Local Differential Privacy (Part 1)

- Definition
- Frequency Oracle
 - Tianhao Wang, Jeremiah Blocki, Ninghui Li, Somesh Jha: <u>Locally Differentially Private Protocols for Frequency</u> <u>Estimation</u>. USENIX Security Symposium 2017
- Heavy Hitter Identification
 - Tianhao Wang, Ninghui Li, Somesh Jha: <u>Locally Differentially</u> <u>Private Heavy Hitter Identification</u>. IEEE TDSC (2021)
- Frequent Itemset Mining
 - Tianhao Wang, Ninghui Li, Somesh Jha: <u>Locally Differentially</u> <u>Private Frequent Itemset Mining</u>. IEEE Symposium on Security and Privacy 2018

From DP to LDP: Formal Definition

Idea of DP: Any output should be about as likely regardless of whether or not I am in the dataset A randomized algorithm *A* satisfies ε-differential privacy, iff for any two neighboring datasets *D* and *D'* and for any output *O* of *A*,

$$\Pr[\mathbf{A}(\mathbf{D}) = \mathbf{O}] \le \exp(\mathbf{\varepsilon}) \cdot \Pr[\mathbf{A}(\mathbf{D}') = \mathbf{O}]$$

A randomized algorithm A satisfies ε -local differential privacy, iff for any two nputs x and x' and for any output y of A, $\Pr[A(x) = y] \le \exp(\varepsilon) \cdot \Pr[A(x') = y]$

Run by ε is also called privacy budgetSmaller $\varepsilon \rightarrow$ stronger privacy

berson

Idea of LDP: Any output should be about as likely regardless of my secret

Properties of (Centralized) DP

A randomized algorithm A satisfies ε -differential privacy, iff for any two neighboring datasets D and D' and for any output O of A,

 $\Pr[\mathbf{A}(\mathbf{D}) = \mathbf{O}] \le \exp(\mathbf{\varepsilon}) \cdot \Pr[\mathbf{A}(\mathbf{D}') = \mathbf{O}]$

- Post-processing (of the output) is free
 - does no What about LDP?
- Parallel composition
 - partition the dataset into subsets, each applying an ε_i -DP algorithm, the overall result satisfies $\max(\varepsilon_i)$ -DP
- Sequential composition
 - apply k DP algorithms, each using ε_i , result satisfies $\sum \varepsilon_i$ DP

Properties of LDP

A randomized algorithm A satisfies ε -local differential privacy, iff for any two inputs x and x' and for any output y of A, $\Pr[A(x) = y] \le \exp(\varepsilon) \cdot \Pr[A(x') = y]$

- Post-processing is also free
 - does not consume privacy budget
- No direct parallel composition
 - because each user only has one record, which cannot be partitioned
 - but one can apply different questions to different subsets of users
- Sequential composition
 - apply k LDP algorithms, each using ε_i , result satisfies $\sum \varepsilon_i$ LDP

Key difference between DP and LDP

- DP concerns two neighboring datasets
- LDP concerns any two values
- As a result, the amount of noise is different: In aggregated result for counting queries
 - Noise in DP is $\Omega(1)$ (sensitivity is constant)
 - But in LDP, even noise for each user is constant, the aggregated result is $\Omega(\sqrt{n})$ [1]
 - If the result is normalized (divide the result with n), noise is $\Omega\left(\frac{1}{n}\right)$ versus $\Omega\left(\frac{1}{\sqrt{n}}\right)$

[1] Optimal lower bound for differentially private multi-party aggregation by T.-H. H. Chan, E. Shi, and D. Song

Frequency Estimation

- Assumption: each user has a single value x from a categorical domain D
- Goal: Estimate the frequency of any value in D

Frequency Oracle Framework

y

x ≔ E(v)
takes input value v from
domain D and outputs an
encoded value x
y ≔ P(x)

takes an encoded value x and outputs y.

