
Comparing the Expressive Power of Access Control
Models

Mahesh V. Tripunitara
tripunit@cerias.purdue.edu

Ninghui Li
ninghui@cs.purdue.edu

Center for Education and Research in Information Assurance and Security
and Department of Computer Sciences

Purdue University
656 Oval Drive, West Lafayette, IN 47907

ABSTRACT
Comparing the expressive power of access control models is rec-
ognized as a fundamental problem in computer security. Such
comparisons are generally based on simulations between different
access control schemes. However, the definitions for simulations
that are used in the literature make it impossible to put results and
claims about the expressive power of access control models into
a single context and to compare such models to one another in a
meaningful way. We propose a theory for comparing the expres-
sive power of access control models. We perceive access control
systems as state-transition systems and require simulations to pre-
serve security properties. We discuss the rationale behind such a
theory, apply the theory to reexamine some existing work on the ex-
pressive power of access control models in the literature and present
three results. We show that: (1) RBAC with a particular administra-
tive model from the literature (ARBAC97) is limited in its expres-
sive power; (2) ATAM (Augmented Typed Access Matrix) is more
expressive than TAM (Typed Access Matrix), thereby solving an
open problem posed in the literature; and (3) a trust-management
language is at least as expressive as RBAC with a particular admin-
istrative model (the URA97 component of ARBAC97).

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection; D.4.6 [Operating Systems]: Security and
Protection — Access Controls

General Terms
Security, Theory, Verification

Keywords
Expressive Power, Reduction, State-Matching Reduction, Role-Based
Access Control, Discretionary Access Control, Typed Access Ma-
trix, Augmented Typed Access Matrix

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’04,October 25-29, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-961-6/04/0010 ...$5.00.

1. INTRODUCTION
An access control system enforces a policy on who may access

what resources and in what manner. Policies are generally ex-
pressed in terms of the current state of the system, and states that
may result from prospective changes (e.g., “Alice should always
have read access to a particular file,f ”). When an access con-
trol system is perceived as a state-transition system, it consists of a
set of states, rules on how state-transitions may occur and a set of
properties or queries that are of interest in a given state (e.g., “Does
Alice have read access to a particular file,f?”) Policies may then
be expressed in terms of these components, and such policies may
be verified to hold notwithstanding the fact that state-transitions
occur.

An access control system is an instance of an access control
scheme: a scheme specifies the types of state-transition rules that
may be specified in a system based on that scheme. A set of access
control schemes is an access control model. An example of an ac-
cess control model is the access matrix model [5]. An example of
a scheme based on the access matrix model is the HRU scheme [6]
which specifies that state-transition rules are commands of a par-
ticular form. A specific set of HRU commands together with a start
state is an example of an access control system. The expressive
power of an access control model captures the notion of whether
different policies can be represented in systems based on schemes
from that model.

Comparing the expressive power of access control models is rec-
ognized as a fundamental problem in information security and is
studied extensively in the literature [1, 3, 4, 15, 19, 16, 18]. The
expressive power of a model is tied to the expressive power of the
schemes from the model. In comparing schemes based on expres-
sive power, we ask what types of policies can be represented by
systems based on a scheme. If all policies that can be represented
in schemeB can be represented in schemeA, then schemeA is at
least as expressive as schemeB.

A common methodology used for comparing access control mod-
els in previous work issimulation. When a schemeA is simulated
in a schemeB, each system inA is mapped to a corresponding sys-
tem inB. If every scheme in one model can be simulated by some
scheme in another model, then the latter model is considered to be
at least as expressive as the former. Furthermore, if there exists a
scheme in the latter model that cannot be simulated by any scheme
in the former, then the latter model is strictly more expressive than
the former. Different definitions for simulations are used in the lit-
erature on comparing access control models. We identify two axes
along which these definitions differ.

• The first axis is whether a simulation is required to preserve
safety properties. In the comparison of different schemes
based on the access matrix model [1, 4, 16, 18], the preser-
vation of safety properties is required. If a schemeA is sim-
ulated in a schemeB, then a system in schemeA reaches
an unsafe state if and only if the image of the system under
the simulation (which is a system in schemeB) reaches an
unsafe state.

On the other hand, the preservation of safety properties is
not required in the simulations used for comparing MAC
(Mandatory Access Control), DAC (Discretionary Access Con-
trol), and RBAC (Role-Based Access Control) [15, 19, 13].
Nor is it required in the simulations used for the compar-
ison of Access Control Lists (ACL), Capabilities, and Trust
Management (TM) systems [3]. In these comparisons, the re-
quirement for a simulation ofA inB is that it should be pos-
sible to use an implementation of the schemeB to implement
the schemeA. We call this theimplementation paradigmof
simulations.

• The second axis is whether to restrict the number of state-
transitions that the simulating scheme needs to make in or-
der to simulate one state-transition in the scheme being sim-
ulated. Chander et al. [3] define the notions of strong and
weak simulations. A strong simulation ofA in B requires
thatB makes one state-transition whenA makes one state-
transition. A weak simulation requires thatB makes a
bounded (by a constant) number of state-transitions to sim-
ulate one state-transition inA. A main result in [3] is that
a specific TM scheme considered there is more expressive
than ACL because there exists no (strong or weak) simula-
tion of the TM scheme in ACL. The proof is based on the
observation that an unbounded (but still finite) number of
state-transitions in ACL are required to simulate one state-
transition in the TM scheme.

On the other hand, an unbounded number of state-transitions
is allowed by Sandhu and Ganta [18]. They use a simula-
tion that involves an unbounded number of state-transitions
to prove that ATAM (Augmented Typed Access Matrix) is
equivalent in expressive power to TAM (Typed Access Ma-
trix).

Although significant progress has been made in comparing ac-
cess control models, this current state of art is unsatisfactory for
the following reasons. First, different definitions of simulations
make it impossible to put different results and claims about ex-
pressive power of access control models into a single context. For
example, the result that RBAC is at least as expressive as DAC [15,
13] is qualitatively different from the result that TAM is at least
as expressive as ATAM [18], as the former does not require the
preservation of safety properties. These results are again quali-
tatively different from the result that ACL is less expressive than
Trust Management [3], as the latter requires a bounded number of
state-transitions in simulations.

Second, some definitions of simulations that are used in the lit-
erature are too weak to distinguish access control models from one
another in a meaningful way. Sandhu et al. [13, 15, 19] show that
various forms of DAC (including ATAM, in which simple safety
is undecidable) can be simulated in RBAC, using the notion of
simulations derived from the implementation paradigm. We show
in [20] that using the same notion of simulations, RBAC can be
simulated in strict DAC, one of the most basic forms of DAC in
which simple safety is trivially decidable. This suggests that us-
ing such a notion of simulations, it is likely that one can show that

all access control models have the same expressive power. Thus,
this notion of simulations is not useful in differentiating between
models based on expressive power.

Finally, the rationale for some choices made in existing defini-
tions of simulations is often not clearly stated and justified. It is
unclear why certain requirements are made or not made for sim-
ulations when comparing the expressive power of access control
models. For instance, when a simulation involves an unbounded
number of state-transitions, Ganta [4] considers this to be a “weak”
simulation, while Chander et al. [3] do not consider this to be a
simulation at all.

