
Data Security and Privacy

Overview of Public-Key Cryptography

1

2

Readings for This Lecture

• Required: On Wikipedia
– Public key cryptography
– RSA
– Diffie–Hellman key exchange
– ElGamal encryption

• Required:
– Differ & Hellman: “New Directions in

Cryptography” IEEE Transactions on
Information Theory, Nov 1976.

http://en.wikipedia.org/wiki/Public-key_cryptography
http://en.wikipedia.org/wiki/RSA
http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
http://en.wikipedia.org/wiki/ElGamal_encryption

Outline

• Public-Key Encryption
• Digital Signatures
• Key distribution among multiple parties
• Kerberos
• Distribution of public keys, with public key

certificates
• Diffie-Hellman Protocol
• TLS/SSL/HTTPS

3

4

Review of Secret Key (Symmetric)
Cryptography
• Confidentiality

– stream ciphers (uses PRNG)
– block ciphers with encryption modes

• Integrity
– Cryptographic hash functions
– Message authentication code (keyed hash functions)

• Limitation: sender and receiver must share the
same key
– Needs secure channel for key distribution
– Impossible for two parties having no prior relationship
– Needs many keys for n parties to communicate

5

Concept of Public Key Encryption

• Each party has a pair (K, K-1) of keys:
– K is the public key, and used for encryption
– K-1 is the private key, and used for decryption
– Satisfies DK-1[EK[M]] = M

• Knowing the public-key K, it is computationally infeasible
to compute the private key K-1

– How to check (K,K-1) is a pair?
– Offers only computational security. Secure Public Key encryption

is impossible when P=NP, as deriving K-1 from K is in NP.
• The public key K may be made publicly available, e.g., in

a publicly available directory
– Many can encrypt, only one can decrypt

• Public-key systems aka asymmetric crypto systems

6

Public Key Cryptography Early
History
• Proposed by Diffie and Hellman, documented in “New

Directions in Cryptography” (1976)
1. Public-key encryption schemes
2. Key distribution systems

• Diffie-Hellman key agreement protocol
3. Digital signature

• Public-key encryption was proposed in 1970 in a
classified paper by James Ellis
– paper made public in 1997 by the British Governmental

Communications Headquarters

• Concept of digital signature is still originally due to Diffie
& Hellman

7

Public Key Encryption Algorithms

• Most public-key encryption algorithms use either
modular arithmetic number theory, or elliptic
curves

• RSA
– based on the hardness of factoring large numbers

• El Gamal
– Based on the hardness of solving discrete logarithm
– Use the same idea as Diffie-Hellman key agreement

8

Diffie-Hellman Key Agreement
Protocol

Not a Public Key Encryption system, but can allow A and B
to agree on a shared secret in a public channel (against
passive, i.e., eavesdropping only adversaries)
Setup: p prime and g generator of Zp*, p and g public.

K = (gb mod p)a = gab mod p

ga mod p

gb mod p

K = (ga mod p)b = gab mod p

Pick random, secret a

Compute and send ga mod p

Pick random, secret b

Compute and send gb mod p

Diffie-Hellman

• Example: Let p=11, g=2, then

A chooses 4, B chooses 3, then shared secret is
(23)4 = (24)3 = 212 = 4 (mod 11)

Adversaries sees 23=8 and 24=5, needs to solve one of
2x=8 and 2y=5 to figure out the shared secret.

9

a 1 2 3 4 5 6 7 8 9 10 11

ga 2 4 8 16 32 64 128 256 512 1024 2048

ga mod p 2 4 8 5 10 9 7 3 6 1 2

Security of DH is based on Three
Hard Problems
• Discrete Log (DLG) Problem: Given <g, h, p>, computes a

such that ga = h mod p.
• Computational Diffie Hellman (CDH) Problem: Given <g,

ga mod p, gb mod p> (without a, b) compute gab mod p.
• Decision Diffie Hellman (DDH) Problem: distinguish

(ga,gb,gab) from (ga,gb,gc), where a,b,c are randomly and
independently chosen

• If one can solve the DL problem, one can solve the CDH
problem. If one can solve CDH, one can solve DDH.

