DATA SECURITYAND
PRIVACY

Week 2: Weakness of DAC

Readings for this lecture

= Seeley: “A Tour of the Worm”. In Proc. Winter Usenix Conf., February 1989.
* https://collections.lib.utah.edu/details?id=702918

» Hardy: “Confused Deputy.” ACM SIGOPS Operating Systems Review. Oct. 1988
 https://dl.acm.org/doi/10.1145/54289.871709

= Miller et al. “Capability Myths Demolished”
* https://srl.cs.jhu.edu/pubs/SRL2003-02.pdf

* Mao et al. “Combining Discretionary Policy with Mandatory Information Flow in
Operating Systems” ACM TISSEC, November 2011.

* https://dl.acm.org/doi/10.1145/2043621.2043624
* Reading the introduction is sufficient

27 FORRVE

https://collections.lib.utah.edu/details?id=702918
https://dl.acm.org/doi/10.1145/54289.871709
https://srl.cs.jhu.edu/pubs/SRL2003-02.pdf
https://dl.acm.org/doi/10.1145/2043621.2043624

= Morris Worm as an example to illustrate the limitation of
UNIX DAC protection

= Analysis of DAC Weaknesses

e Confused deputy
* DAC’s implicit trust in programs being benign and correct

» Sandboxing/virtualization/isolation approaches
» Create access control policies depend on programs

27 FORRVE

Whatis a Worm?

= \What is a worm?

» Self-propagating malware

* Three steps
* Find targets
« Compromise target
« Copy itself and execute

E PURDUE 4

UNIVERSITY.

Morris Worm (November 1988)

The Morris Internet Worm
source code

* First major internet worm
= Written by Robert Morris Jr.

» Son of former chief scientist of NSA's
National Computer Security Center

E UP}IJ‘%]%IIJTE Image from wiki Under CC BY_SA 2.0

https://en.wikipedia.org/wiki/Morris_worm#/media/File:Morris_Worm.jpg
https://creativecommons.org/licenses/by-sa/2.0/

Morris Worm Description

* Two parts
 Main program to spread worm
* look for other machines that could be infected
e try to find ways of infiltrating these machines
* Vector program (99 lines of C)
e compiled and run on the infected machines

e transferred main program to continue attack

27 FORRVE

Vector 1: Debug feature of sendmail

» Sendmail
 Listens on port 25 (SMTP port)
 Some systems back then compiled it with DEBUG option on

» Debug feature gives

e The ability to send a shell script and execute on the host

27 FORRVE

Vector 2: Exploiting fingerd

= What does finger do?
= Finger output
e arthur.cs.purdue.edu% finger ninghui
e Login name: ninghui In real life: Ninghui Li
 Directory: /lnomes/ninghui Shell: /bin/csh
* Since Jan 18 09:50:47 on pts/2 from pal-10-184-63-172.itap (4 seconds idle)
* No unread mail.
* No Plan.

27 FORRVE

Vector 2: Exploiting fingerd

* Fingerd

 Listen on port 79

= |t uses the function char* gets(char *)
* Fingerd expects an input string
« Worm writes long string to internal 512-byte buffer

» Overrides return address to jump to shell code

27 FORRVE

Vector 3: Exploiting Trust in Remote Login

* Remote login on UNIX * Trusting mechanism
* rlogin, rsh « Trusted machines have the same user
accounts

» Users from trusted machines
» /etc/host.equiv — system wide trusted hosts file
e /.rhosts and ~/.rhosts — users’ trusted hosts file

Host aaa.xyz.com
/etc/host.equiv

Host bbb.xyz.com

rlogin

bbb.xyz.com

27 FORRVE

User alice

Vector 3: Exploiting Trust in Remote Login

= Worm exploited trust information
e Examining trusted hosts files
* Assume reciprocal trust
o If Xtrusts Y, then most likely Y trusts X

= Password cracking

 Worm coming in through fingerd was running as daemon (not root) so needed
to break into accounts to use .rhosts feature

* Read /etc/passwd, used “400 common password strings & local dictionary to
do a dictionary attack

27 FORRVE

Other Features of The Worm

= Self-hiding
e Program is shown as 'sh' when ps
 Files didn’t show up in Is

* Find targets using several mechanisms:
e 'netstat -r -n‘, /etc/hosts, ...

= Compromise multiple hosts in parallel

 When worm successfully connects, forks a child to continue the infection while the parent
keeps trying new hosts

= Worm has no malicious payload
= Where does the damage come from?

27 FORRVE

* One host may be repeatedly compromised
» Supposedly designed to gauge the size of the Internet
* The following bug/feature made it more damaging.

* Asks a host whether it is already running the Morris Worm; however, even if it
answers yes, still compromise it with probability 1/8.

27 FORRVE

Review: How does a computer get compromised?

