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Abstract

An access control design can be viewed as a three lay-
ered entity: the general access control model; the parame-
terization of the access control model; and the initial users
and objects of the system before it goes “live”. The design of
this three–tiered mechanism can be evaluated according to
two broad measures, the expressiveness versus the complex-
ity of the system. In particular, the question arises: What se-
curity properties can be expressed and verified?

We present a general access control model which can be
parameterized at the second layer to implement (express)
any of the standard Discretionary Access Control (DAC)
models. We show that the safety problem is decidable for
any access control model implemented using our general
access control model. Until now, all general access con-
trol models that were known to be sufficiently expressive to
implement the full range of DAC models had an undecid-
able safety problem. Thus, given our model all of the stan-
dard DAC models (plus many others) can be implemented
in a system in which their safety properties are decidable.

1. Introduction

Discretionary Access Controls (DACs) are at the heart of
most operating systems’ protection mechanism. They pro-
vide considerable flexibility by devolving many protection
decisions about an object to the user who created the object
(e.g., file)—the object’s creator is called itsowner. DACs
enable the owner to specify for each object what types of ac-
cesses can be made (privileges) and by whom (which users).

It might seem that DACs do not constrain how an owner
shares objects. However, any practical DAC scheme must
have significant constraints which can best be understood
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in terms of the layered construction of protection systems.
Starting with the base layer, each successive layer further
refines—that is, constrains—the protection semantics. (This
layering can be contrasted to one in which higher levels
can provide exceptions to lower level semantics and hence
bypass lower level semantics.) The resulting scheme can
be analyzed using two fundamental metrics; complexity
and expressiveness. Because of the Harrison-Russo-Ullman
(HRU) result [HRU76], we are concerned in this paper with
the decidability of security properties as a key measure of
complexity. (There are other metrics of interest, but both
decidability and the ability to implement specific classes of
access control models are objective while other metrics are
subjective.) Complexity is particularly important in secu-
rity, since if the protection model is not understood, system
security is questionable. As the layers are ascended, the ex-
pressiveness decreases while the decidability increases—if
a property is decidable at a given layer then at all higher lay-
ers it must be decidable as well.

Hence a systematic exploration of the layers provides a
better understanding of the protection system. Another ad-
vantage of this examination is to abstract protection layers
and thus simplify the resulting systems.

The three layers, from lowest to highest, are as follows:

layer one The base layer is thegeneral access control
model. This can be a general purpose programming
language or some more restrictive model1.

layer two The next layer is theparameterizationof the
general access control model defined at layer one. This
specialization results in theaccess control model. In
particular, it is at this level that we will define a spe-
cific DAC model.

1 We shall informally treat the languages and the models as interchange-
able, although in general the language describes a syntax and seman-
tics while the model describes only the semantics.
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layer three The third layer is thelocal initializationwhich
is a set of initial objects and users with their associated
protection.

For example, a large retailer might buy a general access
control model (layer one) from a vendor, then through pa-
rameterization create an access control model for a proto-
typical store (layer two), and finally create objects repre-
senting the inventory and personnel at a specific store (layer
three).

We now describe how this triple layering relates to fa-
miliar access control mechanisms. In HRU, the first layer
defines a specialized programming language in which some
operations are performed if a set of conditions is satisfied.
The parameterization is itself a program in the HRU lan-
guage. The basic HRU result is that the layer one is suf-
ficiently general purpose to implement a Turing machine
(via a layer two parameterization), and hence that thesafety
problem—whether a useru can ever get permissionp to
access an objecto—is undecidable in their general access
control model. On the other hand, Take-Grant [JLS76] can
be implemented as a parameterization on top of the HRU
general access control model: this parameterization is not
only decidable but efficient. Note that the HRU model is
based upon the access control matrix [Lam74], both gener-
alizing it and specifying allowable operations in the HRU
language. A reference monitor [And72] has as its param-
eterization layer a general purpose programming language
(the general access control model basically restricts the ref-
erence monitor’s input/output behavior).

In a typical Unix (POSIX) access control model, the
layer two parameterization is null—that is, the entire ac-
cess control model is fixed at layer one.

Role-Based Access Controls (RBAC) [SCFY96, FK92]
have role-based languages at layer one, for exam-
ple RBAC’96 or ARBAC’97, a particular model at layer
two, for example DAC, Lattice-Based Access Controls
(LBAC), or others. A hallmark of the RBAC is a rela-
tively thick layer two, as RBAC languages are the most
expressive—and hence most customizable—access con-
trol systems. Of course, it is not the number of layers
that is the central issue, rather the impact of a layered de-
sign on security property expressiveness versus complex-
ity.

The three layers are set before the system is put in nor-
mal operating mode, or goeslive. Fundamentally, we want
to know: What can happen once the system goes live2?

In this paper we shall examine the safety property for
DACs. The safety property in DACs is particularly inter-
esting since every published general access control model

2 The system continues to operate in this mode until it changes beyond
what was originally envisioned, at which point it is necessary to re-
configure the system.

of which we are aware either is insufficiently expressive
to represent the full range of DACs or has an undecidable
safety problem. The DAC models were described in Osborn,
Sandhu and Manawer [OSM00]. In this paper, we present a
general access control model which is sufficiently expres-
sive to implement each of these DAC models and we show
thatanyaccess control model implemented on this layer one
has a decidable safety properties.

