DATA SECURITY AND PRIVACY

Introduction to Differential Privacy

Optional Readings for This Lecture

- Differential Privacy: From Theory to Practice
 - Chapter 2: A Primer on Differential Privacy

Differential Privacy [Dwork et al. 2006]

- Definition: A mechanism A satisfies ε-Differential Privacy if and only if
 - for any neighboring datasets D and D'
 - and any possible transcript $t \in Range(A)$,

 $\Pr[\underline{A}(D)=t] \le e^{\epsilon} \Pr[\underline{A}(D^{\epsilon'})=t]$

- For relational datasets, typically, datasets are said to be **neighboring** if they differ by a single record.
- Intuition:
 - Privacy is not violated if one's information is not included in the input dataset
 - Output does not overly depend on any single record

Laplace Mechanism Calibrating noise to sensitivity

Given a function $f:D \rightarrow \mathbb{R}^d$ over an arbitrary domain D, the sensitivity of f is

 $S(f) = \max_{A,B \text{ where } A \Delta B = 1} \left\| f(A) - f(B) \right\|_{1}$

Examples:

- 1. Count: for f(D) = |D|, S(f) = 1.
- 2. Sum: for $f(D) = \Sigma d_i$, where $d_i \in [0, \Lambda]$, $S(f) = \Lambda$.

Given a function $f: D \rightarrow \mathbb{R}^d$ over an arbitrary domain D, the computation

$$M(X) = f(X) + (\text{Lap} (S(f)/\epsilon))^d$$

provides ε-differential privacy.

Examples:

- 1. NoisyCount(D) = |D|+Laplace(1/ ε).
- 2. NoisySum(D) = Σd_i +Laplace(Λ/ϵ).

Example of Laplace Mechanism

- Consider an example table of N=23,450 records with schema to the right?
- How many tuples are from IN?
 - True count: 546
- Answer while satisfying ε_1 -DP: 546 + Lap(Δ/ε_1)
 - $\Delta = 1$
- How many people have score above 23?
- How many?

- In general, counting queries can be answered relatively accurately
 - Since one tuple affects the result by at most 1
 - A small amount of noise (following the Laplace distribution) can be added to achieve DP

Publishing a histogram

- Suppose we are interested only in the score distribution, then we want to publish the histogram to the right.
- Add Lap(Δ/ε) to each of the cell
- What is the sensitivity Δ ?

Difference Between Bounded and Unbounded DP

- In unbounded DP, D has one more record than D'
 - Δ (histogram) = 1
- In bounded DP, D and D' have the same number of records, and only one of them differ
 - Δ (histogram) = 2

Exponential Mechanism [MT'07]

Let $q:D^n x R \to \mathbb{R}$ be a query function that, given a database $d \in D^n$, assigns a score to each outcome $r \in R$. Then the exponential mechanism *M*, defined by $M(d,q) = \{\text{return r with probability} \propto \exp(\epsilon q(d,r)/2S(q))\},$ maintains ϵ -differential privacy.

Reminder:
$$S(q) = \max_{A \mid B \text{ where } A \land B = 1} \left\| q(A) - q(B) \right\|_{1}$$

Motivation:

Impact of changing a single record is within ± 1

Example - private vote what to order for lunch:

Option	Score (votes) Sensitivity=1	Sampling Probability		
		ε=0	ε=0.1	ε=1
Pizza	27	0.25	0.4	0.88
Salad	23	0.25	0.33	0.12
Hamburger	9	0.25	0.16	10-4
Pie	0	0.25	0.11	10 ⁻⁶

Example of Exponential Mechanism

What is the median score?

- Define q(D,x) = |# of students with score higher than x # of students with score lower than x|
- What is the sensitivity?
- I.e., what is max(|q(D,x) q(D',x) |)?

- Sequential Composability
 - If A_1 satisfies ε_1 -DP, and A_2 satisfies ε_2 -DP, then outputting both A_1 and A_2 satisfies ($\varepsilon_1 + \varepsilon_2$)-DP
- Parallel Composability
 - If D is divided into two parts, applying A_1 and A_2 on the two parts satisfy $(max(\varepsilon_1, \varepsilon_2))$ -DP
- Post-processing Invariance
 - If A_1 satisfies $\varepsilon_T DP$, then $A_2(A_1(\cdot))$ satisfies $\varepsilon_T DP$ for any A_2

Privacy Budget

When designing a multiple-step algorithm for *ɛ*-DP, one needs to divide *ɛ* into portions so that each step consumes some

Some queries are hard to answer

E.g., max, since it can be greatly affected by a single tuple

Four Settings of Satisfying DP

Local setting

• Do not trust server, perturb data before sending to server

Interactive setting

• Answer queries as they come, not knowing what the rest of the queries are

Single workload

- Learn a few parameters
- Non-interactive publishing
 - Able to answer a broad range of queries

- Answering each query consumes some privacy budget
- After answering a pre-determined number of queries, one exhausts the privacy budget, and cannot answer any question anymore
- Problem especially intractable when dealing with multiple users of data

Privacy Preserving Data Publishing

- Design a mechanism A, such that given D, one publishes T=A(D).
- Requirements
 - Privacy friendly
 - Preventing adversaries from learning (individual) information from O=A(D) and A
 - Useful (fidelity-preserving)
 - Allow data users (researchers) to learn (aggregated) information from O=A(D) and A

