Data Security and Privacy

 ■ - ■
Overview of Public-Key Cryptography

Readings for This Lecture

- Required: On Wikipedia
- Public key cryptography
- RSA
- Diffie-Hellman key exchange
- ElGamal encryption
- Required:

- Differ \& Hellman: "New Directions in Cryptography" IEEE Transactions on Information Theory, Nov 1976.

Outline

- Public-Key Encryption
- Digital Signatures
- Key distribution among multiple parties
- Kerberos
- Distribution of public keys, with public key certificates
- Diffie-Hellman Protocol
- TLS/SSL/HTTPS

Review of Secret Key (Symmetric) Cryptography

- Confidentiality
- stream ciphers (uses PRNG)
- block ciphers with encryption modes
- Integrity
- Cryptographic hash functions
- Message authentication code (keyed hash functions)
- Limitation: sender and receiver must share the same key
- Needs secure channel for key distribution
- Impossible for two parties having no prior relationship
- Needs many keys for n parties to communicate

Concept of Public Key Encryption

- Each party has a pair (K, K^{-1}) of keys:
- K is the public key, and used for encryption
- K^{-1} is the private key, and used for decryption
- Satisfies $\quad D_{K-1}\left[E_{K}[M]\right]=M$
- Knowing the public-key K , it is computationally infeasible to compute the private key K^{-1}
- How to check $\left(\mathrm{K}, \mathrm{K}^{-1}\right)$ is a pair?
- Offers only computational security. Secure Public Key encryption is impossible when $\mathrm{P}=\mathrm{NP}$, as deriving K^{-1} from K is in NP.
- The public key K may be made publicly available, e.g., in a publicly available directory
- Many can encrypt, only one can decrypt
- Public-key systems aka asymmetric crypto systems

Public Key Cryptography Early

History

- Proposed by Diffie and Hellman, documented in "New Directions in Cryptography" (1976)

1. Public-key encryption schemes
2. Key distribution systems

- Diffie-Hellman key agreement protocol

3. Digital signature

- Public-key encryption was proposed in 1970 in a classified paper by James Ellis
- paper made public in 1997 by the British Governmental Communications Headquarters
- Concept of digital signature is still originally due to Diffie \& Hellman

Public Key Encryption Algorithms

- Most public-key encryption algorithms use either modular arithmetic number theory, or elliptic curves
- RSA
- based on the hardness of factoring large numbers
- El Gamal
- Based on the hardness of solving discrete logarithm
- Use the same idea as Diffie-Hellman key agreement

Diffie-Hellman Key Agreement Protocol

Not a Public Key Encryption system, but can allow A and B to agree on a shared secret in a public channel (against passive, i.e., eavesdropping only adversaries)
Setup: p prime and g generator of $Z_{p}{ }^{*}, p$ and g public.

Pick random, secret a
Compute and send $g^{\mathrm{a}} \bmod \mathrm{p}$
$K=\left(g^{b} \bmod p\right)^{a}=g^{a b} \bmod p$

Pick random, secret b
Compute and send $g^{b} \bmod p$
$K=\left(g^{a} \bmod p\right)^{b}=g^{a b} \bmod p$

Diffie-Hellman

- Example: Let $\mathrm{p}=11, \mathrm{~g}=2$, then

a	1	2	3	4	5	6	7	8	9	10	11
$\mathrm{~g}^{\mathrm{a}}$	2	4	8	16	32	64	128	256	512	1024	2048
ga mod p $^{\text {a }} 2$	2	4	8	5	10	9	7	3	6	1	2

A chooses 4 , B chooses 3 , then shared secret is $\left(2^{3}\right)^{4}=\left(2^{4}\right)^{3}=2^{12}=4(\bmod 11)$
Adversaries sees $2^{3}=8$ and $2^{4}=5$, needs to solve one of $2^{x}=8$ and $2^{y}=5$ to figure out the shared secret.

Security of DH is based on Three Hard Problems

- Discrete Log (DLG) Problem: Given <g, h, p>, computes a such that $\mathrm{g}^{\mathrm{a}}=\mathrm{h} \bmod \mathrm{p}$.
- Computational Diffie Hellman (CDH) Problem: Given <g, $g^{a} \bmod p, g^{b} \bmod p>($ without $a, b)$ compute $g^{a b} \bmod p$.
- Decision Diffie Hellman (DDH) Problem: distinguish ($g^{a}, g^{b}, g^{a b}$) from (g^{a}, g^{b}, g^{c}), where a, b, c are randomly and independently chosen
- If one can solve the DL problem, one can solve the CDH problem. If one can solve CDH , one can solve DDH.