P is ε -LDP iff for any v and v'from *D*, and any valid output *y*, $\frac{\Pr[P(E(v))=y]}{\Pr[P(E(v'))=y]} \le e^{\varepsilon}$

• $c \coloneqq Est(\{y\})$ takes reports $\{y\}$ from all users and outputs estimations c(v) for any value v in domain D

Random Response (Warner'65)

• Survey technique for private questions

- To get unbiased estimation of the distribution:
 - If n_v out of n people have the disease, we expect to see

 $E[I_v] = 0.75n_v + 0.25(n - n_v)$ "yes" answers

• $c(n_v) = \frac{I_v - 0.25n}{0.5}$ is the unbiased estimation of number of patients

Concrete Example (Let's do math)

A patient will answer "yes" w/p 75%, and "no" w/p 25%

	truth	->yes	->no
yes	80	40+20	0+20
no	20	0+5	10+5

$I_{m} = 0.25n$	observed	65	35
$c(n_v) = \frac{1}{0.5}$	estimate	80	20

(Simple) Proofs

- $E[c(n_v)] = n_v$
- We have

•
$$c(n_v) = \frac{I_v - 0.25n}{0.5}$$

• $E[I_v] = 0.75n_v + 0.25(n - n_v)$
• $E[c(n_v)] = \frac{E[I_v] - 0.25n}{0.5} = \frac{0.75n_v + 0.25(n - n_v) - 0.25n}{0.5} = n_v$

- Can be extended to other protocols
- Variance can be derived similarly

Probabilistic Analysis

Compare the result c(v) with the ground truth n_v .

- c(v) is a random variable
- Show that c(v) is unbiased: $E[c(n_v)] = n_v$
- Compute the variance of c(v): Var[c(v)]
- Use appropriate inequality to bound the error
 - Bernstein or Hoeffding inequalities
- Transform from variance to error bound
 - Since c(v) is a binomial variable (sum of iid Bernoulli variables)

From Two to Any Categories

Generalized Random Response (Direct Encoding)

 User: Intuitively, the higher p, the more accurate Encode x - v (suppose v from v - (1,2,, w)) 						
 Toss a If it is l 	However, when d is large, p becomes small (for the same ε) $1-p$					
• Otherwise, report any other value with probability $q = \frac{1}{d-1}$						
3	p(d=2)	p(d=8)	p(d = 128)	p(d = 1024)		
0.1	0.52	0.13	0.016	0.001		
1	0.73	0.27	0.027	0.002		
2	0.88	0.51	0.057	0.007		
4	0.98	0.88	0.307	0.05		
 Unbiase To get rid of dependency on domain size, we move to the unary encoding protocols. 						

Unary Encoding (Basic RAPPOR)

- Encode the value v into a bit string $\mathbf{x} \coloneqq \vec{0}, \mathbf{x}[v] \coloneqq 1$ • e.g., $D = \{1, 2, 3, 4\}, v = 3$, then $\mathbf{x} = [0, 0, 1, 0]$
- \bullet Perturb each bit, preserving it with probability p

•
$$p_{1 \to 1} = p_{0 \to 0} = p = \frac{e^{\varepsilon/2}}{e^{\varepsilon/2} + 1}$$
 $p_{1 \to 0} = p_{0 \to 1} = q = \frac{1}{e^{\varepsilon/2} + 1}$
• $p_{1 \to 0} = p_{0 \to 1} = q = \frac{1}{e^{\varepsilon/2} + 1}$

$$\Rightarrow \frac{\Pr[P(E(v'))=x]}{\Pr[P(E(v'))=x]} \le \frac{p_{1\to 1}}{p_{0\to 1}} \times \frac{p_{0\to 0}}{p_{1\to 0}} = e^{\varepsilon}$$

- Since x is unary encoding of v, x and x' differ in two locations
- Intuition:
 - By unary encoding, each location can only be 0 or 1, effectively reducing d in each location to 2. (But privacy budget is halved.)
 - When *d* is large, UE is better than DE.
- To estimate frequency of each value, do it for each bit.

