Data Security and Privacy

Overview of Public-Key Cryptography
Readings for This Lecture

• Required: On Wikipedia
 – Public key cryptography
 – RSA
 – Diffie–Hellman key exchange
 – ElGamal encryption

• Required:
Outline

- Public-Key Encryption
- Digital Signatures
- Key distribution among multiple parties
- Kerberos
- Distribution of public keys, with public key certificates
- Diffie-Hellman Protocol
- TLS/SSL/HTTPS
Review of Secret Key (Symmetric) Cryptography

• Confidentiality
 – stream ciphers (uses PRNG)
 – block ciphers with encryption modes

• Integrity
 – Cryptographic hash functions
 – Message authentication code (keyed hash functions)

• Limitation: sender and receiver must share the same key
 – Needs secure channel for key distribution
 – Impossible for two parties having no prior relationship
 – Needs many keys for n parties to communicate
Concept of Public Key Encryption

• Each party has a pair \((K, K^{-1})\) of keys:
 – \(K\) is the **public** key, and used for encryption
 – \(K^{-1}\) is the **private** key, and used for decryption
 – Satisfies \(D_{K^{-1}}[E_K[M]] = M\)

• Knowing the public-key \(K\), it is computationally infeasible to compute the private key \(K^{-1}\)
 – How to check \((K,K^{-1})\) is a pair?
 – Offers only computational security. Secure Public Key encryption is impossible when \(P=NP\), as deriving \(K^{-1}\) from \(K\) is in NP.

• The public key \(K\) may be made publicly available, e.g., in a publicly available directory
 – Many can encrypt, only one can decrypt

• Public-key systems aka **asymmetric** crypto systems
Public Key Cryptography Early History

- Proposed by Diffie and Hellman, documented in “New Directions in Cryptography” (1976)
 1. Public-key encryption schemes
 2. Key distribution systems
 • Diffie-Hellman key agreement protocol
 3. Digital signature

- Public-key encryption was proposed in 1970 in a classified paper by James Ellis
 - paper made public in 1997 by the British Governmental Communications Headquarters

- Concept of digital signature is still originally due to Diffie & Hellman
Public Key Encryption Algorithms

- Most public-key encryption algorithms use either modular arithmetic number theory, or elliptic curves
- RSA
 - based on the hardness of factoring large numbers
- El Gamal
 - Based on the hardness of solving discrete logarithm
 - Use the same idea as Diffie-Hellman key agreement
Diffie-Hellman Key Agreement Protocol

Not a Public Key Encryption system, but can allow A and B to agree on a shared secret in a public channel (against passive, i.e., eavesdropping only adversaries)

Setup: p prime and g generator of \mathbb{Z}_p^*, p and g public.

Pick random, secret a
Compute and send $g^a \mod p$

$K = (g^b \mod p)^a = g^{ab} \mod p$

Pick random, secret b
Compute and send $g^b \mod p$

$K = (g^a \mod p)^b = g^{ab} \mod p$
Diffie-Hellman

- Example: Let p=11, g=2, then

\[
\begin{array}{c|cccccccccc}
\text{a} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline
\text{g^a} & 2 & 4 & 8 & 16 & 32 & 64 & 128 & 256 & 512 & 1024 & 2048 \\
\text{g^a mod p} & 2 & 4 & 8 & 5 & 10 & 9 & 7 & 3 & 6 & 1 & 2 \\
\end{array}
\]

A chooses 4, B chooses 3, then shared secret is

\[(2^3)^4 = (2^4)^3 = 2^{12} = 4 \pmod{11}\]

Adversaries sees \(2^3=8\) and \(2^4=5\), needs to solve one of
\(2^x=8\) and \(2^y=5\) to figure out the shared secret.
Security of DH is based on Three Hard Problems

- **Discrete Log (DLG) Problem:** Given \(<g, h, p>\), computes \(a\) such that \(g^a = h \mod p\).

- **Computational Diffie Hellman (CDH) Problem:** Given \(<g, g^a \mod p, g^b \mod p>\) (without \(a, b\)) compute \(g^{ab} \mod p\).

- **Decision Diffie Hellman (DDH) Problem:** distinguish \((g^a, g^b, g^{ab})\) from \((g^a, g^b, g^c)\), where \(a, b, c\) are randomly and independently chosen.

