o C(¢T) ={i|1i€[1,00)}: Itfollows from the computation
of C(All), C(r), C(é1 U ¢2), C(p1 M ¢2) that the character-
istic set of any unit term free of usersets and negations is
{1}. Given a configuratioU, UR) and a singletor{w }
such that{u, } satisfiesp, we can make: — 1 copies ofu;
for anyn > 2 so that then users together satisfigs™. In
other wordsg™ may be satisfied by users for any: > 1.

o C(p1 O o) ={i|Ter € Cd1) Tea € Ceh)
[maz(ci,c2) <i<er+e2}

Lemma 9. C(¢) either is equal to a subset ¢fi, 2, --- | |#|} or
W U {i|i € [|§|,0)}, whereW is a subset of1,2,--- ,|¢|}.

PrRoOOF Proof by induction on the structure of temn
Based case: Wheg is a unit term,C'(¢) = {1} is a subset of

a{l 2,--+,|¢|}. Otherwise, when is in the form of¢;, where

o1 is a unit term, from Theorem 5(¢) = {i|i € [1,00)} =
W U {ili € [|¢],00)}, whereW = {1,2,- - ,[@]}.

Induction case: Whegb is in the form of (¢1 op ¢2), assume
that the lemma holds fop; and¢,. Let WW; denote a subset of
{1,2,---,|¢1]} andW> denote a subset dfl,2,--- ,|¢2|}. We
have the following three cases:

Case 1:.C(¢1) = W1 andC(¢2) = Wa. Since|¢| = |o1]| +
|¢p2], it follows from Theorem 5 tha€'(¢) = W, whereW is a
subsetof1,2,---,|¢|}.

Case 2: Exactly one d@'(¢1) andC/(¢2) is an infinite set. With-
out loss of generality, assume th@{¢:) = W1 andC(¢2) =
WaU{i | i € [|¢2],00)}. We computel(¢) accordlng toop :

e op =L C(¢) = C(1) UC(d2) = W1 UWo U {i]i €
(|¢2],00)} = Wi UWo Ui | i € [lga], [} U{i | i€
[|¢], 00)}, inwhichW UWLU{i | ¢ € [|p2], |¢])} is a subset
of {1,2,--- |4}

e op =1 C(¢) = C(¢1) N C(¢2) which is a subset o7 .

e op =©: C(¢) ={i|Jex € W1 3ez € Wa [max(ci,c2) <
i < it e} Ui |i € [mas(min(Wh), |gal), 00)} = {i |
Je1 € Wi 3ee € Wa [max(ci,e2) < i< e +e2l}U{i]|
i € [maz(min(Wh), |p2]), 6]} U{i| i € [|¢],00)}. Note
that{i | 3c1 € W1 Je2 € Wa [maz(ci,c2) < i < c1 +



2]} U {i | i € [max(min(Wy),|¢p2]),|4|]} is a subset of
{1727 T |¢‘}

e op = : C(¢) = {Cl +C2‘C1 c Wq /\(CQ € WaVes €
H¢2|7OO))} = {01 + C2|Cl e Wi ANea € Wz} U {Z‘Z S
[min(Wh) + |¢2|,00)} = {c1 + calcs € Wi Acz € Wal U
{ili € [min(Wh) + |¢2|, ¢} U {ili € [[¢],00)}. Note
that{C1 =+ 02‘61 e Wi ANeg € WQ} U {’L|Z S [min(Wl) +
|p2], |9]} is a subset of1,2,-- -, |¢|}.

Case 3: BotlC'(¢1) andC'(¢2) are infinite sets, wher€(¢,) =

Wi U {ili € [|¢1],00)} andC(¢2) = Wa U {ili € [[¢2],00)}.
The argument is similar to Case 2.

GivenC(¢1) andC/(¢2), Lemma 9 states thai(¢;) contains at
most|¢;| (i € {1,2}) distinct numbers plus a consecutive numer-

ical range, where the range may be treated as a unit during com-gring problem is “yes”.

putation. Therefore, calculating(¢:1 op ¢2) takes time at most
linear in|¢1| + |¢2|. Thus, for each operator ig, the algorithm
takes timeO(|¢|); therefore, it takes time at most quadratiddr
to calculateC'(¢). Because is satisfiable if and only i€ () # 0,
it follows that one can decide whethgiis satisfiable or not in time

O(lg]*).