» Buggy programs accept malicious input
e daemon programs that receive network traffic
« client programs (e.g., web browser, mail client) that receive input data from network
* buggy programs (e.g., pdf readers) read malicious files saved from the network

Configuration errors (e.g., weak passwords, guest accounts, DEBUG options,
etc)

Human errors (e.g., leaking passwords due to social engineering attacks,
executing malicious code such as email attachment, or downloading and
executing trojan horses)

Giving attacker physical access to computer

27 FORRVE

» Analysis of DAC Weaknesses
» Confused deputy and capability system
 DAC'’s implicit trust in programs being benign and correct

» Sandboxing/virtualization/isolation approaches
» Create access control policies depend on programs

27 FORRVE

Could BetterAccess Control Help Stop Morris Worm?

= Vector 1: Exploiting buffer overflow vulnerability in fingerd, and then take over
the fingerd process to execute a malicious shell script

 In UNIX access control, fingerd runs as a daemon user which can run shell and many other
programs

« If fingerd is prevented from running shell, then this attack would fail.

* Vector 2: Exploit DEBUG option
« Cannot be stopped by access control.

* Vector 3: Exploit mutual trust

« Cannot be stopped by access control, if the convenience is desired. This is an issue only
when a host on a local network is compromised.

E PURDUE 16

UNIVERSITY.

Discretionary Access Contro/

* No precise definition. Basically, DAC allows access rights to be propagated at
subject’s discretion

 often has the notion of owner of an object
e used in UNIX, Windows, etc.

= According to TCSEC (Trusted Computer System Evaluation Criteria)

* "A means of restricting access to objects based on the identity and need-to-know of users
and/or groups to which they belong. Controls are discretionary in the sense that a subject with
a certain access permission is capable of passing that permission (directly or indirectly) to any
other subject.”

» Often compared to Mandatory Access Control

27 FORRVE

Analysis why DAC is not Good enough

» DAC causes the Confused Deputy problem

 Solution: use capability-based systems

= DAC does not preserve confidentiality when facing Trojan horses

« Solution: use Mandatory Access Control (BLP)

» DAC implementation fails to keep track of for which principals a
subject (process) is acting on behalf of

« Solution: fixing the DAC implementation to better keep track of principals
« Solution: adding additional access control mechanism

27 FORRVE

The Confused Deputy Problem

SYSX/FORT $OUTPUT
Compiler Program

SYSX (Dir) Writeto § Write
STAT file file
BILL

SYSX/BILL $Output

The Confused Deputy by Norm Hardy
57 PURDUE
UNIVERSITY.

Analysis of The Confused Depuly Problem

= The compiler runs with authority from two sources

 the invoker (i.e., the programmer)

* the system admin (who installed the compiler and controls billing and other info)
= |t is the deputy of two masters

= There is no way to tell which master the deputy is serving when
performing a write

= Solution: Use capability

27 FORRVE

Different Notions of Capabilities

= Capabilities used in POSIX/Linux as a way to divide the root power
iInto multiple pieces that can be given out separately

= Capabilities as a row representation of Access Matrices

= Capabilities as a way of implementing the whole access control
systems

= \We will examine the second and third notion next in this lecture

27 FORRVE

ACCESS MATRIX MODEL

Objects (and Subjects)————y

F G

| o

v I (17 A

U own

o N
rw

S I A AN

t

S

LN

rights

27 FORRVE

IMPLEMENTATION OF ANACCESS MATRIX

= Access Control Lists

* Encode columns
= Capabilities
* Encode rows
= Access control triples

 Encode cells

E PURDUE

UNIVERSITY.

ACCESS CONTROL LISTS (ACLs)

each column of the access matrix is stored with the object
corresponding to that column

27 FORRVE

CAPABILITY LISTS

U Ir, FIw, Flown, G/r
V G/r, G/w, G/own

each row of the access matrix is stored with the subject

corresponding to that row

27 FORRVE

ACCESS CONTROL TRIPLES

Subject Access Object

commonly used in relational DBMS

27 FORRVE

Capability Based Access Control

» Subjects have capabilities, which
» Give them accesses to resources (similar to keys that can open doors)
« Can be transferred to other subjects
* Are unforgeable tokens of authority

= Example: a UNIX system where only owner of a file can open the file, and file
sharing is done by passing opened file descriptors around

= Why capabilities may solve the confused deputy problems?

 When access a resource, must select a capability, which also selects a master

27 FORRVE

How Do Capabilities Solve the Confused Deputy Problem

= Invoker must pass in a capability for SOUTPUT, which is stored in slot 3.

SYSX/STAT SYSX/BILL

SYSX/FORT $OUTPUT

1

2

3

$SOUTPUT

= Writing to output uses the capability in slot 3.
* Invoker cannot pass a capability it doesn’t have.

27

PURDUE

UNIVERSITY.

