
On the Security of Delegation in Access Control Systems

Qihua Wang, Ninghui Li, and Hong Chen
Department of Computer Science, Purdue University

{wangq, ninghui, chen131}@cs.purdue.edu

Abstract. Delegation is a mechanism that allows a user A to act on another user
B’s behalf by making B’s access rights available to A. It is well recognized as
an important mechanism to provide resiliency and flexibility in access control
systems, and has gained popularity in the research community. However, most
existing literature focuses on modeling and managing delegations. Little work has
been done on understanding the impact of delegation on the security of existing
access control systems. In particular, no formal notion of security with respect to
delegation has been proposed. Many existing access control systems are designed
without having delegation in mind. Simply incorporating a delegation module
into those systems may cause security breaches.
This paper focuses on the security aspect of delegation in access control systems.
We first give examples on how colluding users may abuse the delegation sup-
port of access control systems to circumvent security policies, such as separation
of duty. As a major contribution, we propose a formal notion of security with
respect to delegation in access control systems. After that, we discuss potential
mechanisms to enforce security. In particular, we design a novel source-based en-
forcement mechanism for workflow authorization systems so as to achieve both
security and efficiency.

1 Introduction
User-to-user delegation, or delegation for short, is a mechanism that allows a user A to
act on another user B’s behalf by making B’s access rights available to A. It is well
recognized as an important mechanism to provide resiliency and flexibility in access
control systems. For example, when a user is unable to perform a task due to sickness,
he/she may delegate the privileges to another user so that the latter user can use the
privileges to complete the task on time.

Delegation has received significant attention from the research community. A num-
ber of delegation models have been proposed [2, 3, 8, 16, 15, 11, 1, 7, 6] and most of
them are for Role-Based Access Control (RBAC). In contrast to normal access right ad-
ministration operations, which are performed centrally, delegation operations are usu-
ally performed in a distributed manner. That is to say, users have certain control on the
delegation of their own rights. In order to prevent abuse, some delegation models sup-
port specification of authorization rules, which control who can delegate what privileges
to other users as well as who can receive what privileges from others.

Essentially, a delegation operation temporarily changes the access control state so as
to allow a user to use another user’s access privileges. Due to its effect on access control
states, delegation may lead to violation of security policies, especially static separation
of duty policies. For instance, if roles r1 and r2 are mutually exclusive, a user who is a
member of r1 should not be allowed to receive r2 from others through delegation. Such
a security requirement can be enforced using delegation authorization rules.

Delegation may be viewed as a module that introduces additional functionalities
into access control systems. An important class of access control systems that greatly
benefit from delegation is workflow authorization system. A workflow divides a task
into a set of well-defined sub-tasks (called steps in this paper). Security policies in
workflow authorization systems are specified using authorization constraints. Example
authorization constraints are “Steps 1 and 2 must be performed by the same user” and
“Steps 3 and 4 must be performed by two users without conflicts of interests”. The
modeling of workflow authorization systems has been studied in [4, 5, 10, 14, 12]. But
only [14] considers the support of delegation. In other words, many existing workflow
authorization systems are designed without delegation in mind.

To enhance existing access control systems with delegation, one needs to incorpo-
rate a delegation module into those systems. A naive approach is to place the delega-
tion module on top of the access control module, and let the delegation module handle
delegation operations and manipulate access control configuration. For example, when
Alice delegates the role r to Bob, the access control configuration is modified so that
Bob is authorized for r in the new configuration. The underlying access control module
consults the access control configuration without concerning delegation. Even though
such a naive approach is simple and allows reusing existing implementation of access
control modules, it introduces security breaches into the system. As we point out in
Section 3.1, colluding users could exploit such breaches to circumvent security policies
in the access control system. Due to the decentralized nature of delegation and the fact
that not all the users in the system are trusted, collusion is a threat that must not be
overlooked.

Since the naive approach could be insecure, more sophisticated methods are needed
to create a secure system with delegation support. Surprisingly, even though delegation
is well recognized as a very useful component of access control systems, to our knowl-
edge, no work has performed in-depth study on how to incorporate a delegation module
into access control systems in a secure manner.

This paper focuses on the security aspect of delegation in access control systems.
We formally define the notion of security with respect to delegation. Intuitively, if an
access control system is secure, then any group of users cannot “enhance the power”
(i.e. become capable to complete more tasks than before) of the group through mutual
delegation within the group. To justify this intuition, by delegating her privileges to user
A, userB allowsA to work on her behalf. This indicates thatA gains no more than what
B has, and thus, A should not be able to do more than A and B together can do before
the delegation operation. This further implies that, after the delegation operation, A and
B as a group cannot do more than before. If a system does not have such a property,
when A and B collude, they may gain extra power by delegating privileges to each
other. In that case, a group of colluding users can do more than they are supposed to
do with the “help” of delegation, and the system is thus considered to be insecure with
respect to delegation.

The rest of the paper is organized as follows. In Section 2, we provide definitions
used in this paper. In Section 3, we give examples on how colluding users may bypass
security policies using delegation, and then we provide a formal definition of security
with respect to delegation. After that, we study enforcement mechanisms for delegation

security in Section 4 and design a secure workflow system in Section 5. Finally, we
discuss related work in Section 6 and conclude in Section 7.