C. PROOFS FOR THEOREMS
TION 4

In the following proofs,(op,,¢) denotes: copies of¢ connected
together by operatosp and (op}_,7;) denotes(ry op---op ry).
GivenR = {r1, -+ ,7m}, (opR) denotegri op- - - op ).

C.1 The five intractability subcases of UTS

IN SEC-

Lemma 10. UTS (U, ®) is NP-hard.

PROOF We use a reduction from tiNP-completeSET Cov-
ERING problem [9]. In the set covering problem, we are given
a finite setS = {ei,---,en}, family of S’s subsetsFF =
{S1, -+ ,Sm}, and an integek < m, and we ask whether there
are k sets in family FF whose union isS. Given such an in-
stance, our reduction maps each elemenfito a user and to
a role. We construct a configuratiof/, UR) such thatU =
{ur, - qug andij = {(ui,m) | ¢ € [1,n]}, and a term
¢ = ( O 2, R))), whereR; is a set of roles such that
r; € R;ifandonly ife; € S;.

We now demonstrate thdf satisfies¢ under (U, UR) if and
only if there exist: sets in familyF’ whose union isS. On the one
hand, ifU§atisfies¢, by definition,U hask subs|§tsUl,J , Uk
such that fﬁ U; = U and everyU; satisfies( [-,( Ri)).
Upsatisfies( [“, (" Ry)) if and only if U; satisfies a certain
( Rs,) yherez; € [1,m]. From the construction oR.,, Us
g\tisfies( R;,) if and gﬂy ifUs = {ua | ea € Sz, }. Since
¥ U = U,wehave ¥, S,, = S. The answer to the set
covering problem is “yes”. On the other hang kifsubsets in”
cover S, without loss of generality, assume thaf:1 S;=S5.1In
this case, we dlvgéf into k setsUq, - - & such thatU; = {u; |
ej € S;}. Since™ ¥ S; = S, we have ¥  U; = U. Further-
more, sincel/; = {u] e; € Si}, from the construction oR;,
we haveU; sq&sﬂqg: Ry) for everyi € [1,k]. Therefore,U

satisfiesp = (. ( 2, ( R:)))
Lemma 11. UTS (M, ©) is NP-hard.

PROOF We use a reduction from tiNP-completeSET Cov-
ERING problem [9]. GivenS = {ei,---,en}, a family of S’s
subsets” = {51, -+, Sm}, and an integek < m, our reduction

maps each elemert; € S to a roler; and each subsef; € F

to a useru;. We construct a configuratiofl/, UR) such that
U={uyg - ,um} gndUR = {(14,7;) | e; € Si}, and aterm
¢=((C (AT Zyr) O, Al).

We now demonstrate thaf satisfies¢ under (U, UR) if and
only if there existk sets in faminFjvhose union isS. On one
hand, assumé& satisfiesp. Since( . All) can be satisfied by
any norgmpty userset with no more thanusers,U always sat-
isfies (, All) and it satisfiesp if apd only |f‘t_lj|ere is a sub-
setU’ of Ujuch thatU’ satisfies((  , Al) 1 ([, 7). U’
sgjlsfylng . All) indicates tha{U’| < k, while U’ satisfying

nri) |nd|cates that users iy’ together have membership
of all roles in{ry,--- ,r,}. Without loss of generality, suppose
U ={ut, - ,us}, wheret < k. As (u;,r;) € URifand only if
ej € Si, theunionof Sy, --- ,S¢}isS. The answer to the set cov-
On the other handyifsubsets inf” cover
S, without loss of generality, assume thaf_, S; = S. From
the construction ofUR, usersuy, - - - , uj together have member-

ship of gll roles in{ry, - - ,rn}. In this case{ -, up} sat-
isfies( [, 7i). Also, x psatisfies( 4 All). Hence,
{uy, - ,uk}satlsfles(( AII) n( 7). ( ,, All)isalso

satisfied byU. ThereforeU satisfiesp.

Lemma 12. UTS (©, ®) is NP-hard.

PROOF We use a reduction from tiNP-completeDOMATIC
NUMBER problem [9]. Given a grapt¥(V, E), the Domatic Num-
ber problem asks wheth&f can be partitioned inté disjoint non-
empty setsVi, Va, - - - , Vi, such that eacl; is a dominating set
for G. V' is a dominating set fo&@ = (V, E) if for every nodeu
inV — V', there is a node in V' such tha{u,v) € E.