In this paper, we build on existing work and seek to construct
uniform bases for comparing access control models. To determine
the requirements on simulations in a systematic and justifiable man-
ner, we start from the rationales and intuitions underlying different
definitions for simulations. Our approach is to first identify the de-
sirable and intuitive properties one would like simulations to have
and then come up with conditions on simulations that are both suf-
ficient and necessary to satisfy those properties. Informally, what
is desired is that when one scheme can represent all types of poli-
cies that another can, then the former is deemed to be at least as
expressive as the latter. This observation is made by Ganta [4] as
well.

Our theory is based on definitions of simulations that preserve
security properties. Examples of such security properties are avail-
ability, mutual exclusion and bounded safety. Intuitively, such se-
curity properties are the sorts of policies one would want to repre-
sent in an access control system.Security analysisis used to verify
that desired security properties are indeed maintained across state-
transitions in an access control system. It was introduced by Li et
al. [11], and generalizes the notion of safety analysis [6]. In this
paper, we introduce compositional security analysis, which gener-
alizes security analysis to consider logical combinations of queries
in security analysis.

We introduce two notions of simulations calledstate-matching
reductionsandreductions. We show that state-matching reductions
are necessary and sufficient for preserving compositional security
properties and that reductions are necessary and sufficient for pre-
serving security properties. A state-matching reduction reduces the
compositional security analysis problem in one scheme to that in
another scheme. A reduction reduces the security analysis problem
in one scheme to that in another scheme.

To summarize, the contributions of this paper are as follows.

• We introduce a theory for comparing access control models
based on the notions of state-matching reductions and reduc-
tions, together with detailed justifications for the design de-
cisions.

• We analyze the deficiency of using the implementation paradigm
to compare access control models and show that it leads to a
weak notion of simulations and cannot be used to differenti-
ate access control models from one another based on expres-
sive power.

• We apply our theory in three cases. We show that:

– There exists a reduction, but no state-matching reduction
from Strict DAC with Change of Ownership (SDCO) to RBAC
with ARBAC97 [17] as the administrative model. To our
knowledge, this is the first evidence of the limitation of the
expressive power of RBAC in comparison to DAC. RBAC
has been compared to various forms of DAC, including SDCO,
in the literature [15, 19].

– There exists a state-matching reduction from RBAC with
an administrative model that is a component of ARBAC97
[17] to RT [8, 9], a trust-management language.

– There exists no state-matching reduction from ATAM to
TAM. This solves an open problem stated by Sandhu and
Ganta [18] by formalizing the benefit of the ability to check
for the absence of rights in addition to the ability to check for
the presence of rights.

The rest of this paper is organized as follows. We present our
theory for comparing access control models in Section 2. In Sec-
tion 3, we analyze the implementation paradigm for simulations.
In Section 4.1, we discuss comparisons of DAC to RBAC from the
literature. In the rest of Section 4, we apply our theory to com-
pare the expressive power of schemes in three cases. We conclude
with Section 5. Proofs and precise characterizations of schemes not
included in the paper appear in [20].

2. COMPARISONS BASED ON SECURITY
ANALYSIS

A requirement used in the literature for simulations is the preser-
vation of safety properties. Indeed, this is the only requirement
from simulations in [1, 16, 18]. If a simulation of schemeA in
schemeB satisfies this requirement, then a system inA reaches an
unsafe state if and only if the system’s mapping inB reaches an un-
safe state. In other words, the result of safety analysis is preserved
by the simulation.

Safety analysis, i.e., determining whether an access control sys-
tem can reach a state in which an unsafe access is allowed, was first
formalized by Harrison et al. [6] in the context of the well-known
access matrix model [5, 7]. In the HRU scheme [6], a protection
system has a finite set of rights and a finite set of commands. A
state of a protection system is an access control matrix, with rows
corresponding to subjects, and columns corresponding to objects;
each cell in the matrix is a set of rights. A command takes the
form of “if the given conditions hold in the current state, execute a
sequence of primitive operations.” Each condition tests whether a
right exists in a cell in the matrix. There are six kinds of primitive
operations: enter a right into a specific cell in the matrix, delete a
right from a cell in the matrix, create a new subject, create a new
object, destroy an existing subject, and destroy an existing object.
The following is an example command that allows the owner of a
file to grant the read right to another user.

command grantRead(u1,u2,f)
if ‘own’ in (u1,f)
then enter ‘read’ into (u2,f)

end

In the example,u1, u2 andf are formal parameters to the com-
mand. They are instantiated by objects (or subjects) when the com-
mand is executed. In [6], Harrison et al. prove that in the HRU
scheme, the safety question is undecidable, by showing that any
Turing machine can be simulated by a protection system.

Treating the preservation of safety properties as the sole require-
ment of simulations is based on the implicit assumption that safety
is theonly interesting property in access control schemes, an as-
sumption that is not valid. When originally introduced in [6], safety
was described as just one class of queries one can consider. Re-
cently, Li et al. [11] introduced the notion of security analysis,
which generalizes safety to other properties such as simple safety,
bounded safety, simple availability, mutual exclusion and contain-
ment.

In this section, we present a theory for comparing access control
models based on the preservation of security properties.

2.1 Access Control Schemes and Security Anal-
ysis

Definition 1. (Access Control Scheme) An access control
scheme is a state-transition system〈Γ, Q,`,Ψ〉, in which Γ is a
set of states,Q is a set of queries,̀ : Γ × Q → {true, false}
is called the entailment relation, andΨ is a set of state-transition
rules.

A state, γ ∈ Γ, contains all the information necessary for making
access control decisions at a given time. Theentailment relation,
`, determines whether aqueryis true or not in a given state. When
a query,q ∈ Q, arises from an access request,γ ` q means that the
access requestq is allowed in the stateγ, andγ 6` q means thatq is
not allowed. Some access control schemes also allow queries other
than those corresponding to a specific request, e.g., whether every
subject that has access to a resource is an employee of the organi-
zation. Such queries can be useful for understanding the properties
of complex access control systems.

A state-transition rule, ψ ∈ Ψ, determines how the access con-
trol system changes state. More precisely,ψ defines a binary rela-
tion (denoted by7→ψ) on Γ. Givenγ, γ1 ∈ Γ, we writeγ 7→ψ γ1

if the change of state fromγ to γ1 is allowed byψ, andγ
∗

7→ψ γ1 if
a sequence of zero or more allowed changes leads fromγ to γ1. In
other words,

∗

7→ψ is the transitive closure of7→ψ. If γ
∗

7→ψ γ1, we
say thatγ1 isψ-reachablefrom γ, or simplyγ1 is reachable, when
γ andψ are clear from the context.

An access control modelis a set of access control schemes. An
access control systemin an access control scheme〈Γ, Q,`,Ψ〉 is
given by a pair(γ, ψ), whereγ ∈ Γ is the current state of the sys-
tem andψ ∈ Ψ is the state-transition rule that governs the system’s
state changes.