10

Assumptions

• DDH Assumption: DDH is hard to solve.
• CDH Assumption: CDH is hard to solve.
• DLG Assumption: DLG is hard to solve

• DDH assumed difficult to solve for large p (e.g., at least
1024 bits).

• Warning:
– New progress can solve discrete log for p values with some

properties. No immediate attack against practical setting yet.
– Look out when you need to use/implement public key crypto
– May want to consider Elliptic Curve-based algorithms

11

ElGamal Encryption

• Public key <g, p, h=ga mod p>
• Private key is a
• To encrypt: chooses random b, computes

C=[gb mod p, gab * M mod p].
• Idea: for each M, sender and receiver establish a shared secret

gab via the DH protocol. The value gab hides the message M by
multiplying it.

• To decrypt C=[c1,c2], computes M where
• ((c1

a mod p) * M) mod p = c2.
• To find M for x * M mod p = c2, compute z s.t. x*z mod p =1, and

then M = C2*z mod p
• CDH assumption ensures M cannot be fully recovered.
• IND-CPA security requires DDH.

12

13

RSA Algorithm

• Invented in 1978 by Ron Rivest, Adi Shamir
and Leonard Adleman
– Published as R L Rivest, A Shamir, L Adleman, "On

Digital Signatures and Public Key Cryptosystems",
Communications of the ACM, vol 21 no 2, pp120-126,
Feb 1978

• Security relies on the difficulty of factoring large
composite numbers

• Essentially the same algorithm was discovered
in 1973 by Clifford Cocks, who works for the
British intelligence

14

RSA Public Key Crypto System
Key generation:
1. Select 2 large prime numbers of about the same

size, p and q
Typically each p, q has between 512 and 2048 bits

2. Compute n = pq, and Φ(n) = (q-1)(p-1)
3. Select e, 1<e< Φ(n), s.t. gcd(e, Φ(n)) = 1

Typically e=3 or e=65537
4. Compute d, 1< d< Φ(n) s.t. ed ≡ 1 mod Φ(n)

Knowing Φ(n), d easy to compute.

Public key: (e, n)
Private key: d

15

RSA Description (cont.)

Encryption
Given a message M, 0 < M < n M ∈ Zn− {0}
use public key (e, n)
compute C = Me mod n C ∈ Zn− {0}

Decryption
Given a ciphertext C, use private key (d)
Compute Cd mod n = (Me mod n)d mod n = Med

mod n = M

16

RSA Example

• p = 11, q = 7, n = 77, Φ(n) = 60
• d = 13, e = 37 (ed = 481; ed mod 60 = 1)
• Let M = 15. Then C ≡ Me mod n

– C ≡ 1537 (mod 77) = 71
• M ≡ Cd mod n

– M ≡ 7113 (mod 77) = 15

RSA Example 2

• Parameters:
– p = 3, q = 5, n= pq = 15
– Φ(n) = ?

• Let e = 3, what is d?
• Given M=2, what is C?
• How to decrypt?

17

Hard Problems on Which RSA
Security Depends

18

Plaintext: M

C = Me mod (n=pq)

Ciphertext: C
Cd mod n

1. Factoring Problem: Given n=pq, compute p,q
2. Finding RSA Private Key: Given (n,e), compute d s.t. ed = 1 (mod Φ(n)).

• Given (d,e) such that ed = 1 (mod Φ(n)), there is a clever
randomized algorithm to factor n efficiently.

• Implication: cannot share the modulus n among multiple users
3. RSA Problem: From (n,e) and C, compute M s.t. C = Me

• Aka computing the e’th root of C.
• Can be solved if n can be factored

19

RSA Security and Factoring
• Security depends on the difficulty of factoring n

– Factor n ⇒ compute Φ(n) ⇒ compute d from (e, n)
– Knowing e, d such that ed = 1 (mod Φ(n)) ⇒ factor n

• The length of n=pq reflects the strength
– 768 bit n factored in 2009
– 829 bit n factored in 2020

• RSA encryption/decryption speed is quadratic in key length
• Minimal 2048 bits recommended for current usage
• NIST suggests 15360-bit RSA keys are equivalent in strength to 256-

bit
• Factoring is easy to break with quantum computers
• Recent progress on Discrete Logarithm might make factoring much

faster

RSA Encryption & IND-CPA
Security
• The RSA assumption, which assumes that the RSA

problem is hard to solve, ensures that the plaintext
cannot be fully recovered.

