# DATA SECURITY AND PRIVACY

# Week 3: Security Models: BLP, Biba, and Clark-Wilson



#### **Readings for This Lecture**

- Bell and La Padula: "Secure Computer System: Unified Exposition and MULTICS Interpretation"
  - Section II
- Kenneth J. Biba: "Integrity Considerations for Secure Computer Systems", MTR-3153, The Mitre Corporation, April 1977.
- David D. Clark and David R. Wilson. "A Comparison of Commercial and Military Computer Security Policies." In IEEE SSP 1987.






#### **Related Readings for This Lecture**

#### Other Related Papers:

 David FC. Brewer and Michael J. Nash.
 "The Chinese Wall Security Policy." in IEEE SSP 1989.







- Overview of the Bell Lapadula Model
- Details of the Bell Lapadula Model
- Analysis of the Bell Lapadula Model
- More on Multi-level Security
- TCSEC and Common Criteria
- Biba Integrity Models
- Clark-Wilson Model and Chinese Wall Policy



#### Access Control at Different Abstractions

- Using principals
  - Determines which principals (user accounts) can access what documents
- Using subjects
  - Determines which subjects (processes) can access what resources
  - This is where BLP focuses on



# Multi-Level Security (MLS) (1)

- There are security classifications or security levels
  - Users/principals/subjects have security clearances
  - Objects have security classifications
- Example of security levels
  - Top Secret > Secret > Confidential > Unclassified
- Security goal (confidentiality):
  - Ensures that information does not flow to those not cleared for that level



- The capability of a computer system to carry information with different sensitivities (i.e. classified information at different security levels), permit simultaneous access by users with different security clearances and needs-to-know, and prevent users from obtaining access to information for which they lack authorization.
  - Discretionary access control fails to achieve MLS
- Typically use Mandatory Access Control
- Primary Security Goal: Confidentiality



- Mandatory access controls (MAC) restrict the access of subjects to objects based on a system-wide policy
  - denying users full control over the access to resources that they create. The system security policy (as set by the administrator) entirely determines the access rights granted



### Bell-LaPadula Model: A MAC Model for Multi-level Security

- Introduce in 1973
- Air Force was concerned with security in time-sharing systems
  - Many OS bugs
  - Accidental misuse
- Main Objective:
  - Enable one to formally show that a computer system can securely process classified information



### What is a Security Model?

- A model describes the system
  - e.g., a high level specification or an abstract machine description of what the system does
- A security policy
  - defines the security requirements for a given system
- Verification techniques that can be used to show that a policy is satisfied by a system
- System Model + Security Policy = Security Model



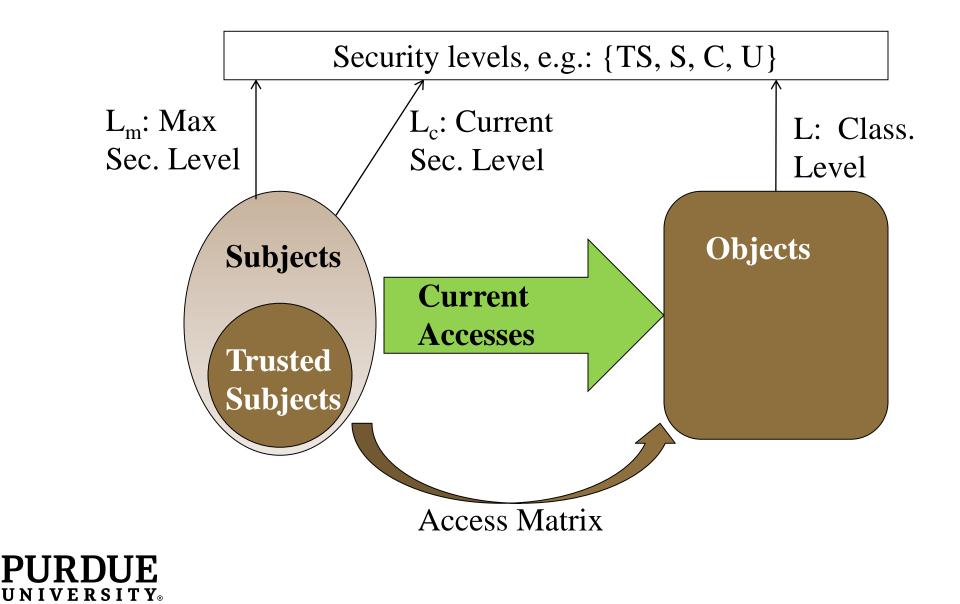


- Use state-transition systems to describe computer systems
- Define a system as secure iff. every reachable state satisfies 3 properties
  - simple-security property, \*-property, discretionary-security property
- Prove a Basic Security Theorem (BST)
  - so that given the description of a system, one can prove that the system is secure