Similar definitions for access control schemes appear in [1, 3];
our definition from above appears also in [10], and is different from
the definitions in [1, 3] in the following two respects. First, our def-
inition is more abstract in that it does not refer to subjects, objects,
and rights and that the details of a state-transition rule are not speci-
fied. We find such an abstract definition more suitable to capture the
notion of expressive power especially when the models or schemes
that are compared are “structurally” different (e.g., a scheme based
on RBAC that has a notion of roles that is an indirection between
users and permissions, and a scheme based on the access-matrix
model in which rights are assigned to subjects directly). Second,
our definition makes the set of queries that can be asked an explicit
part of the specification of an access control scheme. In existing
definitions in the literature, the set of queries is often not explic-
itly specified. Sometimes, the implicit set of queries is clear from
context; at other times, it is not clear.
The HRU SchemeWe now show an example access control scheme,
the HRU scheme, that is derived from the work by Harrison et
al. [6]. We assume the existence of three countably infinite sets:
S, O, andR, which are the sets of all possible subjects, objects,
and rights. We assume further thatS ⊆ O. In the HRU scheme:

• Γ is the set of all possible access matrices. Formally, each
γ ∈ Γ is identified by three finite sets,Sγ ⊂ S, Oγ ⊂ O,
andRγ ⊂ R, and a functionMγ [] : Sγ × Oγ → 2Rγ ,
whereMγ [s, o] gives the set of rightss has overo.

• Q is the set of all queries of the form:r ∈ [s, o], where
r ∈ R is a right, s ∈ S is a subject, ando ∈ O is an

object. This query asks whether the rightr exists in the cell
corresponding to subjects and objecto.

• The entailment relation is defined as follows:γ ` r ∈ [s, o]
if and only if s ∈ Sγ , o ∈ Oγ , andr ∈Mγ [s, o].

• Each state-transition ruleψ is given by a set of command
schemas. Givenψ, the change fromγ to γ1 is allowed if
there exists an instance of a command schema inψ that when
applied toγ results inγ1.

The set of queries is not explicitly specified in [6]. It is conceiv-
able to consider other classes of queries, e.g., comparing the set of
all subjects that have a given right over a given object with another
set of subjects. In our framework, HRU with different classes of
queries can be viewed as different schemes in the access matrix
model.

Definition 2. (Security Analysis) Given an access control system
〈Γ, Q,`,Ψ〉, asecurity analysis instancehas the form〈γ, q, ψ,Π〉,
whereγ ∈ Γ is a state,q ∈ Q is a query,ψ ∈ Ψ is a state-transition
rule, andΠ ∈ {∃, ∀} is a quantifier. An instance〈γ, q, ψ, ∃〉 is said
to beexistential; it asks whether there existsγ1 such thatγ

∗

7→ψ γ1

andγ1 ` q. If so, we sayq is possible(givenγ andψ). An instance
〈γ, q, ψ, ∀〉 is said to beuniversal; it asks whether for everyγ1 such
thatγ

∗

7→ψ γ1, γ1 ` q. If so, we sayq is necessary(givenγ and
ψ).

Simple safety analysis is a special case of security analysis. A
simple safety analysis instance that asks whether a system(γ, ψ)
in the HRU scheme can reach a state in which the subjects has the
right r over the objecto is represented as the following instance:
〈γ, r ∈ [s, o], ψ, ∃〉. The universal version of this instance,〈γ, r ∈
[s, o], ψ, ∀〉, asks whethers always has the rightr over the objecto
in every reachable state. Thus it refers to the availability property
and asks whether a particular access right is always available to
the subjects. We now introduce a generalized notion of security
analysis.

Definition 3. (Compositional Security Analysis) Given a scheme
〈Γ, Q,`,Ψ〉, a compositional security analysisinstance has the
form 〈γ, φ, ψ,Π〉, whereγ, ψ, andΠ are the same as in a security
analysis instance, andφ is a (possibly infinite) propositional for-
mula overQ, i.e.,φ is constructed from queries inQ using propo-
sitional logic connectives such as∧, ∨, and¬.

For example, the compositional security analysis
instance〈γ, (r1 ∈ [s, o1]) ∧ (r2 ∈ [s, o2]), ψ, ∃〉 asks whether
the system(γ, ψ) can reach a state in whichs has both the right
r1 over o1 and the rightr2 over o2. We argue thatφ should be
allowed to be inifite by considering a safety property in the context
of the HRU scheme [6]. The property is whether any subject can
get a particular rightr over a particular objecto that the subject
does not have in the start-stateγ. This property is represented in
our formalism by lettingφ be

∨
i (r ∈ [si, o]) wheresi ∈ S − Ŝγ

andŜγ is the set of subjects each of whom has the rightr overo in
the stateγ.

Whether we should use security analysis or compositional secu-
rity analysis is related to what types of policies we want to repre-
sent, and what types of policies we want to use as bases to com-
pare the expressive power of different access control models or
schemes. With compositional security analysis, we would be com-
paring models or schemes based on types of policies that are broader
than with security analysis. For instance, if our set of queriesQ

contains queries related to users’ access to files, then with com-
positional security analysis we can consider policies such as “Bob
should never have write access to a particular file so long as his
wife, Alice has a user account (and thus has some type of access to
some file).”

2.2 Two Types of Reductions
In this section, we introduce the notions of reductions and state-

matching reductions that we believe are adequate for comparing
the expressive power of access control models. Before we intro-
duce reductions, we discuss two types of mappings between access
control schemes.

Definition 4. (Mapping) Given two access control schemesA =
〈ΓA, QA,`A,ΨA〉 andB = 〈ΓB , QB ,`B ,ΨB〉, amappingfrom
A toB is a functionσ that maps each pair〈γA, ψA〉 in A to a pair
〈γB , ψB〉 in B and maps each queryqA in A to a queryqB in B.
Formally,σ : (ΓA × ΨA) ∪QA → (ΓB × ΨB) ∪QB .

Definition 5. (Security-Preserving Mapping) A mapping σ is
said to besecurity-preservingwhen every security analysis instance
in A is true if and only if theimageof the instance is true. Given
a mappingσ : (ΓA × ΨA) ∪ QA → (ΓB × ΨB) ∪ QB , the
imageof a security analysis instance〈γA, qA, ψA,Π〉 underσ is
〈γB , qB , ψB ,Π〉, where〈γB , ψB〉 = σ(〈γA, ψA〉) and qB =
σ(qA).

The notion of security-preserving mappings captures the intu-
ition that simulations should preserve security properties. Given
a security-preserving mapping fromA to B and an algorithm for
solving the security analysis problem inB, one can construct an
algorithm for solving the security analysis problem inA using the
mapping. Also, security analysis inB is at least as hard as security
analysis inA, modulo the efficiency of the mapping. If an efficient
(polynomial-time) mapping fromA toB exists, and security anal-
ysis inA is intractable (or undecidable), then security analysis in
B is also intractable (undecidable). Security preserving mappings
are not powerful enough for comparisons of access control schemes
based on compositional security analysis. We need the notion of a
strongly security-preserving mapping for that purpose.

Definition 6. (Strongly Security-Preserving Mapping) Given
a mapping σ from schemeA to schemeB, the image of
a compositional analysis instance,〈γA, φA, ψA,Π〉, in A is
〈γB , φB , ψB ,Π〉, where〈γB , ψB〉 = σ(〈γA, ψA〉) andφB is ob-
tained by replacing every queryqA in φA with σ(qA) (we abuse
the terminology slightly and writeφB = σ(φA)). A mappingσ
fromA toB is said to bestrongly security-preservingwhen every
compositional security analysis instance inA is true if and only if
the image of the instance is true.