A major feature of our general access control model is its
support for management of groups. We show how to build
a flexible group architecture with and without restriction on
group membership, combining parts of mandatory and dis-
cretionary access controls. One advantage of our construc-
tion is that the mechanism to implement groups relies heav-
ily on a general-purpose mechanism, rather than a totally
separate, group-specific mechanism.

Our group based mechanism makes extensive use of a
first-class relabel scheme. This scheme permits but con-
trols arbitrary label changes on an object. Relabels com-
bined with the ability of users to mint as many labels as de-
sired provides a very flexible base. We believe this mech-
anism can be added to many other protection models, and
this is one reason for abstracting out this model from our
particular implementation.

We define aconfigurationas the state of the system at
any point at or after the system goes live. We then show that
the safety property is decidable for any configuration. Be-
cause safety decidability is a consequence of our general
access control model, any protection system built upon our
layer one model is decidable.

We show how to construct a number of DAC schemes
using our group structure and the base privileges of our
model (which are rather generic). Each of these construc-
tions are parameterizations (layer two): other examples of
layer two constructions are also given. These constructions
demonstrate the expressiveness of our general access con-
trol model (in addition to its decidability).

Security layering is beneficial whether implemented in
an application or operating system kernel since it is a fun-
damental abstraction mechanism. But there are additional
benefits which apply only to kernels: First, kernel protec-
tion models must be implemented in layers, since the ker-
nel and process space are at two different layers. Second,
because of the address space separation, kernel-based lay-
ering ensures strong protection even in the presence of ar-
bitrary actions by (and bugs in) the processes. In contrast,
if layered protection is implemented within the application,
errors in programs, such as the dreaded buffer overflow, can
completely bypass the protection. We are currently imple-
menting this model in Linux using Linux Security Mod-
ules (LSM) and Capabilities [WCS+02]. We shall report on
implementation-specific details in a future paper.

This paper is organized as follows: Section 2 describes
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related work and in Section 3 we present our general access
control model. Section 4 shows that several problems, in-
cluding the safety problem are decidable in our model. In
Section 5 we show how to construct various DAC policies.
Finally, in Section 6 we conclude.

2. Related work

In this section, we review access control models and their
properties, particularly with respect to decidability.

In HRU, layer one consists of a language which operates
on an access matrix. HRU showed that this layer one has
an undecidable safety problem by constructing a layer two
program which simulated a Turing machine [HRU76]. Their
undecidability result relies on atomically adding and remov-
ing privileges: They also show that a decidable variant is ob-
tained by restricting commands to be mono-operational. A
year after HRU, Take-Grant was introduced, and its safety
property was shown to be not only decidable, but linear
[JLS76], but Take-Grant has not proven to be sufficiently
expressive.

Sandhu’s Typed Access Model (TAM) [San92] asso-
ciates a fixed type with each subject and each object. Al-
though TAM has the same undecidable safety property as
HRU, Sandhu showed that if TAM is restricted to bemono-
tonic—meaning that privileges can never be removed—
(and also to have another minor restriction), then the prob-
lem is decidable. More recently, Soshi [Sos00] showed
that a different, non-monotonic restriction, Dynamic TAM,
which allows the types of subjects and objects to change,
also has a decidable safety property, under the restriction
that only a fixed number of objects can ever be created in
the lifetime of the system.

Many RBAC models are more expressive than
our model. In particular, RBAC96 [SCFY96] and
ARBAC97/RBAC96 (i.e., ARBAC97 administering
RBAC96) [SBM99] are both able to express certain things
that our scheme cannot. For example, in the general ac-
cess control model we present, we do not know how to ex-
press cardinality constraints. However, our model has
a decidable safety property, whereas the safety prop-
erty is undecidable both for RBAC96 and for AR-
BAC97 [MS99, Cra02]. It is an open and interesting ques-
tion about how much protection needs can be met with our
approach and how much must be done by adding more lay-
ers. If further layering is necessary to provide supplemen-
tary RBAC protections on top of our general access control
model, our model provides an analyzable floor on the pro-
tections of the system. No operation which our access
control model would prevent can be allowed by higher lay-
ers, providing a multi-tiered protection level with a simple
base.

Koch and colleagues described a layer one model based
on graph transformations, and showed that it was decid-
able if no step both added and deleted parts of the graph
[KMPP02b, KMPP02a]. This means that no command may
both remove and add privileges. Thus, for example, a com-
mand to change a user’s group, which usually means that
the user simultaneously loses and gains privileges, would
not be permitted. This restriction can be viewed as a some-
what milder form of monotonicity. Take-Grant also obeys
this restriction.

Koch et al. constructed both a (specific) DAC model and
a (specific) RBAC model under their restriction. Note that
more general graph transformations, which they also stud-
ied, are known to lead to undecidability.

It is interesting to note that the way that HRU, TAM, and
Koch’s model achieve decidability is by requiring mono-
tonicity. But monotonicity would appear to make it infeasi-
ble to model all DAC systems, such as those which allow
change of ownership3. In contrast, our model is decidable
while not being monotonic.

Broadly speaking, our work falls into the category of (yet
another language for) RBAC. Users are members of groups
(roles) and the groups are used to map to privileges. We
can represent some forms of hierarchy, and even issues such
as those typically handled with constraints can be modeled
using relabeling. Traditionally, RBAC has been described
with either graph-based languages or predicate logic. Our
description can be viewed as a graph, but uses groups, la-
bels, and pattern matching as its primary mechanisms.