- Overview of the Bell Lapadula Model
- Details of the Bell Lapadula Model
- Analysis of the Bell Lapadula Model
- More on Multi-level Security
- TCSEC and Common Criteria
- Biba Integrity Models
- Clark-Wilson Model and Chinese Wall Policy



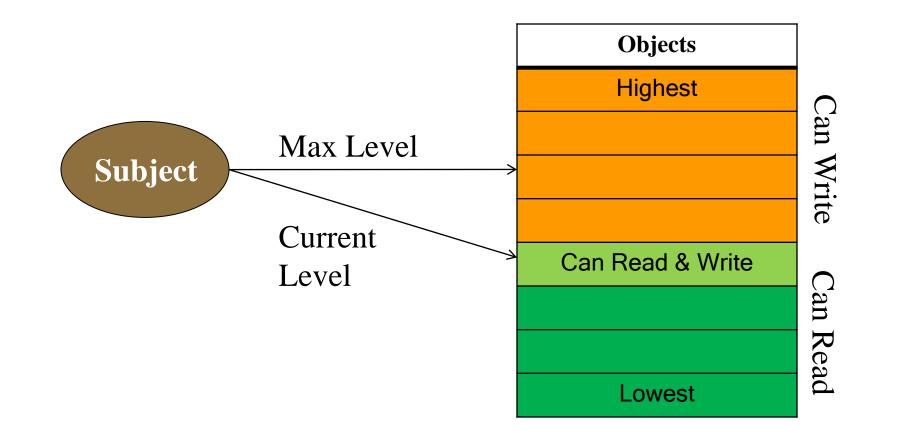

#### A computer system is modeled as a state-transition system

- There is a set of subjects; some are designated as **trusted**.
- Each state has objects, an access matrix, and the current access information.
- There are state transition rules describing how a system can go from one state to another
- Each subject s has a maximal sec level  $L_m(s)$ , and a current sec level  $L_c(s)$
- Each object has a classification level



#### Elements of the BLP Model




### The BLP Security Policy

#### A state is secure if it satisfies

- Simple Security Condition (**no read up**):
  - S can read O iff  $L_m(S) \ge L(O)$
- The Star Property (no write down): for any S that is not trusted
  - S can read O iff  $L_c(S) \ge L(O)$  (no read up)
  - S can write O iff  $L_c(S) \le L(O)$  (no write down)
- Discretionary-security property
  - every access is allowed by the access matrix
- A system is secure if and only if every reachable state is secure.



#### Implication of the BLP Policy





#### STAR-PROPERTY

- Applies to subjects not to principals and users
- Users are trusted (must be trusted) not to disclose secret information outside of the computer system
- Subjects are not trusted because they may have Trojan Horses embedded in the code they execute
- Star-property prevents overt leakage of information and does not address the covert channel problem





- Overview of the Bell Lapadula Model
- Details of the Bell Lapadula Model
- Analysis of the Bell Lapadula Model
- More on Multi-level Security
- TCSEC and Common Criteria
- Biba Integrity Models
- Clark-Wilson Model and Chinese Wall Policy



#### Is BLP Notion of Security Good?

- The objective of BLP security is to ensure
  - a subject cleared at a low level should never read information classified high
- The ss-property and the \*-property are sufficient to stop such information flow at any given state.
- What about information flow across states?