While the notions of security-preserving mappings capture the
intuition that simulations should preserve security properties, they
are not convenient for us to use directly. Using the definition for ei-
ther type of mapping to directly prove that the mapping is (strongly)
security preserving involves performing security analysis, which
is often expensive. We now introduce the notions of reductions,
which state structural requirements on mappings for them to be se-
curity preserving. We start with a form of reduction appropriate for
compositional security analysis and then discuss weaker forms.

Definition 7. (State-Matching Reduction) Given a mapping
from A to B, σ : (ΓA × ΨA) ∪ QA → (ΓB × ΨB) ∪ QB ,
we say that the two statesγA and γB are equivalentunder the

mappingσ when for everyqA ∈ QA, γA `A qA if and only if
γB `B σ(qA). A mappingσ from A to B is said to be astate-
matching reductionif for every γA ∈ ΓA and everyψA ∈ ΨA,
〈γB , ψB〉 = σ(〈γA, ψA〉) has the following two properties:

1. For every stateγA1 in schemeA such thatγA
∗

7→ψ γ
A
1 , there

exists a stateγB1 such thatγB
∗

7→ψB γB1 andγA1 andγB1 are
equivalent underσ.

2. For every stateγB1 in schemeB such thatγB
∗

7→ψB γB1 ,

there exists a stateγA1 such thatγA
∗

7→ψ γ
A
1 andγA1 andγB1

are equivalent underσ.

Property 1 says that for every stateγA1 that is reachable fromγA,
there exists a reachable state in schemeB that is equivalent, i.e.,
answers all queries in the same way. Property 2 says the reverse,
for every reachable state inB, there exists an equivalent state inA.
The goal of these two properties is to guarantee that compositional
security analysis results are preserved across the mapping. With
the following theorem, we justify Definition 7.

THEOREM 1. Given two schemesA andB, a mappingσ from
A to B is strongly security-preserving if and only ifσ is a state-
matching reduction.

PROOF. The “if” direction. When σ is a state-matching
reduction, given a compositional security analysis instance
〈γA, φA, ψA,Π〉 in schemeA, let 〈γB , ψB〉 = σ(〈γA, ψA〉) and
φB = σ(φA), we show that〈γA, φA, ψA,Π〉 is true if and only if
〈γB , φB , ψB ,Π〉 is true.

First consider the case that the instance〈γA, qA, ψA,Π〉 is ex-
istential, i.e.,Π is ∃. If the instance is true, then there exists a
reachable stateγA1 in whichφA is true. Property 1 in Definition 7
guarantees that there exists a reachable stateγB1 that is equiva-
lent to γA1 ; thusφB is true inγB1 ; therefore, the instance inB,
〈γB , φB , ψB , ∃〉, is also true. On the other hand, if〈γB , φB , ψB , ∃〉
is true, then there exists a reachable stateγB1 in whichφB is true.
Property 2 in Definition 7 guarantees that there exists a state inA

in which the analysis instance inA is true.
Now consider the case that the instance〈γA, φA, ψA,Π〉 is uni-

versal, i.e.,Π is ∀. If the instance is false, then there exists a reach-
able stateγA1 in whichφA is false. Property 1 guarantees that the
instance inB is also false. Similarly, if the instance inB is false,
then the instance inA is also false.

The “only if” direction. Whenσ is not a state-matching re-
duction, then there existsγA ∈ ΓA andψA ∈ ΨA such that
〈γB , ψB〉 = σ(〈γA, ψA〉) violates one of the two properties in
Definition 7.

First consider the case that Property 1 is violated. There exists a
reachable stateγA1 such that no state reachable fromγB is equiva-
lent toγA1 . Construct a formulaφA as follows:φA is a conjunction
of queries inQ or their complement. For every queryqA in QA,
φA includesqA if γA1 `A qA and¬qA if γA1 `A ¬qA. Note that
the length ofφA may be infinite, as the total number of queries may
be infinite. Clearly,φA is true inγA1 , butσ(φA) is false in all states
reachable fromγB . Thus, the existential compositional analysis
instance involvingφA has different answers, andσ is not strongly
security preserving.

Then consider the case that Property 2 is violated. There exists
a stateγB1 reachable fromγB such that no state reachable from
γA is equivalent toγB1 . Construct a formulaφA as follows: φA

is a conjunction of queries inQ or their complement. For every
query qA in QA, φA includesqA if γB1 `B σ(qA) and¬qA if
γB1 `B σ(¬qA). Clearly,φA is false in all states reachable from

γA, but σ(φA) is true inγB1 ; thus, the existential compositional
analysis instance involvingφA has different answers, andσ is not
strongly security preserving.

A state-matching reduction preserves compositional security prop-
erties. If we need only queries fromQ to represent our policies and
not compositions of those queries, then the following weaker no-
tion of reductions is more suitable. However, we believe that the
notion of state-matching reductions is quite natural by itself, and
certainly necessary when compositional queries are of interest.

Definition 8. (Reduction) Given two access control schemes
A = 〈ΓA, QA,`A,ΨA〉 andB = 〈ΓB , QB ,`B ,ΨB〉, a mapping
fromA toB, σ, is said to be areductionfromA toB if for every
γA ∈ ΓA and everyψA ∈ ΨA, 〈γB , ψB〉 = σ(〈γA, ψA〉) has the
following two properties:

1. For every stateγA1 and every queryqA in schemeA, if
γA

∗

7→ψ γA1 , then in schemeB there exists a stateγB1
such thatγB

∗

7→ψB γB1 and γA1 `A qA if and only if
γB1 `B σ(qA).

2. For every stateγB1 in schemeB and every queryqA in
schemeA, if γB

∗

7→ψB γB1 , there exists a stateγA1 such that

γA
∗

7→ψ γ
A
1 andγA1 `A qA if and only if γB1 `B σ(qA).

Definition 7 differs from Definition 8 in that the former requires
that for every reachable state inA (B, resp.) there exist a matching
state inB (A, resp.) that gives the same answer forevery query.
Definition 8 requires the existence of a matching state for every
query; however, the matching states may be different for different
queries. Property 1 in Definition 8 says that for every reachable
state inA and every query inA, there exists a reachable state in
B that gives the same answer to (the image of) the query. Prop-
erty 2 says the reverse direction. The goal of these two properties
is to guarantee that security analysis results are preserved across the
mapping. The fact that a reduction, as defined in Definition 8, is ad-
equate for preserving security analysis results is formally captured
by the following theorem.

THEOREM 2. Given two schemesA andB, a mapping,σ, from
A toB is security preserving if and only ifσ is a reduction.

PROOF. The “if” direction. Whenσ is a reduction, given a se-
curity analysis instance〈γA, qA, ψA,Π〉 in schemeA, let〈γB , ψB〉 =
σ(〈γA, ψA〉) andqB = σ(qA), we show that〈γA, qA, ψA,Π〉 is
true if and only if〈γB , qB , ψB ,Π〉 is true.

