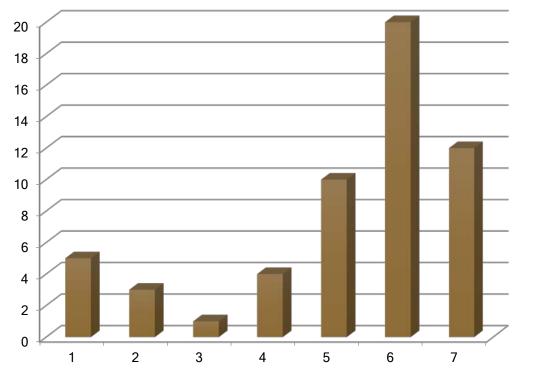
DIFFERENTIAL PRIVACY: PUBLISHING HISTOGRAMS

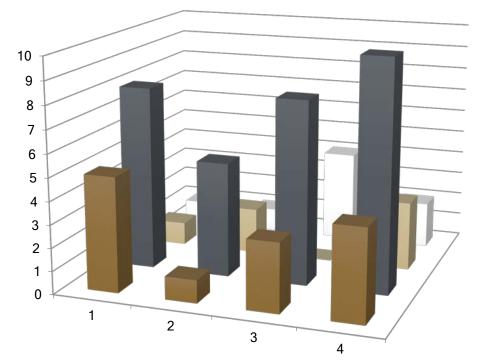
Hierarchical Methods for Histograms

- Reading
 - Wahbeh H. Qardaji, Weining Yang, Ninghui Li: <u>Understanding Hierarchical</u> <u>Methods for Differentially Private Histograms.</u> Proc. VLDB Endow. 6(14): 1954-1965 (2013)
 - M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of differentially private histograms through consistency. PVLDB, 3:1021-1032, September 2010.
 - T.-H. Hubert Chan, Elaine Shi, Dawn Song: Private and Continual Release of Statistics. ACM Trans. Inf. Syst. Secur. 14(3): 26:1-26:24 (2011)

Histogram

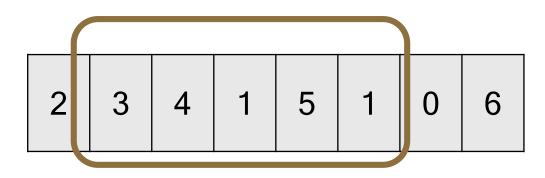
 A histogram is a graphical representation of the distribution of numerical data: a partitioning of the data domain into multiple nonoverlapping bins; the number of data points in each bin

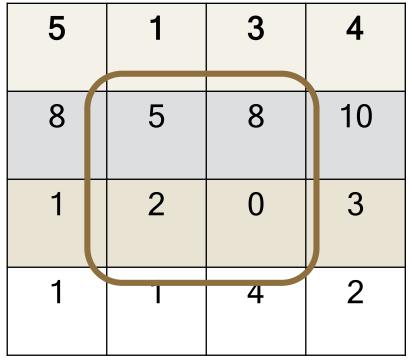




Range Query

 A range query represents a hyperrectangle in the d-dimensional domain specified by the dataset, and asks for the number of tuples that fall within the bins that are completely included in the area covered by the hyperrectangle





Has Suitable Partitioning

- A pre-defined partitioning
- The average number of data points in a bin is sufficiently high
- Lacking Suitable Partitioning
 - No pre-defined partition
 - A pre-defined partitioning exists, but the average number of data points for each bin is low
 - Determine the partitioning

- Mean Absolute Error (MAE)
 - absolute difference between the noisy answer and the true answer
- Mean Squared absolute Error (MSE)
 - often easier to compute
 - MSE is the variance of the random noise

Mean Relative Error (MRE)

- impact of the same absolute error is different when the true answers are different
- the true answer may be very small, or even 0
 - chooses a threshold $\boldsymbol{\theta}$ to be used as the denominator

$$\label{eq:relative error} \text{relative error} = \frac{|\text{true anser} - \text{obtained answer}|}{\max(\theta, \text{true anser})}$$