- If one can solve the DL problem, one can solve the CDH problem. If one can solve CDH, one can solve DDH.
Assumptions

• DDH Assumption: DDH is hard to solve.
• CDH Assumption: CDH is hard to solve.
• DLG Assumption: DLG is hard to solve

• DDH assumed difficult to solve for large p (e.g., at least 1024 bits).
• Warning:
 – New progress can solve discrete log for p values with some properties. No immediate attack against practical setting yet.
 – Look out when you need to use/implement public key crypto
 – May want to consider Elliptic Curve-based algorithms
ElGamal Encryption

- Public key <g, p, h=g^a mod p>
- Private key is a
- To encrypt: chooses random b, computes $C=[g^b \mod p, g^{ab} \cdot M \mod p]$.
 - Idea: for each M, sender and receiver establish a shared secret g^{ab} via the DH protocol. The value g^{ab} hides the message M by multiplying it.
- To decrypt $C=[c_1, c_2]$, computes M where
 - $((c_1^a \mod p) \cdot M) \mod p = c_2$.
 - To find M for $x \cdot M \mod p = c_2$, compute z s.t. $x \cdot z \mod p = 1$, and then $M = C_2^z \mod p$
- CDH assumption ensures M cannot be fully recovered.
- IND-CPA security requires DDH.
RSA Algorithm

• Invented in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman

• Security relies on the difficulty of factoring large composite numbers

• Essentially the same algorithm was discovered in 1973 by Clifford Cocks, who works for the British intelligence
RSA Public Key Crypto System

Key generation:
1. Select 2 large prime numbers of about the same size, p and q
 Typically each p, q has between 512 and 2048 bits
2. Compute \(n = pq \), and \(\Phi(n) = (q-1)(p-1) \)
3. Select \(e, \ 1 < e < \Phi(n) \), s.t. \(\gcd(e, \Phi(n)) = 1 \)
 Typically \(e=3 \) or \(e=65537 \)
4. Compute \(d, \ 1 < d < \Phi(n) \) s.t. \(ed \equiv 1 \mod \Phi(n) \)
 Knowing \(\Phi(n) \), d easy to compute.

Public key: \((e, n) \)
Private key: \(d \)
RSA Description (cont.)

Encryption
Given a message M, $0 < M < n$ \(M \in \mathbb{Z}_n - \{0\} \)
use public key \((e, n)\)
compute $C = M^e \mod n$ \(C \in \mathbb{Z}_n - \{0\} \)

Decryption
Given a ciphertext C, use private key \((d)\)
Compute $C^d \mod n = (M^e \mod n)^d \mod n = M^{ed}$ \(\mod n = M \)
RSA Example

• \(p = 11, \ q = 7, \ n = 77, \ \Phi(n) = 60 \)
• \(d = 13, \ e = 37 \) (\(ed = 481; \ ed \mod 60 = 1 \))
• Let \(M = 15 \). Then \(C \equiv M^e \mod n \)
 – \(C \equiv 15^{37} \pmod{77} = 71 \)
• \(M \equiv C^d \mod n \)
 – \(M \equiv 71^{13} \pmod{77} = 15 \)
RSA Example 2

• Parameters:
 – \(p = 3, \ q = 5, \ n= pq = 15 \)
 – \(\Phi(n) = ? \)
• Let \(e = 3 \), what is \(d \)?
• Given \(M=2 \), what is \(C \)?
• How to decrypt?
Hard Problems on Which RSA Security Depends

\[
C = M^e \mod (n=pq) \\
\]

Plaintext: M \hspace{5cm} Ciphertext: C

\[
C^d \mod n \\
\]

1. Factoring Problem: Given \(n=pq \), compute \(p,q \)
2. Finding RSA Private Key: Given \((n,e) \), compute \(d \) s.t. \(ed = 1 \mod \Phi(n) \).
 - Given \((d,e) \) such that \(ed = 1 \mod \Phi(n) \), there is a clever randomized algorithm to factor \(n \) efficiently.
 - Implication: cannot share the modulus \(n \) among multiple users
3. RSA Problem: From \((n,e) \) and \(C \), compute \(M \) s.t. \(C = M^e \)
 - Aka computing the \(e \)'th root of \(C \).
 - Can be solved if \(n \) can be factored
RSA Security and Factoring