Capability vs. ACL

= Consider two security mechanisms for bank accounts.

* One is identity-based. Each account has multiple authorized
owners. You go into the bank and shows your ID, then you can
access all accounts you are authorized.

* Once you show ID, you can access all accounts.
* You have to tell the bank which account to take money from.

* The other is token-based. When opening an account, you get a
passport to that account and a PIN, whoever has the passport and
the PIN can access

27 FORRVE

Capabilities vs. ACL: Ambient Authorily

= Ambient authority means that a user’s authority is

automatically exercised, without the need of being selected.

« Causes the confused deputy problem
 Violates the least privilege principle

= No Ambient Authority in capability systems

27 FORRVE

Capability vs. ACL: Naming

» ACL systems need a nhamespace for objects

* |[n capability systems, a capability can serve both to designate a
resource and to provide authority.

» ACLs also need a namespace for subjects or principals
 as they need to refer to subjects or principals

* I[mplications

* the set of subjects cannot be too many or too dynamic

* most ACL systems grant rights to user accounts principals, and do not support fine-grained
subject rights management

27 FORRVE

conjectures on Why Capability-based AC is Rarely Used

= Capability is more suitable for process level sharing, but not
user-level sharing

 user-level sharing is what is really needed

» Processes are more tightly coupled in capabillity-based
systems because the need to pass capabillities around

e programming may be more difficult

27 FORRVE

Analysis why DAC is not Good enough

= DAC does not preserve confidentiality when facing Trojan horses

e Solution: use Mandatory Access Control (BLP)

» DAC implementation fails to keep track of for which principals a
subject (process) is acting on behalf of

 Solution: fixing the DAC implementation to better keep track of principals

« Solution: adding additional access control mechanism

27 FORRVE

Weakness OF DAC in Information Flow Control/

» Unrestricted DAC allows information flows from an object
which can be read to any other object which can be written
by a subject

* Suppose A is allowed to read some information and B is not, A can reads and
tells B

» Suppose that users are trusted not to do this deliberately. It
IS still possible for Trojan Horses to copy information from
one object to another.

27 FORRVE

TROJAN HORSE EXAMPLE

ACL
| A:r
File F AW
| B:r
File G AW

Principal B cannot read file F

27 FORRVE

TROJAN HORSE EXAMPLE

Principal A

ACL
executes
\ A:r
read JFileF .
Program Goodies

B:r
. File G .
write Atw

Principal B can read contents of file F copied to file G

27 FORRVE

Buggey Software Can Become Trojan Horse

* When a buggy software is exploited, it execute the code/intention of
the attacker, while using the privileges of the user who started it.

* This means that computers with only DAC cannot be trusted to
process information classified at different levels

« Mandatory Access Control is developed to address this problem

* We will cover this in the next topic

27 FORRVE

Analysis why DAC is not Good enough

= DAC implementation fails to keep track of for which principals a
subject (process) is acting on behalf of

« Solution: fixing the DAC implementation to better keep track of principals

« Solution: adding additional access control mechanism

27 FORRVE

DAC's Weaknesses Caused by The Gap

* A request: a subject wants to perform an action
e E.g., processes in OS
» The policy: each principal has a set of privileges
e E.g., user accounts in OS
» Challenging to fill the gap between the subjects and the
principals
* relate the subject to the principals

E PURDUE

UNIVERSITY.

Unix DAC Revisited (1)

Action Process Effective Real

uiD Principals
User A Logs In shell User A User A

Load Binary “Goodie” Goodie User A ??
Controlled by user B

= When the Goodie process issues a request, what principal(s) is/are responsible for the request?
» Under what assumption, it is correct to say that User A is responsible for the request?

= Assumption: Programs are benign, i.e., they only do what they are told to do.

27 FORRVE

UNIX DAC Revisited (2)

Process Effective UID Real Principals
shell User A User A
Load AcroBat Reader Binary AcroBat User A User A
Read File Downloaded from Network AcroBat User A ?7?

= When the AcroBat process (after reading the file) issues a request, which principal(s) is/are
responsible for the request?
» Under what assumption, it is correct to say that User A is responsible for the request?

= Assumption: Programs are correct, i.e., they handle inputs correctly.

27 FORRVE

Why DAC is vulnerable?

* I[mplicit assumptions
« Software are benign, i.e., behave as intended
« Software are correct, i.e., bug-free

* The reality

* Malware are popular
o Software are vulnerable

= Arguably the problem is not caused by the discretionary nature of
policy specification!
* i.e., owners can set policies for files

27 FORRVE

Why DAC is Vulnerable? (cont’)

= A limitation in the enforcement mechanism

« UNIX DAC maintains a single principal (euid) for a subject/process; this is not
enough to capture on whose behalf the process is acting

* When the program is a Trojan

* The program-provider should also be responsible for the requests
= When the program is vulnerable

* It may be exploited by input-providers

* The requests may be issued by injected code from input-providers

= Solution: accept that a subject may be acting on behalf of multiple
principals, and that we are uncertain.

