Data Security and Privacy

Overview of Public-Key Cryptography

Readings for This Lecture

- Required: On Wikipedia
 - Public key cryptography
 - <u>RSA</u>
 - Diffie–Hellman key exchange
 - ElGamal encryption
- Required:
 - Differ & Hellman: "New Directions in Cryptography" IEEE Transactions on Information Theory, Nov 1976.

Outline

- Public-Key Encryption
- Digital Signatures
- Key distribution among multiple parties
- Kerberos
- Distribution of public keys, with public key certificates
- Diffie-Hellman Protocol
- TLS/SSL/HTTPS

Review of Secret Key (Symmetric) Cryptography

- Confidentiality
 - stream ciphers (uses PRNG)
 - block ciphers with encryption modes
- Integrity
 - Cryptographic hash functions
 - Message authentication code (keyed hash functions)
- Limitation: sender and receiver must share the same key
 - Needs secure channel for key distribution
 - Impossible for two parties having no prior relationship
 - Needs many keys for n parties to communicate

Concept of Public Key Encryption

- Each party has a pair (K, K⁻¹) of keys:
 - K is the **public** key, and used for encryption
 - K⁻¹ is the **private** key, and used for decryption
 - Satisfies $D_{K^{-1}}[E_K[M]] = M$
- Knowing the public-key K, it is computationally infeasible to compute the private key K⁻¹
 - How to check (K,K⁻¹) is a pair?
 - Offers only computational security. Secure Public Key encryption is impossible when P=NP, as deriving K⁻¹ from K is in NP.
- The public key K may be made publicly available, e.g., in a publicly available directory
 - Many can encrypt, only one can decrypt
- Public-key systems aka *asymmetric* crypto systems

Public Key Cryptography Early History

- Proposed by Diffie and Hellman, documented in "New Directions in Cryptography" (1976)
 - 1. Public-key encryption schemes
 - 2. Key distribution systems
 - Diffie-Hellman key agreement protocol
 - 3. Digital signature
- Public-key encryption was proposed in 1970 in a classified paper by James Ellis
 - paper made public in 1997 by the British Governmental Communications Headquarters
- Concept of digital signature is still originally due to Diffie & Hellman

Public Key Encryption Algorithms

- Most public-key encryption algorithms use either modular arithmetic number theory, or elliptic curves
- RSA
 - based on the hardness of factoring large numbers
- El Gamal
 - Based on the hardness of solving discrete logarithm
 - Use the same idea as Diffie-Hellman key agreement

Diffie-Hellman Key Agreement Protocol

Not a Public Key Encryption system, but can allow A and B to agree on a shared secret in a public channel (against passive, i.e., eavesdropping only adversaries)

Setup: p prime and g generator of Z_p^* , p and g public.

Diffie-Hellman

• Example: Let p=11, g=2, then

а	1	2	3	4	5	6	7	8	9	10	11
9 ^a	2	4	8	16	32	64	128	256	512	1024	2048
g ^a mod p	2	4	8	5	10	9	7	3	6	1	2

A chooses 4, B chooses 3, then shared secret is $(2^3)^4 = (2^4)^3 = 2^{12} = 4 \pmod{11}$

Adversaries sees 2^3 =8 and 2^4 =5, needs to solve one of 2^x =8 and 2^y =5 to figure out the shared secret.

Security of DH is based on Three Hard Problems

- Discrete Log (DLG) Problem: Given <g, h, p>, computes a such that g^a = h mod p.
- Computational Diffie Hellman (CDH) Problem: Given <g, g^a mod p, g^b mod p> (without a, b) compute g^{ab} mod p.
- Decision Diffie Hellman (DDH) Problem: distinguish (g^a,g^b,g^{ab}) from (g^a,g^b,g^c), where a,b,c are randomly and independently chosen
- If one can solve the DL problem, one can solve the CDH problem. If one can solve CDH, one can solve DDH.

Assumptions

- DDH Assumption: DDH is hard to solve.
- CDH Assumption: CDH is hard to solve.
- DLG Assumption: DLG is hard to solve
- DDH assumed difficult to solve for large p (e.g., at least 1024 bits).
- Warning:
 - New progress can solve discrete log for p values with some properties. No immediate attack against practical setting yet.
 - Look out when you need to use/implement public key crypto
 - May want to consider Elliptic Curve-based algorithms

ElGamal Encryption

- Public key <g, p, h=g^a mod p>
- Private key is a
- To encrypt: chooses random b, computes C=[g^b mod p, g^{ab} * M mod p].
 - Idea: for each M, sender and receiver establish a shared secret g^{ab} via the DH protocol. The value g^{ab} hides the message M by multiplying it.
- To decrypt $C = [c_1, c_2]$, computes M where
 - $((c_1^a \mod p) * M) \mod p = c_2$.
 - To find M for x * M mod p = c₂, compute z s.t. x*z mod p =1, and then M = C₂*z mod p
- CDH assumption ensures M cannot be fully recovered.
- IND-CPA security requires DDH.

RSA Algorithm

- Invented in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman
 - Published as R L Rivest, A Shamir, L Adleman, "On Digital Signatures and Public Key Cryptosystems", Communications of the ACM, vol 21 no 2, pp120-126, Feb 1978
- Security relies on the difficulty of factoring large composite numbers
- Essentially the same algorithm was discovered in 1973 by Clifford Cocks, who works for the British intelligence

RSA Public Key Crypto System

Key generation:

1. Select 2 large prime numbers of about the same size, p and q

Typically each p, q has between 512 and 2048 bits

- 2. Compute n = pq, and $\Phi(n) = (q-1)(p-1)$
- 3. Select e, $1 < e < \Phi(n)$, s.t. $gcd(e, \Phi(n)) = 1$ Typically e=3 or e=65537
- 4. Compute d, 1< d< $\Phi(n)$ s.t. ed = 1 mod $\Phi(n)$ Knowing $\Phi(n)$, d easy to compute.