2 Definitions
In this paper, we focus on role-based access control systems. Delegation models could
be complicated. To create a delegation model, one needs to decide on a number of
features, such as whether to allow partial delegation (i.e. delegating a portion of the
permissions of a role), whether users can further delegate the privileges they received,
how revocations are performed and so on. In order to describe the problem in a precise
manner, we focus on a specific model rather than considering all possible options. How-
ever, our ideas and arguments will apply to delegation models with different features
from ours.

In this section, we formalize delegation operations as access control state transition
operations. We provide precise definitions on access control states, state transition rules
and access control systems.

States (γ): We assume that there are three countable sets: U (the set of all possible
users),R (the set of all possible roles), P (the set of all possible permissions).

Definition 1 (Access Control State). An access control state γ is given as a 4-tuple
〈UR,PA,DR, B〉, where UR ⊆ U × R is user-role membership, PA ⊆ P × R is
permission-role assignment, DR ⊆ U ×U ×R×{“g”, “t”} is delegation relation, and
B is a set of binary relations between users.

The user-role membership UR should not be confused with the user-role assignment
relation UA in RBAC. When an RBAC system has both UA and a role hierarchy RH ,
the two relations UA and RH together determine UR. In other words, our notion of
state abstracts away the details about how users gain role memberships.

In the delegation relation DR, (u1, u2, r, “g”) indicates that u1 has delegated the
role r to u2 via a grant operation, while (u1, u2, r, “t”) indicates that u1 has delegated
the role r to u2 via a transfer operation. The difference between grant and transfer will
be discussed later in this section.

The binary relations defined in B will be useful in constraint specification in work-
flows. Examples on binary relations are “be a supervisor of” and “have conflicts of
interests”.

Given a state γ, each user has a set of roles for which the user is authorized. A user
is authorized for a role r if and only if he/she is a member of r or he/she received r
from another user through delegation. We formalize this by defining a function authR :
U × Γ → 2R, where Γ is the set of all states.

authR(u, 〈UR,PA,DR, B〉) = {r | (u, r) ∈ UR
∨ ∃u′((u′, u, r, “g”) ∈ DR ∨ (u′, u, r, “t”) ∈ DR)}

When a user u is authorized for the role r, he/she is authorized for the permissions
assigned to r.
Delegation and State Transition: First of all, we introduce the notations related to
delegation. Assume that Alice delegates the role Accountant to Bob. In such an op-
eration, Alice , who is the granter of privilege, is called delegator; Bob, who is the re-
ceiver of privilege, is called delegatee; the role Accountant is the delegated privilege.

We assume that each delegation operation has only one delegated privilege. If a user
wants to delegate multiple privileges to the same receiver, he/she can perform multiple
delegation operations.

A delegation operation is essentially an access control state transition operation,
which takes one of the following three forms:

– grant(u1, u2, r): user u1 grants role r to user u2. After the delegation operation,
u2 gains r and u1 still keeps r.

– trans(u1, u2, r): user u1 transfers role r to user u2. After the delegation operation,
u2 gains r and u1 (temporarily) loses r.

– revoke(u1, u2, r): user u1 revokes the delegated privilege, role r, from u2.
Note that a user can grant or transfer only the roles he/she is a member of to others.

To simplify delegation relation, we assume that a delegatee cannot further delegate the
delegated privilege to other users, and only the corresponding delegator can revoke the
delegated privilege from the delegatee.

Since delegation is performed in a distributed manner, in the sense that everyone
may perform delegation operations, it is undesirable to allow a user to delegate his/her
roles in a completely unrestricted way. Delegation operations are thus subject to the
control of authorization rules, which takes one of the following three forms:

– can grant(cond, r): a user who satisfies condition cond can grant r to other users,
where cond is an expression formed using roles, the binary operators ∧ and ∨, the
unary operator ¬, and parentheses.

– can transfer(cond, r): a user who satisfies condition cond can transfer r to other
users.

– can receive(cond, r): a user who satisfies condition cond can receive r from other
users.
For example, the rule can receive(Clerk∧¬Treasurer, Accountant) states that
anyone who is a member of Clerk but not a member of Treasurer can receive
the role Accountant.

Definition 2 (Administrative State). An administrative state consists of a set RL of
authorization rules. Given RL, a delegation operation grant(u1, u2, r) (or similarly,
trans(u1, u2, r)) succeeds in the state 〈UR,PA,DR, B〉 if and only if

(u1, r) ∈ UR ∧ can grant(c1, r) ∈ RL ∧ (u1 satisfies c1)
∧ can receive(c2, r) ∈ RL ∧ (u2 satisfies c2)

Otherwise, the delegation operation fails.

To simplify management, we assume that if a user u1 granted or transferred a role
r to u2 and has not revoked r from u2 yet, then u1 can neither grant nor transfer r to
u2 again. That is to say, at any moment, a user may receive a role from the same user at
most once. But a user may receive the same role from different users.

We use γ →RL
op γ′ to denote the state transition from γ to γ′ after applying the

delegation operation op under administrative state RL. Let γ = 〈UR,PA,DR, B〉.
The state transition rules are described as follows:

– op = grant(u1, u2, r): If op fails, then γ′ = γ. Otherwise, γ′ =
〈UR,PA,DR′,B〉, where DR′ = DR ∪ {(u1, u2, r, “g”)}.

– If op = trans(u1, u2, r): If op fails, then γ′ = γ. Otherwise, γ′ =
〈UR′,PA,DR′,B〉, where UR′ = UR/{u1, r} and DR′ = DR ∪
{(u1, u2, r, “t”)}.