A general-purpose DAC implementation using RBAC
was described by Osborn, Sandhu and Manawer (OSM)
[OSM00] which also implemented LBAC. As OSM
showed, DAC requires administrative controls (administra-
tive controls are a hallmark of RBAC). We use their DAC
taxonomy here, but we show that our general access con-
trol model is decidable with respect to safety, and hence
all the DAC models (or any other access control mod-
els) constructed also must be decidable. Our construction
is based on groups, whereas theirs is done directly on ob-
jects. We believe that a group-based construction leads to a
simpler and more natural description.

The LBAC model was perhaps the first analyzed for pro-
tection [BL73, Den76]. The LBAC model’s simplicity and
conciseness make it a popular protection model. We be-
lieve that one of the greatest attractions of this model is
the ability to analyze its confidentiality properties— both
information flow and read access. But pure lattice mod-
els are incomplete, even for military use, since they do
not support declassification nor can they implement assured
pipelines [BK85]. Although there exists extensions to sup-

3 Some MAC semantics would also seem to be inhibited by monotonic-
ity.
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port these mechanisms, they do so by providing exceptions
to the lower layer lattice rules rather than by refining them,
as we advocate in this paper.

Type Enforcement (TE) [BK85, OR91] is a means of
providing least privilege. But TE is a very static design, not
capable of representing administrative controls. Tidswell
and Jaeger [TJ00a] describe Dynamic Typed Access Con-
trol (DTAC), which extends TE to dynamic types. They
show how administrative controls can be implemented, such
as constraint expressions. They further show that in most
cases their constraints can be implemented in linear-log
time for computing the rights possessed by a target [TJ00b].
Jaeger and Tidswell [JT01] also showed that constraints
were affordable as runtime checks for an operating system.

3. A general access control model

In this section, we develop a general access control
model which can be used to implement a variety of spe-
cific access control models. Given this general access con-
trol model, we will show in Section 4 how to generate vari-
ous security guarantees and in Section 5 how to implement
various DAC policies as a layer two parameterization.

A process derives its authority to perform operations
from its user4. We make the usual assumption that users
have beenauthenticated.

An object—or entity that can be accessed by a process—
has alabel that (indirectly) defines theprivilege(also called
permissionor right) that various users have to perform op-
erations on the object. The most important type of object is
a file.

There are two disjoint sets of labels:

• Group labels, which are used to determine group mem-
bership. Group labels are of the form〈U,G〉 where
U is a user ID andG is a group tag; the objects that
they label are calledgroup objects. We defer further
description of groups until Section 3.2.

• Ordinary object labels, which are used to labelordi-
nary objects—that is, non group objects. Ordinary ob-
ject labels are of the form〈U,N〉 whereU is a user
andN (for Not a group) is anordinary object tag.

An ordinary object label,〈U,N〉 is “owned” by the userU .
This form allows arbitrarily many labels to be minted by
U : The labels are protection classes for their respective ob-
jects in that all objects with the same label have identical
protection. This is so because we will define access privi-
leges (e.g., read and write) on a per-label basis.

4 In addition, it may derive its authority in part from the program being
executed. Our model can be extended to express this, but that is both
beyond the scope of this paper and irrelevant to the properties derived
here.

The protection class of an object can be changed by
changing its label.

A group is a set of users whose membership may change
over time. Rather than defining groups via configuration
files, as is traditionally done in operating systems, we use
the protection mechanism itself (including group labels) to
define groups. The advantage of this mechanism is the abil-
ity to control how group membership evolves. Group mem-
bership is defined by the set of group labels matching the
group pattern.

In Section 3.1 we describe ordinary object permissions
and in Section 3.2 we describe native groups, which to-
gether constitute our general access control model (layer
one). In Section 3.3, we describe the allowed parameteriza-
tions. In Section 3.4 we describe the layer three customiza-
tion and operations on the running system.

3.1. Basic privileges

Privileges to access an object are based on the label of
that object. Each ordinary object labell and privilegep is
mapped to a group of users who have privilegep on objects
with that label. This mapping is defined by the label’s owner
before using the label on any object, and the group is then
fixed although the group membership can change. Each la-
bel is mapped to 3 groups:

• r(l): the group who can read objects labeledl.

• w(l): the group who can write, that is, create or modify,
objects labeledl. Write privileges do not imply read
privileges.

• x(l): the group who can execute objects labeledl. Exe-
cute privileges are included here for completeness, but
play no further role in this paper.

Relabel privileges are defined using a sequence ofrelabel
rules. Each relabel rule takes twolabel templatest andt′ as
arguments and maps to a group:

• rl(t, t′): the group which can relabel an object from la-
bel l ∈ t to labell′ ∈ t′ without changing or observing
the contents of the relabeled object.

The arguments of a relabel rule must both be ordinary
object labels or both be group labels. When necessary to
avoid ambiguity, we userln(t, t′) to indicate a relabel rule
between non-group labels andrlg(t, t′) to indicate a rela-
bel rule between group labels.

Relabels are very powerful, so there is a natural tension
between restraining their power and maintaining adequate
flexibility. To define the access control model, relabel rules
on ordinary object labels are defined before the system goes
live.

