
Data Security and Privacy

Overview of Public-Key Cryptography
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Readings for This Lecture

• Required: On Wikipedia
– Public key cryptography
– RSA
– Diffie–Hellman key exchange
– ElGamal encryption

• Required: 
– Differ & Hellman: “New Directions in 

Cryptography” IEEE Transactions on 
Information Theory, Nov 1976.

http://en.wikipedia.org/wiki/Public-key_cryptography
http://en.wikipedia.org/wiki/RSA
http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
http://en.wikipedia.org/wiki/ElGamal_encryption


Outline

• Public-Key Encryption
• Digital Signatures
• Key distribution among multiple parties
• Kerberos
• Distribution of public keys, with public key 

certificates
• Diffie-Hellman Protocol
• TLS/SSL/HTTPS
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Review of Secret Key (Symmetric) 
Cryptography 
• Confidentiality

– stream ciphers (uses PRNG)
– block ciphers with encryption modes

• Integrity
– Cryptographic hash functions
– Message authentication code (keyed hash functions)

• Limitation: sender and receiver must share the 
same key
– Needs secure channel for key distribution
– Impossible for two parties having no prior relationship
– Needs many keys for n parties to communicate
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Concept of Public Key Encryption

• Each party has a pair (K, K-1) of keys: 
– K is the public key, and used for encryption
– K-1 is the private key, and used for decryption
– Satisfies    DK-1[EK[M]] = M

• Knowing the public-key K, it is computationally infeasible 
to compute the private key K-1

– How to check (K,K-1) is a pair?
– Offers only computational security.  Secure Public Key encryption 

is impossible when P=NP, as deriving K-1 from K is in NP.
• The public key K may be made publicly available, e.g., in 

a publicly available directory
– Many can encrypt, only one can decrypt

• Public-key systems aka asymmetric crypto systems
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Public Key Cryptography Early 
History
• Proposed by Diffie and Hellman, documented in “New 

Directions in Cryptography” (1976) 
1. Public-key encryption schemes
2. Key distribution systems

• Diffie-Hellman key agreement protocol
3. Digital signature

• Public-key encryption was proposed in 1970 in a 
classified paper by James Ellis
– paper made public in 1997 by the British Governmental 

Communications Headquarters

• Concept of digital signature is still originally due to Diffie 
& Hellman
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Public Key Encryption Algorithms

• Most public-key encryption algorithms use either 
modular arithmetic number theory, or elliptic 
curves

• RSA
– based on the hardness of factoring large numbers

• El Gamal
– Based on the hardness of solving discrete logarithm
– Use the same idea as Diffie-Hellman key agreement
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Diffie-Hellman Key Agreement 
Protocol

Not a Public Key Encryption system, but can allow A and B 
to agree on a shared secret in a public channel (against 
passive, i.e., eavesdropping only adversaries)
Setup: p prime and g generator of Zp*, p and g public.

K = (gb mod p)a = gab mod p 

ga mod p

gb mod p

K = (ga mod p)b = gab mod p

Pick random, secret a

Compute and send ga mod p

Pick random, secret b

Compute and send gb mod p



Diffie-Hellman

• Example: Let p=11, g=2, then

A chooses 4, B chooses 3, then shared secret is 
(23)4 =  (24)3 =  212 =  4  (mod 11)

Adversaries sees 23=8 and 24=5, needs to solve one of 
2x=8 and 2y=5 to figure out the shared secret.

9

a 1 2 3 4 5 6 7 8 9 10 11

ga 2 4 8 16 32 64 128 256 512 1024 2048

ga mod p 2 4 8 5 10 9 7 3 6 1 2



Security of DH is based on Three 
Hard Problems
• Discrete Log (DLG) Problem: Given <g, h, p>, computes a 

such that ga = h mod p.
• Computational Diffie Hellman (CDH) Problem: Given <g, 

ga mod p,  gb mod p>  (without a, b) compute gab mod p.
• Decision Diffie Hellman (DDH) Problem: distinguish 

(ga,gb,gab) from (ga,gb,gc), where a,b,c are randomly and 
independently chosen

• If one can solve the DL problem, one can solve the CDH 
problem.  If one can solve CDH, one can solve DDH.
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Assumptions

• DDH Assumption: DDH is hard to solve.
• CDH Assumption: CDH is hard to solve.
• DLG Assumption: DLG is hard to solve

• DDH assumed difficult to solve for large p (e.g., at least 
1024 bits).