First consider the case that the instance〈γA, qA, ψA,Π〉 is ex-
istential, i.e.,Π is ∃. If the instance is true, then there exists a
reachable stateγA1 in which qA is true. Property 1 in Definition 8
guarantees that there exists a reachable stateγB1 in which qB is
true. Therefore, the instance inB, 〈γB , qB , ψB , ∃〉, is also true.
On the other hand, if〈γB , qB , ψB , ∃〉 is true, then there exists a
reachable stateγB1 in which qB is true. Property 2 in Definition 8
guarantees that there exists a state inA in which qA is true; thus
the analysis instance inA is true.

Now consider the case that the instance〈γA, qA, ψA,Π〉 is uni-
versal, i.e.,Π is ∀. If the instance is false, then there exists a reach-
able stateγA1 in which qA is false. Property 1 guarantees that the
instance inB is also false. Similarly, if the instance inB is false,
then the instance inA is also false.

The “only if” direction. Whenσ is not a reduction, then there
existsγA ∈ ΓA andψA ∈ ΨA such that〈γB , ψB〉 = σ(〈γA, ψA〉)
violates one of the two properties in Definition 8.

First consider the case that Property 1 is violated. There ex-
ists a reachable stateγA1 and a queryqA such that for every state
reachable fromγB the answer for the queryσ(qA) in the state is
different from the answer forqA in γA1 . If γA1 `A qA, then this
means thatqB is false in every state reachable fromγB . Thus the
security analysis instance〈γA, qA, ψA, ∃〉 is true, but its image un-
derσ is false. Thus, the mappingσ is not security-preserving. If
γA1 6`A qA, then this means thatqB is true in every state reachable
from γB . Thus the security analysis instance〈γA, qA, ψA, ∀〉 is
false, but its image underσ is true.

Now consider the case that Property 2 is violated. There exists
a stateγB1 reachable fromγB and a queryqA such that for every
state reachable fromγA the answer for the queryqA in the state
is different from the answer forσ(qA) in γB1 . If γB1 `B σ(qA),
then this means thatqA is false in every state reachable fromγA.
Thus the security analysis instance〈γA, qA, ψA, ∃〉 is false, but its
image underσ is true. If γB1 6`B qB , then this means thatqA is
true in every state reachable fromγA. Thus the security analysis
instance〈γA, qA, ψA, ∀〉 is true, but its mapping inB is false.

Comparisons of two access control models are based on com-
parisons among access control schemes based on those models.
Comparisons of two access control schemes, in turn, are based on
whether only the queries fromQ need to be represented, or com-
positions of those queries need to be represented as well.

Definition 9. (Comparing the Expressive Power of Access Con-
trol Models) Given two access control modelsM andM′, we say
thatM′ is at least as expressive asM (orM′ has at least as much
expressive power asM′) if for every scheme inM there exists
a state-matching reduction (or a reduction) from it to a scheme in
M′. In addition, if for every scheme inM′, there exists a state-
matching reduction (reduction) from it to a scheme inM, then we
say thatM andM ′ are equivalent in expressive power. IfM′ is
at least as expressive as theM, and there exists a schemeA in
M′ such that for any schemeB in M, no state-matching reduction
(reduction) fromA to B exists, we say thatM′ is strictly more
expressive thanM.

We compare the expressive power of two schemes based on state-
matching reductions when compositional queries are needed to rep-
resent the policies of interest. Otherwise, reductions suffice. Ob-
serve that we can use the above definition to compare the expres-
sive power of two access control schemesA andB, by viewing
each scheme as an access control model that consists of just that
scheme.

We emphasize that a reduction or state-matching reduction must
be computable. In addition, if there exists a reduction or state-
matching reduction fromA to B that can be computed efficiently
in the size ofA, then we can use the efficiency with which secu-
rity analysis can be performed inB as a tight upper bound for the
analysis instance inA.

2.3 Alterative definitions for reduction
In this section, we discuss alternative definitions that differ from

the ones discussed in the previous section. The first of these defini-
tions is used by Sandhu and Ganta [16, 18] for simulations.

Definition 10. (Form-1 Weak Reduction) A mapping fromA to
B, given byσ : (ΓA × ΨA) ∪ QA → (ΓB × ΨB) ∪ QB , is a
form-1 weak reductionif for everyγA ∈ ΓA and everyψA ∈ ΨA,
〈γB , ψB〉 = σ(〈γA, ψA〉) has the following two properties:

1. For every queryqA, if there exists a stateγA1 in schemeA
such thatγA

∗

7→ψA γA1 andγA1 `A qA, then there exists a

stateγB1 such thatγB
∗

7→ψB γB1 andγB1 `B σ(qA).

2. For every queryqA, if there existsγB1 in schemeB such
that γB

∗

7→ψB γB1 andγB1 `B σ(qA), then there exists a

stateγA1 such thatγA
∗

7→ψ γ
A
1 andγA1 `A qA if and only if

γB1 `B σ(qA).

The intuition underlying Definition 10, as stated by Sandhu [16]
is, “systems are equivalent if they have equivalent worst case be-
havior”. Therefore, simulations only need to preserve the worst-
case access. Definition 10 is weaker than Definition 8 in that it
requires the existence of a matching state when a query is true in
the state, but does not require so when the query is false. Therefore,
it is possible that a queryqA is true in all states that are reachable
from γA, but the queryσ(qA) is false in some states that are reach-
able fromγB (the queryσ(qA) needs to be true in at least one
state reachable fromγB). This indicates that Definition 10 does
not preserve answers to universal security analysis instances. Def-
inition 10 is adequate for the purposes in [16, 18] as only safety
analysis (which is existential) was considered there.

The decision of defining a mapping to be a function from(ΓA×
ΨA) ∪ QA to (ΓB × ΨB) ∪ QB also warrants some discussion.
An alternative is to define a mapping fromA toB to be a function
that maps each state inA to a state inB, each state-transition rule
in A to a state-transition rule inB, and each query inA to a query
in B. Such a function would be denoted asσ : ΓA ∪ ΨA ∪QA →
ΓB∪ΨB∪QB . One can verify any such function is also a mapping
according to Definition 4, which gives more flexibility in terms of
mapping states and state-transition rules fromA to B. By Defini-
tion 4, the state corresponding to a stateγA may also depend upon
the state-transition rule being considered.

Another alternative is to define a mapping fromA to B to be
a functionσ : ΓA × ΨA × QA → ΓB × ΨB × QB . In other
words, the mapping of states, state-transition rules, and queries may
depend on each other. This definition also leads to a weaker notion
of reduction:

Definition 11. (Form-2 Weak Reduction) A form-2 weak reduc-
tion fromA toB is a functionσ : ΓA×ΨA×QA → ΓB ×ΨB ×
QB such that for everyγA ∈ ΓA, everyψA ∈ ΨA, and every
qA ∈ QA, 〈γB , ψB , qB〉 = σ(〈γA, ψA, qA〉) has the following
two properties:

1. For every stateγA1 in schemeA such thatγA
∗

7→ψ γ
A
1 , there

exists a stateγB1 such thatγB
∗

7→ψB γB1 andγA1 `A qA if
and only ifγB1 `B qB .

2. For every stateγB1 in schemeB such thatγB
∗

7→ψB γB1 ,

there exists a stateγA1 such thatγA
∗

7→ψ γ
A
1 andγA1 `A qA

if and only if γB1 `B qB .