– If op = revoke(u1, u2, r): There are three cases. Let γ′ = 〈UR′,PA,DR′,B〉.
• If (u1, u2, r, “g”) ∈ DR, then UR′ = UR and DR′ = DR/{(u1, u2, r, “g”)}.
• If (u1, u2, r, “t”) ∈ DR, then UR′ = UR ∪ {(u1, r)} and DR′ =

DR/{(u1, u2, r, “t”)}.
• Otherwise, γ′ = γ. It indicates that u2 did not receive r from u1 in γ, and thus

the revocation fails.
Note that PA and B are not affected by state transition rules.
With the above state transition rules, we may apply a sequence Q of delegation

operations one by one to γ and acquire γ′. We say that γ′ is reachable from γ under
administrative state RL, which is denoted as γ RL

Q γ′.
Workflow and Access Control Systems: In this paper, a task is modeled as a workflow,
which divides the task into a number of well-defined steps.
Definition 3 (Workflow and Constraints). A workflow is represented as a tuple 〈S,≺
, C〉, where S is a set of steps, ≺⊆ S × S defines a partial order among steps in S, and
C is a set of constraints. s1 ≺ s2 indicates that s1 must be performed before s2.

A constraint takes the form of ct〈s1, s2, ρ〉, where s1 and s2 are two steps and ρ
is a binary relation between users. Let u1 and u2 be the users who perform s1 and s2,
respectively. ct〈s1, s2, ρ〉 is satisfied if and only if (u1, u2) ∈ ρ.
Binary relations between users play an important role in constraint specification in ex-
isting workflow models [4, 5, 10, 12]. Equality (=) and inequality (6=) relations are most
common ones, and they are supported by almost all existing models. Besides “=” and
“6=”, user-defined binary relations, such as “have conflicts of interests”, are supported
by the workflow defined in Definition 3.

We call c = ct〈s1, s2, ρ〉 a constraint on s1 and s2. If s1 is executed later than s2,
then c is checked upon the execution of s1; otherwise, c is checked upon the execution
of s2.

In an access control state, the permissions to perform steps in workflows are as-
signed to roles. Given an access control state γ = 〈UR,PA,DR, B〉, we say that a user
u is authorized to perform a step s (or u is an authorized user for s), if and only if there
exists a role r such that r ∈ authR(u, γ) and (ps, r) ∈ PA, where ps is the permission
to perform s.

When a task is performed, an instance of the corresponding workflow is created.
In order to complete the workflow instance, every step of the workflow instance must
be assigned to an authorized user and such assignments must not violate any constraint
specified in the workflow. Note that during the execution of the workflow instance, the
access control state may change due to delegation. We only need to ensure that a user is
authorized to perform a step at the moment the step is performed. Constraint evaluation,
which depends on user relations, is not affected by state changes, because the set B of
user relations will not be modified by delegation operations.

An access control system with delegation support is defined in below.
Definition 4 (Access Control System). An access control system is represented as a
3-tuple 〈γ,W,RL〉, where γ is the initial access control state, W is a set of workflows
and RL is the administrative state.

We assume that in the initial state γ = 〈UR,PA,DR, B〉 of an access control system,
we always have DR = ∅. That is to say, no delegation operations have been performed
in the initial state.

3 The Security of Delegation
We have provided precise definitions related to delegation and access control systems.
In this section, we study the impact of delegation on the security of access control
systems. First, we give examples on delegation-based attacks on access control systems.
Second, we formally define the notion of security with respect to delegation in access
control systems.

3.1 Circumventing Security Policies Using Delegation
In this section, we consider how malicious users may collude to circumvent security
policies in access control systems. We present two examples describing two scenarios,
in which colluding users successfully complete those tasks that they would not be able
to complete without the “help” of delegation. After each example, we summarize the
characteristic of the attack in the scenario.
Example 1. In an institution, a sensitive task t must be completed by a single user who
is a member of both roles r1 and r2. Task t is modeled as workflow w1 = 〈S,≺, C〉,
where S = {s1, s2}, s1 ≺ s2 and C = {ct〈s1, s2,=〉}. Permissions to perform s1
and s2 are assigned to r1 and r2, respectively. The constraint in C requires that the two
steps must be performed by the same user, which enforces that an instance of w1 can
be completed only by a user who is a member of both r1 and r2.

Alice and Bob are employees of the institution. Alice is a member of r1 but not r2,
while Bob is a member of r2 but not r1. Clearly, neither Alice nor Bob is qualified to
complete an instance of w1. However, if Alice delegates (either by grant or transfer) r1
to Bob, then Bob is authorized to perform both s1 and s2 and he is thus able to complete
an instance of w1. In other words, if Alice and Bob collude, they can complete a task
which they should not be able to complete.

In Example 1, Alice “lends” her role membership of r1 to Bob to make him more
“powerful” than before. The example demonstrates that, using delegation, a group of
colluding users may create a “more powerful” user by aggregating role memberships of
different individuals in the group. In that case, security policies that require a single user
(rather than multiple users) with multiple role memberships to complete a task could be
circumvented.
Example 2. In a company, the task of issuing checks is modeled as a workflow
consisting of two steps spre and sapp , which stand for “check preparation” and
“approval”, respectively. In order to prevent fraudulent transactions, spre and sapp
must be performed by two different members of the role Treasurer (or two
Treasurers for short). The workflow can be represented as w2 = 〈S,≺, C〉,
where S = {spre , sapp}, spre ≺ sapp and C = {ct〈spre , sapp , 6=〉}. Also,
for the sake of resiliency, the company allows a Treasurer to transfer his/her
role to a Clerk in case he/she is not able to work due to sickness or some
other reasons. In other words, can transfer(Treasurer, Treasurer) ∈ RL and
can receive(Clerk, Treasurer) ∈ RL.

