
Administration in Role-Based Access Control

Ninghui Li Ziqing Mao
Center for Education and Research in Information Assurance and Security

and Department of Computer Science
Purdue University

West Lafayette, IN 47907-2107, USA

{ninghui, zmao}@cs.purdue.edu

ABSTRACT
Administration of large-scale RBAC systems is a challenging open
problem. We propose a principled approach in designing and an-
alyzing administrative models for RBAC. We identify six design
requirements for administrative models of RBAC. These design re-
quirements are motivated by three principles for designing security
mechanisms: (1) flexibility and scalability, (2) psychological ac-
ceptability, and (3) economy of mechanism. We then use these
requirements to analyze several approaches to RBAC administra-
tion, including ARBAC97 [21, 23, 22], SARBAC [4, 5], and the
RBAC system in the Oracle DBMS. Based on these requirements
and the lessons learned in analyzing existing approaches, we de-
sign UARBAC, a new family of administrative models for RBAC
that has significant advantages over existing models.

1. INTRODUCTION
Role-based access control (RBAC) has established itself as a

solid base for today’s security administration needs. However, the
administration of large RBAC systems remains a challenging open
problem. Large RBAC systems may have hundreds of roles and
tens of thousands of users. For example, a case study carried out
with Dresdner Bank, a major European bank, resulted in an RBAC
system that has about 40,000 users and 1300 roles [26]. In RBAC
systems of this size, administration has to be decentralized, since
it is impossible for a single, fully-trusted administrator, referred to
as System Security Officer (SSO) in this paper, to manage the en-
tire RBAC system. Therefore, delegation (or decentralization) is
an important part of RBAC administrative models that have been
proposed in the literature. With delegation, partially-trusted ad-
ministrators are given the power to change portions of the RBAC
state.

Although RBAC itself is relatively well-studied and well-
understood, the understanding of decentralized administration of
RBAC is still at an early stage. There is a significant gap between
the RBAC administration models developed by researchers, namely
the ARBAC family [21, 23, 22, 25, 19] and SARBAC [4, 5], and
the requirements that have been developed through practical expe-
riences of deploying RBAC, e.g., [12, 26]. For example, one of the
most important issues in RBAC administration is how to specify

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS’07, March 20-22, 2007, Singapore.
Copyright 2007 ACM 1-59593-574-6/07/0003 ...$5.00.

the administrative domains. When the SSO delegates the adminis-
tration privileges to a partially-trusted administrator, the privileges
have to be limited to a portion of the RBAC state, which we call an
administrative domain. Any RBAC administration approach must
provide a mechanism for defining administrative domains. Both
the ARBAC family and SARBAC define administrative domains
based on role hierarchies, even though they differ in how to use
role hierarchies to define administrative domains.

Kern et al. [12] argued that using role hierarchies as a basis for
defining administrative domains is problematic in real-life scenar-
ios. One important reason is that the criteria for defining role hi-
erarchies and administrative domains are often different. Admin-
istration domains are mostly defined based on the organizational
structure, where roles are often defined based on job functions. As
observed by many authors, role hierarchies often do not reflect the
organizational structure [15, 16, 12]; two roles that are in the same
organizational unit may not be related by the role hierarchy in any
way. The work by Kern et al. [12] aim at “reconcile the require-
ments of the actual users of products with research” and “provide
researchers with feedbacks in the form of problems encountered by
practitioners which should then be addressed more thoroughly”.

This paper is motivated by this gap between existing formal mod-
els of RBAC administration and the requirements that come up in
real deployment. In this paper, we propose a principled approach
to reconcile the differences. We identify six design requirements
for administrative models of RBAC. These design requirements are
motivated by three principles for designing security mechanisms:
(1) flexibility and scalability, (2) psychological acceptability, and
(3) economy of mechanism. The latter two are in the eight prin-
ciples for designing security mechanisms identified by Salzer and
Schroeder [20]. Using the design requirements that we have devel-
oped, we analyze the ARBAC family [19, 21, 22, 25], SARBAC [4,
5], and the RBAC administration approach implemented in the Or-
acle Database Management System (DBMS).

Based on these requirements and the lessons learned in analyzing
existing approaches, we design UARBAC, a new family of admin-
istrative model for RBAC. UARBAC has a basic model and one
extension. It is the first formal model that adequately addresses the
challenges of administering large RBAC systems.

Our principled approach can be contrasted with the approach in
developing existing formal models on RBAC, which can be charac-
terized as example-based. In the example-based approach, design
decisions are justified through analyzing a few examples and the
impact the design decisions have on the examples. While examples
are important, the analysis must be guided by high-level security
principles. Without guidance from principles, one can often debate
whether a particular impact of a design decision is desirable or not.
For example, certain side effects of administrative operations are

considered to be anomalous in ARBAC97, whereas Crampton [4,
5] argued that these side effects are not anomalous. Such issues
cannot be resolved satisfactorily without a set of principles. While
not everyone will agree with every principle we have identified in
this paper, we believe that it is valuable to put forth a set of princi-
ples that the community can discuss and debate.

The rest of this paper is organized as follows. We give back-
grounds on roles and role hierarchies in Section 2, and describe
three existing administrative models in Section 3. We discuss de-
sign principles and requirements in Section 4. Section 5 presents
UARBAC. We then discuss related work in Section 6 and conclude
in Section 7.

2. ROLES AND ROLE HIERARCHIES
RBAC adds the notion of roles as a level of indirection between

users and permissions. Roles are created based on job functions
and/or qualifications of users. Permissions (i.e., privileges to ac-
cess resources) are assigned to roles based on the requirements of
job functions and/or the entitlement of qualifications. Users are
made members of roles based on their job responsibilities and/or
qualifications, thereby gaining permissions assigned to those roles.
Roles may be organized into a hierarchy, which defines a partial
order among roles. We use r1 ¹ r2 to denote that r1 is dominated
by r2, and say that r1 is more junior to r2, and r2 is more senior to
r1. This means r2 inherits all permissions that are assigned to r1,
and all users who are members of r2 are also members of r1.

Several existing approaches to RBAC administration use role hi-
erarchies to specify administration domain. Therefore, role hierar-
chies play a key role in the study of RBAC administration. Fig-
ure 1 shows three kinds of role hierarchies that have appeared in
the literature. Figure 1(a) shows an example that has been used
extensively in the papers on the ARBAC family and SABAC. In
fact, it is the only example hierarchy used in these papers. It is
well-structured as a lattice, and it has a senior-most role (Dir) and
a junior-most role (E). The role Dir has all permissions assigned to
any role in the system. Figure 1(b) shows a role-hierarchy in which
all roles form an inverted tree. This example is taken from [6].
Such a structure is referred as “limited role hierarchies” in ANSI
standard for RBAC [1, 9]. In such hierarchies, the roles towards
the bottom are more generic. The more specialized roles inherit
permissions assigned to the generic roles, and may be assigned ad-
ditional permissions. Figure 1(c) shows a layered role-hierarchy
taken from [12]. This example came from a real-world example
(according to [12]). Functional roles are created by asset managers,
who control resources. Asset managers also assign permissions for
their resources to these functional roles. Business roles are created
by role administrators, who determine what the functional roles are
needed for each business role. This results in a layered, two-level
role hierarchy.

3. EXISTING ADMINISTRATIVE MOD-
ELS FOR RBAC

In this section, we give an overview of three existing approaches
for administering RBAC: the ARBAC family, the SARBAC, and
the administrative model implemented in Oracle. We point out that
this section is not a standard related work section. We present ex-
isting approaches in sufficient details so that, in next section, we
can use these to illustrate the principles of designing an RBAC ad-
ministration model. We will compare these approaches with ours
in Section 5.4.