Dense Pre-defined Partitioning

- The average bin count is at least $\geq \frac{5}{c}$
- Baseline: a simple histogram
 - Add noise sampled from $Lap(\frac{I}{-})$ to each bin
 - Variance: $V_u = \frac{2}{c^2}$
 - Average length of queries:

- Unit Variance

$$\frac{\sum_{j=1}^{m} j(m-j+1)}{m(m+1)/2} = \frac{(m+2)}{3}$$

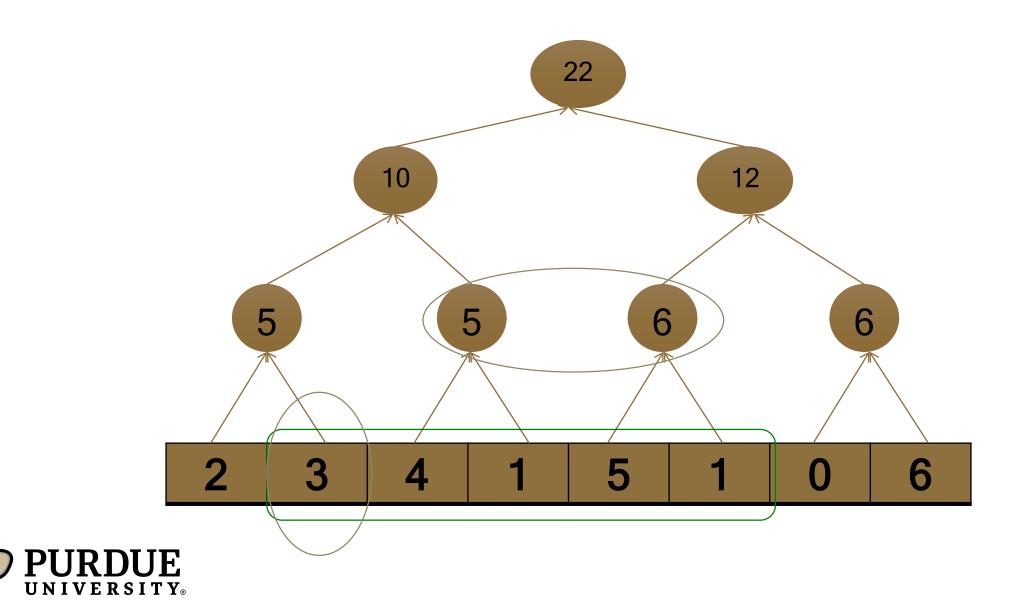
• Average-case MSE:

$$\frac{(m+2)}{3}\mathsf{V}_{\mathsf{U}}$$

 ${\cal E}$

- The hierarchy method uses a data structure called segment tree
 - Consider this problem
- We will explain what is it and why by starting with prefix sum and difference arrays
 - Let us study these slides

Hierarchical Method



 $h = \lceil \log_b N \rceil$ the tree has h + 1 levels

Publish h different histograms of the data

Use the least number of nodes to answer a range query, no more than 2(b-1)h

If privacy budget is divided equally among the histogram, the noise added to each counting query has variance

$$\frac{2h^2}{\epsilon^2} = h^2 \mathsf{V}_{\mathsf{U}}$$

Increasing b

Reduce *h*, increase privacy budget to each node More nodes to be used to answer a query on average

MSE:

Optimize *b* $\mathsf{V}^*_{Avg}[\mathbf{H}_b] = \left((b-1)h^3 - \frac{2(b+1)h^2}{3}\right) \cdot \mathsf{V}_u$