Public key: (e, n) Private key: d

RSA Description (cont.)

Encryption

Decryption

Given a ciphertext C, use private key (d) Compute C^d mod n = (M^e mod n)^d mod n = M^{ed} mod n = M

RSA Example

- $p = 11, q = 7, n = 77, \Phi(n) = 60$
- d = 13, e = 37 (ed = 481; ed mod 60 = 1)
- Let M = 15. Then $C \equiv M^e \mod n$

$$- C \equiv 15^{37} \pmod{77} = 71$$

• $M \equiv C^d \mod n$

$$- M \equiv 71^{13} \pmod{77} = 15$$

RSA Example 2

- Parameters:
 - p = 3, q = 5, n = pq = 15 $- \Phi(n) = ?$
- Let e = 3, what is d?
- Given M=2, what is C?
- How to decrypt?

Hard Problems on Which RSA Security Depends

 $C = M^e \mod (n=pq)$

Plaintext: M

Ciphertext: C

C^d mod n

- 1. Factoring Problem: Given n=pq, compute p,q
- 2. Finding RSA Private Key: Given (n,e), compute d s.t. ed = 1 (mod $\Phi(n)$).
 - Given (d,e) such that ed = 1 (mod Φ(n)), there is a clever randomized algorithm to factor n efficiently.
 - Implication: cannot share the modulus n among multiple users
- 3. RSA Problem: From (n,e) and C, compute M s.t. $C = M^e$
 - Aka computing the e'th root of C.
 - Can be solved if n can be factored

RSA Security and Factoring

- Security depends on the difficulty of factoring n
 - − Factor n \Rightarrow compute $\Phi(n) \Rightarrow$ compute d from (e, n)
 - Knowing e, d such that ed = 1 (mod $\Phi(n)$) \Rightarrow factor n
- The length of n=pq reflects the strength
 - 768 bit n factored in 2009
 - 829 bit n factored in 2020
- RSA encryption/decryption speed is quadratic in key length
- Minimal 2048 bits recommended for current usage
- NIST suggests 15360-bit RSA keys are equivalent in strength to 256bit
- Factoring is easy to break with quantum computers
- Recent progress on Discrete Logarithm might make factoring much faster

RSA Encryption & IND-CPA Security

- The RSA assumption, which assumes that the RSA problem is hard to solve, ensures that the plaintext cannot be fully recovered.
- Plain RSA does not provide IND-CPA security.
 - For Public Key systems, the adversary has the public key, hence the initial training phase is unnecessary, as the adversary can encrypt any message he wants to.
 - How to break IND-CPA security?
 - How to use it more securely?

Real World Usage of Public Key Encryption

- Often used to encrypt a symmetric key
 - To encrypt a message M under an RSA public key (n,e), generate a new AES key K, compute [K^e mod n, AES-CBC_K(M)]
- Alternatively, one can use random padding.
 - E.g., computer (M || r) ^e mod n to encrypt a message M with a random value r
 - More generally, uses a function F(M,r), and encrypts as F(M,r) = mod n
 - From F(M,r), one should be able to recover M
 - This provides randomized encryption

Digital Signatures: The Problem

- Consider the real-life example where a person pays by credit card and signs a bill; the seller verifies that the signature on the bill is the same with the signature on the card
- Contracts are valid if they are signed.
- Signatures provide non-repudiation.
 - ensuring that a party in a dispute cannot repudiate, or refute the validity of a statement or contract.
- Can we have a similar service in the electronic world?
 - Does Message Authentication Code provide non-repudiation?

Digital Signatures

- MAC: One party generates MAC, one party verifies integrity.
- Digital signatures: One party generates signature, many parties can verify.
- Digital Signature: a data string which associates a message with some originating entity.
- Digital Signature Scheme:
 - a signing algorithm: takes a message and a (private) signing key, outputs a signature
 - a verification algorithm: takes a (public) verification key, a message, and a signature
- Provides:
 - Authentication, Data integrity, Non-Repudiation

Digital Signatures and Hash

- Very often digital signatures are used with hash functions, hash of a message is signed, instead of the message.
- Hash function must be:
 - Strong collision resistant

RSA Signatures

Key generation (as in RSA encryption):

- Select 2 large prime numbers of about the same size, p and q
- Compute n = pq, and $\Phi = (q 1)(p 1)$
- Select a random integer e, 1 < e < Φ, s.t. gcd(e, Φ) = 1
- Compute d, 1 < d < Φ s.t. ed = 1 mod Φ

Public key: (e, n)used fPrivate key: d,used f

used for verification used for generation

RSA Signatures with Hash (cont.)

Signing message M

- Verify 0 < M < n
- Compute $S = h(M)^d \mod n$

Verifying signature S

- Use public key (e, n)
- Compute S^e mod n = (h(M)^d mod n)^e mod n = h(M)

Non-repudiation

- Nonrepudiation is the assurance that someone cannot deny something. Typically, nonrepudiation refers to the ability to ensure that a party to a contract or a communication cannot deny the authenticity of their signature on a document or the sending of a message that they originated.
- Can one deny a digital signature one has made?
- Does email provide non-repudiation?

The Big Picture

	Secret Key Setting	Public Key Setting		
Secrecy / Confidentiality	Stream ciphers Block ciphers + encryption modes	Public key encryption: RSA, El Gamal, etc.		
Authenticity / Integrity	Message Authentication Code	Digital Signatures: RSA, DSA, etc.		