It is not difficult to prove that a Form-2 weak reduction is also
security preserving, in the sense that any security analysis instance
〈γA, qA, ψA,Π〉 in A can be mapped to a security analysis inB.
However, it is not a mapping, as the mapping of states and state-
transition rules may depend on the query.

Definition 11 is used implicitly in Theorems 2 and 3 in [10] for
reductions from two RBAC schemes to the RT Role-based Trust-
management framework [9, 11]. As we assert in Theorem 5 in this
paper, a reduction used there for one of the RBAC schemes can
be changed to a security-preserving mapping in a straightforward
manner.

We choose not to adopt this weaker notion of reduction for the
following reason. Under this definition, given an access control
system(γA, ψA), to answern analysis instances involving differ-
ent queries, one has to performn translations of states and state-
transitions, which is often time consuming. Using Definition 4 and

Definition 8, one can perform the mapping of(γA, ψA) once and
use it to answer alln analysis instances.

A third weak form of reduction is introduced by Ammann et
al. [1]. That work discusses the expressive power of multi-parent
creation when compared to single-parent creation.

Definition 12. (Form-3 Weak Reduction) A mapping fromA to
B, given byσ : (ΓA × ΨA) ∪ QA → (ΓB × ΨB) ∪ QB , is a
form-3 weak reductionif for everyγA ∈ ΓA and everyψA ∈ ΨA,
〈γB , ψB〉 = σ(〈γA, ψA〉) has the following two properties:

1. For every stateγA1 and every queryqA in schemeA, if
γA

∗

7→ψ γA1 , then in schemeB there exists a stateγB1
such thatγB

∗

7→ψB γB1 and γA1 `A qA if and only if
γB1 `B σ(qA).

2. For every stateγB1 in schemeB and every queryqA in
schemeA, if γB

∗

7→ψB γB1 , then either (a) there exists a

stateγA1 such thatγA
∗

7→ψ γA1 andγA1 `A qA if and only
if γB1 `B σ(qA), or (b) there exists a stateγB2 such that
γB1

∗

7→ψB γB2 and a stateγA1 such thatγA
∗

7→ψ γA1 , and
γA1 `A qA if and only if γB2 `B σ(qA).

As pointed out by Ammann et al. [1], this form of reduction suf-
fices for monotonic schemes — those schemes in which once a
state is reached in which a query is true, in all reachable states from
that state, the query remains true. Therefore, this form of reduction
cannot be used to compare schemes when queries can become false
after being true, or for universal analysis instances.

3. THE IMPLEMENTATION PARADIGM FOR
SIMULATION: AN EXAMINATION

Several authors use the implementation paradigm for simula-
tions, e.g., Osborn et al. [15] state that “a positive answer [to the
question whether LBAC (lattice-based access control) can be sim-
ulated in RBAC] is also practically significant, because it implies
that the same Trust Computing Base can be configured to enforce
RBAC in general and LBAC in particular.” However, in these pa-
pers [13, 15, 19], a precise definition for simulations is not given.
This makes the significance of such results unclear, at least in terms
of comparing the expressive power of different access control mod-
els.

In this section, we analyze the implementation paradigm and ar-
gue that it does not lead to notions of simulations that are meaning-
ful for comparing the expressive power of different access control
models. More precisely, the notions of simulations derived from
this paradigm are so weak that almost all access control schemes
are equivalent.

To formalize the implementation paradigm for simulation, a nat-
ural goal is to use an implementation of an access control scheme
for another scheme. Intuitively, if a schemeA can be simulated in a
schemeB, then there exists asimulatorthat, when given access to
an interface to (an implementation of)B, can provide an interface
that is exactly the same as the interface to (an implementation of)
A.

When considering the interface of an access control scheme, we
have to consider how state-transitions occur. Intuitively, an ac-
cess control system changes its state because some actors (subjects,
principals, users, etc.) initiate certain actions. Thus, an implemen-
tation of an access control scheme has an interface consisting of at
least the following functions:

• init(γ): set the current state toγ.

• query(q): ask the queryq and receive a yes/no response.

• apply(a): apply the actiona on the system, which may result
in a state-transition in the system.

• functions providing other capabilities, e.g., traversing the sub-
jects and objects in the system.

A simulator ofA inB is thus a program that takes an interface of
B and provides an interface ofA that is indistinguishable from an
implementation forA. The simulator is a blackbox that when given
access to a backbox implementation ofB, gives an implementation
of A. This intuition seems to make sense if the goal is to use an
implementation ofB to implementA.

It is tempting to start formalizing the above intuition; however,
there are several subtle issues that need to be resolved first.

As can be easily seen, for any two schemesA andB, a trivial
simulator exists. The simulator implements all the functionalities
of A by itself, without interacting with the implementation ofB.
Clearly, one would like to rule out these trivial simulators. A nat-
ural way to do so is to restrict the amount of space used by the
simulator to be sub-linear in the size of the state of the scheme it is
simulating. It seems to be a reasonable requirement that the sim-
ulator takes constant space on its own, i.e., the space used by the
simulator does not depend on the size of the state. (The space used
by the implementation ofB is not considered here.)

Another issue is whether to further restrict a simulator’s inter-
nal behavior. When the simulator receives a query in the scheme
A, it may issue multiple queries to the blackbox implementation
of B before answering the query; it may even perform some state-
transition onB before answering the query. Similarly, the simu-
lator may perform multiple queries and state-transitions onB to
simulate one state-transition inA.

If no restriction is placed, then the notion of simulation is too
weak to separate different access control models. For example,
in [13], Munawer and Sandhu constructed a simulation of ATAM in
RBAC. In [20], we give a simulation of RBAC in strict DAC, a dis-
cretionary model that allows only the owner of an object to grant
rights over the object to another subject and disallows the tranfer
of ownership. According to these results, the simplest DAC (in
which security analysis is efficiently decidable) has the same ex-
pressive power as ATAM (in which safety analysis is undecidable).
This illustrates that without precise requirements, simulation is not
a useful concept for comparing access control models.

If one places restrictions on the simulator, then the question is
what restrictions are reasonable. Our conclusion is that it is difficult
to justify such restrictions. In the following, we elaborate on this.

A possibility is to restrict the internal behavior of the simula-
tor, e.g., to restrict it to issue only one query toB in order to
answer one query inA and to make a bounded number of state-
transitions inB to simulate one state-transition inA. Under these
restrictions, one can prove that RBAC cannot be simulated in the
HRU model. The assignment of a user to a role in RBAC results in
the user gaining all the accesses to objects implied by the permis-
sions associated with that role; therefore, it changes the answers
to an unbounded number of queries (queries involving those per-
missions.) One may argue that the assignment of a user to a role
is a single “action” in RBAC, and therefore, the acquiring of those
permissions by that user is accomplished in a single “action.” The
corresponding assignment of rights in the HRU access matrix can-
not be accomplished by a single command or a bounded number
of commands, as each command changes only a bounded number
of cells in the matrix. Thus, any mapping of the user-assignment
in RBAC involves an unbounded number of commands being exe-
cuted in HRU. Nonetheless, one can argue that this is balanced by

the efficiency of checking whether a user has a particular right in
the two models. A naive implementation of an RBAC model may
involve collecting all roles to which that user is assigned, then col-
lecting all permissions associated with those roles, and then check-
ing whether one of those permissions corresponds to the object and
access right for which we are checking. The time this process takes
depends on the size of the current state and is unbounded. The cor-
responding check in HRU is simpler: we simply check whether the
corresponding access right exists in the cell in the matrix. Thus,
we can argue that there is a trade-off between time-to-update, and
time-to-check-access between the two schemes.