- Security depends on the difficulty of factoring n
 - Factor n \Rightarrow compute $\Phi(n)$ \Rightarrow compute d from (e, n)
 - Knowing e, d such that $ed \equiv 1 \pmod{\Phi(n)}$ \Rightarrow factor n
- The length of n=pq reflects the strength
 - 700-bit n factored in 2007
 - 768 bit n factored in 2009
- RSA encryption/decryption speed is quadratic in key length
- 1024 bit for minimal level of security today
 - likely to be breakable in near future
- Minimal 2048 bits recommended for current usage
- NIST suggests 15360-bit RSA keys are equivalent in strength to 256-bit
- Factoring is easy to break with quantum computers
- Recent progress on Discrete Logarithm may make factoring much faster
RSA Encryption & IND-CPA Security

• The RSA assumption, which assumes that the RSA problem is hard to solve, ensures that the plaintext cannot be fully recovered.

• Plain RSA does not provide IND-CPA security.
 – For Public Key systems, the adversary has the public key, hence the initial training phase is unnecessary, as the adversary can encrypt any message he wants to.

 – How to break IND-CPA security?
 – How to use it more securely?
Real World Usage of Public Key Encryption

• Often used to encrypt a symmetric key
 – To encrypt a message M under an RSA public key (n,e), generate a new AES key K, compute
 $[K^e \mod n, \text{AES-CBC}_K(M)]$

• Alternatively, one can use random padding.
 – E.g., compute $(M || r)^e \mod n$ to encrypt a message M with a random value r
 – More generally, uses a function $F(M,r)$, and encrypts as $F(M,r)^e \mod n$
 – From $F(M,r)$, one should be able to recover M
 – This provides randomized encryption
Digital Signatures: The Problem

• Consider the real-life example where a person pays by credit card and signs a bill; the seller verifies that the signature on the bill is the same with the signature on the card
• Contracts are valid if they are signed.
• Signatures provide **non-repudiation**.
 – ensuring that a party in a dispute cannot repudiate, or refute the validity of a statement or contract.
• Can we have a similar service in the electronic world?
 – Does Message Authentication Code provide non-repudiation?
Digital Signatures

- MAC: One party generates MAC, one party verifies integrity.
- Digital signatures: One party generates signature, many parties can verify.
- Digital Signature: a data string which associates a message with some originating entity.
- Digital Signature Scheme:
 - a signing algorithm: takes a message and a (private) signing key, outputs a signature
 - a verification algorithm: takes a (public) verification key, a message, and a signature
- Provides:
 - Authentication, Data integrity, Non-Repudiation
Digital Signatures and Hash

- Very often digital signatures are used with hash functions, hash of a message is signed, instead of the message.
- Hash function must be:
 - Strong collision resistant
RSA Signatures

Key generation (as in RSA encryption):
• Select 2 large prime numbers of about the same size, p and q
• Compute $n = pq$, and $\Phi = (q - 1)(p - 1)$
• Select a random integer e, $1 < e < \Phi$, s.t. $\gcd(e, \Phi) = 1$
• Compute d, $1 < d < \Phi$ s.t. $ed \equiv 1 \mod \Phi$

Public key: (e, n) used for verification
Private key: d, used for generation
RSA Signatures with Hash (cont.)

Signing message M
- Verify $0 < M < n$
- Compute $S = h(M)^d \mod n$

Verifying signature S
- Use public key (e, n)
- Compute $S^e \mod n = (h(M)^d \mod n)^e \mod n = h(M)$
Non-repudiation

- Nonrepudiation is the assurance that someone cannot deny something. Typically, nonrepudiation refers to the ability to ensure that a party to a contract or a communication cannot deny the authenticity of their signature on a document or the sending of a message that they originated.

- Can one deny a digital signature one has made?

- Does email provide non-repudiation?
The Big Picture

<table>
<thead>
<tr>
<th></th>
<th>Secret Key Setting</th>
<th>Public Key Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secrecy / Confidentiality</td>
<td>Stream ciphers</td>
<td>Public key encryption: RSA, El Gamal, etc.</td>
</tr>
<tr>
<td></td>
<td>Block ciphers + encryption modes</td>
<td></td>
</tr>
<tr>
<td>Authenticity / Integrity</td>
<td>Message Authentication Code</td>
<td>Digital Signatures: RSA, DSA, etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>