However, the overall system is neither fixed nor
bounded: New users, groups, objects, and labels can
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be added as the system runs. We use templates to de-
fine a class of relabels (over labels and users which may
not exist at the time the relabel rules are defined) provid-
ing exactly this flexibility. Throughout, we use∗u to be
a variable that matches any user ID, and∗ to be a vari-
able that matches any component whatsoever. Note that
if ∗u is used more than once in one rule, it must match
to the sameuser ID each time. For example, the rela-
bel rule rln(〈∗u, ∗〉, 〈∗u, ∗〉) = g means that a relabel is
allowed by any member ofg between two ordinary ob-
ject labels that have the same first component.

The templates will often result in overlapping relabel
rules. To resolve this ambiguity, we require that relabel per-
missions be stored in a sequential order. The applicable re-
label permission is defined by thefirst relabel rule which
matches the source and destination labels. If no relabel rule
applies, then permission is denied5.

We note that these privileges are typical of those afforded
by operating systems except that in our model

1. relabels are protected at a fine grain, permitting or
denying relabeling between arbitrary pairs of source
and destination labels, and

2. an arbitrary number of labels can be minted per user.

We believe that our relabel mechanism could be retrofitted
into many existing operating system’s protection. Relabels
play a central role in this paper.

By a small abuse of notation, let{U} be the group which
always contains the single userU . We next give some ex-
amples which indicate the flexibility and power of the above
mechanism.

Our first example, in Figure 1, is a relabel rule sequence
that enables an object’s owner to relabel the object with any
of the owner’s labels, and prevents relabeling changing the
ownership of an object. Note that this semantics depend on
the order in which the relabels are written.

Our second example, in Figure 2, is a relabel rule se-
quence that

1. allows the owner of an ordinary object label to relabel
that object to any other object that the user owns, and

2. allows the system administrator(s) to relabel any ob-
ject.

3.2. Native group sets

In this section we discussnative groups, which are the
built-in groups of our protection system. Later, in Section 5,
we shall show how to use our protection system to imple-
ment various DAC policies, for which we will construct

5 This “first rule” significantly simplifies writing the rules since it means
we don’t need pattern intersection, union, and inversion operations to
build a flexible relabel rule set.

rln(〈∗u, ∗〉, 〈∗u, ∗〉) = {∗u}
rln(〈∗u, ∗〉, 〈∗w, ∗〉) = {}

Figure 1. Relabel rule sequence example
which allows relabels of ordinary objects
only between labels of a given owner.

rln(〈∗u, ∗〉, 〈urelabel, ∗〉) = admin

rln(〈urelabel, ∗〉, 〈∗u, ∗〉) = admin

rln(〈∗u, ∗〉, 〈∗u, ∗〉) = {∗u}

Figure 2. Relabel rule sequence example
which allows an administrator to relabel be-
tween any set of labels (using two relabel op-
erations), and ordinary users to relabel be-
tween labels they own.

DAC groups from our native groups. However, when it is
clear from context, and always in this section, we will use
“group” to mean native group.

Each group is part of anative group set: Each native
group set contains one or more groups. Native group sets
enable the succinct management of multiple groups simul-
taneously. But more importantly, they enable relationships
such as mutual exclusion and hierarchy to be maintained be-
tween groups.

Group membership is determined by group labels on
group objects. These group objects are merely placehold-
ers. They are created by the system only when

1. initializing a new group, or

2. adding new users to the system.

The only other way of modifying group membership is via
relabel operations on the group tags; thegroup administra-
tors are those who can do these relabels. Every user can be
a group administrator, and every group has its own struc-
ture (as well as membership).

A native group set is specified by three types of informa-
tion: adding group objects associated with users; determin-
ing group membership; and changing group membership.
Thus, the following is specified for each group set:

The set of initial group labels

〈u0, g0〉, 〈u1, g1〉, . . . , 〈un, gn〉 .
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Group type Relabel templates New user rule

Decreasing group membershiprlg(〈∗u, G〉,
〈
∗u, G

〉
) = m none or

〈
U,G

〉
Increasing group membership rlg(

〈
∗u, G

〉
, 〈∗u, G〉) = m arbitrary

Arbitrary membership changesrlg(〈∗u, G〉,
〈
∗u, G

〉
) = m arbitrary

rlg(
〈
∗u, G

〉
, 〈∗u, G〉) = m

Figure 3. Example: Various simple group types. Consider a directory containing a group and its in-
verse. The pattern for members of the group is {〈∗, G〉} and for non members is

{〈
∗, G

〉}
. Several

possibilities exist for future membership depending on the relabels, as shown in the above table.

The ui’s constitute unique user IDs that exist at the
time the group is created.

New user rule Optionally, whenever a userU is added to
the system, an object with the label〈U,G〉 is created,
for some specified group tagG.

Patterns for group membership For each group in the
group set, there is a patternP , which is a set of pairs,

{〈u0, g0〉, 〈u1, g1〉, . . . , 〈uk, gk〉} ,

where eachui may be either a specific user ID or∗u
meaning “any user ID”, and eachgi is a specific group
tag. Note that group tags arenotnecessarily one-to-one
with group membership. LetS be the set of group la-
bels in the group set. The membership of the group is
the set of users with user IDs in{u : 〈u, g〉 ∈ S ∩ P},
where, in a mild abuse of notation, we useP to mean
the set of all pairs that match some pattern inP .