3.1 ARBAC97
To our knowledge, ARBAC97 [21, 23, 22] is the first attempt

to specify a comprehensive administrative model for RBAC. AR-
BAC97 is based on the RBAC96 models [24]. ARBAC97 assumes
that there is a set of administrative roles, AR, which is disjoint
from the set of normal roles. Only members of these roles can per-
form administrative operations.

ARBAC97 consists of three sub-models: URA97 for managing
user-role assignment, PRA97 for managing permission-role assign-
ment, and RRA97 for managing role-role assignment. All three
sub-models rely on the concept of role ranges, which are used as
administrative domains. A role range specifies a set of roles, and
an open role range is written as (x, y), where x and y are normal
roles. By definition, (x, y) = {r | x ≺ r ∧ r ≺ y}. Ranges in
URA97 and PRA97 may be open, closed or half-open.

URA97 introduces two relations: can assign and can revoke .
Each member of can assign is of the form 〈a, ϕ, G〉, where a is
an administrative role, ϕ is a pre-condition (discussed below), and
G is either a role range or a set of explicitly listed roles. The pre-
condition, ϕ, is a propositional logic formula with roles as atoms,
and with ¬,∨, and ∧ as logical connectives. For instance, the
meaning of the 〈a, r1 ∨ (¬r2 ∧ r3) , G〉 is that a member of a may
assign a user u to a role r ∈ G provided that either u is a member
of r1, or, u is not a member of r2, but is a member of r3. Each tuple
in can revoke is of the form 〈a, G〉, where a is an administrative
role, and G is a role range or a set of roles; it means that a member
of a can revoke a user from a role in G. In ARBAC97, adminis-
tration of permissions is perceived as the dual of the administration
of users; thus, PRA97 introduces two relations can assignp and
can revokep, which are similar to can assign and can revoke .

RRA97 introduces five new relations: can assigna ,
can revokea , can assigng , can revokeg , and can modify .
The relation can modify is used to specify how the role hierarchy
may change. Each member of can modify is a tuple 〈a, G〉, where
a is an administrative role, and G is an encapsulated range, which
is an open range (x, y) that satisfies the condition that given a role
r1 ∈ (x, y) and a role r2 6∈ (x, y), we have r2 ≺ r1 if and only if
r2 ¹ x, and r1 ≺ r2 if and only if y ¹ r2.1

The concept of encapsulation is introduced to avoid the situa-
tions that some operations performed inside a role range may have
some side effects outside the range. To maintain encapsulation of
ranges, ARBAC97 further limits what operations are allowed by
the tuples in can modify . For example, to create a new role, one
must specify one parent role and a child role. To create the role
r with the role x as its child and y as its parent, the range (x, y)
must be a create range.2 Only the SSO can create roles without a
parent or a child, or outside a create range. Furthermore, any op-
eration such as deleting a role, inserting an edge, and deleting an
edge, should not violate the encapsulation of any authority range
(see footnote 2). For example, one cannot add the edge QE1≺PL2,
even when a tuple in can modify has the range (ED,DIR), because
this new edge would make the two ranges (E1,PL1) and (E2,PL2)
not encapsulated anymore. Similarly, one cannot delete the edge

1As Crampton and Loizou [4] point out, the original definition for
an encapsulated range in [23] implies that no range can be encap-
sulated. Therefore, we have adopted the correction to the original
definition suggested by Crampton and Loizou [23].
2Any range reference in the can modify relation is called an au-
thority range. An immediate authority range of a role is the unique
smallest authority range to which the role belongs. A range (x, y) is
a create range if x and y have the same immediate authority ranges
or one of x and y is the end point of the other’s immediate authority
range.

(a)

(b)

(c)

Figure 1: Role hierarchies from RBAC literature.A lattice structured hierarchy is shown in (a). An inverted tree in shown in (b). A layered role
hierarchy is shown in (c).

E2≺PE2, because it makes the range (PL2,E2) no longer encapsu-
lated.

We point out some issues of ARBAC97, which will be further
discussed in Section 4. First, to administer RBAC, ARBAC97 in-
troduces the notion of administrative roles and nine new relations,
which have fairly involved semantics and restrictions. Administra-
tive roles and update to these nine relations are not managed in the
model, which implies that they must be managed by the SSO. Sec-
ond, administrative domains are defined based on role hierarchies.
As many operations also change the role hierarchy, some adminis-
trative domains may become ill-defined. To avoid this, ARBAC97
introduces concepts such as create ranges and restrictions on what
operations can be performed. As a result, a lot of common opera-
tions can be performed only by the SSO.

After ARBAC97 was introduced, ARBAC99 [25] and AR-
BAC02 [19] were introduced to address some perceived shortcom-
ings of ARBAC97. They change only the URA and the PRA com-
ponents of ARBAC97, but not RRA97. In particular, they do not
changed the fundamental approach of using administrative roles,
additional relations, and role ranges based on hierarchies.

3.2 SARBAC Family
SARBAC [4, 5] is another important work on RBAC administra-

tion; it follows the basic idea of ARBAC family and tries to make
the administration more flexible. The administrative model for role
hierarchy in SARBAC is later refined and improved by the same
author in [3]. We follow the description of SARBAC in [3]. Cen-
tral to SARBAC is the concept of an administrative scope, which is
defined using the role hierarchy, and is used for defining adminis-
trative domains. The administrative scope of a role r (denoted by
σ(r)) consists of all roles that are descendants of r and are not de-

scendants of any role that is incomparable with r. More formally,
σ(r) = {s ∈↓ r :↑ s ⊆↑ r∪ ↓ r}, where ↓ r is the set of roles
that are junior to r, ↑ s is the set of roles that are senior to s. Infor-
mally, r ∈ σ(a) if in the role hierarchy every path upwards from
r goes through a. Each role is in the scope of the role itself. We
say a scope is nontrivial if it includes more than one roles. Using
scopes for administration works best when the role hierarchy is a
tree, with an all-powerful role at the root; in this case, each role’s
administrative scope is the subtree rooted at that role. In an inverted
role hierarchy such as the one in Figure 1b, no role has a non-trivial
administrative scope.

SARBAC uses also administrative roles. To define the adminis-
trative domain for each administrative role, SARBAC introduce a
relation admin authority. Each member of admin authority
is a tuple (a, x), where a is an administrative role, and x is a role.
It means the administrative role a has control over the roles in the
administrative scope of x. SARBAC allows administration of the
admin authority relation. This is done by combining the rela-
tion admin authority and the role hierarchies into an extended
hierarchy over both the administrative roles and normal roles. The
concept of administrative scope can be extended to the extended
role hierarchy. Adding or deleting an admin authority relation
is equivalent to adding or deleting a corresponding edge in the ex-
tended hierarchy. When an operation on the extended hierarchy
is done, some updates to admin authority happen automatically,
in order to preserve the administrative scope and to remove redun-
dancies. Further details of SARBAC are beyond the scope of this
paper; readers are referred to [3, 4, 5].

In summary, similar to ARBAC97, SARBAC also uses role hi-
erarchies to define administrative domains. When some opera-
tions may affect existing administrative domains, ARBAC97 for-

bids these operations, while SARBAC allows them and handles
them by changing existing administrative domains. One feature
of SARBAC is that one simple operation may affect administrative
domains of many roles.

The administrative model for role hierarchy in SARBAC is later
refined and extended to RBAT, a template for role-based adminis-
trative models [3]. RBAT formalize the interaction between the role
hierarchy operations and the administrative scopes, by having the
operations preserve certain aspects of administrative scopes. The
role hierarchy administrative model in both ARBAC97 and SAR-
BAC can expressed in terms of the RBAT framework.

