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Interactive Setting versus. Non-interactive
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Limitation of Interactive Setting

 Answering each query consumes some privacy budget

e After answering a pre-determined number of queries, one exhausts
the privacy budget, and cannot answer any question anymore

* Problem especially intractable when dealing with multiple users of
data



Using the Sparse Vector Technique in
nteractive Setting

* For each new query,
e Use past queries/answers to generate an simulated answer

* Check whether the error of simulated answer is above some
(noisy) threshold

e |f error is below threshold, then return simulated answer

e If error is above threshold, then query the data to answer the
qguery (consumes privacy budget), returns the answer and store
the query/answer

e If threshold is perturbed, then answering with simulated
answer is “free” (i.e., not consuming privacy budget)
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Sparse Vector Technique

Given a sequence of queries and a certain threshold T,

e Perturb the threshold

e Compare each perturbed query answer against the noisy
threshold

e Qutput a vector indicating whether each query answer is
above or below T, denoted by T and L

e Qutput noisy counts for positive queries (optional)
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Sparse Vector Technigue

* Input: stream of queries and threshold
e Qutput: vector of indicators

e Key Points
e Perturbing threshold
e Expect predominant majority of queries are below threshold
* Only outputting “PASS” consumes privacy budget

 Keep answering queries until outputting ¢ “PASS”es TCMI15], [ZXXL5]
Lecture Notes [Roth11] FIM [LC14] HD data [cxzx15]

— >

DNR+09 , HR10, RR10| | DPBook [DR13] Classification [scMm14] Deep Learning [s515]
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e Key Points
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Contribution

* A new version of SVT that provides better utility
e Optimized privacy budget allocation
e Reduce sensitivity noise scale by half for monotonic queries
e Retraversal with higher threshold

* Rigorous proof of SVT’s privacy
e |dentify misunderstandings that likely caused the different non-private versions
e Pointed out the error in the proof of [CM15]

* In non-interactive setting, SVT can be replaced by EM



Our Proposed Standard SVT (SVT-S)

Require: D AET T1 Ts. -
1p= Lap Perturb threshold once

2: count = U
3: for each query g; € Q do

4 — Lap (2:&) J — Pertu.rb each query with
.f g.(D) = 1v; > T, + p then noise scaling with c

if e3 > 0 then
Qutput a; = g; + Lap (%) — Pay extra budget for

else outputting numeric answers
Output a; =T

10: count = count + 1,
11: if count > ¢ then

12 Abort Stop after getting c positive answers
13: else

14: Output a; = L 16




How to ensure DP?

e Perturb the threshold:

mask the difference of negative queries on D and D’, no
matter how many negative queries there are.

e Perturb the query:
bound the probability ratio for positive queries

e Stop after getting target amount of positive answers:
noise « ¢
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How to Prove Privacy?

 First, analyze the situation that all outputs are negative.

Lemma
Let A be SVT-S. For any neighboring datasets D and D', and any
integer {, we have

Pr [A(D) — N] < &1 Pr [A(D") = N] .

| D’ T+z+ A
T+ z -

D
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How to Prove Privacy?

e Second, analyze the situation that all outputs are positive.
Lemma

Let A be SVT-S. For any neighboring datasets D and D’, and any
integer ', we have

5 Pr [A(D) - Tf} < eT Pr [A(D’)D,Tf] |




How to Prove Privacy?
* Third, combine them together, but have to choose one direction

For pegittirecutiutts, faedsed addEap(Dingihreshold
saehaugiry and stop after outputting c of them




Improving Utility of SVT-S

e Optimizing budget allocation between query perturbation and
threshold perturbation: €;:€, = 1: (2¢)?/3

* For monotonic queries:

* query noise is Lap(Z—A) instead of Lap(ZELA)
2 2

e Optimization of privacy budget allocation: €;:e, = 1: c2/3

* For non-interactive setting, SVT with retraversal:
* Increase the threshold
e Retraverse the list of queries until c queries are selected.
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Experiment

bataser | fRecords | _fitems

BMS-POS 515,597 1,657

aol 647,337 2,290,685
kosarak 990,002 41,270
zipf 10,00,000 10,000
| Settings | Methods | Description
Interactive SVT-DPBook DPBook SVT
SVT-S Standard SVT
Non- SVT-ReTr Standard SVT with
interactive Retraversal

EM Exponential Mechanism  »



Evaluation Metrics

e F-Measure

e Harmonic mean of precision and recall of the computed item set and the
ground truth item set

e Uniform penalization for all queries
* missing the top most item is penalized the same way as missing the N-th item.
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Evaluation Metrics

* Normalized Cumulative Gain
e Consider both membership and query score

) NCG(UA(D)) _ ZqEUA(CD) rel(q)

o rel (q) is the relevance score for the query gq. We derive two instantiations
of NCG by choosing two different relevance score functions.
e Normalized Cumulative Rank (NCR): rel(q) is g’s rank

e Highest one has rank N, and the next one hasrank N — 1
* Normalized by the maximum score N(N + 1) /2

 Normalized Cumulative Support (NCS): rel (q) is true answer of q

‘ 2 qeU 4 p, UD)
NCS(Uaw)) = = (D)




Comparison on Interactive Approaches
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SVT-5-1:¢23- 0O

Comparison on Non-Interactive Approaches
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Varying € and Maximum Number of Positive Queries
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Recommendations

* In the interactive settings, use our proposed standard SVT

e For general queries, uses the 1/(2C)2/3 to allocate privacy budget between
Eland €y

* For monotonic queries, uses the 1/c?/3 to allocate privacy budget between
€1and e,
* In the non-interactive settings, do not use SVT and use EM instead

* |f one gets better performing using SVT than using EM, then it is likely that
one’s usage of SVT is non-private
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