Alice and Bob are employees of the company and they decided to collude to is-
sue checks for themselves. Alice is a Treasurer, while Bob is a Clerk and is thus
not qualified to perform any step in w2. To achieve the goal, Alice and Bob do the
followings:
1. Alice performs trans(Alice,Bob, Treasurer), which makes Bob a member of the

role Treasurer.
2. Bob performs spre to prepare a check for Alice .
3. Alice performs revoke(Alice,Bob, Treasurer) to revoke Treasurer from Bob

and regains the role.
4. Alice performs sapp to approve the check prepared by Bob.

What the workflow system sees is that spre and sapp are performed by two different
users. Thus, the constraint ct〈spre , sapp , 6=〉 is satisfied and the operation succeeds.
After all of the above being done, a check is issued and Alice and Bob may share

the money.
In Example 2, Alice’s role membership of Treasurer is used twice by two dif-

ferent users in the same workflow instance. This example demonstrates that colluding
users can make “copies” of their access privileges using delegation to bypass security
constraints that enforce separation of duty.

3.2 Formal Definition of Security
We have seen examples on how colluding users may circumvent security policies in
access control systems with the help of delegation. It is clear that if an access control
system allows colluding users to bypass security policies, then the system is insecure.
But, how can we tell whether a security policy has been circumvented by delegation
operations? What should a “secure” system look like? We answer these fundamental
questions by formally defining the notion of security with respect to delegation.

First of all, we present a general definition of security, which is independent of the
concrete design of access control systems. Given an access control system, we define
the predicate can complete, such that can complete(t, U1, U2, γ) is “true” if and only
if users in U1 together can complete task t when the initial access control state is γ
and only users in U2 can perform delegation operations. The concrete definition of
can complete depends on how tasks are modeled and the concrete design of access
control systems. We say that a group of users becomes more powerful (or gain power
enhancement) when they eventually complete a task that they are not able to complete
in the initial state (delegation is needed to change the state in this case). Intuitively, if an
access control system is secure with respect to delegation, then a group of users cannot
enhance the power of the group by performing delegation operations within the group.
The following definition formally states such an intuition.

Definition 5 (Security). An access control system with initial access control state γ is
secure with respect to delegation if and only if the following is true:

∀t∈T∀U⊆U can complete(t, U, U, γ)⇒ can complete(t, U, ∅, γ)
where T is the set of all tasks and U is the set of all users in the system.

In the above definition, can complete(t, U, U, γ) is “true” if and only if users in U
together can complete t when the initial state is γ and delegation is available in such
a way: the users may perform delegation operations to change the access control state,

Round 0:
The adversary selects a workfloww ∈ W and a setU of users, such thatU cannot completew in γ without delegation.
If such a combination of w and U does not exist, then the adversary loses (in this case, the system is trivially secure
as everyone is able to complete every task). PP ← ∅ and SS ← S, where PP records past user-step assignments
and SS records the remaining steps. i← 1 and γ0 ← γ.

Round i:
1. The adversary designs a sequence Qi of delegation operations such that every delegation operation in Qi in-

volves only users in U 1. The adversary appliesQi to γi−1 and acquires a new state γi.
2. The adversary selects a step s from SS such that ∀s′∈S(s′ ≺ s ⇒ s′ 6∈ SS). The adversary selects a user
u from U as well.
If u is not authorized for s in γi, then the adversary loses.
Otherwise, PP ← PP ∪ {(u, s)} and SS ← SS/{s}.

3. If SS = ∅, then
If no constraint in C is violated by PP , then the adversary wins;
Otherwise, the adversary loses.

Otherwise, i← i+ 1 and the game continues to the next round.

Fig. 1. Description of the game in Definition 6

but no user outside of U is allowed to perform delegation operations. That is to say,
users in U cannot get “help” from outsiders. In contrast, can complete(t, U, ∅, γ) is
“true” if and only if users in U together can complete t in state γ and no delegation
operation is allowed. In general, Definition 5 essentially states that, in a secure access
control system, if a set of users can complete a task without receiving any privilege
from outsiders, then they must be able to compete the task without delegation at all.
That is to say, delegation does not enable a set of users to enhance their own power by
themselves.

The notion of security introduced in Definition 5 respects the definition of delega-
tion. Delegation is defined as a mechanism that allows a user A to act on another user
B’s behalf by making B’s access rights available to A. Let γ and γ′ be the states before
and after a delegation operation from B to A, respectively. The fact that A is working
onB’s behalf in γ′ indicates thatA should not be able to do more thanA andB together
(i.e. {A,B}) can do in γ. Furthermore, since B does not gain anything by delegating
his/her privileges to A, {A,B} in γ′ cannot be more powerful than {A,B} in γ. By
generalizing such an argument to groups with arbitrary number of users, we acquire the
notion of security in Definition 5.

We now illustrate the effect of delegation in a secure access control system by giving
an example. Assume that Alice grants (or transfers) a role r to Bob. Then, Bob may
become more powerful by acquiring r. Furthermore, every group G such that Bob ∈
G and Alice 6∈ G may become more powerful as well, because one of its member
(Bob) received a privilege from an outsider (Alice). However, every group G′ such that
Alice,Bob ∈ G′ should not gain power enhancement. Otherwise, G′ enhances its own
power after a delegation operation between its members and the access control system
is insecure by Definition 5. In general, in a secure access control system, a group of
users may gain power enhancement only if they receive privileges from outsiders.