Administrative group set One group setgs′ hasadminis-
trative controlover the native group set being defined,
gs, meaning that all relabel privileges involving group
labels fromgs have their groups defined ings′. It is
possible forgs = gs′.

Relabel Rules The permitted relabel of the group tags of
this group set. This is a set of rules of the form

Relabel(G, G′) = m ,

which means

rlg(〈∗u, G〉, 〈∗u, G′〉) = m ,

wherem is a group in the administrative group set.

The group tags for the group set are the union of those de-
fined in the group patterns, relabels, new user rule, and ini-
tial objects: each group tag is used in only one group set.
Clearly, each native group set can contain multiple groups,
each specified by a different pattern, possibly overlapping.
The advantage of this scheme—over a simpler one of defin-
ing only one group per group set—is that we can represent
both partitions of a set of users and hierarchy. We conclude
with a few examples:

• Figure 3 shows groups respectively whose member-
ship a) can only decrease, b) can only increase, or c)
can change arbitrarily.

• Figure 4 shows how a group set can be partitioned into
groups.

• Figure 5 shows how a group set can be used to repre-
sent a hierarchy of groups.

in Figures 3–5 This completes the discussion of the general
access control model (layer one) of the system.

P0 = {〈∗, G0〉}
P1 = {〈∗, G1〉} . . .

Pk = {〈∗, Gk〉}

Figure 4. Example: Partition of a group
set’s users. Consider a collection of groups
g0, g1, .., gk with patterns as shown above and
in which G0 . . . Gk constitute all the group
tags of the group set. The groups are pair-
wise disjoint, and the union of the groups
contains all the users in the group set.

Pe = {〈∗, Boss〉, 〈∗,Worker〉}
Pm = {〈∗, Boss〉}

Figure 5. Example: Group hierarchy. which
has the group tags Boss and Worker . Then
we can define the patterns for employee, Pe

and for management, Pm as above.
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3.3. Parameterization

The parameterization (layer two) consists only of rela-
bel rules and the creation of new groups. These relabel rules
would typically be mostly templated, since users still need
to be added.

The parameterizations presented in this paper are ex-
tremely small and may seem very insubstantial, yet are suf-
ficiently expressible to implement a wide variety of DAC
models (see Section 5).

3.4. Operations that can occur at layer three and
in a running system

Layer three is the last point at which relabel rules on or-
dinary objects can be added. In addition, at both layer three
and after the system goes live the following operations can
be performed:

Read, write, or execute an objectas determined by the
appropriate privileges. A user can create an ob-
ject with label l if she has write permission on
l.

Relabel an object using relabel operations on ordinary ob-
ject labels or group labels.

Define new native groupsas described in Section 3.2.

Add a new user Since the relabel rules and group labels
are parameterized in terms of users, new users can au-
tomatically be covered by existing rules. Group objects
associated with the new user are created as required for
the various native group sets.

Add a new ordinary object label An owner can add a
new ordinary object label at which time the read,
write and delete groups for the label are speci-
fied.

4. Decidability properties

In this section we describe several safety properties and
prove that they are all decidable as a consequence of our
layer one general access control model. These properties
can be determined right before the system goes live or at
any point in time after that.

We can ask the following “absolute” question:

A1 Can userU ever get a particular access permission (e.g.,
r) to objecto?

Question A1 is in fact the HRU safety property.
A system that provides only absolute properties would

likely be too restrictive to use in practice. In fact, even the
most rigorous of systems, such as Military Security (based

on Bell-LaPadula) and Investment Banking (based on Chi-
nese Wall [BN89]), have declassification operations, en-
abling classification to change. Conditional questions about
a security property such as “Can the qualifying exam be
stolen?”, that is, without its owner making it available, were
first asked by Snyder in [Sny81]. We would like to be able
to answer conditional questions such as:

C1 Relative safety: CanU ever get a particular access per-
mission (e.g.,r) to an objecto with labell if no relabel
of o is performed?

C2 CanU ever get a particular access right too without
at least one of/all of{U1, U2, . . . , Uk} cooperating by
performing some sort of relabel operation?

Question C1 asks ifU can be made a member ofr(l). Ques-
tion C2 asks which users must act forU to be able to read
o.

In this section we shall sketch algorithms to answer all
three above questions. Moreover, these algorithmic schemes
can be used to answer other similar questions. We begin
with a technical lemma on group membership that lies at
the heart of all of our decidability results.

4.1. Decidability of group membership

We first show that the question of whether a particular
user can become a member of a particular group is decid-
able. The key to all the technical results in this section is
that we are able to construct afinite state space to answer
this question.

Lemma 1 It is decidable whether, starting at a given con-
figuration, existing userU0 can ever become a member of
existing groupg0.

Proof. To determine whetherU0 can become a member of
g0, we construct an appropriate finite state space, and check
whether a state in whichU0 ∈ g0 is reachable from the
state corresponding to the given configuration. We need not
consider the addition of new groups, because, while group
membership changes over times, the group assigned to a
particular permission for a particular label is fixed. Hence,
all relabel permissions on existing group labels must belong
to existing groups. (Notice, however, that new users may be
added to those existing groups.)