Laplacian (Gaussian)

- Instead of using randomize response for each bit, add Laplacian (Gaussian) noise to each bit.
 - Sensitivity is 2, because two vectors differ in two bits.
- It is equivalent to the centralized setting, but the number of record is only 1.
- The server aggregates the results.
- This is worse than UE.

Optimized Unary Encoding (UE)

• In UE, 1 and 0 are treated symmetrically

•
$$p_{1\to 1} = p_{0\to 0} = \frac{e^{\varepsilon/2}}{e^{\varepsilon/2}+1}$$
, $p_{1\to 0} = p_{0\to 1} = \frac{1}{e^{\varepsilon/2}+1}$

- **Observation:** In the input, there are a lot more 0's than 1's when *d* is large.
- Key Insight: Perturb 0 and 1 differently and should reduce $p_{0 \to 1}$ as much as possible

$$\begin{array}{ll} \bullet \ p_{1 \rightarrow 1} = \frac{1}{2}, & p_{1 \rightarrow 0} = \frac{1}{2} \\ \bullet \ p_{0 \rightarrow 0} = \frac{e^{\varepsilon}}{e^{\varepsilon} + 1}, & p_{0 \rightarrow 1} = \frac{1}{e^{\varepsilon} + 1} \\ \bullet \ \frac{p_{1 \rightarrow 1}}{p_{0 \rightarrow 1}} \times \frac{p_{0 \rightarrow 0}}{p_{1 \rightarrow 0}} \le \ e^{\epsilon} \end{array}$$

Binary Local Hash

Local, Private, Efficient Protocols for Succinct Histograms R. Bassily, A. Smith. STOC 2015.

- The original protocol uses a shared random matrix; this is an equivalent description
- Each user uses a random hash function H from D to {0,1} (g=2)
- The user then perturbs the hashed bit (encode) with probabilities

•
$$p = \frac{e^{\varepsilon}}{e^{\varepsilon} + g - 1} = \frac{e^{\varepsilon}}{e^{\varepsilon} + 1}$$
, $q = \frac{1}{e^{\varepsilon} + g - 1} = \frac{1}{e^{\varepsilon} + 1}$

$$\Rightarrow \frac{\Pr[P(E(v)) = H(v)]}{\Pr[P(E(v')) = H(v)]} = \frac{p}{q} \le e^{\varepsilon}$$

- The user then reports the bit and the hash function
- The aggregator increments the reported group

•
$$E[I_v] = n_v \cdot p + (n - n_v) \cdot (\frac{1}{2}q + \frac{1}{2}p)$$

• Unbiased Estimation: $c(v) = \frac{l_v - n \cdot \frac{1}{2}}{p - \frac{1}{2}}$

Example

Because of $\frac{1}{2}$, results is worse than UE

Optimized Local Hash (OLH)

- Observation: It is not necessary to hash into one bit.
- Conjecture: By hashing into a larger range, the result might be better.
- Technique: Optimize variance.
- Result: When $g = e^{\varepsilon} + 1$, we can achieve better accuracy.
- Intuition:
 - In original BLH, secret is compressed into a bit, perturbed and transmitted.
 - Balance between the two steps.

Comparison of Mechanisms

Table 1: Comparison of Communication Cost, Computation Cost Incurred by the Aggregator, and Variances for different methods.

Two other protocols

- Subset Selection
 - S. Wang, L. Huang, P. Wang, Y. Nie, H. Xu, W. Yang, X. Li, and C. Qiao. Mutual information optimally local private discrete distribution estimation. arXiv 2016.
 - M. Ye and A. Barg. Optimal schemes for discrete distribution estimation under locally differential privacy. IEEE Transactions on Information Theory 2018.
- Hadamard Response
 - A. Jayadev, Z. Sun, and H. Zhang. Communication Efficient, Sample Optimal, Linear Time Locally Private Discrete Distribution Estimation. arXiv 2018.