Definition 5 is general and independent of concrete access control systems. In this
paper, tasks are modeled as workflows. Using the definitions in Section 2, we provide a
more concrete definition of security in below.

Definition 6 (Secure Workflow System). An access control system 〈γ,W,RL〉 is se-
cure with respect to delegation if and only if an adversary can never win the one-person
game described in Figure 1.

Note that in the above game, the effect of delegation operations is subject to RL. The
adversary can perform a sequence of delegation operations to change the access control
state at the beginning of each round. The game allows delegation operations between
the execution of two steps (i.e. between two rounds) so that users can perform revo-
cation to regain the roles that were transferred to other users in previous rounds. This
gives the adversary more advantages than allowing the adversary to perform delegation
operations only at the beginning of the game. In Example 2, delegation operations are
performed between the execution of two steps.

The adversary winning the game indicates that there exist a group of users that can
enhance themselves with the help of delegation. In that case, the access control system
is vulnerable to collusion and is thus insecure with respect to delegation.

4 Enforcing the Security of Delegation
We have defined the formal notion of security with respect to delegation. A natural
next step is to study mechanisms to enforce security. In this section, we study two ap-
proaches, static enforcement and dynamic enforcement. In static enforcement, security
is ensured by careful design of administrative state. In dynamic enforcement, a verifi-
cation procedure is performed by the end of the execution of each workflow instance
to ensure that the participants have not enhanced their own power through delegation.
In Section 5, we propose a third approach, the source-based enforcement mechanism,
which employs a novel security policy evaluation method that is customized for dele-
gation.

4.1 Static Enforcement
Given a set of workflows and an initial access control state, a straightforward approach
to enforce security is to carefully design the administrative state RL so that no “dan-
gerous” delegation operation would succeed. For instance, in Example 1, if RL does
not allow members of r2 to receive r1 and vice versa, the collusion between Alice and
Bob could not succeed. Such an enforcement mechanism is called static enforcement,
as the security of the system relies on (administrative) state configuration and can be
verified in an off-line manner. An access control system that enforces security via a
static enforcement mechanism is called a statically secure system.

The advantage of static enforcement is that, if we have already implemented an
access control system with delegation support, we just need to modify the administra-
tive state to enforce security. There is no need to change the existing implementation.
However, static enforcement could make the administrative state more restrictive than
necessary. For instance, assume that there are two workflows w1 and w2 in the system.
Alice and Bob are two users who are not supposed to complete w1. But the system set-
ting is such that if Alice can successfully grant or transfer role r to Bob, then Alice and
Bob together can completew1. In order to prevent the potential collusion between Alice
and Bob, the administrative state must prevent Alice from delegating r to Bob. But this
is too restrictive as Bob may only intend to perform w2 (instead of w1) after receiving
r, which could be allowed. But static enforcement mechanism does not take the actual
usage of delegated privileges into account. Finally, the design of the administrative state
is usually subject to administrative policies as well as practical considerations. It may
be undesirable to dramatically alter the administrative state due to security concerns,
for security should not significantly affect the usability of the system.

Let γ be the initial state of the access control system. For every workflow instance, the system does the followings. Let X
be an instance of workflow w.

– WhenX is created: UX ← ∅
– When a step s is performed by a user u: Let ps be the permission to perform s and γ′ = 〈UR,PA,DR, B〉 be the

current state.
• If there exists a role r such that ((u, r) ∈ UR ∧ (ps, r) ∈ PA), then UX ← UX ∪ {u}.

This indicates that u can use his/her own privilege to perform the step.
• Otherwise, u specifies a user u′ such that ((u′, u, r) ∈ DR ∧ (ps, r) ∈ PA). UX ← UX ∪ {u, u′}.

This indicates that u is using a delegated privilege r received from u′ to perform the step. When the choice of
u′ and r is unique, the system may do the selection itself rather than asking the user to specify the choice.

– AfterX is finished: The system solves wsp(UX , w, γ). If the answer to wsp(UX , w, γ) is “yes”, then the result of
X is confirmed; otherwise, the result ofX is voided and necessary roll-back is performed.

Fig. 2. Description of dynamic enforcement

4.2 Dynamic Enforcement
Static enforcement is too restrictive as it does not take into account how delegatees
use the delegated privileges. This motivates the proposal of dynamic enforcement for
delegation security.

To begin with, we describe the high-level idea of dynamic enforcement. In dynamic
enforcement, the initial state γ of the access control system is recorded. For every work-
flow instance X , the system maintains a list UX of the participants for the instance.
Every user who executed a step of X is added to UX . When a user u requests to exe-
cute a step s, the system checks whether he/she needs to use a delegated privilege. If a
delegated privilege r should be used by u to perform s, then both u and the delegator of
the privilege are added to UX . Note that if u has received r from multiple delegators,
u has to specify the delegator of r for the execution of s. At the end of the instance,
the system checks whether the users in UX can complete the workflow in γ without
delegation. If they can, then the execution of X is confirmed. Otherwise, the system
gives warning that users in UX have enhanced their own power through delegation. The
execution of X is rejected.