• Warning:
– New progress can solve discrete log for p values with some 

properties.  No immediate attack against practical setting yet.
– Look out when you need to use/implement public key crypto
– May want to consider Elliptic Curve-based algorithms
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ElGamal Encryption

• Public key <g, p, h=ga mod p>
• Private key is a
• To encrypt: chooses random b, computes 

C=[gb mod p, gab * M mod p].
• Idea: for each M, sender and receiver establish a shared secret 

gab via the DH protocol.  The value gab hides the message M by 
multiplying it.

• To decrypt C=[c1,c2], computes M where 
• ((c1

a mod p) * M) mod p = c2.
• To find M for x * M mod p = c2, compute z s.t. x*z mod p =1, and 

then M = C2*z mod p
• CDH assumption ensures M cannot be fully recovered.
• IND-CPA security requires DDH.
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RSA Algorithm

• Invented in 1978 by Ron Rivest, Adi Shamir 
and Leonard Adleman
– Published as R L Rivest, A Shamir, L Adleman, "On 

Digital Signatures and Public Key Cryptosystems", 
Communications of the ACM, vol 21 no 2, pp120-126, 
Feb 1978 

• Security relies on the difficulty of factoring large 
composite numbers 

• Essentially the same algorithm was discovered 
in 1973 by Clifford Cocks, who works for the 
British intelligence
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RSA Public Key Crypto System
Key generation:
1. Select 2 large prime numbers of about the same 

size, p and q
Typically each p, q has between 512 and 2048 bits

2. Compute n = pq, and Φ(n) = (q-1)(p-1)
3. Select e,  1<e< Φ(n), s.t. gcd(e, Φ(n)) = 1

Typically e=3 or e=65537
4. Compute  d, 1< d< Φ(n) s.t.  ed ≡ 1 mod Φ(n)

Knowing Φ(n), d easy to compute. 

Public key:  (e, n)
Private key:  d
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RSA Description (cont.) 

Encryption
Given a message M, 0 < M < n M ∈ Zn− {0}
use public key (e, n) 
compute C = Me mod n  C ∈ Zn− {0}

Decryption
Given a ciphertext C, use private key (d) 
Compute Cd mod n = (Me mod n)d mod n = Med

mod n = M
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RSA Example

• p = 11, q = 7, n = 77, Φ(n) = 60
• d = 13, e = 37   (ed = 481;  ed mod 60 = 1)
• Let M = 15.  Then C ≡ Me mod n

– C ≡ 1537 (mod 77) = 71
• M ≡ Cd mod n

– M ≡ 7113 (mod 77) = 15



RSA Example 2

• Parameters:
– p = 3, q = 5, n= pq = 15
– Φ(n) = ?

• Let e = 3, what is d?
• Given M=2, what is C?
• How to decrypt?
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Hard Problems on Which RSA 
Security Depends
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Plaintext: M

C = Me mod (n=pq)

Ciphertext: C
Cd mod n

1. Factoring Problem: Given n=pq, compute p,q
2. Finding RSA Private Key: Given (n,e), compute d s.t. ed = 1 (mod Φ(n)).

• Given (d,e) such that ed = 1 (mod Φ(n)), there is a clever 
randomized algorithm to factor n efficiently.