Assumptions

- DDH Assumption: DDH is hard to solve.
- CDH Assumption: CDH is hard to solve.
- DLG Assumption: DLG is hard to solve
- DDH assumed difficult to solve for large p (e.g., at least 1024 bits).
- Warning:
- New progress can solve discrete log for p values with some properties. No immediate attack against practical setting yet.
- Look out when you need to use/implement public key crypto
- May want to consider Elliptic Curve-based algorithms

ElGamal Encryption

- Public key $<\mathrm{g}, \mathrm{p}, \mathrm{h}=\mathrm{g}^{\mathrm{a}}$ mod $\mathrm{p}>$
- Private key is a
- To encrypt: chooses random b, computes
$C=\left[g^{b} \bmod p, g^{a b} * M \bmod p\right]$.
- Idea: for each M, sender and receiver establish a shared secret $\mathrm{g}^{\text {ab }}$ via the DH protocol. The value $\mathrm{g}^{\text {ab }}$ hides the message M by multiplying it.
- To decrypt $\mathrm{C}=\left[\mathrm{c}_{1}, \mathrm{c}_{2}\right]$, computes M where
- $\left(\left(c_{1}{ }^{a} \bmod p\right) * M\right) \bmod p=c_{2}$.
- To find M for $x^{*} M \bmod p=c_{2}$, compute z s.t. $x^{*} z \bmod p=1$, and then $M=C_{2}{ }^{*} z \bmod p$
- CDH assumption ensures M cannot be fully recovered.
- IND-CPA security requires DDH.

RSA Algorithm

- Invented in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman
- Published as R L Rivest, A Shamir, L Adleman, "On Digital Signatures and Public Key Cryptosystems", Communications of the ACM, vol 21 no 2, pp120-126, Feb 1978
- Security relies on the difficulty of factoring large composite numbers
- Essentially the same algorithm was discovered in 1973 by Clifford Cocks, who works for the British intelligence

RSA Public Key Crypto System

Key generation:

1. Select 2 large prime numbers of about the same size, p and q
Typically each p, q has between 512 and 2048 bits
2. Compute $\mathrm{n}=\mathrm{pq}$, and $\Phi(\mathrm{n})=(\mathrm{q}-1)(\mathrm{p}-1)$
3. Select e, $1<e<\Phi(n)$, s.t. $\operatorname{gcd}(e, \Phi(n))=1$

Typically e=3 or e=65537
4. Compute $d, 1<d<\Phi(n)$ s.t. $e d \equiv 1 \bmod \Phi(n)$ Knowing $\Phi(\mathrm{n})$, d easy to compute.

Public key: (e, n)
Private key: d

RSA Description (cont.)

Encryption

Given a message $M, 0<M<n \quad M \in Z_{n}-\{0\}$ use public key (e, n)
compute $\mathrm{C}=\mathrm{M}^{\mathrm{e}} \bmod \mathrm{n}$
$C \in Z_{n}-\{0\}$

Decryption

Given a ciphertext C, use private key (d)
Compute $C^{d} \bmod n=\left(M^{e} \bmod n\right)^{d} \bmod n=M^{e d}$ $\bmod n=M$

RSA Example

- $p=11, q=7, n=77, \Phi(n)=60$
- $d=13, \mathrm{e}=37 \quad(\mathrm{ed}=481 ; ~ e d \bmod 60=1)$
- Let $\mathrm{M}=15$. Then $\mathrm{C} \equiv \mathrm{M}^{\mathrm{e}} \bmod \mathrm{n}$
$-\mathrm{C} \equiv 15^{37}(\bmod 77)=71$
- $M \equiv C^{d} \bmod n$
$-\mathrm{M} \equiv 71^{13}(\bmod 77)=15$

RSA Example 2

- Parameters:
$-p=3, q=5, n=p q=15$
$-\Phi(\mathrm{n})=$?
- Let $\mathrm{e}=3$, what is d ?
- Given $\mathrm{M}=2$, what is C ?
- How to decrypt?

Hard Problems on Which RSA Security Depends

$$
C=M^{e} \bmod (n=p q)
$$

Plaintext: M
Ciphertext: C

$C^{d} \bmod n$

1. Factoring Problem: Given $n=p q$, compute p, q
2. Finding RSA Private Key: Given (n, e), compute d s.t. ed $=1(\bmod \Phi(n))$.