Given a graphG = (V,E) and a thresholdk, let U =
{u1,u2, -+ ,un}andR = {ry,r2, -+, rs}, wheren is the num-
ber of nodes irl/. Each user i/ corresponds to a node @, and

v(u;) denotes the node corresponding twaele = {(ui,7j) |
i=j or (u(u),v(u;)) € E}. Letg = ( (" 1, 74)).

A dominating set irG corresponds to a set of users that together
have membership of all theroles.U satisfiesp under(U, UR) if
and only if U can be divided intdk pairwise disjoint sets, each
of which has role membership @f,r2,--- ,r,. Therefore, the
answer to the Domatic Number problem is “yes” if and onlyJif
satisfiesp under(U, UR).

Lemma 13. UTS (®, L) is NP-hard.

PROOF We use a reduction from tidP-completeSET PACK-
ING problem [9], which asks, given a finite s&t= {e1,--- , e, },
a family of S’s subsetsF’ = {S1,---,Sm}, and an integek,
whether there aré subsets in familyF' such that thesé& sets
are pairwise disjoint. Without loss of generality, we assume that
S; € Sjif ¢ # 3. (If S; C S5, one can remové; without affect-
ing the answer.) LetV = {uo,u1, - ,un}, R = {r1, -+ ,mn}
and UR = {(us,m) | 1 < ¢ < n}. In particular,uo is a
user thayis l&ot asgjpned to any role. We then construct a term
6=y 0 R ) © Granenpn), whereRyg= {r, |
ei € S5} andgnonempry = (Al (A Al U --- LI (. All)).

We show thatU satisfiesy under(U, UR) if and only if there
arek pairwise disjoint sets in family. Asme only member of;
is u;, the only userset that satisfigs = FR] isU; = {u; |
e; € S;}. Hence, a userseX satisfiesp’ = (* [, ¢;) if and only
if X equals to somé/;.

Without loss of generality, assume thg, - - - , S;, arek pair-
wise disjoint sets. Therd/1, - - - , Uy, arek pairwise disjoint sets of
users.U; satisfiesp;, and thus satisfies’. Similarly, we havel;
satisfies¢’ for everyi from 1 to k. Furthermore, sinceo ¢ U;



forany: € [1,k], we havesl. U; Cc U. Hence, U can be di-
vided muétwo nonempty SKPSG& Ui ndU’ = F LU
such that f U; satisfieq i ( R;) ) andU/ satisfies
Pronempty- In other words[J satlsfles;s

On the other hand, supposgsatisfiesp. Then,U has a strict
subset’ with uo ¢ U:, suchthat/’ can be divided int& pairwise
disjoint setd/s, - - - , Uy, such that each’; satisfiesp’. In order to
satisfy¢’, U; must satisfy a certaip,, and hence be equivalent to
U.,, wherea; € [1,m]. The assumption thdt, - - - , Uy, are pair-
wise disjoint indicates thdf,, , - - - , Uq, are also pairwise disjoint.
Therefore, their corresponding séfg, , - - - , S,, are pairwise dis-
joint. The answer to the Set Packing problem is “yes”.

Lemma 14. UTS (M, ®) is NP-hard.

PrROOF We use a reduction from the NP-compl&eTt Cov-
ERING problem, which asks, given a family = {S1,--- , S5 } of
subsets of a finite s&t and an integek no larger thann, whether
there arek sets in familyF’ whose union isS.

Given S = {ei,---,en} and a family of S’s subsets
F = {S1,--,S»}, let U = {ui,u2, - ,um}, R =
{ri,ro, - 7rn}lﬁnd UR = {(uNr]) | e; € Si}. Leto =
(@l me v Al Y@ (0, All)). We now demon-

strate thatU satisfies¢ under (U, UR) if and only if there are
k sets in familyF" whose union isS. Without loss of generality,
assume that < m. N

Assume thaty satisfiesp. Since( . All) can be satisfied
by any userset withn — k usersl/ satlsfles;N and only if there is
a sizek subseU’ of U that satisfiesr; ® ~,_, All  for every
i from 1 ton. This means that users Ui’ together have member-
ship of all roles in{r1,- -+ ,rn}. Supposé/’ = {ua,, -, Ua, },
wherea; € [1,m]. As (u;,r;) € URifand only ife; € S;, the
union of {Sa,,---, S, } is S. The answer to the Set Covering
problem is “yes”.
SOn the other hand, without loss of generality, assume that

. Si = S. From the construction o/R, usersu, - - - , uz to-
gether have mqgbershipof, - - -, 7. In this case{u1,~ Uk}
satisfiesr; ®  ,_; All  for everyi from 1 ton. Sincek < m,

{u1,- - ,ur} is a strict subset o/. ThereforeU can be divided
into two nonempty subsefu, - -, ux} and UIq {ur, - ,ur}

such that{us, - , uy.} satisfigs( Iy i@ Al )and
U — {u1,- - ,ux} satisfieq _ All). In other words[J satis-
fies¢.