3.3 Oracle
The Oracle DBMS implements the notion of roles since early

1990s, and it includes support for administration of the access con-
trol state. Unlike ARBAC and SARBAC, Oracle’s RBAC admin-
istration have been widely used in real world, Oracle thus presents
an invaluable reality check for administrative approaches to RBAC.
The success of RBAC research is partially due to the fact that the
notion of roles has been implemented in commercial systems, so
that the research can be guided by real-world experiences. We be-
lieve research on administrative models for RBAC must also learn
from existing systems such as Oracle.

There are two kinds of privileges in Oracle: system privileges
and object privileges. There are over 100 system privileges in Or-
acle 10g. For example, the “create role” system privilege allows
one to create a new role, “drop any role” allows to drop any role,
“grant any role allows to grant any role to a user or another role”.
An object privilege identifies an object, which is either a table or a
view, and an access mode, which is one of the following: select ,
insert , update and delete . Oracle’s permission management is a
hybrid of DAC (Discretionary Access Control) and RBAC. Privi-
leges can be granted to users and to roles. And roles can be granted
to roles and to users. A system privilege or a role can be granted
“with admin option”. If a user is granted a role with admin option,
then we say the user has admin power over the role. This enables
the user to grant the role to other users and roles as well as to revoke
the role from other users or roles. A role r1 can also be granted to
another role r2 with admin option, in which case any user that is a
member of r2 has admin power over r1. A user can create a role if
he has the create role system privilege and the role to be created
does not already exist. When a role is created, the creator will be
automatically granted the role with admin option. This enables the
creator to further grant the role to any other role or user.

In Oracle, if one has control over a permission, then one can
grant the permission to any role; no control over the role is needed.
This is different from the approach in ARBAC97 and SARBAC,
in which granting a permission to a role is viewed as a dual of as-
signing a user to a role, and requires the granter has some kind of
control over the role. Oracle’s design seems more intuitive. Grant-
ing a role to a user implies giving out privileges associated with the
role; thus some control over the role is needed. Similarly, granting
a permission to a role implies giving out the permission; thus some
control over the permission (rather than over the role) is needed.
On the other hand, Oracle’s approach leads to a denial of service
attack: Any user who has the “create role” system privilege can
stop other users from logging in. When a user logs in, a set of roles
that the user has are activated, as is any role that has been granted
to one of these roles. Oracle has a limit on the number of roles that
can be activated in a session; if a user has more roles, then the user
cannot log in. Oracle has a predefined role called PUBLIC, which
is granted to every user and is activated by default. Any user who
has the “create role” system privilege can create a large number of

roles and grant them to PUBLIC, resulting in other users unable to
log in.

4. DESIGN PRINCIPLES AND REQUIRE-
MENTS

In this section, we present six design requirements for admin-
istrative models for RBAC. These requirements are motivated by
three principles: scalability and flexibility, psychological accept-
ability, and economy of mechanism, and they are grouped into three
subsections. Several of these requirements came from the draw-
backs we have observed in existing approaches to RBAC adminis-
trative presented in Section 3. We thus use these requirements to
analyze the three approaches and point out these drawbacks.

4.1 Scalability and Flexibility

REQUIREMENT 1. Support decentralized administration and
scale well to large RBAC systems.

As RBAC’s benefits are most pronounced when used in settings
with large numbers of users and permissions, we require that ad-
ministrative models for RBAC are flexible enough to scale to sys-
tems of such size. This requires decentralization of operations such
as creating users and roles and the ability to define meaningful ad-
ministrative domains. Each of ARBAC, SARBAC and Oracle sup-
ports decentralized administration allows coexistence of multiple
administrators having control over portions of the system. How-
ever, they all have limitations and do not scale well to large RBAC
systems.

ARBAC and SARBAC are designed to work well with particular
kinds of role hierarchies, but do not work well with other kinds role
hierarchies. As we discussed in Section 2, role hierarchies may take
very different forms. For many role hierarchies, there exist very few
(sometime zero) nontrivial administrative domains. As a result, a
lot of operations cannot be delegated and must be performed by the
SSO role. Recall that ARBAC97 requires administration domains
to be encapsulated role ranges, and SARBAC uses administrative
scopes. In the role hierarchy in Figure 1(b) (a forest of inverted
trees), there exists no encapsulated range or non-trivial adminis-
trative scope. For example, in Figure 1(c), if we want to create a
new role “Head Cardiology” and make it to be more senior to the
role “Cardiologist”, this operation should performed by the admin-
istrator of the Cardiologist Division. But it cannot be achieved in
ARBAC and SARBAC. Similarly, in a layered role hierarchy (such
as the one in Figure 1(b)), there exist no encapsulated role range
or non-trivial administrative scope. A lot of basic administrative
operations cannot be delegated for such role hierarchies using AR-
BAC or SARBAC. For example, if one wants to grant a functional
role to a business role, create a new business role, or create a new
functional role with multiple business role parents, all these can be
done only by the central administrator in ARBAC and SARBAC.

ARBAC97 introduces additional administrative relations that are
administered centrally. When applying to large-scale RBAC sys-
tems, the size of these relations may be too large to be administered
centrally. This limits the scalability of the approach. In Oracle ad-
ministrative domains are defined by explicitly enumerating objects
in the domain. This works fine when the number of roles is limited,
which is probably true in most scenarios in which Oracle is used.
However, the administration approach in Oracle does not scale to
systems that have thousands of roles.

REQUIREMENT 2. Be policy neutral in defining administrative
domains.

One of RBAC’s advantages is policy neutral, so that it can be
configured to enforce multiple kinds of policies. An administra-
tive model for RBAC should remain as policy neutral as possible.
As the role hierarchy is designed for sharing and aggregation per-
missions, using the role hierarchy structure to define administra-
tive domains implies a particular kind of policy. For example, in
ARBAC97, administrative domains are defined using role ranges,
which are roles between two end-points. In SARBAC, administra-
tive domains are defined using scopes, which are roles below a role.
In Role Control Center [6], administrative domains are defined us-
ing views, which are all roles above a certain role. The existence of
these disparate design decisions illustrate that it is a policy decision
how (and in fact whether) to use role hierarchy to define adminis-
trative domains. Experiences on RBAC deployments reported by
Kern et al. [12] also indicate that using role hierarchies is not a
natural approach to specifying the domain of an administrator. In
particular, domain is often specified based on the structure of an
organization, e.g., all roles in one branch of a bank. The roles that
belong to one domain may not be related at all in the role hierar-
chy. Therefore, it is best to decouple administrative domains from
role hierarchies. An RBAC administration model should provide
a mechanism for defining administrative domains based on other
concepts, e.g., organization units.

4.2 Psychological acceptability
This principle means that it is essential that the human interface

be designed for ease of use, and, the user’s mental image of his
protection goals should match the mechanism [20].

REQUIREMENT 3. Apparently equivalent sequences of opera-
tions should have the same effect.

When two sequences of operations are conceptually equivalent,
their effects should be the same. A special case is when one oper-
ation can be conceptually viewed as a sequence of more primitive
operations, then the effect of that one operation should be equiva-
lent to carrying out the sequence of the primitive operations. Con-
sider an operation that creates a role r with a set P of roles as
parents and a set C of roles as children. This operation can be
viewed as first creating the role r, then adding each role in P as a
parent and each role in C as a child in an arbitrary order. In prac-
tice, when one creates a role, one may not be able to determine
all the parents and all the children. Thus, one may want to create
the role first and then gradually add the relationships. Such equiv-
alence does not hold in ARBAC97 or SARBAC; in particular, one
has to specify a parent (and in the case of ARBAC97, a child as
well) in creation; otherwise, either the role cannot be created, or
will be outside the creator’s administrative domain; and further ad-
dition of edges cannot be performed. Oracle’s design, on the other
hand, has this equivalence property.