Subset Selection

• Encode value v into a bit string $x \coloneqq \vec{0}, x[v] \coloneqq 1$

• e.g., $D = \{1,2,3,4\}, v = 3$, then x = [0,0,1,0]

- Instead of perturbing each bit independently, as in Unary Encoding, do the following things:
 - Randomly partition D into g subsets of equal size (|D| is divided by $g, g = e^{\varepsilon} + 1$)
 - Report the subset that contains v w/p p, report any other subset w/p q
 - $\frac{p}{q} \le e^{\varepsilon}$
- Variance is slightly better than OUE (by a constant, especially when |D| is small).

Hadamard Response

- In Binary Local Hash, each user uses a random hash function H from D to {0,1}
- The original description uses a random matrix
 - Each user takes a random column
 - Each entry corresponds to one value
- In Hadamard Response, the Hadamard matrix is used (less random)
- Evaluation is asymptotically faster
- When |D| is large, and one is only interested in a subset of D (as the case of heavy hitter identification), theoretical evaluation time is the same (but practically faster than evaluating hash functions).
- Not clear whether can be generalized to non-binary case

Summary of LDP Frequency Oracle Mechanisms

- Generalized Random Response
- Unary Encoding (SUE and OUE)
 - Can also be viewed as reporting random subsets
 - A variant to fix the size of reported subset
- Local Hashing Approach (BLH and OLH)
 - One way to implement BLH is to use Hadamard Response

On answering multiple questions

- Previously works (including centralized DP) suggest splitting privacy budget
- For example, when a user answers two questions, privacy budgets are $\varepsilon/2$ and $\varepsilon/2$ (assuming the two questions are of equal importance)
- In the centralized setting, there are sequential composition and parallel composition
 - By partitioning users, one uses to parallel composition
 - By split privacy budget, one uses sequential composition
 - The two can basically produce equivalent results
- What about the local setting?

On answering multiple questions

- Measure the frequency accuracy for one question
 - Assume OLH is used, for each question

•
$$Var[c(v)/n] = \frac{q \cdot (1-q)}{n \cdot (p-q)^2} = \frac{4e^{\varepsilon}}{n \cdot (e^{\varepsilon}-1)^2}$$

- Assume sample variance is small
- Normalize since two approach have different number of users
- Two settings:
 - Split privacy budget: $Var[c(v)/n] = \frac{4e^{\varepsilon/2}}{n \cdot (e^{\varepsilon/2}-1)^2}$

• Partition users:
$$Var\left[c(v)/\frac{1}{2}n\right] = \frac{8e^{\varepsilon}}{n \cdot (e^{\varepsilon}-1)^2}$$

- Algebra shows that it is better to partition users
- Can be generalized to Q > 2 questions

On answering multiple questions

- If one is interested in K > 1 questions
 - Partition users: $Var[c(v)/\{Q \ c \ K\}n] = \frac{4\{Q \ c \ K\}e^{\varepsilon}}{n \cdot (e^{\varepsilon}-1)^2}$
 - Split privacy budget: faster estimation algorithm
 - Appendix in Locally Differentially Private Heavy Hitter Identification. T. Wang, N. Li, S. Jha. arXiv 2017
 - CALM: Consistent Adaptive Local Marginal for Marginal Release under Local Differential Privacy. Z. Zhang, T. Wang, N. Li, S. He, J. Chen. CCS 2018
 - Variance is more complicated
 - Conjecture when K > Q/2, split privacy budget will be better

How to interpret the results

- Amount of noise is constant for each category
- If the true count is small, it may be overwhelmed by the noise, especially when domain size is big
- Estimates that are close to the quantity of noise will be replaced with 0

LDP Applications

Applications built from LDP algorithms

Focus on

- Heavy hitter identification
- Frequent itemset mining

Heavy Hitter Estimation

The heavy hitter problem

- Goal: Find the k most frequent values from a large D
- Scenario (Application): Find the most popular
 - url
 - hashtag
 - new phrase
- Assumption:
 - each user has a single value x and it is represented in bits
 - *D* is large (when *D* is small, frequency oracle suffices)