- Consider a system with two subjects s<sub>1</sub>,s<sub>2</sub> and two objects o<sub>1</sub>,o<sub>2</sub>
  - $f_{S}(s_{1}) = f_{C}(s_{1}) = f_{O}(o_{1}) = high$
  - $f_S(s_2) = f_C(s_2) = f_O(o_2) = Iow$
- And the following execution
  - s<sub>1</sub> gets read access to o<sub>1</sub>, read something, release access, then change current level to low, get write access to o<sub>2</sub>, write to o<sub>2</sub>
- Every state is secure, yet illegal information flow exists, assuming that a subject can store information from one state to the next
- Solution: tranquility principle: subject cannot change current levels, or cannot drop current level to below the highest level read so far



- When a subject A copies information from high to a low object f, this violates the star-property, but no information leakage occurred yet
  - Only when B, who is not cleared at high, reads f, does leakage occurs
  - If the access matrix limits access to f only to A, then such leakage may never occur
- BLP notion of security is neither sufficient nor necessary to stop illegal information flow (through direct/overt channels)
- The state based approach is too low level and limited in expressive power



### How to Fix The BLP Notion of Security (if we want to)?

- May need to differentiate externally visible objects from other objects
  - e.g., a printer is different from a memory object
- State-sequence based property
  - e.g., define security to mean that there exists no sequence of states so that there is an information path from a high object to a low externally visible object or to a low subject



- This provides the verification techniques piece in
  - Model Policy Verification framework
- Restatement of The Basic Security Theorem: A system is a secure system if and only if the starting state is a secure state and each action (concrete state transition that could occur in an execution sequence) of the system leads the system into a secure state.



- The BST is purely a result of defining security as a state-based property.
  - It holds for any other state-based property
- The BST cannot be used to justify that the BLP notion of security is "good"
  - This is McLean's main point in his papers
    - "A Comment on the Basic Security Theorem of Bell and LaPadula" [1985]
    - "Reasoning About Security Models" [1987]
    - "The Specification and Modeling of Computer Security" [1990]



#### Main Contributions of BLP

- The overall methodology to show that a system is secure
  - adopted in many later works
- The state-transition model
  - which includes an access matrix, subject security levels, object levels, etc.
- The introduction of \*-property
  - ss-property is not enough to stop illegal information flow





- Overview of the Bell Lapadula Model
- Details of the Bell Lapadula Model
- Analysis of the Bell Lapadula Model
- More on Multi-level Security
- TCSEC and Common Criteria
- Biba Integrity Models
- Clark-Wilson Model and Chinese Wall Policy



- Deal only with confidentiality, does not deal with integrity at all
  - Confidentiality is often not as important as integrity in most situations
  - Integrity is addressed by models such as Biba, Clark-Wilson, which we will cover later
- Does not deal with information flow through covert channels



## **Overt (Explicit) Channels vs. Covert Channels**

- Security objective of MLS in general, BLP in particular, is
  - high-classified information cannot flow to low-cleared users
- Illegal information flow via overt channels (e.g., read/write an object) is blocked by BLP
- Illegal information flow by covert channels can still occur
  - communication channel based on the use of system resources not normally intended for communication between the subjects (processes) in the system



- Using file lock as a shared boolean variable
- By varying its ratio of computing to input/output or its paging rate, the service can transmit information to a concurrently running process
- Timing of packets being sent
- In general, shared resources can be used as covert channels
  - What is needed is one party can affect them, and another can observe the effects
- Covert channels are often noisy
- However, information theory and coding theory can be used to encode and decode information through noisy channels



- Covert channels cannot be blocked by \*-property
- It is generally very difficult, if not impossible, to block all covert channels
- One can try to limit the bandwidth of covert channels
- Military requires cryptographic components be implemented in hardware
  - to avoid trojan horse leaking keys through covert channels
- Covert channels are achieved by collaboration or high and low subjects.