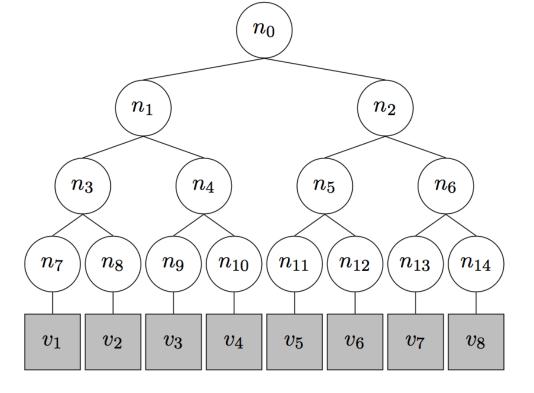
 $b \approx 16.8$, when m is large

Constrained Inference

Goal: reduce variance and improve accuracy

n₁=n₃+n₄

Weighted Averaging Mean Consistency MSE is reduced by 3



 X_1 and X_2 that are both unbiased estimates of the same underlying quantity

 $X = \alpha X_1 + (1 - \alpha) X_2$ is also an unbiased estimate of the quantity To minimize variance of X,

$$\frac{\operatorname{Var}(X)}{\operatorname{Var}(X_1)\operatorname{Var}(X_2)}\alpha = \frac{\operatorname{Var}(X_2)}{\operatorname{Var}(X_1) + \operatorname{Var}(X_2)}$$

Weighted Averaging

At level *i*, new count

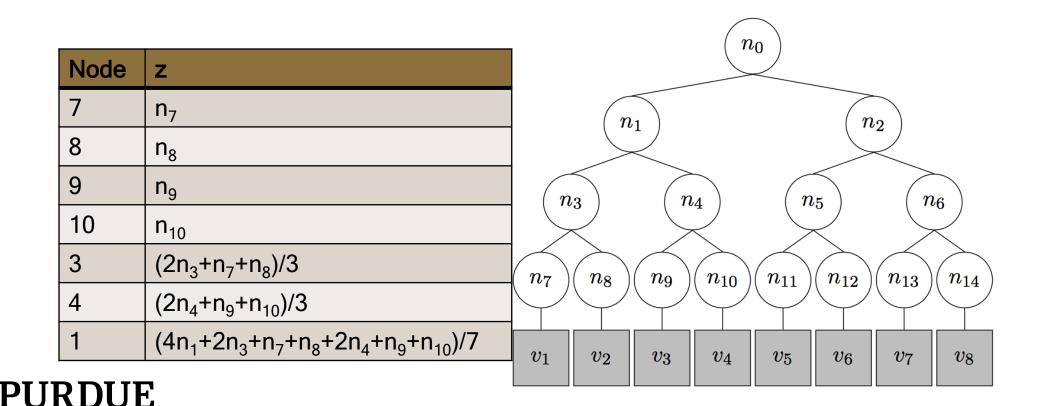
$$z_{i}[v] = \begin{cases} n[v], \text{ if } i = 1, \text{ i.e., } v \text{ is a leaf node} \\ \frac{b^{i} - b^{i-1}}{b^{i} - 1} n[v] + \frac{b^{i-1} - 1}{b^{i} - 1} \sum_{u \in child(v)} z_{i-1}[u], \text{ if } i > 1 \end{cases}$$

z[v] is that it is a weighted average of two estimates for the count at v

Weighted Averaging

UNIVERSITY_®

$$z_{i}[v] = \begin{cases} n[v], \text{ if } i = 1, \text{ i.e., } v \text{ is a leaf node} \\ \frac{b^{i} - b^{i-1}}{b^{i} - 1} n[v] + \frac{b^{i-1} - 1}{b^{i} - 1} \sum_{u \in child(v)} z_{i-1}[u], \text{ if } i > 1 \end{cases}$$



Mean Consistency

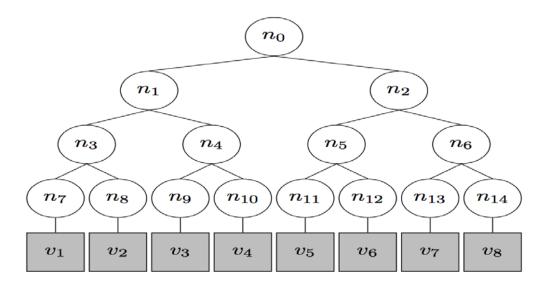
From the root down to the leaf level, update each node count so that the sum of each node's children is the same as the node's count

$$\bar{n}_{i}[v] = \begin{cases} z_{i}[v], & \text{if } v \text{ is root} \\ z_{i}[v] + \frac{1}{b} \left(\bar{n}_{i+1}[u] - \sum_{v \in child(u)} z_{i}[v] \right), \text{ow} \end{cases}$$