- Given (d, e) such that ed $=1(\bmod \Phi(\mathrm{n}))$, there is a clever randomized algorithm to factor n efficiently.
- Implication: cannot share the modulus n among multiple users

3. RSA Problem: From (n, e) and C , compute M s.t. $\mathrm{C}=\mathrm{M}^{\mathrm{e}}$

- Aka computing the e'th root of C.
- Can be solved if n can be factored

RSA Security and Factoring

- Security depends on the difficulty of factoring n
- Factor $n \Rightarrow$ compute $\Phi(n) \Rightarrow$ compute d from (e, n)
- Knowing e, d such that ed $=1(\bmod \Phi(n)) \Rightarrow$ factor n
- The length of $n=p q$ reflects the strength
- 768 bit n factored in 2009
- 829 bit n factored in 2020
- RSA encryption/decryption speed is quadratic in key length
- Minimal 2048 bits recommended for current usage
- NIST suggests 15360-bit RSA keys are equivalent in strength to 256bit
- Factoring is easy to break with quantum computers
- Recent progress on Discrete Logarithm might make factoring much faster

RSA Encryption \& IND-CPA

Security

- The RSA assumption, which assumes that the RSA problem is hard to solve, ensures that the plaintext cannot be fully recovered.
- Plain RSA does not provide IND-CPA security.
- For Public Key systems, the adversary has the public key, hence the initial training phase is unnecessary, as the adversary can encrypt any message he wants to.
- How to break IND-CPA security?
- How to use it more securely?

Real World Usage of Public Key

Encryption

- Often used to encrypt a symmetric key
- To encrypt a message M under an RSA public key (n, e), generate a new AES key K , compute [$\left.K^{e} \bmod n, A E S-C B C_{k}(M)\right]$
- Alternatively, one can use random padding.
- E.g., computer ($\mathrm{M} \| r)^{\mathrm{e}}$ mod n to encrypt a message M with a random value r
- More generally, uses a function $F(M, r)$, and encrypts as $F(M, r)$ e $\bmod n$
- From F(M,r), one should be able to recover M
- This provides randomized encryption

Digital Signatures: The Problem

- Consider the real-life example where a person pays by credit card and signs a bill; the seller verifies that the signature on the bill is the same with the signature on the card
- Contracts are valid if they are signed.
- Signatures provide non-repudiation.
- ensuring that a party in a dispute cannot repudiate, or refute the validity of a statement or contract.
- Can we have a similar service in the electronic world?
- Does Message Authentication Code provide non-repudiation?

Digital Signatures

- MAC: One party generates MAC, one party verifies integrity.
- Digital signatures: One party generates signature, many parties can verify.
- Digital Signature: a data string which associates a message with some originating entity.
- Digital Signature Scheme:
- a signing algorithm: takes a message and a (private) signing key, outputs a signature
- a verification algorithm: takes a (public) verification key, a message, and a signature
- Provides:
- Authentication, Data integrity, Non-Repudiation

Digital Signatures and Hash

- Very often digital signatures are used with hash functions, hash of a message is signed, instead of the message.
- Hash function must be:
- Strong collision resistant

RSA Signatures

Key generation (as in RSA encryption):

- Select 2 large prime numbers of about the same size, p and q
- Compute $\mathrm{n}=\mathrm{pq}$, and $\Phi=(\mathrm{q}-1)(\mathrm{p}-1)$
- Select a random integer e, $1<\mathrm{e}<\Phi$, s.t. $\operatorname{gcd}(e, \Phi)=1$
- Compute d, $1<\mathrm{d}<\Phi$ s.t. $\mathrm{ed} \equiv 1 \bmod \Phi$

Public key: (e, n)
Private key: d,
used for verification
used for generation

RSA Signatures with Hash (cont.)

Signing message M

- Verify $0<M<n$
- Compute $\mathrm{S}=\mathrm{h}(\mathrm{M})^{\mathrm{d}} \bmod \mathrm{n}$

Verifying signature S

- Use public key (e, n)
- Compute $S^{e} \bmod n=\left(h(M)^{d} \bmod n\right)^{e} \bmod n=$ h(M)

Non-repudiation

- Nonrepudiation is the assurance that someone cannot deny something. Typically, nonrepudiation refers to the ability to ensure that a party to a contract or a communication cannot deny the authenticity of their signature on a document or the sending of a message that they originated.
- Can one deny a digital signature one has made?
- Does email provide non-repudiation?

The Big Picture

	Secret Key Setting	Public Key Setting
Secrecy / Confidentiality	Stream ciphers Block ciphers + encryption modes	Public key encryption: RSA, El Gamal, etc.
Authenticity / Integrity	Message Authentication Code	Digital Signatures: RSA, DSA, etc.