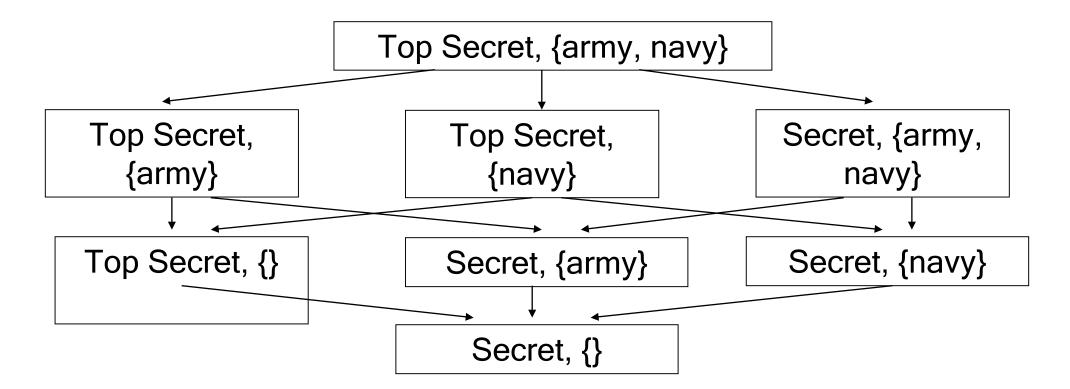


### More on MLS: Security Levels

- Used as attributes of both subjects & objects
  - clearance & classification
- Typical military security levels:
  - top secret  $\geq$  secret  $\geq$  confidential  $\geq$  unclassified
- Typical commercial security levels
  - restricted  $\geq$  proprietary  $\geq$  sensitive  $\geq$  public



- Also known as compartments
- Typical military security categories
  - army, navy, air force
  - nato, nasa, noforn
- Typical commercial security categories
  - Sales, R&D, HR
  - Dept A, Dept B, Dept C




- Labels = Levels × P (Categories)
  - P (Categories) is powerset (set of all subsets) of Categories
- There is a natural partial ordering relationship among Labels
  - (e1, C1)  $\leq$  (e2, C2) iff. e1  $\leq$ e2 and C1  $\subseteq$  C2
- This ordering relation is a partial order
  - reflexive, transitive, anti-symmetric
  - e.g., ⊆
- All security labels form a lattice



#### An Example Security Lattice

- levels={top secret, secret}
- categories={army, navy}





- Even if someone has all the necessary official approvals (such as a security clearance) to access certain information they should not be given access to such information unless they have a *need to know*. that is, unless access to the specific information necessary for the conduct of one's official duties.
- Can be implemented using categories and/or DAC





- Overview of the Bell Lapadula Model
- Details of the Bell Lapadula Model
- Analysis of the Bell Lapadula Model
- More on Multi-level Security
- TCSEC and Common Criteria
- Biba Integrity Models
- Clark-Wilson Model and Chinese Wall Policy



## Terminology: Trusted vs. Trustworthy

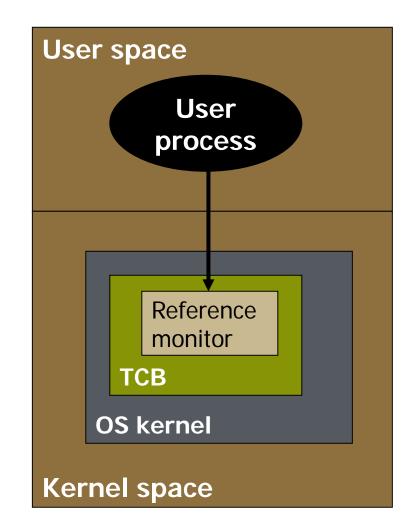
- A component of a system is trusted means that
  - the security of the system depends on it
  - failure of component can break the security policy
  - determined by its role in the system
- A component is trustworthy means that
  - the component deserves to be trusted
  - e.g., it is implemented correctly
  - determined by intrinsic properties of the component



# Terminology: Trusted Computing Base (TCB)

- The set of all hardware, software and procedural components that enforcing the security policy depends upon.
  - In order to break security, an attacker must subvert some part of the TCB.
  - The smaller the TCB, the more secure a system is.
- What would a Trusted Computing Base in a Unix/Linux system consists of?
  - Depends on the security objective
  - hardware, kernel, system binaries, system configuration files, setuid root programs, etc., at the minimum
- One approach to improve security is to reduce the size of TCB, i.e., reduce what one relies on for security.






- Assurance: "estimate of the likelihood that a system will not fail in some particular way"
- Based on factors such as
  - Software architecture
    - E.g., kernelized design,
  - Development process
  - Who developed it
  - Technical assessment



## Kernelized Design for High-Assurance Systems

- Uses the reference monitor concept
- Reference monitor
  - Part of TCB
  - All system calls go through reference monitor for security checking
  - Security does not depends on the whole kernel
  - Most OS not designed this way





- Three required properties for reference monitors in highassurance systems
  - tamper-proof
  - non-bypassable (complete mediation)
  - small enough to be analyzable



- Criteria are specified to enable evaluation
- Originally motivated by military applications, but now is much wider
- Examples
  - Orange Book (Trusted Computer System Evaluation Criteria)
  - Common Criteria