Let us call entities (such as a user, label, etc.) that exist in
the given configurationinitial entities (e.g., initial user). For
the purposes of this proof, a state is represented by a tuple
of group tag setswith one set for each initial group tag. The
set associated with group tagG is calledG’s group tag set.
Each group tag set can contain initial user IDs and/or the
special symbol>.

The elements ofG’s group tag set include all initial users
U such that a group label〈U,G〉 currently exists. Addition-
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ally, the element> in G’s group tag set indicates an un-
bounded number of group labels with tagG (one for each
new user) could be added after the initial configuration.

In the starting state,> is put inG’s group tag set if and
only if the native group set forG has a new user rule that
adds group labels with tagG.

Given such a statestate, we can easily determine whether
U0 ∈ g in the configuration corresponding tostate. This
will be true if and only if there is some group tagG such
that groupg’s pattern contains either〈∗u, G〉 or 〈U0, G〉
(or both) andG’s group tag set containsU0 in state. Also,
we can determine whether an arbitrary group is empty or
nonempty. A group will be nonempty in a state exactly
when the group’s pattern either contains〈∗u, G′〉 and the
group tag set forG′ is nonempty, or contains contains
〈U ′, G′〉 and the group tag set forG′ containsU ′.

We now show how to calculate a state’s successor states.
Each relabel rule for group labels is of the form “For any
userU , a group label〈U,G〉 can be changed to〈U,G′〉 by
any member of groupm.” Such a rule leads to new states
if both the administrative groupm is nonempty in the cur-
rent state, andG’s group tag set is nonempty. In this case,
for each initial user IDU in G’s set, there is a successor state
with U removed fromG’s set and added toG′’s set. Addi-
tionally, if G’s set contains> andG′’s set does not con-
tain>, then there is a successor state in which both contain
>. This corresponds to the fact that if there is an unbounded
number ofG group tags for added users, then using rela-
bels we can create an unbounded number ofG′ group tags
while still retaining an unbounded number ofG group tags.
(We need not worry about the introduction of new users be-
yond the initial state, since we added new users to every ini-
tial group that could get new users in the initial state.)

The state space is finite, because there are only a fixed
number of users and existing group tags in the given start-
ing configuration. Therefore, this state space can be explic-
itly constructed.

In fact, by carefully tracking the procedure spelled out in
the proof of Lemma 1, we can determine which combina-
tions of users, if any, had to take action forU0 to join group
g0.

Corollary 2 There is an algorithm that takes a given con-
figuration with existing userU0 and existing groupg0, with
U0 6∈ g0, and tells whetherU0 can become a member of
g0, and if so, gives a list of sets of existing users, such that
all the users in one of the sets must execute relabel opera-
tions on group labels in order forU0 to become a member
of g0.

Proof sketch. For each simple path from the start state
in the state space of the proof of Lemma 1 to a state with
U0 ∈ g0, we can determine which initial users are in the ad-
ministrative group that could perform the relabel.

To give a concise answer, we will want to prune the list
of sets of users to remove any set that is a superset of an-
other. In particular, notice that if the element> is present
in a particular group tag set that must perform a relabel,
then no action by any userexisting in the given configura-
tion was required.

4.2. Security properties

For the sake of concreteness, we state our results in this
subsection in terms ofr, read permission.Each of these re-
sults holds for the other unary permissions as well.We be-
gin with the question of whether a user can gainr access to
a particular ordinary objectlabel, or, equivalently, whether
a user can gain access to an objectwithout someone rela-
beling the object.

Theorem 3 Let 〈U,N〉 be an ordinary object label, and let
U0 be a user such thatU0 6∈ r(〈U,N〉). It is decidable
whetherU0 can gainr permission for label〈U,N〉 from
a given configuration.

Proof. Let g = r(〈U,N〉) be the group withr permis-
sion. Note that the group assigned a particular permission
can never change.

Thus we have reduced the question to whetherU can be-
come a member of groupg, which is decidable by Lemma 1.

Theorem 3 says that Question C1 is decidable. We now
show that the general object access question, Question A1,
which is precisely the safety problem of HRU, is decidable.

Theorem 4 Consider a given configuration with objecto
with label 〈U,N〉 such that userU0 6∈ r(〈U,N〉). There
is an algorithm to decide whetherU0 can gainr access to
o in any configuration reachable from the given configura-
tion.

Proof sketch. We generalize the construction of Lemma 1,
to determine whether there isany label l such thato can be
labeledl andU0 can become a member of the groupr(l).

Here we define a state to consist of a state from Lemma 1
together with a representation of the label ofo. Since the
number of labels an owner can mint is unbounded, a finite
state space cannot explicitly list all possible labels. As be-
fore, we refer to any user, label, group, etc. that exists in the
given configuration asinitial .

In this proof, a state will consist of an initial label to-
gether with a tuple of group tag sets. The tuple of group tag
sets is exactly the same as in the proof of Lemma 1. The la-
bel represents the current label ofo. Additionally, there is
one special terminal state,Syes, that represents any time at
whicho has a non-initial label. Notice that the state space is
finite.
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Since our goal is to determine whetherU0 maygainr ac-
cess too, we must assume that newly minted labels will as-
signr access to the group of all users, because the user who
creates a new labellnew is allowed to choose any group to
assign tor(lnew). Thus,U0 can obtainr access too ex-
actly in stateSyes and in any state with initial labell such
thatU0 ∈ r(l) (which can be determined from the tuple of
group tag sets). If any such state is reached, we can halt the
construction of the state space and report thatU0 can gain
r access too; otherwise, once we construct the entire state
space we can report thatU0 cannot obtainr access too.