Another possibility is to measure how much time the simula-
tor takes to perform a state-transition and to answer one query in
the worst case and require that there cannot be a significant slow-
down. This possibility is complicated by the fact that the effi-
ciency of these operations are not predetermined in any access con-
trol scheme, the implementation can make trade-offs between time
complexity and space complexity and between query answering
and state-transitions. Any comparison must involve at least three
axes, query time, state-transition time, and space. Furthermore,
the best approach to implementing an access control scheme is not
always known. Finally, these implementation-level details do not
seem to belong in the comparison of access control models; as such
models by themselves are abstract models to study properties other
than efficiency.

In summary, our analysis in this section suggests that the “imple-
mentation paradigm” does not seem to yield effective definitions
of simulations that are useful to compare access control models.
This suggests also that expressive power results proved under this
paradigm should be reexamined.
An Alternate Approach Bertino et al. [2] propose a different im-
plementation paradigm from the one discussed above. They present
a framework based on logic programming within which to compare
the expressive power of access control models. A library of logic
facts and rules are provided, and each access control model is a
collection of some facts and rules from that library. Access control
models are then compared based on what facts and rules are used
to represent each of them. The approach in that work is structural:
if in one model we use certain facts and rules, but not in another,
then the two models are incomparable. Furthermore, if one model
uses more facts and rules than another, then the former is more ex-
pressive than the latter. This basis is used in arguing that RBAC is
more expressive than MAC as RBAC has the notion of roles. State-
transitions are not considered in this approach, and the preserva-
tion of properties across state-transitions is not part of the bases for
comparison. Our theory for comparing the expressive power of ac-
cess control models is based on whether schemes from one model
can represent policies that schemes from another cannot. We do not
have any structural restrictions in comparing two models. Thereby,
our work is fundamentally different from the work by Bertino et
al. [2].

4. APPLYING THE THEORY
In this section, we apply our theory from Section 2 to compare

the expressive power of different access control schemes. We ex-
amine two particular results from literature using our theory: (1)
that RBAC is at least as expressive as DAC (Sections 4.1 and 4.2),
and (2) that TAM is at least as expressive as ATAM (Section 4.4).
We show also that the trust management languageRT[∩] is at least
as expressive as an RBAC scheme (Section 4.3). Precise character-
izations of our schemes and proofs are in [20].

4.1 Examining comparisons of RBAC and DAC

Munawer and Sandhu [13] present a simulation of ATAM in
RBAC and conclude that RBAC is at least as expressive as ATAM.
Osborn et al. [15, 14, 19] give simulations of various MAC and
DAC schemes in RBAC. The main conclusion of Osborn et al. [15,
14, 19] is that as MAC and DAC can be simulated in RBAC, a
Trusted Computing Based (TCB) needs to include an implementa-
tion of RBAC only, and DAC and MAC policies can be successfully
represented and enforced by the TCB.

In the simulations used in [13, 15, 14, 19], the preservation of
safety (or other security) properties is not identified as an objec-
tive. From the above conclusion in [15, 14, 19], it seems that they
follow the implementation paradigm. As discussed in Section 3,
this paradigm leads to a weak notion of simulations, as exemplified
by the simulation of RBAC in strict DAC in [20].

We observe also that the problem of comparing RBAC with DAC
as stated by Osborn et al. [15, 19] is ill-defined (or at least not
clearly defined). RBAC by itself only specifies the structures to
store access control information, but not how to manipulate these
structures, which are specified by administrative models. In other
words, only the setΓ of states is precisely defined, the setΨ of
state-transition rules is not. The counterpart of RBAC is the access
matrix model, and not DAC or MAC. In DAC, we specify that ac-
cess control information is stored in an access matrix, and we spec-
ify also rules on how the access matrix may change. The statement
that RBAC is at least as expressive as DAC (or MAC) is similar
to saying that the access matrix model is at least as expressive as
DAC or MAC. Comparing the RBAC model with the access matrix
model is not fruitful either, as both models can include arbitrary
state-transition rules.

4.2 Comparing ARBAC97 with a form of DAC
To compare any RBAC-based model with DAC, one needs to

specify the administrative model (state-transition rules) for RBAC.
In existing comparisons of RBAC and DAC [13, 15, 19], new and
rather complicated administrative models are introduced “on the
fly” to simulate the effects in DAC. In this section, we compare the
expressive power of RBAC with ARBAC97 [17] as the administra-
tive model to that of SDCO, a rather simple form of DAC. Precise
characterizations of SDCO and the ARBAC97 scheme are in [20].
Osborn et al. [15] assert that SDCO can be simulated in RBAC.
We assert that there does not exist a state-matching reduction from
SDCO to the ARBAC97 scheme, given a natural query set for each
scheme.

This result is significant as it shows that we cannot assert that
RBAC is more expressive than DAC without qualifying the asser-
tion; a strongly security-preserving mapping does not exist from
SDCO to ARBAC97. Our conclusion provides the first evidence
that the expressive power of RBAC (or at least some reasonable
incarnation of it) is limited.

THEOREM 3. There exists a reduction from SDCO to the AR-
BAC97 scheme.

THEOREM 4. There exists no state-matching reduction from SDCO
to the ARBAC97 scheme.

The proofs are in [20]. One may ask whether there are other
schemes based on RBAC for which there is indeed a state-matching
reduction from SDCO. An approach may be to adopt a different
query set for ARBAC97. We observe that for certain other query
sets as well, the non-existence of a state-matching reduction holds.
As an example, suppose we map the query for the presence of a
right in SDCO to a query for the absence of a permission in RBAC.
In this case as well, there exists no state-matching reduction from

SDCO. Whether there exists a meaningful set of state-transition
rules (an administrative model) for RBAC for which there is a state-
matching reduction from SDCO is an open problem.

4.3 Comparing an RBAC scheme with a Trust
Management Language

In this section, we compare a particular RBAC scheme to the
trust management language,RT[∩]. The RBAC scheme we con-
sider is called Assignment And Revocation (AAR) [10]. In AAR,
the state is an RBAC state, and state-transition rules are those from
the URA97 component of ARBAC97 [17]; users may be assigned
to and revoked from roles. Precise characterizations of AAR are
in [10] and [20].

RT[∩] is a trust management language in which a state is a set
of credentials issued by the principals involved in the system. A
credential denotes membership in a principal’s role. A credential
is one of three types: (1) A principal is asserted to be a member of
another principal’s role, (2) All the principals that are members of
a principal’s role are asserted to also be members of another princi-
pal’s role, and (3) All the principals that are members of two roles
(the intersection of the members of the roles) are also members of
another principal’s role. We refer the reader to Li et al. [9, 11, 12]
for more details onRT[∩].

Li and Tripunitara [10] present a form-2 weak reduction (see
Definition 11) from AAR toRT[∩]. We assert with the following
theorem that the result can be made stronger. The proof for the
following theorem is in [20].