The problem of checking whether a set of users can complete a workflow in an
access control state without delegation is called the Workflow Satisfaction Problem
(WSP).
Definition 7 (Workflow Satisfaction Problem). Given a set U of users, a workflow
w = 〈S,≺, C〉 and an access control state γ, the Workflow Satisfaction Problem (WSP)
asks whether we can assign a user u ∈ U to every step s ∈ S such that u is authorized
for s in γ and no constraint in C is violated by the overall assignments. An instance of
WSP is denoted as wsp(U,w, γ).
Detailed description of dynamic enforcement is given in Figure 2. Dynamic enforce-
ment ensures that a workflow instance may be successfully completed only if the par-
ticipants (including those users who perform a step and those delegators who contribute
necessary privileges through delegation operations) can complete the same workflow
instance in the initial state. Hence, the correctness of dynamic enforcement follows
directly from Definition 5.

Dynamic enforcement monitors the usage of delegated privileges rather than placing
restrictions on administrative states. It is thus less restrictive and more practical than
static enforcement. However, dynamic enforcement introduces a performance overhead
as the system needs to solve a WSP instance by the end of every workflow instance. It
has been proved in [12] that WSP is NP-complete, which indicates that the runtime

overhead of dynamic enforcement for each workflow instance could be exponential in
the size of the workflow.

In real-world, the number of steps in a workflow is normally small. Hence, it is
possible that the performance of dynamic enforcement is acceptable in practice. Also,
dynamic enforcement does not require changing existing implementation of workflow
modules. All we need to do is to add a module to the system to perform recording and
the closing verification procedure for workflow instances.

5 A Secure Workflow System

We have discussed two mechanisms to enforce delegation security in access control
systems. Even though both approaches have the advantage of allowing the reuse of
existing workflow implementation, they have major drawbacks: static enforcement is
too restrictive and dynamic enforcement may introduce large performance overhead. A
natural question is, if we are willing to redo the workflow module, can we have a better
mechanism to enforce delegation security?

In this section, we propose the source-based enforcement mechanism, which em-
ploys a novel method to evaluate constraints in workflow systems. We describe the idea
of source-based enforcement mechanism by presenting a design of a secure workflow
system. Our workflow system is secure with respect to Definition 6 and introduces al-
most no performance overhead.

The high-level idea of source-based enforcement is that, when a user Alice requests
to perform a step s of a workflow instance, he/she must specify the privilege to be used
and the source of the privilege. For instance, assume that Alice requests to perform a
step s with role r. If Alice is a member of r, then Alice may specify herself as the
source of r. If Alice received r from others, then Alice may pick a delegator of r and
specify the delegator as the source. Note that, even if Alice is a member of r herself,
she may still specify another user as the source of r as long as she has received r from
that user.

Given the privilege r and its source uo specified by Alice , the system checks the
constraints on s as if it is uo rather than Alice who is performing s. For example, assume
that workflow w consists of two steps s1 and s2, both of which can be performed by
members of role Accountant. There is a constraint in w, which states that the users
who perform s1 and s2 must not have conflicts of interests. Assume that Alice has
executed s1 using her own membership of Accountant. Now, Carl tries to use the
delegated privilege Accountant received from Bob to perform s2. Instead of checking
conflicts of interests between Carl and Alice as what traditional workflow systems do,
our system checks conflicts of interests between Bob and Alice . The intuition is that,
since Carl is using a delegated privilege from Bob, he is working on Bob’s behalf.
Hence, Bob and Alice must not have conflicts of interests. By evaluating constraints in
this way, we can ensure that the system is secure with respect to delegation.

Sometimes, in addition to sources of privileges, we want to take the actual perform-
ers into account while evaluating constraints. To achieve this, our system supports two
types of constraints. Type-1 constraint only ensures that the sources of privileges sat-
isfy the constraint; Type-2 constraint is more restrictive: if either the actual performer
or the source violates the constraint, then the constraint is violated. For instance, if the

constraint in the example in the previous paragraph is a Type-2 constraint, then Alice
must not have conflicts of interests with either Bob (source) or Carl (actual performer).

Next, we describe the design of a secure workflow system, which employs the
source-based enforcement mechanism.
System Description: The system adopts the representations of access control state and
the state transition rules introduced in Section 2. The only major change in this system
is the way workflow constraints are evaluated.

A workflow is represented as 〈S,≺, C〉, where S is a set of steps,≺ ⊆ S×S defines
a partial order among steps in S, and C is a set of constraints. s1 ≺ s2 indicates that s1
must be performed before s2.

A constraint takes the form of ct〈s1, s2, ρ, i〉 where s1 and s2 are two steps, ρ is a
binary relation between users and i = 1 or 2. When i = 1, the constraint is of Type-1,
while when i = 2, the constraint is of Type-2.

Letw = 〈S,≺, C〉. γ = 〈UR,PA,DR, B〉 is the current access control state. When
a user u requests to perform a step s of an instance X of w, u presents a pair 〈uo, r〉,
where uo is a user identity and r is a role. uo is called the source of r. The pair 〈uo, r〉
is valid if and only if one of the followings is true:

– u = uo ∧ (u, r) ∈ UR. In other words, u is using his own role membership to
perform s.

– u 6= uo ∧ ((uo, u, r, “g”) ∈ DR ∨ (uo, u, r, “t”) ∈ DR). That is to say, uo has
granted or transferred r to u and u requests to perform s on uo’s behalf.
With the pair 〈uo, r〉, u can successfully execute s if and only if both of the follow-

ings hold:
1. u is authorized to perform s with role r. That is, (ps, r) ∈ PA, where ps is the

permission to perform s.
2. No constraint is violated. That is, for every constraint c on s:

– Case c = ct〈s, s′, ρ, 1〉: (uo, u′o) ∈ ρ, where u′o is the source of the privilege
used to perform s′. The case c = ct〈s′, s, ρ, 1〉 is similar.