The initial state for this state space consists of the same
group tag sets as in the proof of Lemma 1 together with la-
bel 〈U, n〉. To complete the proof, we need only to describe
the transitions for the state space.

There are two possible types of transitions. One is a tran-
sition that changes one or more group tag sets (but leaves
the label ofo unchanged), and is exactly the same as in the
proof of Lemma 1. The other is a transition in whicho is re-
labeled. If the current state has initial labell, then we use
the relabel rules of the system to determine for every other
initial label l′, the group assigned torl(l, l′). If that group
is nonempty in the current state, then add a successor state
with labell′.

Additionally, we check whether the relabel rules allow
l to be relabeled to any non-initial labellnew, and, if so,
whether the group assigned torl(l, lnew) is nonempty. If
that group is nonempty, add a transition toSyes (and halt
the construction since the result is known).

Moreover, we can track which users had to perform rela-
bels to giveU0 access.

Corollary 5 There is a algorithm to determine, for a given
configuration, userU0, and objecto, whetherU0 can obtain
r access too, and if so, to list a set of sets of users such that
all the users in one of the sets must make relabel actions on
group labels in order forU0 to obtain the access.

Proof sketch. This is very similar to the proof of Corol-
lary 2. Once we have constructed the state space in the proof
of Theorem 4, we make a list of all simple paths from the
start state to a state whereU0 has the specified access. Then
for each path, we list the users who had to take an action.

To give a concise answer, we prune the sets as in Corol-
lary 2.

We can also use the same general methods to answer
Question C2, a conditional form of Question A1.

Corollary 6 Leto be an object with label〈U,N〉 and letU0

be a user such thatU0 6∈ r(〈U,N〉). Fix a particular config-
uration and a setU = {U1, U2, . . . Uk} of users that exist in
that configuration. It is decidable whetherU can gainr ac-
cess too without

1. at least one user inU performing at least one relabel
action, or

2. every user inU performing at least one relabel.

Proof sketch. Again, construct the state space as in the
proof of Theorem 4. If there is no state reachable from the
start state whereU0 has the access, then the answer to both
questions is, “No.” Otherwise, we need to examine every
simple path from the start state to every state whereU0 has
the desired action. We can read off the users that performed
relabels along each path and answer the questions:

1. Does at least one member ofU perform a relabel along
each such path?

2. Does every member ofU perform at least one relabel
along every path?

5. DAC implementation

We use OSM’s [OSM00] classification of DACs:

Strict DAC An owner can grant or revoke ordinary privi-
leges (i.e., r,w,x).

Liberal DAC An owner can delegate grant (and, as de-
scribed below, revoke) authority to other users. The
delegate rules lead to three subclasses:

One-Level Grant An owner can delegate to other
users, but then such users have no further power
of delegation.

Two-Level Grant In addition to one-level grant, an
owner can allow two-level grants, under which
the grantee can further grant for one more level.

Multi-level Grant There is no limit on the number of
grants which can be made.

DAC with change of ownership Change of ownership is
possible in addition to one of the above.

Grant-Independent Revocation Any user with grant
privileges has revocation privileges

Grant-Dependent RevocationOnly the user that granted
the privilege may revoke it.

Grant-dependent revocation requires tracking the user who
granted the label, and there is not anyplace to track this in-
formation in our general access control model. In a forth-
coming journal-length paper about this work, we will show
a constructed for grant-dependent revocation using a sim-
ple extension, three part labels.

Another axis in OSM’s DAC taxonomy is whether the
owner can give away ownership of her objects. A variant,
in which she can, is easy to express in our model as shown
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rl(〈∗u, ∗〉, 〈urelabel, ∗〉) = admin

rl(〈∗u, ∗〉, 〈∗v, ∗〉) = {∗u}

Figure 6. Example: Giving away object.

in the example in Figure 6, of giving away an object com-
bined with administrators being able to relabel any object.

In the next section we show how to use these native
groups to constructDAC groups.

5.1. Decidability of DAC models

The DAC models are constructed using our layer one
model which was described in Section 3 and shown to be
decidable with respect to the safety issue in Section 4 (See
Theorem 4). Hence, without further proof, all of these DAC
models have decidable safety properties.

5.2. Construction of DAC

The previously defined OSM models for DAC imply ar-
bitrarily differentiated objects. However, our implementa-
tion, like all practical implementations, partitions the set of
objects into equivalence classes using labels. The result is
that changes in the membership of a native group result in
changes to some label’s access privileges.

To simplify our construction, we first construct an en-
tity to represent the groups used in our DAC, which are
built upon, but distinct from, our native groups. We shall
call theseDAC groups. EachDAC groupwill be constructed
from two native group sets. These two native group sets are:

• Thegranting group setspecifies the ability to grant ac-
cess privileges. In general, multiple granting groups
within a native group set are used to differentiatewhat
they are allowed to grant. For example, an object’s
owner may have different granting rights than a user
which is given a second–level grant. One of these
groups is called thegranting group, gg, and it is the ad-
ministrative group for the permission group below. The
groups having administrative control over the groups
in the granting group set are also in the granting group
set.