REQUIREMENT 4. Support reversibility.

This implies two requirements. One is that most sequences of
operations should be reversible; that is, given a sequence, there
should exist a sequence of operations that reverse the effect of the
sequence. Having reversibility, if one makes a mistake, one can go
back. Certainly, not all operations are reversible; for example, oper-
ations such as deleting objects may not be reversible. However, at a
minimum, operations that only add things should be reversible. The
second requirement is that if an operation has an obvious reversing
operation; then the reversing operation should always reverse the
effect as expected. For example, if one adds an edge between two

roles, and then immediately delete the edge; the system should re-
turn to the state before addition.

This is not satisfied by ARBAC97 and SARBAC; they adopt
the approach that if a role dominance relationship is removed,
then all other role dominance relationships that have been implied
are added back. This violates reversibility. Consider the RBAC
state in Figure 2(b)(i), which contains the following relationships:
Architect º Engineer. Suppose that when a product is about to be
released, one wants engineers to also serve as QAs and adds a tem-
porary relationship Engineer º QA. This change results in the role
hierarchy in Figure 2(b)(ii). After the release, one wants to delete
the temporary relationship, expecting the hierarchy to return to the
original state in Figure 2(b)(i). After all, the only reason that the
Architect role dominates the QA role in Figure 2(b)(ii) is because
one wants engineers to be able to serve as QAs and architects are
(a kind of) engineers, and now one does not want engineers to be
QAs anymore. However, in ARBAC97 and SARBAC, the result-
ing state would be Figure 2(b)(iii), violating reversibility. We point
out that always removing implied role dominance relationships also
violates reversibility, as illustrated by Figure 2(a).

Oracle addresses this problem by maintaining all relationships
that have been explicitly added. The operation of deleting an edge
removes a relationship that has been explicitly added. The actual
role hierarchy is inferred from the relationships. This way, one can
distinguish an edge that has been explicitly added from one that has
been inferred, thereby maintaining reversibility.

REQUIREMENT 5. Predictability

Given a state-change in an administrative model for RBAC, it
should be obvious what the effect of that state-change is. That is,
there should not be side-effects that are surprising. Otherwise, it
is easier for administrators to make mistakes while carrying out
administrative operations. In SARBAC, there are automatic up-
dates to the relation admin authority following a role hierarchy
operation in order to maintain administrative scope and to elimi-
nate redundancy. However, some of “indirect updates” have side-
effects that may be considered surprising. For example, in the Fig-
ure 1(a), suppose an administrative role PSO1 has control over
the administrative scope of Project 1, which is {PL1, PE1, QE1,
E1}. When PSO1 delete the role PL1, the original administrative
scope for Project 1 breaks up into three trivial administrative scopes
{PE1}, {QE1} and {E1}. The system will remove the relationship
(PSO1, {PL1, PE1, QE1, E1}) from admin authority, and make
PSO1 have control over the administrative scopes of the interme-
diate children of the deleted role. It adds two relationships (PSO1,
{PE1}) and (PSO1, {QE1}) into admin authority. Surprisingly,
the role E1, which is part of Project 1, becomes outside of the con-
trol of PSO1 due to the deletion of PL1, because E1 is not in the
administrative scope of either PE1 or QE1. On the other hand, in
ARBAC97 and Oracle, the effects of each operation tend to be sim-
pler and easier to understand.

4.3 Economy of Mechanism

REQUIREMENT 6. Using RBAC to administer RBAC.

The basic idea of economy mechanism is to keep the design
as simple and small as possible. ARBAC97 and SARBAC vio-
late this principle as they all introduce several additional admin-
istrative relations with sophisticated semantics. We observe that
RBAC systems are used to manage permissions for accessing ob-
jects. RBAC systems themselves in turn introduce additional ob-
jects, such as users, roles, constraints, the user-role assignment re-
lation, the permission-role assignment relation, and so on. RBAC

 (ii) After addition

 (a) Remove implicit relationships (option 2)

 (b) Preserve implicit relationships (option 1)

 PM

 QA Eng

 Arc

 QA Eng

 Arc

 QA Eng

 PM

 QA Eng

 (iii) After deletion

AddInheritance(Eng, QA) DeleteInheritance(Eng, QA)

AddInheritance(Eng, QA) DeleteInheritance(Eng, QA)

 (ii) After addition (iii) After deletion

 PM

 (i) Original state

 QA Eng

 Arc

 QA Eng

 (i) Original state

ProjManager (PM), Engineer (Eng), Quality Assurance (QA), and Architect (Arc)
⇒ and→ represent an immediate predecessor relation and a non-immediate partial order relation, respectively.

Figure 2: Adding and deleting a role from RH

administration is about managing operations that change these ob-
jects. Based on the principle of economy of mechanism, it makes
sense to reuse the mechanisms for managing permissions about ac-
cessing objects for managing the administrative operations, rather
than introducing additional relations. We call this approach “Using
RBAC to administer RBAC”.

We point out that ARBAC97 explicitly mentions “using RBAC
to administer RBAC” as a design goal. However, the interpreta-
tion of “using RBAC to administer RBAC” is different from ours.
In ARBAC97, this means that administrative powers are given to
administrative roles rather than administrative users directly. How-
ever, the relationship between administrative powers and admin-
istrative roles are encoded in newly introduced relations. On the
other hand, Oracle handles this quite well by using the same mech-
anism for managing system privileges and roles.

5. UARBAC: A NEW ADMINISTRATIVE
MODEL FOR RBAC

We now present our approach for administering RBAC,
called the UARBAC family3 of administrative models for
RBAC. UARBAC consists of a basic model and one extension:
UARBACP , which adds parameterized objects and constraint-
based administrative domains. UARBAC adopts the approach of
administering RBAC with RBAC. By this, we mean that permis-
sions about users and roles are administered in the same way as
permissions about other kinds of objects. An access control system
thus has predefined classes of objects for users and roles, as well
as other classes of objects that are protected by the access control
system. For example, in Security Enhanced Linux [17], 29 classes
of objects are defined, including processes, files, etc. Different ac-
cess modes are applicable for different classes. In this section, we
first present a new RBAC model that supports object classes, then
describe the basic model in UARBAC and the extension.

5.1 An RBAC model

3The letter U in UARBAC does not stand for any thing; or one can
consider it to stand for “unnamed”.

We now present a new RBAC model that extends the exist-
ing RBAC models with the notion of object classes and RBAC
schemas.

RBAC Schemas An RBAC schema specifies what kinds of objects
are managed by the RBAC system, and what access modes can be
applied to these objects. Any RBAC system must be based on an
RBAC schema. In our model, an RBAC schema is given by a tuple
〈C ,OBJS,AM 〉.

1. C is a finite set of object classes that the system supports. We
require that C contain two predefined object classes: user
and role.

2. OBJS is a function that maps each class in C to a countable
set of object names of that class. That is,OBJS(c) gives all
possible names for objects of the class c.

We use U to denote OBJS(user) and R to denote
OBJS(role), we also require thatR contain a reserved role
name sso, for the system security officer role.

3. AM is a function that maps each class c ∈ C to a set of
access modes that can be applied on objects of the class c.
There are a few predefined access modes that are relevant to
administration.

Every class has the predefined access mode, admin, i.e.,
∀c ∈ C, admin ∈ AM (c). The mode “admin” enables one
to delete the object and to give out permissions about the ob-
ject.

The access modes for the two predefined classes user and
role are fixed by the model as follows.

• AM (user) = { empower, admin }
The mode “empower” enables one to control who is
allowed to add “power” (i.e., permissions) to a user by
granting roles to the user. The mode “admin” enables
one to delete the user, to give out permissions about the
user, and to revoke roles from the user; it also implies
the “empower” mode.