• Plain RSA does not provide IND-CPA security.
– For Public Key systems, the adversary has the public key, hence

the initial training phase is unnecessary, as the adversary can
encrypt any message he wants to.

– How to break IND-CPA security?
– How to use it more securely?

20

Real World Usage of Public Key
Encryption
• Often used to encrypt a symmetric key

– To encrypt a message M under an RSA public key (n,e),
generate a new AES key K, compute

[Ke mod n, AES-CBCK(M)]

• Alternatively, one can use random padding.
– E.g., computer (M || r) e mod n to encrypt a message M with a random

value r
– More generally, uses a function F(M,r), and encrypts as F(M,r) e mod n
– From F(M,r), one should be able to recover M
– This provides randomized encryption

21

22

Digital Signatures: The Problem

• Consider the real-life example where a person pays by
credit card and signs a bill; the seller verifies that the
signature on the bill is the same with the signature on
the card

• Contracts are valid if they are signed.
• Signatures provide non-repudiation.

– ensuring that a party in a dispute cannot repudiate, or refute the
validity of a statement or contract.

• Can we have a similar service in the electronic world?
– Does Message Authentication Code provide non-repudiation?

23

Digital Signatures
• MAC: One party generates MAC, one party verifies

integrity.
• Digital signatures: One party generates signature,

many parties can verify.
• Digital Signature: a data string which associates a

message with some originating entity.
• Digital Signature Scheme:

– a signing algorithm: takes a message and a (private) signing
key, outputs a signature

– a verification algorithm: takes a (public) verification key, a
message, and a signature

• Provides:
– Authentication, Data integrity, Non-Repudiation

24

Digital Signatures and Hash

• Very often digital signatures are used
with hash functions, hash of a
message is signed, instead of the
message.

• Hash function must be:
– Strong collision resistant

25

RSA Signatures

Key generation (as in RSA encryption):
• Select 2 large prime numbers of about the

same size, p and q
• Compute n = pq, and Φ = (q - 1)(p - 1)
• Select a random integer e, 1 < e < Φ, s.t.

gcd(e, Φ) = 1
• Compute d, 1 < d < Φ s.t. ed ≡ 1 mod Φ

Public key: (e, n) used for verification
Private key: d, used for generation

26

RSA Signatures with Hash (cont.)

Signing message M
• Verify 0 < M < n
• Compute S = h(M)d mod n

Verifying signature S
• Use public key (e, n)
• Compute Se mod n = (h(M)d mod n)e mod n =

h(M)

Non-repudiation

• Nonrepudiation is the assurance that someone cannot
deny something. Typically, nonrepudiation refers to the
ability to ensure that a party to a contract or a
communication cannot deny the authenticity of their
signature on a document or the sending of a message
that they originated.

• Can one deny a digital signature one has made?

• Does email provide non-repudiation?

27

28

The Big Picture

Secrecy /
Confidentiality

Stream ciphers
Block ciphers +
encryption modes

Public key
encryption: RSA,
El Gamal, etc.

Authenticity /
Integrity

Message
Authentication
Code

Digital Signatures:
RSA, DSA, etc.

Secret Key

Setting

Public Key

Setting

	Data Security and Privacy
	Readings for This Lecture
	Outline
	Review of Secret Key (Symmetric) Cryptography
	Concept of Public Key Encryption
	Public Key Cryptography Early History
	Public Key Encryption Algorithms
	Diffie-Hellman Key Agreement Protocol
	Diffie-Hellman
	Security of DH is based on Three Hard Problems
	Assumptions
	ElGamal Encryption
	RSA Algorithm
	RSA Public Key Crypto System
	RSA Description (cont.)
	RSA Example
	RSA Example 2
	Hard Problems on Which RSA Security Depends
	RSA Security and Factoring
	RSA Encryption & IND-CPA Security
	Real World Usage of Public Key Encryption
	Digital Signatures: The Problem
	Digital Signatures
	Digital Signatures and Hash
	RSA Signatures
	RSA Signatures with Hash (cont.)
	Non-repudiation
	The Big Picture