C.2 Proofthat UTSisin NP

Lemma 15. UTS (-

PROOF To determine whether a userskt satisfies a termp
under a configuratiofU, UR), we first compute the syntax trde
of ¢. When constructing”, an 1CF term (i.e., a term of the form
¢ or ¢, whereg is a unit term, see Deflnltlon 7) is treated as a
unit and is not further decomposed. In other words, the leaves in
T correspond to sub-terms @fthat are 1CF terms and the inner

UM, 0,®) isinNP.

C.3 The tractable cases

Lemma 16. UTS for 4CF terms is inP.

PrROOF Givena4CFtermp = P ® - -- ® P,, where for each
ksuchthatl < k < n, Py is a 3CF term of the formps,1 ® ¢x,2 ®

- ® ¢r,m,, and eachpy ; is an 1CF term. Let, ; be the base
unit term ingy ;. Let T, be the multiset of base unit terms i,
that iS,Tk = {tk,l, tkyz, <. ,tk,mk}, and|Tk| = Mg.

Given a userseX = {u1, - ,u,} and configuratioqU, UR),
we present an algorithm that determines whetkiesatisfiesp un-
der(U, UR).

Step 1The first step checks that eah is satisfied by some subset
of X. For eachk such thatl < k& < n, do the following. Con-
struct a bipartite graplt*( X, T ), in which one partition consists
of users inX and the other consists of all thg ;'s in T; and there
is an edge between € X andt ; if and only if {u} satisfies
tr,;. Compute a maximal matching of the gra@ti X, 7%), if the
matching has size less tham, returns “no”, as this means that
does not contain a subset that satisfiegsthus X does not satisfy
0.

Step 2The second step checks that each useKioan be “con-
sumed” by some unit term igp. Let G(A, B) denote the bipartite
graph in which one partitionA4, consists of users iX, and the
other partition,B, consists of all they, ;'sin Ty UT> U - - - U T,.
Furthermore, for any unit termthat occurs ag™ in ¢, we make
sure thatB has at leastX | copies oft, by adding additional copies
of ¢t if necessary. There is an edge betwaen A andt € B if and
only if {u} satisfies. Compute a maximal matching of the graph
G(X,T), if the matching has size less thgX|, returns “no”.

Step 3Return “yes”.

It is not difficult to see that if the algorithm returns “no”, then
X does not satisfyp. We now show that if the algorithm returns
“yes”, then X satisfiesp. If the algorithm returns “yes”, then for
eachk, the graphG(X, T}) has a matching of sizew; let X, be
the set of users involved in the matching, th€p satisfiesPs. Let
X' =X;UXaU---UX,. If X’ = X, then clearlyX satisfies
¢. If X' C X, then find a user in X \ X', and do the following:
Find the termt that is matched with: in the maximal matching
computed in step 2. Such a term must exist, since the matching has
size|X|. Without loss of generality, assume thieppears inP;,
andX; contains a usep that is matched with; then changeX; by
replacingw with u. Clearly, the newX; still satisfiesP;. Compute
X’ again, and ifX’ C X, find another user i’X \ X’ and repeat
the above process. Note th&t will grow if w appears in some
other X. Also observe that, the newly added matching between
andt will never be removed again in future, because no other user
is matched witht in the maximal matching computed in step 2; as a
result,u will always remain inX’. Therefore, after each step, one
new user will be added t&” and WI|| never be removed. After at
most| X | steps, we will haveY’ =

nodes correspond to binary operators connecting these sub-terms.

If X satisfiesp, then for each node in the tree, there exists a subset
of X that satisfies the term rooted at that node, and the root of
T corresponds to the séf. After these subsets are guessed and
labeled with each node, verifying that they indeed satisfy the terms
can be done efficiently. Verifying that a userset satisfies a 1CF
term can be done efficiently. (See Proof of Theorem 8.) When the
two children of a node are verified, checking that node is labeled
correctly can also be done efficiently. Therefore, the problem is in
NP.