A First Solution

- Simpler Goal: Find one most frequent value from *D*
- Idea:
 - Users are partitioned into four groups
 - Each user reports one portion of its string (segment)
 - Server queries FO to one find frequent pattern in each segment
 - Concatenate the four frequent patterns

A First Solution

- Goal: Find k most frequent values from D
- Idea:
 - Server use FO to find k frequent nettorns in each Drawback:
 - Composing the four segment candidate sets gives a very large set of results.
 Sets of requeric parterns

Proposals

- Building a rappor with the unknown: Privacypreserving learning of associations and data dictionaries
 - G. Fanti, V. Pihur, and U. Erlingsson, PoPETS 2016.
 - Segment Pair Method
- Local, Private, Efficient Protocols for Succinct Histograms
 - R. Bassily, A. Smith. STOC 2015.
 - Multiple Channel Method
- Prefix Extending Methods (state-of-the-art)

Segment Pair Method

- Each user reports a pair of two randomly chosen segments.
- A-priori principle:
 - A pair of segments is frequent iff both segments are frequent
 - A string is frequent iff any pair of segments is frequent
- Step 1: For e
- Step 2: For e
- Step 3: Build
 - each node
- Drawback: There are many possible pairs, accuracy for each group is limited

$$(Var[c(v)/n] = \frac{4e^{\varepsilon}}{n \cdot (e^{\varepsilon} - 1)^2})$$

- each edge represents a frequent segment pair
- Step 4: Find cliques in the graph (heavy hitter candidates)
- Step 5: Estimate frequencies of the heavy hitters

Multiple Channel Method

- Suppose there is only one heavy hitter, we can afford the Cartesian product, which contains only one element.
- Use multiple channels and isolate heavily Drawback:
- hitters. To avoid collision, many (n^{1.5}) channels are used.
 Each
 Number of users in each channel is limited. Computational cost is high.
 - In channel m(v), report v[i],
 - In other channels, report a uniformly random bit.
- Aggregator identifies the dominant bits in each channel
- Estimate frequencies of the heavy hitters

Prefix Extending Method

- Start from a prefix, and gradually extend this prefix.
- Identify the frequent patterns for a small prefix first, and then extend to a larger prefix.
- Result for the last group can be used for frequency estimation

OLH.Q(`deadbe ** ')->`deadbeef' OLH.Q(`dead ** ')->`deadbe' OLH.Q(`de ** ')->`dead' OLH.Q(` ** ')->`dead'

Prefix Extending Style Proposals

- Practical locally private heavy hitters
 - R. Bassily, K. Nissim, U. Stemmer, and A. Thakurta, NIPS'17
 - TreeHist
- Locally Differentially Private Heavy Hitter Identification
 - T. Wang, N. Li, S. Jha: arXiv 2017.
 - PEM
- Privtrie: Effective frequent term discovery under local differential privacy
 - N. Wang, X. Xiao, Y. Yang, T. D. Hoang, H. Shin, J. Shin, and Y. Ge, ICDE'18
 - PrivTrie (For a different setting)

Comparison

Assume the size of domain D is 2^m ; each value is encoded into m bits

- TreeHist
 - Partition the users into m groups, each reporting one additional bit
 - Research Question:

- PEM
 - How to determine number of additional bits each
 Pro
 - phase examines?

report as many pits as possible

- PrivTrie (interactive)
 - Propose to allocate less users on the top, more in the lower levels
 - One bit at a time

More Bits or Fewer Bits?

- Intuition:
 - More bits -> Less groups -> More users in one -> More accurate and less rounds
 - Less bits -> Less candidates -> Less likely an infrequent pattern becomes frequent
- Analyze the expected utility score.
- An optimization problem!