### TCSEC: 1983-1999

#### Trusted Computer System Evaluation Criteria

- Also known as the Orange Book
- Series that expanded on Orange Book in specific areas was called *Rainbow Series*
- Developed by National Computer Security Center, US Dept. of Defense
- Heavily influenced by Bell-LaPadula model and reference monitor concept
- Emphasizes confidentiality



**Division D: Minimal Protection** 

D Did not meet requirements of any other class

**Division C: Discretionary Protection** 

- C1 *Discretionary protection* : DAC, Identification and Authentication, TCB should be protected from external tampering, ...
- C2 *Controlled access protection* : object reuse, auditing, more stringent security testing



## **Division B: Mandatory Protection**

- B1 *Labeled security protection* : informal security policy model; MAC for named objects; label exported objects; more stringent security testing
- B2 *Structured protection* : formal security policy model; MAC for all objects, labeling; trusted path; least privilege; covert channel analysis, configuration management
- B3 *Security domains* : satisfies three reference monitor requirements; system recovery procedures; constrains code development; more documentation requirements



### **Division A: Verification Protection**

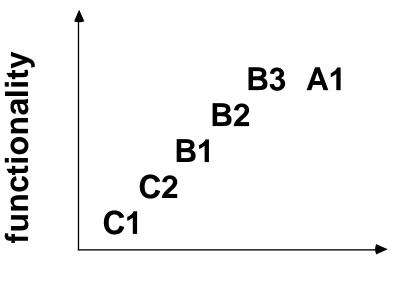
#### A1 Verified design :

functionally equivalent to B3, but require the use of formal methods for assurance; trusted distribution; code, formal top-level specification (FTLS) correspondence





#### Written for operating systems


NCSC introduced "interpretations" for other things such as networks (*Trusted Network Interpretation*, the Red Book), databases (*Trusted Database Interpretation*, the Purple or Lavender Book)

#### Focuses on BLP

- Most commercial firms do not need MAC
- Does not address data integrity or availability
  - Critical to commercial firms
- Combine functionality and assurance in a single linear scale



- functionality is multidimensional
- assurance has a linear progression



assurance



### Common Criteria: 1998–Present

- An international standard (ISO/IEC 15408)
- Began in 1998 with signing of Common Criteria Recognition Agreement with 5 signers: US, UK, Canada, France, Germany
- As of December 2015, 19 authorizing countries, and 8 consuming countries (do not evaluate, accept evaluated products)
- Standard 15408 of International Standards Organization
- De facto US security evaluation standard, replaces TCSEC



- Does not provide one list of security features
- Describes a framework where security requirements can be specified, claimed, and evaluated
- Key concepts
  - Target Of Evaluation (TOE): the product or system that is the subject of the evaluation.
  - Security Target (ST): a document that identifies the security properties one wants to evaluate against
  - Protection Profile (PP): a document that identifies security requirements relevant to a user community for a particular purpose.
  - Evaluation Assurance Level (EAL) a numerical rating (1-7) reflecting the assurance requirements fulfilled during the evaluation.



## **CC Functional Requirements**

- Contains 11 classes of functional requirements
  - Each contains one or more families
  - Elaborate naming and numbering scheme
- Classes: Security Audit, Communication, Cryptographic Support, User Data Protection, Identification and Authentication, Security Management, Privacy, Protection of Security Functions, Resource Utilization, TOE Access, Trusted Path
- For example, within Identification and Authentication, there are the following families
  - Authentication Failures, User Attribute Definition, Specification of Secrets, User Authentication, User Identification, and User/Subject Binding



## CC Assurance Requirements

- Ten security assurance classes:
  - Protection Profile Evaluation
  - Security Target Evaluation
  - Configuration Management
  - Delivery and Operation
  - Development
  - Guidance Documentation
  - Life Cycle
  - Tests
  - Vulnerabilities Assessment
  - Maintenance of Assurance



- "A CC protection profile (PP) is an implementation-independent set of security requirements for a category of products or systems that meet specific consumer needs"
  - Subject to review and certified
- Requirements
  - Functional
  - Assurance
  - EAL