Mean Consistency (2)

Node	Value after weighted average	Value after mean consistency
7	n ₇	$(3n_1 + 5n_3 - 2n_4 + 13n_7 - 8n_8 - n_9 - n_{10})/21$
8	n ₈	$(3n_1 + 5n_3 - 2n_4 - 8n_7 + 13n_8 - n_9 - n_{10})/21$
9	n ₉	$(3n_1 - 2n_3 + 5n_4 - n_7 - n_8 + 13n_9 - 8n_{10})/21$
10	n ₁₀	$(3n_1 - 2n_3 + 5n_4 - n_7 - n_8 - 8n_9 + 13n_{10})/21$
3	$(2n_3 + n_7 + n_8)/3$	$(6n_1+10n_3-4n_4+5n_7+5n_8-2n_9-2n_{10})/21$
4	$(2n_4 + n_9 + n_{10})/3$	$(6n_1 - 4n_3 + 10n_4 + 5n_7 + 5n_8 - 2n_9 - 2n_{10})/21$
1	$(4n_1+2n_3+n_7+n_8+2n_4+n_9+n_{10})/7$	$(4n_1+2n_3+n_7+n_8+2n_4+n_9+n_{10})/7$

$$\bar{n}_i[v] = \begin{cases} z_i[v], & \text{if } v \text{ is root} \\ z_i[v] + \frac{1}{b} \left(\bar{n}_{i+1}[u] - \sum_{v \in child(u)} z_i[v] \right), \text{ow} \end{cases}$$



Privacy Budget Allocation

- Equally distributed
- Geometrical allocation where each level has privacy budget that is $\sqrt[3]{b}$ of its parent level
- With constrained inference
 - using the default equal privacy budget allocation performs as well as using the optimal budget allocation

Wavelet Transformation

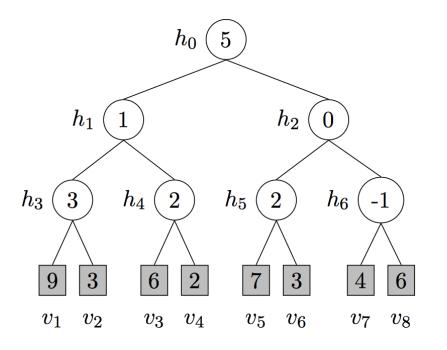
Perform a discrete Haar wavelet transform of the hierarchical histogram

 h_0 : average of all bins

 $h_n = (a_1 - a_r)/2$, a_1 and a_r are the average of left and right subtree of n

Add noise to the

Haar coefficients



- Optimize for a workload of counting queries
- Each counting query can be represented as a binary vector, selecting the unit bins included in the query
- A set of queries can be represented as a matrix
- Given such a matrix, the method finds an alternative set of queries, called a query strategy
- Find the best query strategy in order to answer the given workload queries with minimum error

Beyond One-Dimensional Datasets

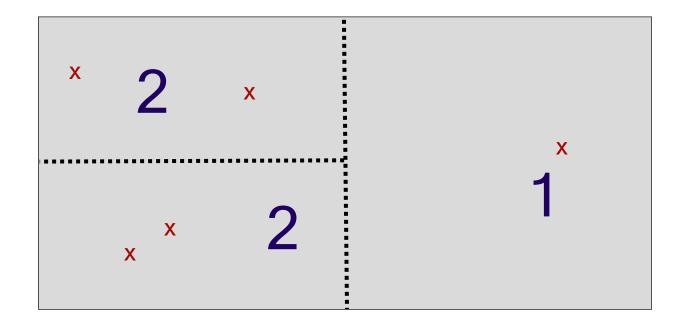
- d = 2, MSE: $b(\sqrt{m} 1) \lceil \log_{b^2} m \rceil^2$
- MSE: $\Theta(m^{(d-1)/d})$ Total number of bins, n^d
- When hierarchical method is better?
 - 1 dimensional: m > 45
 - 2 dimensional: m > 4096
 - 3 dimensional: m > 1.7E6
 - 4 dimensional: m > 2.18E9