Optimize expected utility

- Goal: Maximize expected number of heavy hitters that can be identified
- Findings:
 Inpl
 Ideally (infeasible), all users report full string, and probe the EO for all possible string gives optimal
- Out probe the FO for all possible string gives optimal result.
 - add The constraint will be the computational power.
- Assle Each group should take as many bits as possible.
 - A reasonable distribution (the more close the better)
 - Probabilistic approximations

Frequent Itemset Mining

Frequent Itemset Mining

- Can be used for association rule mining etc
- Each user has a set of values

Strawman Method:

- Encode the itemset as a value in a bigger domain (of size 2^d).
 Disadvantage:
- Cannot scale.
- If an item is contained in many infrequent itemsets, it will not be captured

Challenges: 1. Each user has multiple items 2. Each user's itemset size is different

 $\{a, c, e\} \ \{b, e\} \ \{a, b, e\} \ \{a, d, e\} \ \{a, b, c, d, e, f\}$

- The goal is to find the frequent *singletons* and *itemsets*
- Top-3 singletons: e(5), a(4), b(3) Top-3 itemsets: {e}(5), {a}(4), {a, e}(4)

Proposals

- Heavy hitter estimation over set-valued data with local differential privacy. In CCS, 2016.
 - Z. Qin, Y. Yang, T. Yu, I. Khalil, X. Xiao, and K. Ren. CCS 2016.
 - LDPMiner
- Locally Differentially Private Frequent Itemset Mining
 - T. Wang, N. Li, S. Jha: IEEE SP 2018.
 - SVIM/SVSM

Pad and Sample Frequency Oracle

- Each user's itemset size is different
 - Pad it to a fixed length *l*
- Each user now has *l* items (or more)
 - Sample one at uniform random
 - Report via LDP (e.g., using Random Response)

LDPMiner

• Phase 1 (identify candidates)

- Pad to l Item set length l User_i with $l_i > l$ *l* is the 90 percentile of the 17 21 55 301 1034 69 size distribution **Observations** Rand Τ I 1. The value of *l* affects error in two ways. Repo 2. Sampling may have a privacy amplification effect. Collector Potentiai 2k nequent items Top-k Heavy Potential Heavy Hitters Hitters returned Phase 2 Phase 2 (estimate frequency) Randomized Data • Intersects \boldsymbol{v} with the 2k items Could find frequent items only. • Pad to 2kLeft finding frequent itemsets as
 - Ensures no missed item
 - Randomly select one
 - Report

49

an open problem.

Sources of error

Under Estimation:

Items are selected with 1/6 but multiplied with 5 It decreases when l increases

Goal: Identification

Privacy Amplification

- LDP bounds the perturbation.
 - E.g., in Random Response.

- $= \Pr[Sample(a, b) = a] \times \Pr[P(a) = a]$
 - $+ \Pr[Sample(a, b) = b] \times \Pr[P(b) = a]$

SVIM: Set-Value Item Mining 🚬

- Phase 1 (identify candidates)
 - Randomly select one (l = 1)
 - Report ٠
 - Potential 2k frequent items returned
- Phase 2 (estimate len
 - Intersects \boldsymbol{v} with th ones
 - Report the size
 - The 90-percentile *l* is returned
- Phase 3 (estimate frequency)
 - Pad to l
 - Randomly select one
 - Report via Adaptively chosen FO

Update Frequent itemsets Itemset Mining (more in paper)

SVIM (Set Value Item Mining)

Find S

Find L

Estimate

Update

Build IS

Find L

Estimate

items

Report itemset

S

Report size

S, L

IS Report size

IS, L Report intersected itemsets

port intersected itemset

Reporting Numerical Attributes

Numerical Mean Oracle

Numerical Mean Oracle Proposals

- Collecting and analyzing data from smart device users with local differential privacy
 - T. T. Nguyen, X. Xiao, Y. Yang, S. C. Hui, H. Shin, and J. Shin. arXiv'16
- Collecting telemetry data privately
 - B. Ding, J. Kulkarni, and S. Yekhanin. NIPS'17

Using Existing Methods

- Apply Laplace/Gaussian noise
 - Noise is too much
- Use any Frequency Oracle
 - With the domain range partitioned into many bins
 - Transforms numerical problem to categorical problem
 - Pro: Have a better understanding of the distribution
 - Con: No optimal partition
 - Example: all values are 0.01; when there are two bins: [-1,0), [0, +1], estimation will be far from truth

The Method

Discretize the problem, but using an unbiased, non-deterministic way.