• AM (role) = { grant, empower, admin }.
The access mode “grant” over a role enables one to
control how this role is granted to other roles and users.
The mode “empower” enables one to control who is al-
lowed to add “power” to the role. The mode “admin”
enables one to delete the role, to give out permissions
(such as grant and empower) about the role, and to re-
voke roles and permissions assigned to the role; it also
implies the modes “grant” and “empower”.

There are two kinds of permissions in the RBAC model:

1. object permissions: An object permission takes the form
[c, o, a], where c ∈ C, o ∈ OBJS(c), and a ∈ AM (c).
This permission enables one to access the object o using the
access mode a.

2. class permissions: A class permission takes the form [c, a],
where c ∈ C, and a ∈ {create} ∪ AM (c).

This permission allows one to access all objects of class c
in the access mode a. In particular, [c, create] allows one to
create objects of class c.

By default, the sso role is granted all class permissions.

How these permissions affect administrative operations will be
discussed in Section 5.2.

RBAC States Given an RBAC schema, an RBAC state is given by
a tuple 〈OB ,UA,PA,RH 〉.

1. OB is a function that maps each class in C to a finite set
of object names of that class that currently exist. We have
∀c ∈ C ,OB(c) ⊆ OBJS(c). We use U and R as a short-
hand for OB(user) and OB(role), respectively. The set of
all permissions, P , is given by

P = {[c, o, a] | c ∈ C ∧ o ∈ OB(t) ∧ a ∈ AM (t)} ∪
{ [c, a] | c ∈ C ∧ a ∈ AM (c) ∪ {create} } .

2. UA ⊆ U ×R is the user-role assignment relation.

UA contains the user-role relationships that are explicitly as-
signed by an administrative operation.

3. PA ⊆ P ×R is the permission-role assignment relation.

PA contains the permission-role relationships that are explic-
itly assigned by an administrative operation.

4. RH ⊆ R × R is an irreflexive and acyclic relation over
R. RH contains the role-role relationships that are explicitly
added by administrative operations.

We useºRH to denote the partial order induced by RH , i.e.,
the transitive and reflexive closure of RH . That r1 ºRH

r2 means that every user who is authorized for r1 is also
authorized for r2 and every permission that is associated with
r2 is also associated with r1.

We use an example of an RBAC system for files to illustrate
our model. In the schema, we have C = {file, user, role}. The
set OBJS(file) contains all the legal file names; AM (file) =
{read, write, append, execute, admin}. In each state, the set
OB(file) contains all the names of the existing files in the system.
The object permissions about files takes the form [file, o, a], where
o is an existing file name in OB(file), a is an access mode in AM
(file). For example the object permission [file,“/boot.ini”, write]

enable one to modify the file “/boot.ini”, given that “/boot.ini”
∈ OB(file) . The class permissions about files take the form
[file, a], where a ∈ AM (file). For example, the class permission
[file, create] enables one to create a new file; and [file, read] enables
one to read any file.

5.2 Administrative operations in UARBAC
The administrative operations in UARBAC are listed in Figure 3.

Each administrative operation requires certain permissions to suc-
ceed. UARBAC does not fix how to determine the set of permis-
sions that is considered in determining whether an administrative
operation is authorized. One way is to use all permissions of the
user u who performs the administrative operation, which can be
calculated as follows:

authorized perms[u] = { p ∈ P | ∃r1, r2 ∈ R
[(u, r1) ∈ UA ∧ (r1 ºRH r2) ∧ (r2, p) ∈ PA] }

When the operation is performed in a session, possibly only a sub-
set of all the roles that u is authorized for are activated, one can
compute the set of permissions available to the session by consid-
ering only the permissions of the roles that are activated in the ses-
sion.

To grant an object permission [c, o1, a] to a role r1, one needs the
two permissions [c, o1, admin] and [role, r1, empower]. This is dif-
ferent from the approach in Oracle, in which, if one controls an ob-
ject, one can grant permissions about the object to any user or role.
To revoke a permission [c, o1, a] from a role r1, one needs either
the permissions [c, o1, admin] or the permission [role, r1, admin].
This design is motivated by the equivalence requirement and the
reversibility requirement. Anyone who has the admin permission
over an object should be able to delete the object. Before an ob-
ject is actually removed, permissions about the object need to be
revoked from other roles; thus these revocation should be able to
succeed. Similarly, anyone who has the admin permission over a
role should be able to delete and role, which implies removing all
permissions that has been granted to the role. Therefore admin
over either the object o1 or the role r1 should suffice for revoking
the permission [c, o1, a] from r1. Under this design, if one is autho-
rized to grant a permission about an object, one is also authorized
to revoke the permission, satisfying the reversibility requirement.
This design also enables anyone who has the admin permission
over a role to control the power of the role, by removing unwanted
permissions that have been granted to the role.

Granting/revoking a role to/from a role is similar to grant-
ing/revoking a permission to/from a role. To grant a role r1 to
another role r2 (i.e., making r2 more senior to r1), one needs
the two permissions [role, r1, grant] and [role, r2, empower]. To
revoke r1 from r2, one needs to satisfy one the following three
conditions: (1) has permission [role, r1, admin], (2) has per-
mission [role, r2, admin], and (3) has both [role, r1, grant] and
[role, r2, empower]. Conditions (1) and (2) are motivated by the
need to enable anyone having the admin permission over a role to
remove the role. Condition (3) is motivated by the need to enable
anyone who can issue a grant to also revoke the grant.

To create new objects of class c, one needs the class permission
[c, create]. Unlike in DAC, the creator of an object does not auto-
matically receive “admin” privilege over the object. (Recall that in
RBAC permissions cannot be directly assigned to users.) Instead,
the creation operation specifies a role r1 to receive the admin priv-
ilege over the object. To do so, the creator should also have the
permission [role, r1, empower].

To delete an existing object o1 of class c, one needs the permis-
sion [c, o1, admin]. When the object o1 is deleted, all the relation-

Operation Required Perms Conditions Effects
createObject(c, o1, r1) [c, create],

[role, r1, empower]
o1 ∈ OBJS(c)
o1 6∈ OB(c)

OB ′(c) = OB(c) ∪ {o1},
PA′ = PA ∪ {([c, o1, admin], r1)}

deleteObject(c, o1) [c, o1, admin] o1 ∈ OB(c) OB ′(c) = OB(c) \ {o1}
Relationships about o1 are removed.

grantRoleToUser(r1, u1) [role, r1, grant],
[user, u1, empower]

r1 ∈ R,
u1 ∈ U

UA′ = UA ∪ {(u1, r1)}

revokeRoleFromUser(r1, u1) [role, r1, admin] or
[user, u1, admin] or
([role, r1, grant],
[user, u1, empower])

(u1, r1) ∈ UA UA′ = UA \ {(u1, r1)}

grantRoleToRole(r1, r2) [role, r1, grant],
[role, r2, empower]

r1 6ºRH r2

(r2, r1) 6∈ RH
RH ′ = RH ∪ {(r2, r1)}

revokeRoleFromRole(r1, r2) [role, r1, admin] or
[role, r2, admin] or
([role, r1, grant],
[role, r2, empower])

(r2, r1) ∈ RH RH ′ = RH \ {(r2, r1)}

grantObjPermToRole
([c, o1, a1], r1)

[c, o1, admin],
[role, r1, empower]

([c, o1, a1], r1)
6∈ PA

PA′ = PA ∪ {([c, o1, a1], r)}

revokeObjPermFromRole
([c, o1, a1], r1)

[c, o1, admin] or
[role, r, admin]

[c, o1, a1] ∈ PA PA′ = PA \ {([c, o1, a1], r1)}

grantClassPermToRole(p1, r1) only by the sso role (p1, r1) 6∈ PA PA′ = PA ∪ {(p1, r1)}
revokeClassPermFromRole

(p1, r1)
by the sso role or
[role, r1, admin]

(p1, r1) ∈ PA PA′ = PA \ {(p1, r1)}

Figure 3: The primitive administrative operations in UARBAC. For each operation, we give the permission(s) the subject that
initiates this operation needs to have, the conditions on the RBAC state for the operation succeed, and the effects of each operation
by describing which state components are changed. Note that when we say a permission about a specific object is required, the
operation will also succeed if the initiator has the corresponding class permission. For example, if [role, r1, grant] is required, the
operation will also succeed if the initiator has the class permission [role, grant].

ships about o1 are also removed. Note that if o1 is a role, then the
initiator of the deletion, who has the permission [role, o1, admin],
is authorized to revoke all the permissions and roles that are granted
to o1 and all the users and roles that o1 is granted to. Similarly, if
o1 is a user, then the initiator is authorized to revoke all the roles
that are granted to o1.