– Case c = ct〈s, s′, ρ, 2〉: (u, u′) ∈ ρ∧ (uo, u′) ∈ ρ∧ (u, u′o) ∈ ρ∧ (uo, u′o) ∈ ρ
where u′ is the user who actually performed s′ and u′o is the source of the
privilege used to perform s′. The case c = ct〈s′, s, ρ, 2〉 is similar.

Note that in the first case, c is a Type-1 constraint and only the sources must satisfy
the constraint. In the latter case, c is a Type-2 constraint, and both the sources and
the actual performers are taken into account.
After a step is executed, the system records the identities of both the actual per-

former and the source of privilege for future reference.
The following example illustrates how the system works.

Example 3. In a bank, task t is modeled as a workflow w = 〈S,≺, C〉, where S =
{s1, s2}, s1 ≺ s2 and C = {ct〈s1, s2, 6=, 1〉}. The permissions to perform s1 and s2
are assigned to r1 and r2, respectively. Alice is a member of r1 and Bob is a member
of r2.

Alice becomes too busy to work on t and would like to balance the workload with
Bob by delegating r1 to Bob. Let X be an instance of w. Bob performs s1 in X by pre-
senting 〈Alice, r1〉 to the system. The system records that Bob is the actual performer
of s1 in X and Alice is the source of privilege. Next, Bob requests to perform s2 in X

by presenting 〈Bob, r2〉, which indicates that himself is the source of r2. The system
found that the constraint ct〈s1, s2, 6=, 1〉 needs to be checked. Since the constraint is
of Type-1, the system only considers the sources of privilege for s1 and s2, which are
Alice and Bob respectively. Because Alice 6= Bob, the constraint is satisfied, and Bob
completes X . Note that this does not violate the notion of security, because Alice is
involved in X by allowing Bob to work on her behalf, and Alice and Bob together can
complete w before the delegation operation.

Now, assume that the constraint in C is of Type-2 (i.e. ct〈s1, s2, 6=, 2〉). In this
case, Bob cannot complete w. When ct〈s1, s2, 6=, 2〉 is checked, the system takes both
the actual performers and the sources into account. When the system compares the
actual performer of s1 with the source of privilege (or the actual performer) of s2, it has
Bob = Bob, which indicates that Bob 6= Bob does not hold. Hence, the constraint is
violated and Bob is rejected from performing s2.

It is clear that Type-2 constraints provide stronger security than Type-1 constraints.
People may wonder why we support the seemingly less secure Type-1 constraints in
our system. First of all, as we will prove later in this section, Type-1 constraints are
sufficient to enforce the notion of security defined in Definition 6. Secondly, in certain
situations, we may gain flexibility by using Type-1 constraints. For instance, a workflow
may have a constraint c stating that s1 and s2 must be performed by the same user.
Assume that Alice has performed s1 in an instance X of the workflow but she has to
leave before performing s2. If c is a Type-1 constraint (i.e. c = ct〈s1, s2,=, 1〉), then
Alice may delegate her privilege r to another user Bob who may complete s2 in X by
presenting the pair 〈Alice, r〉 to the system; but if c is a Type-2 constraint, then s2 of X
cannot be completed until Alice comes back. In situations where it is more beneficial
to complete the task, we should declare c as Type-1. In contrast, in situations where
security is given high priority and we would rather have the task unfinished than allow
another user to involve, we should declare c as Type-2. The choice between Type-1 and
Type-2 constraints can be viewed as a flexibility-security trade-off. Our system provides
the options and leaves the decisions to security policy designers.

Next, we prove that our workflow system is secure with respect to delegation. The
general idea of the proof is that, for every workflow instance that is completed, we
modify its user-step assignment by replacing the actual performer of each step with the
corresponding source of privilege. Since our constraint evaluation procedure always
takes sources into account, the modified user-step assignment must be valid for the
workflow in the initial state of the system. This implies that the set of sources can
complete the workflow in the initial state.

Theorem 1. The workflow system employing source-based enforcement mechanism is
secure with respect to delegation.

Due to page limit, the proof of Theorem 1 is given in a technical report [13].

6 Related Work
Delegation has received considerable attention from the research community. In [2, 3],
Barka and Sandhu proposed a framework for role-based delegation models (RBDM),
which identifies a number of characteristics related to delegation. Example characteris-
tics are monotonicity, totality, and levels of delegation.

There exist a wealth of delegation models in literature [8, 16, 15, 11, 1, 7, 6]. L.
Zhang et al. [15] presented a role-based delegation model called RDM2000. Their
model supports the specification of delegation authorization rules to impose restrictions
on which roles can be delegated to whom. X. Zhang et al. [16] proposed a role-based
delegation model called PBDM, which supports both role and permission level delega-
tion. Their model controls delegation operations through the notion of delegatable roles
such that only permissions assigned to these roles can be delegated to others. In [6],
Crampton and Khambhammettu proposed a delegation model that supports both grant
and transfer. Atluri and Warner [1] studied how to support delegation in workflow sys-
tems. They extended the notion of delegation to allow conditional delegation, where
conditions can be based on time, workload and task attributes. One may specify rules
to determine under what condition a delegation operation should be performed.

All the above work focus on the modeling and management of delegation, while
our paper focuses on the security impact of delegation on access control systems. None
of the above work proposes a formal notion of security regarding delegation or studies
mechanisms to enforce security in access control systems with delegation support.