- Encode the value v into a bit $x \in \{-1, +1\}$
 - $\Pr[E(v) = +1] = \frac{1}{2} + \frac{1}{2}v, \Pr[E(v) = -1] = \frac{1}{2} \frac{1}{2}v$
 - This step ensures that encoding is unbiased.
- Perturb the bit, with a frequency oracle
 - Satisfy LDP
 - Provides better results

Complicated Numerical Settings

- $D \neq [-1, +1]$
 - $\circ \quad \text{If } D = [a, b]$
 - First convert to [-1, +1]; then convert the result back.
- $D = [-1, +1]^d$
 - Numerical vector setting
 - *d* is number of dimensions
 - Split privacy budget into each dimension
 - Report only one dimension (partition users)

Summary so far

- Random Response
- Frequency Oracles
- How to use FO
- Mean Oracle
- How to use MO

	categorical	numerical
Scalar	FO	Prob. Assign+RR
Vector	Split Users	Split Users

Consistency of Distribution Estimate

Consistency: $\sum_{v \in D} \hat{x}_v = 1$ and $\hat{x}_v \ge 0, \forall v \in D$

Enforce consistency: project the estimate frequencies onto simplex (L1 unit ball) Post-processing algorithms [7]

[7]T. Wang, Z. Li, N. Li, M. Lopuhaa-Zwakenberg, and B. Skoric. Locally differentially private frequency estimation with consistency. In NDSS, 2020.

Improvement on HH

How to enforce consistency on Hierarchy Histogram(HH)? Previous work[6] only focus on $\sum_{v \in D} \hat{x}_v = 1$ constraint, but no $\hat{x}_v \ge 0$ Our solution: **HH-ADMM**, idea from centralized DP[8]. Transform it to a constrained optimization problem

Minimize $\frac{1}{2}(\widehat{x} - \widetilde{x})$

subject to $A\widehat{x} = \mathbf{0}, \widehat{x} \ge \mathbf{0}, \widehat{x}_{\mathbf{0}} = 1$

where \hat{x} and \tilde{x} are all nodes in hierarchy histogram, elements in A

$$a_{ij} \begin{cases} 1, & \text{if } i = j \\ -1, \text{ node } j \text{ is a chil of node } i \\ 0, & \text{othersize} \end{cases}$$

[6] T. Kulkarni, G. Cormode, and D. Srivastava. Answering range queries under local differential privacy. PVLDB, 2019

[8] J. Lee, Y. Wang, and D. Kifer. Maximum likelihood postprocessing for differential privacy under consistency constraints. SIGKDD 2015.

Ordered Nature of Numerical Domain

1. Values in numerical domain has distance between each other.

- Same L2 distance can results in very different distributions(A v.s. B and A v.s. C).
- Better metric to measure distribution distance: Wasserstein distance or KS distance.

2. Adjacent numerical values' frequencies do not vary dramatically.

General Wave Mechanism (GW)

Intuition: in numerical domain, a report \tilde{v} that is different from but close to the true value v also carries useful information about the distribution.

WLOG, assume that input domain D = [0, 1] and output domain $\tilde{D} = [-b, 1 + b]$. Let $M_v(\tilde{v}) = \Pr[\Psi(v) = \tilde{v}]$ be the probability density function of input v.

Definition (General Wave Mechanism (GW)).

There is a wave function $W: R \to [q, e^{\epsilon}q]$ with constant q > 0 and $\epsilon > 0$, such that the output probability density function $M_{\nu}(\tilde{\nu}) = W(\tilde{\nu} - \nu)$:

1.
$$W(z) = q$$
, for $|z| > b$

2.
$$\int_{-b}^{b} W(z) dz = 1 - q$$

Theorem 1: GW satisfies ϵ -LDP.