- Example: Controlled Access PP (CAPP\_V1.d)
  - Security functional requirements
    - Authentication, User Data Protection, Prevent Audit Loss
  - Security assurance requirements
    - Security testing, Admin guidance, Life-cycle support, ...
  - Assumes non-hostile and well-managed users
  - Does not consider malicious system developers



- "A security target (ST) is a set of security requirements and specifications to be used for evaluation of an identified product or system"
- Can be based on a PP or directly taking components from CC
- Describes specific security functions and mechanisms



### **Evaluation Assurance Levels 1 – 4**

EAL 1: Functionally Tested

- Review of functional and interface specifications
- Some independent testing
- EAL 2: Structurally Tested
  - Analysis of security functions, incl. high-level design
  - Independent testing, review of developer testing
- EAL 3: Methodically Tested and Checked
  - More testing, Some dev. environment controls;
- EAL 4: Methodically Designed, Tested, Reviewed
  - Requires more design description, improved confidence that TOE will not be tampered



### **Evaluation Assurance Levels 5 – 7**

#### EAL 5: Semiformally Designed and Tested

- Formal model, modular design
- Vulnerability search, covert channel analysis

#### EAL 6: Semiformally Verified Design and Tested

• Structured development process

#### EAL 7: Formally Verified Design and Tested

- Formal presentation of functional specification
- Product or system design must be simple
- Independent confirmation of developer tests



- A higher EAL means nothing more, or less, than that the evaluation completed a more stringent set of quality assurance requirements.
- It is often assumed that a system that achieves a higher EAL will provide its security features more reliably, but there is little or no published evidence to support that assumption.
- Anything below EAL4 doesn't mean much
- Anything above EAL4 is very difficult to achieve for complex systems such as OS
- Evaluation is done for environments assumed by vendors



### Criticism of CC

- Evaluation is a costly process (often measured in hundreds of thousands of US dollars) -- and the vendor's return on that investment is not necessarily a more secure product
- Evaluation focuses primarily on assessing the evaluation documentation, not the product itself
- The effort and time to prepare evaluation-related documentation is so cumbersome that by the time the work is completed, the product in evaluation is generally obsolete
- Industry input, including that from organizations such as the Common Criteria Vendor's Forum, generally has little impact on the process as a whole





- Overview of the Bell Lapadula Model
- Details of the Bell Lapadula Model
- Analysis of the Bell Lapadula Model
- More on Multi-level Security
- TCSEC and Common Criteria
- Biba Integrity Models
- Clark-Wilson Model and Chinese Wall Policy



- Kenneth J. Biba: "Integrity Considerations for Secure Computer Systems", MTR-3153, The Mitre Corporation, April 1977.
- Motivations
  - BLP focuses on confidentiality
  - In most systems, integrity is equally, if not more, important
  - Data integrity vs. System integrity
    - Data integrity means that data cannot be changed without being detected



- Attempt 1: Critical data do not change.
- Attempt 2: Critical data changed only in "correct ways"
  - Analogy: in DB, integrity constraints are used for consistency
- Attempt 3: Critical data changed only through certain "trusted programs"
- Attempt 4: Critical data changed only as intended by authorized users.



- Each subject (process) has an integrity level
- Each object has an integrity level
- Integrity levels are totally ordered
- Integrity levels different from security levels in confidentiality protection
  - Highly sensitive data may have low integrity
  - What is an example of a piece of data that needs high integrity, but no confidentiality?



# Strict Integrity Policy (BLP reversed)

- **s** can read o iff  $i(s) \le i(o)$ 
  - no read down
  - stops indirect sabotage by contaminated data
- **s** can write to o iff  $i(s) \ge i(o)$ 
  - no write up
  - stops directly malicious modification
- Fixed integrity levels
- No information path from low object/subject to high object/subject
- Too restrictive for practice. Why?