The class permissions can be granted only by the sso role. A
class permission implies the object permissions over all the objects
of that class. For example, the class permission [role, grant] en-
ables one to grant any role, i.e., it implies the object permission
[role, r, grant] for any role r. This is similar to the system privilege
“grant any role” in Oracle.

We now highlight some of the salient features of our model:

• The RBAC objects, namely users and roles, are treated in the
same way as other objects. This is driven by the economy
of mechanism principle and the “using RBAC to administer
RBAC” requirement.

• The granting operations (namely, grating a permission to a
role, granting a role to a role, and granting a role to a user) are
all handled in a uniform way, reflecting considerations based
on the economy of mechanism principle and the psychologi-
cal acceptability principle. Granting x to y requires the grant
permission over x and the empower permission over y. This
is different from many existing approaches, which require
only one of the two permissions to perform the operation.
Granting x to y naturally requires certain permission over x.
UARBAC also requires permission over y for at least two
reasons. First, this makes the denial of service attack de-
scribed in Section 3.3 more difficult to carry out. Even if one

can create new roles, one can grant these roles only to those
roles over which one holds the empower permission. Sec-
ond, in a large-scale system, it is natural to restrict the set of
users and roles that an administrator can grant permissions
to. For example, administrators of one department may be
allowed only to grant to users and roles in that department.

Note that a system in which one needs only grant permis-
sion over x to be able to grant x to y (such as Oracle) can
be implemented in our model by granting the class permis-
sions [role, empower] and [user, empower] to all users in the
system.

• The grant permission controls both granting and revoking.
We made this choice for simplicity, and for supporting re-
versibility. If a user makes a mistake in granting, the user
has the permission to perform the corresponding revocation,
cancel the effects of the mistake.

• Here we provide only the most primitive operations. More
complex operations can be built from these primitive opera-
tions. For example, creating a role with a set of parents and a
set of children can be performed by first using createObject
to create the role, and then using multiple grantRoleToRole
operations.

• In our model, the role hierarchy is not maintained as a partial
order among roles. RH is an irreflexive and acyclic rela-
tion over roles, which contains only the role-role relation-
ships that explicitly added by an administrative operation.
This design provides reversibility to the role hierarchy op-
erations, i.e. grantRoleToRole and revokeRoleFromRole are

mutually reverse. (See the discussions for Requirement 4 in
Section 4.2for more explanations.)

• In UARBAC the permissions are assigned only to roles; they
are not directly assigned to users. In some situations, one
may want to have a hybrid system where permissions can
also be assigned to users, (e.g., Oracle). To model such a sys-
tem, one can extend our model to include a user-permission
assignment relation. Granting permissions to users can be
administering in the same way was granting permissions to
roles.

• In the basic model, administrative domains are defined by
explicitly enumerating the objects in the domains. While be-
ing flexible, this does not scale well to large RBAC systems;
this is addressed in UARBACP , which is presented in Sec-
tion 5.3.

5.3 UARBACP : Adding Parameters and Units
Each administrative permission in the basic model is about a sin-

gle object; in other words, to define an administrative domain, one
has to explicitly list all objects in the domain. This does not scale to
large RBAC systems. To be able to scale well, we need to be able
to define administrative domains based on concepts such as organi-
zational units. The basic idea of the UARBACP extension is to as-
sign one or more attributes (called parameters) to each object in the
RBAC system, and then define administrative domains using con-
straints on these parameters. One can view the basic model as a spe-
cial case in which each object has one parameter, i.e., name, which
uniquely identifies the object, and the only kind of constraints is
name = o, which o denotes an object name.

Schema of Parameterized RBAC: In Parameterized RBAC, an
RBAC schema is given by the tuple 〈D , T,PD ,AM 〉, which are
described below.

1. D is a set of types that are used in the system. Each type
defines a set of values, as well as a constraint language for
defining sets of values for this type.

For example, one may define a type for organizational units,
which form a tree structure. For instance, in a banking sys-
tem, the root of the organizational structure is the bank, and
children of the root are regions, and each region have some
children for branches. A constraint may denote all children
under a node, a node plus its children and descendants, and
so on. Similarly, one may define a type for files and directo-
ries, which are also hierarchical.

2. C is a set of object classes, as in the basic model. However,
we allow multiple classes for roles and users. That is, C has
two subsets: Cr , which gives the set of all role classes, and
Cu, which gives the set of all user classes. This enables us
to allow different kinds of roles (e.g., enterprise roles and
functional roles) that have different parameters.

3. PD is a function that maps each class in C to
a parameter declaration, which takes the form
((pname1, ptype1), (pname2, ptype2), ..., (pnamek, ptypek)).
Each pair (pnamei, ptypei) denotes a parameter, where
pname1 is the name and ptypei ∈ D is the type of the
parameter.

For example, a role class business role in Cr may have
a parameter declaration PD(business role) = (name :
ROLE NAME, unit : ORGAN UNIT), which means that
it has two parameters, one is the name of the role, and the

other is the organizational unit. Both ROLE NAME and
ORGAN UNIT are types in D. Suppose that manager is a
value in the type ROLE NAME and ‘Branch Hamburg’ is a
value of type ORGAN UNIT, then “business role(name =
manager, unit = ‘Branch Hamburg’)” identifies a role.

Suppose that PD(c) = ((pname1, ptype1), (pname2,
ptype2), ..., (pnamek, ptypek)). An object of class
c is identified by c(pname1 = s1, pname2 =
s2, ..., pnamek = sk), where si is a value of type ptypei,
for each i in 1..k. In the following we use c(~s) to represent
such an object.

4. AM is a function that maps each class to a set of access
modes, and the access modes for a user class or a role class
are fixed by the model, as in the basic model.

Using the notion of administrative domains, both object permis-
sions and class permissions become special cases of the following
more general parameterized permissions: A parameterized per-
mission takes the form [c, ϕ, a], in which c is an object class, ϕ
is a constraint, and a ∈ AM (c) ∪ {create}. The constraint ϕ
defines a set of objects of class c, whose parameter values sat-
isfy the constraint. The permission [c, ϕ, a] allows one to access
all the objects in the set defined by ϕ using the access mode a.
For example, the parameterized permission [business role, unit ≤
‘Branch Hamburg’, create] allows one to create a business role
with the parameter unit having a value that is a descendant of
‘Branch Hamburg’.