• The permission group setcontains a single group
called thepermission group, pg. Thepg is the group
of users who have some ordinary privilege.

We describe constructions for granting groups and for
the permission group in the next two subsections.

5.2.1. Granting group construction In this section we
describe the structure of the granting groups. There are two
cases here: strict DAC and liberal DAC.

Strict DAC This is relatively straightforward as there are
no changes to the granting group, that is, no relabels among
grant group labels. There is a single group object with la-
bel 〈U,GG〉 whereU is the owner and the pattern for the
granting group is{〈U,GG〉}.

Liberal DAC To support Liberal DAC, we will need to
track the grant level. The following granting group tags are
needed:

• GG to indicate that the user is not a member of the
granting group,

• GGn to indicate that the user can grant ann-level or
less grant (and hence the group tag is at then + 1st
level), and

• GG∞ to denote no bound on the grants.

We note that there is a fixed number of tags for any scheme
since the maximum level grant is bounded.

N-level grants We describe here both 1 and 2 level grants,
and, in fact, any constant number of levels. We gen-
erateN rules here, one for each grant level. For all
m < N ,

rlg(
〈
∗u, GG

〉
, 〈∗u, GGm〉) = ggm

Where the pattern for the granting group at levelm,
ggm is

{〈∗, GGm+1〉, . . . , 〈∗, GGN−1〉} ∪ {〈∗, GG∞〉} .

(Grants are allowed of lower levels). Note that the
mechanism makes use of overlapping groups, asggi

overlapsggj .

Multi-level Grants granting a multi-level grant

rlg(
〈
∗u, GG

〉
, 〈∗u, GG∞〉) = gg∞

Where the pattern for unlimited granting group,gg∞
is

{〈∗, GG∞〉} .

5.2.2. Permissions group constructionIn this subsec-
tion, we describe thepermissions groupswhich are the
groups used to assign privileges to ordinary labels. We as-
sume grantor independent revocations. The granting group,
gg has the pattern, which is the union of all the granting
group patterns defined in the previous subsection.

We shall require two tags:PG for membership in the
permission group, andPG non-membership.

• The grant relabel isrlg(
〈
∗u, PG

〉
, 〈∗u, , PG〉) = gg

and
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• revocation relabel isrlg(〈∗u, PG〉,
〈
∗u, PG

〉
) = gg.

We note that that the use of groups is controlled entirely
by relabel conditions, and the separation of granting versus
rights groups is not “wired in” but part of our general access
control model. In fact, there is no mechanism here specif-
ically to support DAC—our DAC implementation uses en-
tirely generic mechanisms.

6. Conclusions

The two primary measures of a general access control
model are its expressiveness versus its complexity—that is,
the complexity of analyzing whether various security prop-
erties of interest hold. On the one hand, the more expressive
the general access control model, the broader the class of ac-
cess control models which can be constructed. On the other
hand, a crucial requirement for any access control system
is to be able to determine the protection properties of enti-
ties in the system. (Otherwise how do we know that the sys-
tem is secure?)

We have described access control mechanisms as con-
sisting of three layers:

1. a general access control model,

2. a parameterization producing a specific access control
model, and

3. an initial set of users and objects.

The layered approach enables us to bound the properties at
higher layers for both good and bad: if a given property is
decidable at a layer then it is decidable at all higher layers,
but on the other hand expressiveness decreases as the layers
are ascended.

In Section 3, a new general access control model is pre-
sented which extends traditional protection with very flexi-
ble, first class relabel rules. This relabel mechanism is also
used to construct a flexible group mechanism. The tech-
niques used in this general access control model are familiar
to system administrators as they consist of groups, pattern
matching, and labels as fundamental building blocks. We
believe that this is a simple system, although this is a sub-
jective issue, and further arguments are necessary to provide
evidence for this viewpoint.

In Section 5 we show how various DAC models can be
implemented via a layer two parameterization. These con-
stitute all of the DAC variants described in OSM [OSM00]
with the exception of grantor dependent revocation. We will
describe how the work here can be extended in a small way
to handle grantor dependent revocation in the journal ver-
sion of this paper.

Our general access control model enables the automatic
analysis of properties such as safety, the decidability of both
absolute and conditional properties is shown in Section 4.

Our model therefore satisfies an important complexity goal,
decidability.

We note that ours is the first general access control model
which both has a decidable safety property and is able to
implement the full range of DAC models. It is interesting
to look at the general access control models which have
both decidable (but relatively weak) and undecidable (but
more expressive) variants. This includes HRU, TAM, and
Koch’s Graph model. In each of these cases, decidability is
obtained by requiring monotonicity: an operation can add
or remove privileges but not both. Yet, the layer one model
we present here does not require monotonicity as the rela-
bel operation simultaneously adds and removes privileges.
This leads us to the hope that a much greater class of access
controls can be implemented, fulfilling HRU’s 1976 chal-
lenge: “It would be nice if we could provide for protection
systems an algorithm which decided safety for a wide class
of systems, especially if it included all or most of the sys-
tems that people seriously contemplate.” This paper consti-
tutes a small step in meeting that challenge.

We are currently constructing general access control
model in Linux using Linux Security Modules [WCS+02].
We will report on that implementation in a future paper.
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