## Subject Low-Water Policy

- s can always read o; however, after reading i(s) ← min[i(s), i(o)]
- s can write to o iff  $i(s) \ge i(o)$
- Subject's integrity level decreases as reading lower integrity data
- No information path from low-object to high-object
- Dual to a form of Tranquility Principle in BLP



## **Object Low-Water Mark Policy**

- s can read o; iff  $i(s) \le i(o)$
- s can always write to o; after writing
   i(o) ← min[i(s), i(o)]
- Object's integrity level decreases as it is contaminated by subjects
- In the end, objects that have high labels have not been contaminated



## Low-Water Mark Integrity Audit Policy

- s can always read o; after reading

   i(s) ← min[i(s), i(o)]
- s can always write to o; after writing
   i(o) ← min[i(s), i(o)]
- Tracing, but not preventing contamination
- Similar to the notion of taint tracking in software security



## The Ring Policy

- Any subject can read any object
- s can write to o iff  $i(s) \ge i(o)$
- Integrity levels of subjects and objects are fixed.
- Intuitions:
  - subjects are trusted to process low-level inputs correctly
  - Dual to Trusted Subjects (not subject to star-property) in BLP



### Five Mandatory Policies in Biba

- Strict integrity policy
- Subject low-water mark policy
- Object low-water mark policy
- Low-water mark Integrity audit policy
- Ring policy
- In practice, one may be using one or more of these policies, possibly applying different policies to different subjects
  - E.g., subjects for which ring policy is applied are trusted to be able to correctly handle inputs;



## Integrity Policies Options

RDUE

VERSITY<sub>®</sub>

PU

UNI

|                                                             |                                           | When high subject requests to read low object: |                                            |                                         |
|-------------------------------------------------------------|-------------------------------------------|------------------------------------------------|--------------------------------------------|-----------------------------------------|
|                                                             |                                           | Deny                                           | Allow, drop<br>subject level<br>afterwards | Allow, no<br>change to<br>subject level |
| When low<br>subject<br>requests to<br>write high<br>object: | Deny                                      | Strict Integrity<br>Policy                     | Subject Low<br>Water Policy                | Ring Policy                             |
|                                                             | Allow, drop<br>object level<br>afterwards | Object Low<br>Water Policy                     | Low-Water<br>Audit Policy                  |                                         |
|                                                             | Allow, no change<br>to object level       |                                                |                                            |                                         |

Why last row is empty, but last column is not?

- The integrity level of an object may be based on
  - Quality of information (levels may change)
    - Degree of trustworthiness
    - Contamination level:
  - Importance of the object (levels do not change)
    - Degree of being trusted
    - Protection level: writing to the objects should be protected
- What should be the relationship between the two meanings, which level should be higher?



## Integrity vs. Confidentiality

| Confidentiality                | Integrity                        |  |
|--------------------------------|----------------------------------|--|
| Control reading                | Control writing                  |  |
| preserved if confidential info | preserved if important obj is    |  |
| is not read                    | not changed (by writing)         |  |
| For subjects who need to       | For subjects who need to         |  |
| read, control writing after    | write, one has to trust them,    |  |
| reading is sufficient, no need | control reading before           |  |
| to trust them                  | writing is <b>not</b> sufficient |  |

Integrity requires trust in subjects!





- Confidentiality violation: leak a secret
  - CAN be prevented even if I tell the secret to a person I do not trust, so long as I can lock the person up AFTERWARDS to prevent further leakage
    - The person cannot leak confidential info w/o talking
- Integrity violation: follow a wrong instruction
  - CANNOT be prevented if I follow instruction from an person I do not trust even if I lock the person up BEFOREHAND to prevent the person from receiving any malicious instruction
    - The person can invent malicious instruction without outside input



# Key Difference between Confidentiality and Integrity

#### For confidentiality, controlling reading & writing is sufficient

- theoretically, no subject needs to be trusted for confidentiality; however, one does need trusted subjects in BLP to make system realistic
- For integrity, controlling reading and writing is insufficient
  - one has to trust all subjects who can write to critical data



### Impacts of The Need to Trust Subjects

- Trusting only a small security kernel is no longer possible
- No need to worry about covert channels for integrity protection
- How to establish trust in subjects becomes a challenge.



# Application of Integrity Protection

- Mandatory Integrity Control in Windows (since Vista)
  - Uses four integrity levels: Low, Medium, High, and System
  - Each process is assigned a level, which limit resources it can access
  - Processes started by normal users have Medium
  - Elevated processes have High
    - Through the User Account Control feature
  - Some processes run as Low, such as IE in protected mode
  - Reading and writing do not change the integrity level
    - Ring policy.