In UARBACP , the five operations deleteObject, grantRole-
ToUser, revokeRoleFromUser, grantRoleToRole and revokeRole-
FromRole are similar to those in the basic model. One can treat
a parameterized permission [c, ϕ, a] as implying all object permis-
sions [c, ~s, a] where ~s satisfies ϕ. To create a new object, the creator
should specify the parameter values of the object. The operations
about object permissions and class permissions in the basic model
are replaced by two operations about parameterized permissions.
In UARBACP , PA is extended with a third parameter, id ; that is,
when a permission is granted to a role, one also specifies an id
value, which needs to be unique among all permissions granted to
that role. When one revokes a permission from a role, one specifies
the id value of the permission to be revoked. To grant a parameter-
ized permission [c, ϕ1, a1] to a role, besides the empower permis-
sion over the role, one should have the admin permission over the
set of objects defined by ϕ1. In other words, one should have the
permission [c, ϕ2, admin] such that ϕ1 logically implies ϕ2, which
means that every object that satisfies ϕ1 also satisfies ϕ2 and thus
ϕ2 describes a larger set. A new operation changeParameters is in-
troduced to change the parameter values of an existing object. In
order to do so, the initiator should have the admin permission over
the object with the old parameter values and the create permission
over the object with the new parameter values. These changed and
newly added operations are described in Figure 4.

In summary, in UARBACP , administrative domains are defined
using constraints on parameter values of objects. This is flexible
as well as policy neutral, as it enables one to define administrative
domains based on the organizational structure as well as other cri-
teria. Furthermore, parameterized administrative permissions can
be further delegated, which further improves scalability.

5.4 Comparisons with existing models
We now review how UARBACP meets the requirements stated

in Section 4 and then present a comparison of the three approaches
described in Section 3 with it.

Operation Required Permissions Effects
createObject(c(~s1), role(~s2)) [c, ϕ1, create] : ~s1 satisfies ϕ1

[role, ϕ2, empower] : ~s2 satisfies ϕ2

OB ′(c) = OB(c) ∪ {c(~s1)},
PA′ = PA ∪ {([c, ~s1, admin], role(~s2))}

changeParameters
(c(~s1), c(~s2))

[c, ϕ1, admin] : ~s1 satisfies ϕ1

[c, ϕ2, create] : ~s2 satisfies ϕ2

Replace all the occurrences of c(~s1) in the
state with c(~s2).

grantPermToRole
([c, ϕ1, a1], role(~s1), id1)

[c, ϕ2, admin] : ϕ1 logically implies ϕ2

[role, ϕ3, empower] : ~s1 satisfies ϕ3

PA′ = PA ∪ {([c, ϕ1, a1), role(~s1), id1)}

revokePermFromRole
(role(~s1), id1)

[c, ϕ2, admin] : ϕ1 logically implies ϕ2,
where ([c, ϕ1, a1], role(~s1), id1) ∈ PA, or
[role, ϕ3, admin] : ~s1 satisfies ϕ3

PA′ = PA \ {([c, ϕ1, a1), role(~s1), id1)}

Figure 4: The changed primitive administrative operations for parameterized extension.

• Requirement 1. Support decentralized administration and
scale well to large RBAC systems.

UARBACP supports decentralized administration by allow-
ing multiple administrators to have control over their own
administrative domains. As the administrative domains in
UARBACP are defined based on attributes of objects and are
independent of the role hierarchy, it is flexible to support all
forms of role hierarchies. UARBACP does not introduce any
additional administrative relations that require central admin-
istration. The parameterized administrative permissions can
be further delegated. These features make UARBACP more
flexible and scalable than existing models.

• Requirement 2. Be policy neutral in defining administrative
domains.

In UARBACP , the administrative domains are defined using
constraints on parameters of objects. Because the parameter
declarations and constraints are defined by administrators,
UARBACP provides a mechanism for defining administra-
tive domains based on application-level attributes. There-
fore, in UARBACP how to define administrative domains is
a policy decision according to applications.

• Requirement 3. Apparently equivalent sequences of opera-
tions should have the same effect.

Observe that the specification of administrative operations
of UARBACP includes only the most primitive operations.
These primitive operations are carefully designed so that
more complex operations can be built from them. This en-
sures that when one operation can be conceptually viewed as
a sequence of more primitive operations, then the effect of
that one operation will be equivalent to carrying out the se-
quence of the primitive operations. For example, deleting an
object can be viewed as first removing all relationships that
involve the object and then removing the object.

• Requirement 4. Support reversibility

In UARBACP , most operations support reversibility.
Each grant operation has a corresponding revoke oper-
ation so that one can use the same permissions to go
back after making a mistake. The operation createOb-
ject has deleteObject as the reversing operation. The
reversing operation of changeParameters(c(~s1), c(~s2)) is
changeParameters(c(~s2), c(~s1)). The operations that do not
have a reversing operation are destructive in nature, e.g.,
deleting an object, or revoke a permission (or role) from a
role (or a user).

• Requirement 5. Predictability

In the specification of UARBACP , the effects of the adminis-
trative operations are straightforward and simple. There does
not exist any surprising side-effects. For example, the effects
of grant (revoke) operations are simply adding (removing) a
relationship to (from) the corresponding relations.

• Requirement 6. Using RBAC to administer RBAC
In UARBACP , users and roles are treated in the same way as
other objects. And permissions about users and roles are ad-
ministered in the same way as permissions about other kinds
of objects. UARBACP does not introduce any additional ob-
jects and relations for administration. The administration is
unified into the RBAC system.

We summarize the comparisons among the three existing mod-
els and the UARBAC family with respect to the six design require-
ments in Figure 5. Note that Oracle RBAC satisfies four require-
ments. It uses enumerating objects to define administrative do-
mains, and thus does not scale well to large number of roles. It also
imposes two policy decisions in administering RBAC. The first is
that anyone can assign a role x to a user or a role, as long as one
has admin privilege over x. This leads to potential of DoS attacks
and doesn’t enforce least privilege in a large enterprise. The second
policy decision is that a user must be a member of a role (thus can
user the role) before one can administer the role. This decreases
the flexibility in enforcing Separation of Duty principles (e.g., one
may want to separate the privilege of administering a role from that
of using a role). In UARBAC, this can be achieved by not giving
an administer user the empower permission over herself. The main
innovations of UARBAC are approaches to address the above limi-
tations of Oracle RBAC, including an approach for defining admin-
istrative domains that is both flexible and scalable, a way to handle
all objects uniformly, and the extra control on granting. Some de-
sign decisions we have made in UARBAC can also be viewed as
policy decisions. For example, the “grant” permission over a role
controls both granting and revoking of the role. (This is the same
as the Oracle design.) These decisions are guided by the six design
requirements we have identified.

6. OTHER RELATED WORK
The papers that are most closely related to our paper are the

ARBAC series [21, 22, 23, 25, 19], the work by Crampton and
Loizou [4, 5, 3], and the RBAC system in Oracle. They were dis-
cussed in detailed in Sections 3 and 4 and comparison of our ap-
proach with them is given in Section 5.4.

In the rest of this section, we briefly discuss other papers in the
RBAC literature that are related to our work. The notion of roles
was first introduced to access control in the context of database se-
curity [27, 2] as a means to group permissions together to ease se-
curity administration. The term “Role Based Access Control” was

Requirements ARBAC, SARBAC Oracle UARBACP

Decentralized
administration
& scalability

Partially.
Not flexible to support disparate
role hierarchies.
Introduce central administered re-
lations.

Partially.
Not scalable to large
number of roles.

Yes.
Flexible to support disparate role
hierarchies. No centrally adminis-
tered relations. Administrative do-
main based on object attributes.

Policy neutral No.
Administrative domains based on
the role hierarchy, with fixed pol-
icy.

Partially.
No control on empowering a user
or a role. Must be member of a role
to admin a role.

Yes.
Define domains based on enumer-
ating objects and application-level
attributes.

Equivalence No Yes Yes
Reversibility No Yes Yes
Predictability ARBAC (Partially): Understand-

able but complicated.
SARBAC (No): Have surprising
side-effects.

Yes Yes

Economy of
mechanism

No.
Introduce additional relations and
objects.