THEOREM 5. There exists a state-matching reduction from the
RBAC scheme AAR toRT[∩].

4.4 Comparing ATAM with TAM
TAM is a scheme based on the access matrix model and is similar

to the HRU scheme [6] (see Section 2.1). Every object is typed, and
the type cannot change once the object is created. State-transitions
occur via the execution of commands that are similar to HRU com-
mands. We specify a type for every parameter in a command.
ATAM is the same as TAM, except that in ATAM, the absence of a
right in a cell of the access matrix may be checked (and not just the
presence of a right). See [20] for more details on the two schemes.

Sandhu and Ganta [18] present a mapping from ATAM to TAM.
Based on the mapping, one may conclude that TAM is at least as
expressive as ATAM. As the converse is trivially true (TAM is a
special case of ATAM), one may conclude that ATAM and TAM
have the same expressive power; we gain nothing from the ability
to check for the absence of rights. Sandhu and Ganta [18] make
the observation that the simulation of a command in ATAM may
require the execution of an unbounded number of commands in
TAM, and conclude with the following comment: “. . . practically
testing for the absence of rights appears to be useful. It is an open
question whether this claim can be formalized. . . ” In this section,
we formalize this claim by asserting that there is no state-matching
reduction from ATAM to TAM.

THEOREM 6. There exists no state-matching reduction from ATAM
to TAM.

The proof is in [20]. Thus, the notion of state-matching reductions
formalizes the difference in expressive power between ATAM and
TAM. One may ask whether there exists a reduction from ATAM
to TAM. One may ask also whether reductions or state-matching
reductions exist from ATAM to TAM when we allow TAM to con-
tain queries of the type “isr 6∈Mγ [s, o]?” as well (but a command
allows only checking for the presence of a right in a cell in the
condition). These are open questions.

5. CONCLUSIONS AND FUTURE WORK
We have presented a theory to compare the expressive power of

access control models. Our theory is based on perceiving an ac-
cess control system as a state-transition system, and asking whether
there exist security-preserving or strongly security-preserving map-
pings between two schemes. We have applied our theory in three
cases and shown that: (1) RBAC with ARBAC97 as its administra-
tive model is limited in its expressive power in comparison to a ver-
sion of DAC; (2) the trust-management languageRT[∩] is at least
as expressive as RBAC with the URA97 component of ARBAC97
as its administrative model; and (3) ATAM is more expressive than
TAM. To our knowledge, (1) is the first evidence that the expressive
power of RBAC is limited, and (3) solves an open problem stated
in the literature [18].

As future work, we propose to use our theory to compare more
models with each other. For instance, we would like to compare
various versions of DAC and “layer” these versions based on their
relative expressive power. Also, while our theory is based on cap-
turing the notion of policies that can represented and verified in an
access control system, we do not believe that reductions and state-
matching reductions capture all types of policies we would want
to consider. For instance, it is reasonable to ask a temporal query
such as: “did Alice get her write access to a sensitive file only after
her husband, Bob was given privileged access to the system?” Nei-
ther reductions nor state-matching reductions capture such query
expressions. As part of our future work, we propose to expand our
theory to include such queries.

Acknowledgements
Portions of this work were supported by NSF ITR and by sponsors
of CERIAS. We thank the anonymous reviewers of CCS, and Ji-
Won Byun, Ziad El Bizri, Jiantao Li and Klorida Miraj at CERIAS
for their reviews and helpful suggestions.

6. REFERENCES
[1] P. Ammann, R. Lipton, and R. S. Sandhu. The expressive

power of multi-parent creation in monotonic access control
models.Journal of Computer Security, 4(2-3):149–165, Jan.
1996.

[2] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A logical
framework for reasoning about access control models.ACM
Transactions on Information and System Security,
6(1):71–127, Feb. 2003.

[3] A. Chander, D. Dean, and J. C. Mitchell. A state-transition
model of trust management and access control. In
Proceedings of the 14th IEEE Computer Security
Foundations Workshop, pages 27–43. IEEE Computer
Society Press, June 2001.

[4] S. Ganta.Expressive Power of Access Control Models Based
on Propagation of Rights. PhD thesis, George Mason
University, 1996.

[5] G. S. Graham and P. J. Denning. Protection — principles and
practice. InProceedings of the AFIPS Spring Joint Computer
Conference, volume 40, pages 417–429. AFIPS Press, May
16–18 1972.

[6] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in
operating systems.Communications of the ACM,
19(8):461–471, Aug. 1976.

[7] B. W. Lampson. Protection. InProceedings of the 5th
Princeton Conference on Information Sciences and Systems,
1971. Reprinted in ACM Operating Systems Review,
8(1):18-24, Jan 1974.

[8] N. Li and J. C. Mitchell. RT: A role-based trust-management
framework. InThe Third DARPA Information Survivability
Conference and Exposition (DISCEX III). IEEE Computer
Society Press, Apr. 2003.

[9] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a
role-based trust management framework. InProceedings of
the 2002 IEEE Symposium on Security and Privacy, pages
114–130. IEEE Computer Society Press, May 2002.

[10] N. Li and M. V. Tripunitara. Security analysis in role-based
access control. InProceedings of the Ninth ACM Symposium
on Access Control Models and Technologies (SACMAT
2004), June 2004.

[11] N. Li, W. H. Winsborough, and J. C. Mitchell. Beyond
proof-of-compliance: Safety and availability analysis in trust
management. InProceedings of IEEE Symposium on
Security and Privacy, pages 123–139. IEEE Computer
Society Press, May 2003.

[12] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed
credential chain discovery in trust management.Journal of
Computer Security, 11(1):35–86, Feb. 2003.

[13] Q. Munawer and R. S. Sandhu. Simulation of the augmented
typed access matrix model (ATAM) using roles. In
Proceedings of INFOSECU99 International Conference on
Information and Security, 1999.

[14] S. Osborn. Mandatory access control and role-based access
control revisited. InProceedings of the Second ACM
Workshop on Role-Based Access Control (RBAC’97), pages
31–40, Nov. 1997.

[15] S. Osborn, R. S. Sandhu, and Q. Munawer. Configuring
role-based access control to enforce mandatory and
discretionary access control policies.ACM Transactions on
Information and System Security, 3(2):85–106, May 2000.

[16] R. S. Sandhu. Expressive power of the schematic protection
model.Journal of Computer Security, 1(1):59–98, 1992.

[17] R. S. Sandhu, V. Bhamidipati, and Q. Munawer. The
ARBAC97 model for role-based aministration of roles.ACM
Transactions on Information and Systems Security,
2(1):105–135, Feb. 1999.

[18] R. S. Sandhu and S. Ganta. On testing for absence of rights
in access control models. InProceedings of the sixth
Computer Security Foundations Workshop, pages 109–118.
IEEE Computer Society Press, June 1993.

[19] R. S. Sandhu and Q. Munawer. How to do discretionary
access control using roles. InProceedings of the Third ACM
Workshop on Role-Based Access Control (RBAC 1998),
pages 47–54, Oct. 1998.

[20] M. V. Tripunitara and N. Li. Comparing the expressive
power of access control models. Technical Report
CERIAS-TR-2004-10, Center for Education and Research in
Information Assurance and Security, Purdue University, May
2004.