Square Wave Mechanism (SW)

How to decide the shape of wave in GW?

A special case of GW mechanism is SW Mechanism.

Definition (Square Wave Mechanism (SW)).

$$M_{v}(\tilde{v}) = \begin{cases} p = \frac{e^{\epsilon}}{2be^{\epsilon} + 1}, \text{ if } |v - \tilde{v}| \leq b \\ q = \frac{1}{2be^{\epsilon} + 1}, \text{ otherwise} \end{cases}$$

Square Wave Mechanism

Why square wave instead of other wave shape?

Intuition: Given different values $v \neq v'$, if M_v and $M_{v'}$ are identical, then there is no way to distinguish those values; the further apart M_v and $M_{v'}$ are, the easier to tell them apart.

Theorem 2. For any fixed b and ϵ , the SW is the GW that maximizes the Wasserstein distance between any two output distributions of two different inputs.

Lemma 1. Given $v_1, v_2 \in D$ as inputs to GW, where $v_2 > v_1$ and let $\Delta = v_2 - v_1 > 0$, the Wasserstein distance between the output distributions of general wave mechanism is $\Delta(1 - (2b+1)q)$.

Lemma 2. For any fixed b and ϵ , the minimum q for GW is $q = \frac{1}{2be^{\epsilon}+1}$, which is achieved if any only if the mechanism is SW.

Square Wave Mechanism

How to choose parameter b ?

- Heuristic choice: $b = \frac{\epsilon e^{\epsilon} e^{\epsilon} + 1}{2e^{\epsilon}(e^{\epsilon} 1 \epsilon)}$, to maximize the upper bound of mutual information.
- When $\epsilon \to 0, b \to \frac{1}{2}; \epsilon \to \infty, b \to 0.$

Post-processing: EM

The reports \tilde{v} are in $\tilde{D} = [-b, 1+b]$.

How to map them back to D = [0, 1]?

- 1. Generate histogram with \tilde{d} bins on \tilde{D} for the reported values.
- 2. Use EM algorithm to estimate the histogram with *d* bins on D.

Algorithm 1 Post-processing EM algorithm Input: M, \tilde{v} Output: \hat{x} while not converge do E-step: $\forall i \in \{1, ..., d\},$ $P_i = \hat{x}_i \sum_{j \in [\tilde{d}]} n_j \frac{\Pr\left[\tilde{v} \in \tilde{B}_j | v \in B_i, \hat{x}\right]}{\Pr\left[\tilde{v} \in \tilde{B}_j | \hat{x}\right]}$ $= \hat{x}_i \sum_{j \in [\tilde{d}]} n_j \frac{M_{j,i}}{\sum_{k=1}^d M_{j,k} \hat{x}_k}$ M-step: $\forall i \in \{1, ..., d\},$ $\hat{x}_i = \frac{P_i}{\sum_{k'=1}^d P_{k'}}$ end while Return \hat{x}

Post-processing: EM with smoothing (EMS)

How to use the prior knowledge that adjacent numerical values' frequencies do not vary dramatically?

Smoothing after every M-step: $\hat{x}_i = \frac{1}{2}\hat{x}_i + \frac{1}{4}(\hat{x}_{i-1} + \hat{x}_{i+1})$

Experiments

Four datasets:

Metrics:

- 1. Wasserstein distance and Kolmogorov-Smirnov (KS) distance
- 2. Range queries
- 3. mean/variance/quantiles

Experiments

Wasserstein distance (a.k.a earth mover distance): Given a frequency vector x, the cumulative function $P(x, v) = \sum_{i=1}^{v} x_v$, one dimension Wasserstein distance :

$$W_1(\boldsymbol{x}, \widehat{\boldsymbol{x}}) = \sum_{v \in D} |P(\boldsymbol{x}, v) - P(\widehat{\boldsymbol{x}}, v)|$$