• Implication: cannot share the modulus n among multiple users
3. RSA Problem: From (n,e) and C, compute M s.t. C = Me

• Aka computing the e’th root of C.
• Can be solved if n can be factored
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RSA Security and Factoring
• Security depends on the difficulty of factoring n

– Factor n ⇒ compute Φ(n) ⇒ compute d from (e, n)
– Knowing e, d such that ed = 1 (mod Φ(n)) ⇒ factor n

• The length of n=pq reflects the strength
– 768 bit n factored in 2009
– 829 bit n factored in 2020

• RSA encryption/decryption speed is quadratic in key length
• Minimal 2048 bits recommended for current usage 
• NIST suggests 15360-bit RSA keys are equivalent in strength to 256-

bit 
• Factoring is easy to break with quantum computers
• Recent progress on Discrete Logarithm might make factoring much 

faster



RSA Encryption & IND-CPA 
Security
• The RSA assumption, which assumes that the RSA 

problem is hard to solve, ensures that the plaintext 
cannot be fully recovered.

• Plain RSA does not provide IND-CPA security.
– For Public Key systems, the adversary has the public key, hence 

the initial training phase is unnecessary, as the adversary can 
encrypt any message he wants to.

– How to break IND-CPA security?
– How to use it more securely?
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Real World Usage of Public Key 
Encryption
• Often used to encrypt a symmetric key

– To encrypt a message M under an RSA public key (n,e), 
generate a new AES key K, compute 

[Ke mod n, AES-CBCK(M)]

• Alternatively, one can use random padding. 
– E.g., computer (M || r) e mod n to encrypt a message M with a random 

value r
– More generally, uses a function F(M,r), and encrypts as   F(M,r) e mod n 
– From F(M,r), one should be able to recover M
– This provides randomized encryption
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Digital Signatures: The Problem

• Consider the real-life example where a person pays by 
credit card and signs a bill; the seller verifies that the 
signature on the bill is the same with the signature on 
the card

• Contracts are valid if they are signed.
• Signatures provide non-repudiation.

– ensuring that a party in a dispute cannot repudiate, or refute the 
validity of a statement or contract.

• Can we have a similar service in the electronic world? 
– Does Message Authentication Code provide non-repudiation?  
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Digital Signatures
• MAC: One party generates MAC, one party verifies 

integrity.
• Digital signatures: One party generates signature, 

many parties can verify.
• Digital Signature: a data string which associates a 

message with some originating entity.
• Digital Signature Scheme:

– a signing algorithm: takes a message and a (private) signing 
key, outputs a signature

– a verification algorithm: takes a (public) verification key, a 
message, and a signature

• Provides:
– Authentication, Data integrity, Non-Repudiation
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Digital Signatures and Hash 

• Very often digital signatures are used 
with hash functions, hash of a 
message is signed, instead of the 
message.

• Hash function must be:
– Strong collision resistant 
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RSA Signatures

Key generation (as in RSA encryption):
• Select 2 large prime numbers of about the 

same size, p and q
• Compute n = pq, and Φ = (q - 1)(p - 1)
• Select a random integer e,  1 < e < Φ, s.t. 

gcd(e, Φ) = 1
• Compute  d, 1 <  d <  Φ s.t.  ed ≡ 1 mod Φ

Public key:  (e, n) used for verification
Private key:  d, used for generation
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RSA Signatures with Hash (cont.) 

Signing message M
• Verify 0 < M < n
• Compute S = h(M)d mod n

Verifying signature S
• Use public key (e, n) 
• Compute Se mod n = (h(M)d mod n)e mod n = 

h(M)



Non-repudiation

• Nonrepudiation is the assurance that someone cannot 
deny something. Typically, nonrepudiation refers to the 
ability to ensure that a party to a contract or a 
communication cannot deny the authenticity of their 
signature on a document or the sending of a message 
that they originated. 

• Can one deny a digital signature one has made?

• Does email provide non-repudiation?
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The Big Picture

Secrecy / 
Confidentiality

Stream ciphers
Block ciphers + 
encryption modes

Public key 
encryption: RSA, 
El Gamal, etc.

Authenticity / 
Integrity

Message 
Authentication 
Code

Digital Signatures: 
RSA, DSA, etc.

Secret Key 

Setting

Public Key 

Setting
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