• Reading:

- There exists a pre-defined partitioning, but the average number of data points for each bin is low
 - Added noises likely overwhelm the true counts
- The number of natural unit bins is so large that it is infeasible to enumerate through all of them
 - Real numbers

Example: Geospatial Data

Example: Geospatial Data

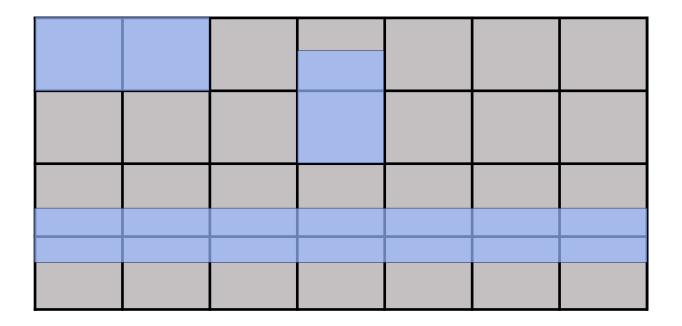


- Partition domain into m x m cells of equal size
- Add noise to counts of each cell to satisfy differential privacy

X (<i>x</i> , <i>y</i>)			

Error from answering range queries

• a query is a rectangle in the data domain



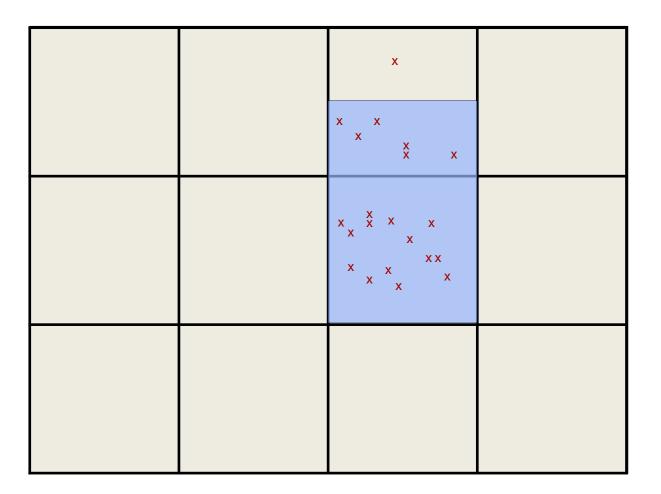
- 1. Error from satisfying Differential Privacy (noise error)
- Adding noise from the Laplace Distribution

$$\operatorname{Var}\left(\operatorname{Lap}(1/\epsilon)\right) = \frac{2}{\epsilon^2}$$

$$\sum^{n} \operatorname{Var}\left(\operatorname{Lap}(1/\epsilon)\right) = \frac{2n}{\epsilon^2} \operatorname{Lap}(1/\epsilon) \qquad u_3 + \operatorname{Lap}(1/\epsilon) \qquad u_4 + \operatorname{Lap}(1/\epsilon)$$

Sources of Error

- 2. Error from grid: Non-uniformity error
- Assuming the data points within each cell are uniformly distributed



- Noise error: calls for coarser partitioning
- Non-uniformity error: calls for finer partitioning
- Need to choose partition granularity to minimize the sum of the two errors

- *m* x *m* grid. Query selects a portion *r* of the domain.
- Standard deviation of the noise error:

$$\frac{\sqrt{2rm^2}}{\epsilon}$$

- Standard deviation non-uniformity error: $\frac{\sqrt{rN}}{c_0 m}$
- Minimize sum of two errors

$$\underset{m}{\operatorname{arg\,min}} \frac{\sqrt{2rm}}{\epsilon} + \frac{\sqrt{rN}}{mc_0}$$
$$m = \sqrt{\frac{N\epsilon}{c}}, c \approx 10$$