Yes.
Same mechanism for managing
system privileges and roles.

Yes.
Treat users and roles in the same
ways as other objects.

Figure 5: Comparisons among the three existing models and UARBACP

first coined by Ferraiolo et al. [8, 7]. Sandhu et al. [24] developed
the influential RBAC96 family of RBAC models. Nyanchama and
Osborn developed the role-graph model [18]. Recently, a standard
for RBAC has been proposed and adopted as an ANSI Standard [1,
9]. Parameterized roles have been used before in [10, 13]; however,
they have not been used in the context of RBAC administration be-
fore.

Using RBAC in enterprise setting and their administration have
been studied in [6, 12, 11, 14, 26], these papers report invaluable
experiences from deploying large RBAC systems in practice, even
though they do not provide formal models for RBAC administra-
tion. Our model is largely inspired by these experiences. RBAC
administration is also studied in [28, 29, 30]. Our work differs
from them in that we adopt a principled based approach and decou-
ple administrative domains from the role hierarchies.

7. CONCLUSIONS
We propose a principled approach in designing and analyzing

administrative models for RBAC. We have identified six design re-
quirements for administrative models of RBAC. These design re-
quirements are motivated by three principles for designing security
mechanisms: (1) flexibility and scalability, (2) psychological ac-
ceptability, and (3) economy of mechanism. We have also used
these requirements to analyze several approaches to RBAC admin-
istration, including ARBAC97, SARBAC, and the RBAC system
in the Oracle DBMS. Based on these requirements and the lessons
learned in analyzing existing approaches, we design UARBAC, a
new family of administrative model for RBAC that has significant
advantages over existing models.

Acknowledgement
This work is supported by NSF CNS-0448204 (CAREER: Access
Control Policy Verification Through Security Analysis And Insider
Threat Assessment), and by sponsors of CERIAS. We thank Ma-
hesh V. Tripunitara for helpful discussions. We also thank the
anonymous reviewers for their helpful comments.

8. REFERENCES
[1] ANSI. American national standard for information

technology – role based access control. ANSI INCITS
359-2004, Feb. 2004.

[2] R. W. Baldwin. Naming and grouping privileges to simplify
security management in large databases. In Proceedings of
the IEEE Symposium on Research in Security and Privacy,
pages 116–132, May 1990.

[3] J. Crampton. Understanding and developing role-based
administrative models. In Proc. ACM Conference on
Computer and Communications Security (CCS), pages
158–167, Nov. 2005.

[4] J. Crampton and G. Loizou. Administrative scope and role
hierarchy operations. In Proceedings of Seventh ACM
Symposium on Access Control Models and Technologies
(SACMAT 2002), pages 145–154, June 2002.

[5] J. Crampton and G. Loizou. Administrative scope: A
foundation for role-based administrative models. ACM
Transactions on Information and System Security,
6(2):201–231, May 2003.

[6] D. F. Ferraiolo, R. Chandramouli, G.-J. Ahn, and S. Gavrila.
The role control center: Features and case studies. In
Proceedings of the Eighth ACM Symposium on Access
Control Models and Technologies, June 2003.

[7] D. F. Ferraiolo, J. A. Cuigini, and D. R. Kuhn. Role-based
access control (RBAC): Features and motivations. In
Proceedings of the 11th Annual Computer Security
Applications Conference (ACSAC’95), Dec. 1995.

[8] D. F. Ferraiolo and D. R. Kuhn. Role-based access control.
In Proceedings of the 15th National Information Systems
Security Conference, 1992.

[9] D. F. Ferraiolo, R. S. Sandhu, S. Gavrila, D. R. Kuhn, and
R. Chandramouli. Proposed NIST standard for role-based
access control. ACM Transactions on Information and
Systems Security, 4(3):224–274, Aug. 2001.

[10] L. Giuri and P. Iglio. Role templates for content-based access
control. In Proceedings of the Second ACM Workshop on
Role-Based Access Control (RBAC’97), pages 153–159, Nov.
1997.

[11] A. Kern. Advanced features for enterprise-wide role-based
access control. In Proceedings of the 18th Annual Computer
Security Applications Conference, pages 333–343, Dec.
2002.

[12] A. Kern, A. Schaad, and J. Moffett. An administration
concept for the enterprise role-based access control model. In
Proceedings of the Eighth ACM Symposium on Access
Control Models and Technologies (SACMAT 2003), pages
3–11, June 2003.

[13] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a
role-based trust management framework. In Proceedings of
the 2002 IEEE Symposium on Security and Privacy, pages
114–130. IEEE Computer Society Press, May 2002.

[14] A. D. Marshall. A financial institution’s legacy mainframe
access control system in light of the proposed NIST RBAC
standard. In Proceedings of the 18th Annual Computer
Security Applications Conference (ACSAC 2002), pages
382–390, 2002.

[15] J. D. Moffett. Control principles and role hierarchies. In
Proceedings of the Third ACM Workshop on Role-Based
Access Control (RBAC 1998), Oct. 1998.

[16] J. D. Moffett and E. C. Lupu. The uses of role hierarchies in
access control. In Proceedings of the Fourth ACM Workshop
on Role-Based Access Control (RBAC 1999), Oct. 1999.

[17] NSA. Security enhanced linux. http://www.nsa.gov/selinux/.
[18] M. Nyanchama and S. Osborn. The role graph model and

conflict of interest. ACM Transactions on Information and
System Security, 2(1):3–33, Feb. 1999.

[19] S. Oh and R. S. Sandhu. A model for role admininstration
using organization structure. In Proceedings of the Seventh
ACM Symposium on Access Control Models and
Technologies (SACMAT 2002), June 2002.

[20] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. Proceedings of the IEEE,
63(9):1278–1308, September 1975.

[21] R. S. Sandhu and V. Bhamidipati. Role-based administration
of user-role assignment: The URA97 model and its Oracle
implementation. Journal of Computer Security, 7, 1999.

[22] R. S. Sandhu, V. Bhamidipati, E. Coyne, S. Ganta, and
C. Youman. The ARBAC97 model for role-based
administration of roles: preliminary description and outline.
In Proceedings of the Second ACM workshop on Role-based
access control (RBAC 1997), pages 41–50, Nov. 1997.

[23] R. S. Sandhu, V. Bhamidipati, and Q. Munawer. The
ARBAC97 model for role-based aministration of roles. ACM
Transactions on Information and Systems Security,
2(1):105–135, Feb. 1999.

[24] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE Computer,
29(2):38–47, February 1996.

[25] R. S. Sandhu and Q. Munawer. The ARBAC99 model for
administration of roles. In Proceedings of the 18th Annual
Computer Security Applications Conference, pages 229–238,
Dec. 1999.

[26] A. Schaad, J. Moffett, and J. Jacob. The role-based access
control system of a European bank: A case study and
discussion. In Proceedings of the Sixth ACM Symposium on
Access Control Models and Technologies, pages 3–9. ACM
Press, 2001.

[27] T. C. Ting. A user-role based data security approach. In
C. Landwehr, editor, Database Security: Status and
Prospects. Results of the IFIP WG 11.3 Initial Meeting,
pages 187–208. North-Holland, 1988.

[28] H. Wang and S. L. Osborn. An administrative model for role
graphs. In Proceedings of the 17th Annual IFIP WG11.3
Working Conference on Database Security, Aug. 2003.

[29] H. F. Wedde and M. Lischka. Cooperative role-based
administration. In Proceedings of the Eighth ACM
Symposium on Access control models and technologies
(SACMAT 2003), pages 21–32. ACM Press, June 2003.

[30] H. F. Wedde and M. Lischka. Modular authorization and
administration. ACM Transactions on Information and
System Security (TISSEC), 7(3):363–391, Aug. 2004.