In [9], Shaad observed that delegation and revocation features of a system may be
used to circumvent separation of duty properties. He gave an example to illustrate an
attack conducted by a single user. In his example, there is a separation of duty policy
which requires that no single user may first access an object o using privilege auth1 and
then access o again with privilege auth2. The system he designed enforces such a policy
by allowing a user to access o only if the user does not have both auth1 and auth2 at
the time of access. Let Alice be a malicious user having both auth1 and auth2. Alice
first transfers auth2 to another user Bob so as to temporarily lose auth2. Next, she
accesses owith auth1 and then revokes auth2 from Bob to regain the privilege. Finally,
Alice transfers auth1 to Bob and then accesses o again using auth2. In this case, the
separation of duty policy is circumvented. This example differs from our examples in
Section 3.1 in a couple of ways:
1. The attack in [9] is conducted by a single user (Alice), as the delegatee (Bob) is

not actively involved. In contrast, our examples are on multi-user collusion, where
all principles are actively involved in the attack.

2. The attack in [9] relies on a specific way in which separation of duty is imple-
mented. In particular, it is assumed that the system does not maintain any histori-
cal record. But this is not the case in most of the existing workflow authorization
systems [4, 5, 10, 14], as these systems keep track of which users have performed
which steps so as to enforce constraints. In contrast, our examples apply to work-
flow authorization systems in existing literature.
In general, the example in [9] has a very different nature from our examples in

Section 3.1. Shaad’s paper [9] is about an access control framework and the interaction
between delegation and security policies is not the main focus of the paper. Problems
such as collusion and enforcement mechanisms for security, which are studied in our
paper, are not discussed in [9].

7 Conclusion
We have studied the impact of delegation on the security of access control systems.
Collusion is a potential threat in those access control systems that support delegation.

We have formally defined the notion of security with respect to delegation. A system
that is secure regarding delegation is resistent to collusion. We have also studied differ-
ent mechanisms to enforce security. In particular, we have designed a workflow system
that implements the source-based enforcement mechanism through a novel constraint
evaluation approach. Our design is secure and introduces little performance overhead.

References
1. V. Atluri and J. Warner. Supporting conditional delegation in secure workflow management

systems. In SACMAT ’05: Proceedings of the tenth ACM symposium on Access control
models and technologies, pages 49–58, New York, NY, USA, 2005. ACM Press.

2. E. Barka and R. Sandhu. Framework for role-based delegation models. In ACSAC ’00: Pro-
ceedings of the 16th Annual Computer Security Applications Conference, page 168, Wash-
ington, DC, USA, 2000. IEEE Computer Society.

3. E. Barka and R. Sandhu. A role-based delegation model and some extensions, 2000.
4. E. Bertino, E. Ferrari, and V. Atluri. The specification and enforcement of authorization

constraints in workflow management systems. ACM Transactions on Information and System
Security, 2(1):65–104, Feb. 1999.

5. J. Crampton. A reference monitor for workflow systems with constrained task execution.
In Proceedings of the Tenth ACM Symposium on Access Control Models and Technologies
(SACMAT 2005), pages 38–47, Stockholm, Sweden, June 2005.

6. J. Crampton and H. Khambhammettu. Delegation in role-based access control. In Proceed-
ings of 11th European Symposium on Research in Computer Security, 2006.

7. J. B. D. Joshi and E. Bertino. Fine-grained role-based delegation in presence of the hybrid
role hierarchy. In SACMAT ’06: Proceedings of the eleventh ACM symposium on Access
control models and technologies, pages 81–90, New York, NY, USA, 2006. ACM Press.

8. S. Na and S. Cheon. Role delegation in role-based access control. In RBAC ’00: Proceedings
of the fifth ACM workshop on Role-based access control, pages 39–44, New York, NY, USA,
2000. ACM Press.

9. A. Schaad. A framework for organisational control principles. In PhD Thesis, University of
York, 2003.

10. K. Tan, J. Crampton, and C. Gunter. The consistency of task-based authorization constraints
in workflow systems. In Proceedings of the 17th IEEE Computer Security Foundations
Workshop (CSFW), pages 155–169, 2004.

11. J. Wainer and A. Kumar. A fine-grained, controllable, user-to-user delegation method in
rbac. In SACMAT ’05: Proceedings of the tenth ACM symposium on Access control models
and technologies, pages 59–66, New York, NY, USA, 2005. ACM Press.

12. Q. Wang and N. Li. Satisfiability and resiliency in workflow systems. In Proc. European
Symp. on Research in Computer Security, Sept. 2007.

13. Q. Wang and N. Li. On the security of delegation in access control systems. CERIAS
Technical Report, http://www.cs.purdue.edu/homes/wangq/papers/delegation.pdf, Jul. 2008.

14. J. Warner and V. Atluri. Inter-instance authorization constraints for secure workflow man-
agement. In Proc. ACM Symposium on Access Control Models and Technologies (SACMAT),
pages 190–199, 2006.

15. L. Zhang, G.-J. Ahn, and B.-T. Chu. A rule-based framework for role-based delegation and
revocation. ACM Trans. Inf. Syst. Secur., 6(3):404–441, 2003.

16. X. Zhang, S. Oh, and R. Sandhu. Pbdm: a flexible delegation model in rbac. In SACMAT
’03: Proceedings of the eighth ACM symposium on Access control models and technologies,
pages 149–157, New York, NY, USA, 2003. ACM Press.