Uniform Grid treats all regions equally

- If a region is *sparse*, we might *over*-partitioning the region. This increases the noise error with little reduction in the nonuniformity error.
- if a region is very *dense*, this method might result in *under*partitioning of the region. As a result, the non-uniformity error would be quite large

- Adapt the level of partitioning based on the number of data points in each region
 - If a region is dense, use finer granularity to reduce non-uniformity error
 - If a region is sparse, use a more coarse grid

Adaptive Grid

	x	x x x x
x	x	x x x
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x X (xx , X x (x , X , X x xx , X , X	
$\begin{array}{c} x & x \\ x \\ x \end{array} \\ x \\ x \\ x \\ x \\ x \\ x \\ x$		$\begin{array}{c} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} x$

Two level partitioning:

- 1.Lay a coarse *m1* x *m1* grid over the data domain and obtain a noisy count for each cell
- 2.Partition each cell into an *m*2 x *m*2 grid, where *m*2 depends on the noisy count of the cell
- 3. Apply constrained inference

 $(-\alpha)^{\epsilon}$

• Choosing Parameters (*m*2):

• Average noise error:

$$\sqrt{\frac{(m_2)^2}{4}} \frac{\sqrt{2}}{(1-\alpha)\epsilon}$$

• Average non-uniformity error: $\frac{N'}{c_0 m_2}$

$$m_2 = \left\lceil \sqrt{\frac{N'(1-\alpha)\epsilon}{c_2}} \right\rceil$$

• Choosing Parameters (*m1*):

- Parameter is less critical, since the second level adapts to the count of each cell
- In general, we want it to be less than the choice for uniform grids.

$$m_1 = \max\left(10, \frac{1}{4}\left\lceil\sqrt{\frac{N\epsilon}{c}}\right\rceil\right).$$

NoisyFirst

- Compute the noisy histogram by Laplace mechanism
- Merge bins on the noisy data to reduce the error.

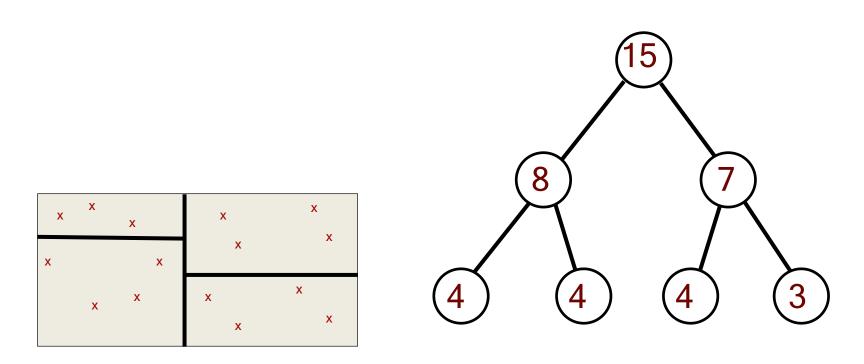
StructureFirst

- Use half of privacy budget to get the structure that fits the data and noise well
 - Choose right boundary of histogram bins using exponential mechanism
 - The optimal number of groups k is computed by running all possible k values in NoisyFirst
- Spend another half of privacy budget on releasing histogram with Laplace mechanism based on the chosen structure.

Recursive Partition

KD-Trees

Recursively partition along the median of each axis



G. Cormode, M. Procopiuc, E. Shen, D. Srivastava, and T. Yu, "Differentially private spatial decompositions," in *ICDE*, 2012.

Recursive Partition

Quad-tree

Recursively partition each region into 4 quadrants 5 Tree of fixed depth 5 Х Х Х Х х Х х Х Х Х х Х X

G. Cormode, M. Procopiuc, E. Shen, D. Srivastava, and T. Yu, "Differentially private spatial decompositions," in *ICDE*, 2012.

KD-Hybrid

Quad-tree at first few levels and KD-tree for the other levels

Quad-opt

Optimize division of privacy budget

G. Cormode, M. Procopiuc, E. Shen, D. Srivastava, and T. Yu, "Differentially private spatial decompositions," in *ICDE*, 2012.