- Overview of the Bell Lapadula Model
- Details of the Bell Lapadula Model
- Analysis of the Bell Lapadula Model
- More on Multi-level Security
- TCSEC and Common Criteria
- Biba Integrity Models
- Clark-Wilson Model and Chinese Wall Policy



- David D. Clark and David R. Wilson. "A Comparison of Commercial and Military Computer Security Policies." In IEEE SSP 1987.
- Paper defends two conclusions:
  - There is a distinct set of security policies, related to integrity rather than disclosure, which are often of highest priority in the commercial data processing environment
    - no user of the system, even if authorized, may be permitted to modify data items in such a way that assets or accounting records of the company are lost or corrupted
  - Some separate mechanisms are required for enforcement of these policies, disjoint from those in the Orange Book



# Two High-level Mechanisms for Enforcing Data Integrity (1)

#### Well-formed transaction

- a user should not manipulate data arbitrarily, but only in constrained ways that preserve or ensure data integrity
  - e.g., use an append-only log to record all transactions
  - e.g., double-entry bookkeeping
  - e.g., passwd

#### Data can be manipulated only through trusted code!



# Two High-level Mechanisms for Enforcing Data Integrity (2)

#### Separation of duty

- ensure external consistency: data objects correspond to the real world objects
- separating all operations into several subparts and requiring that each subpart be executed by a different person
- e.g., the two-man rule



# Implementing the Two High-level Mechanisms

- Mechanisms are needed to ensure
  - control access to data: a data item can be manipulated only by a specific set of programs
  - **program certification:** programs must be inspected for proper construction, controls must be provided on the ability to install and modify these programs
  - control access to programs: each user must be permitted to use only certain sets of programs
  - control administration: assignment of people to programs must be controlled and inspected



# The Clarke-Wilson Model for Integrity

- Unconstrained Data Items (UDIs)
  - data with low integrity
- Constrained Data Items (CDIs)
  - data items within the system to which the integrity model must apply
- Integrity Verification Procedures (IVPs)
  - confirm that all of the CDIs in the system conform to the integrity specification
- Transformation Procedures (TPs)
  - well-formed transactions



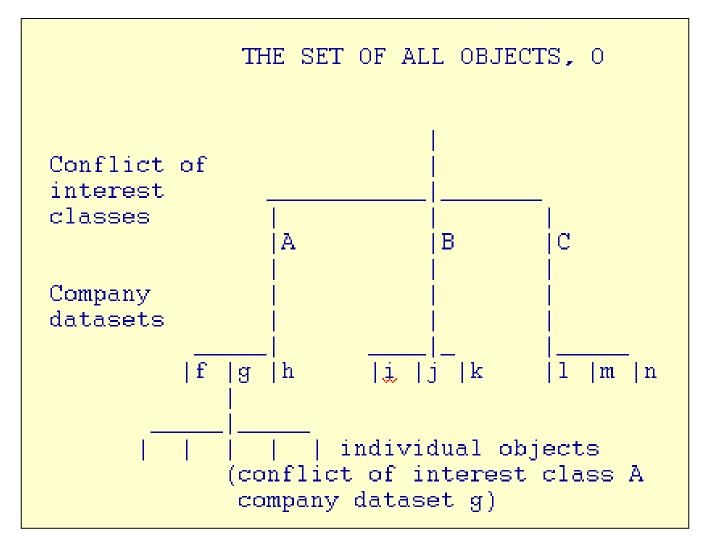
# Differences of Clark-Wilson from MAC/BLP

- A data item is not associated with a particular security level, but rather with a set of TPs
- A user is not given read/write access to data items, but rather permissions to execute certain programs



- Biba lacks the procedures and requirements on identifying subjects as trusted
- Clark-Wilson focuses on how to ensure that programs can be trusted




### The Chinese Wall Security Policy

#### Goal: Avoid Conflict of Interest

- Data are stored in a hierarchical arranged system
  - the lowest level consists of individual data items
  - the intermediate level group data items into company data sets
  - the highest level group company datasets whose corporation are in competition



#### The Set of All Objects, O





## Simple Security Rule in Chinese Wall Policy

- Access is only granted if the object requested:
  - is in the same company dataset as an object already accessed by that subject, i.e., within the Wall,

#### or

• belongs to an entirely different conflict of interest class.





- Multi-level security focuses on protecting confidentiality
- Bell-Lapadula Model
- Biba Integrity Model
- Clark Wilson Model and Chinese wall policy





- Non-interference and non-deducibility
- Role based access control