27 FORRVE

Proposals to Radically Change DAC

» DAC causes the Confused Deputy problem
« Solution: use capability-based systems

* DAC does not preserve confidentiality when facing Trojan horses
« Solution: use Mandatory Access Control, e.g., BLP

» DAC implementation fails to keep track of for which principals a
subject (process) is acting on behalf of

« Solution: UMIP and IFEDAC
* None of these is widely used in commercial systems

E PURDUE 44

UNIVERSITY.

= Sandboxing/virtualization/isolation approaches
» Create access control policies depend on programs

27 FORRVE

Goal of Sandxboing/virtualization/Isolation

» Sandboxing: Separate running programs, to mitigate system failures
and/or software vulnerabilities

* Ensure that a program, even if compromised, causes only limited
damage.

E PURDUE 46

UNIVERSITY.

Confinement by Virtualization (Option 1)

* Runs a single kernel, virtualizes servers on one operating system
using built-in mechanism

* e.g., chroot, FreeBSD jall, ...

* used by service providers who want to provide low-cost hosting services to
customers.

* Pros: little performance overhead, easy to set up/administer

e Cons: some confinement can be broken, some servers cannot be easily
confined

27 FORRVE

* The chroot system call changes the root directory of the current and
all child processes to the given path.
= To use chroot,

* One first creates a temporary root directory for a running process,

e Then takes a limited hierarchy of a filesystem (say, /chroot/named) and
making this the top of the directory tree as seen by the application.

« Make the chroot system call: a network daemon program can call chroot itself,
or a script can call chroot and then start the daemon

27 FORRVE

Using chroot

» What are the security benefits?

 under the new root, many system utilities and resources do not exist, even if
the attacker compromises the process, damage can be limited

 consider the Morris worm, how would using chroot for fingerd affect its
propagation?

27 FORRVE

Limitations of chroot

= Only the root user can perform a chroot.

* intended to prevent users from putting a setuid program inside a specially-crafted chroot jail
(for example, with a fake /etc/passwd file) that would fool it into giving out privileges.

= chroot is not entirely secure on all systems.
« With root privilege inside chroot environment, it is sometimes possible to break out

= process inside chroot environment can still see/affect all other
processes and networking spaces

» chroot does not restrict the use of resources like |/O, bandwidth,
disk space or CPU time.

E PURDUE

UNIVERSITY.

Confinement by Virtualization (Option 2)

= Virtual machines: emulate hardware in a user-space process

* the emulation software runs on a host OS; guest OSes run in the emulation
software

* needs to do binary analysis/change on the fly

* e.g., Oracle VirtualBox, VMWare,

* Pros: can run other guest OS without modification to the OS
« Cons: significant performance overhead

27 FORRVE

Limitation of Confinement by Virtualization

* Pro. Policy is simple: just isolate each instance

= Con. Things within one virtual machine can still affect each
other.

27 FORRVE

» Create access control policies depend on programs

27 FORRVE

Program-Based Access Control

» For each process, there is an additional policy limiting what
it can do, which is based on the binary file

* E.g., what system call it can make, what files it can access, et.c
 This is in addition to the DAC restriction based on the user ids

* The key challenge

* how to specify the policy

27 FORRVE

Examples of Program-Based Policies Access Control/

» Security Enhanced Linux (SELinux)

* Developed by National Security Agency (NSA) and Secure Computing
Corporation (SCC) to promote MAC technologies

» Shipped with Fedora and some other Linux distributions
 Also part of Android as Security Enhanced Android

= AppArmor
« Shipped in Debian, Ubuntu, OpenSUSE Linux distributions

27 FORRVE

Main ldea of SElinux

= Consider more information (especially which program is running)
when making access control decisions

» Enable fine-grain control

= Support flexible security policies, “user friendly” security language
(syntax)
* Overall policy is extremely complex

E PURDUE

UNIVERSITY.

Policy: Domain-type Enforcement

* The access matrix consisting of subjects and objects is too large
and impractical.

» To reduce the size of the access matrix, subjects are grouped into
domains, objects are grouped into types.

= A smaller (but still big) access matrix with domains and types can
then be specified.

E PURDUE

UNIVERSITY.

Policy: Domain-type Enforcement

» Each object is labeled by a type
« Example:
o /etc/shadow etc t
 /etc/rc.d/init.d/httpd httpd_script_exec _t

* Objects are grouped by object security classes
* Files, sockets, IPC channels, capabilities
* Operations are defined upon each security class

» Each subject (process) is associated with a domain
 E.g., httpd_t, sshd_t, sendmail_t

27 FORRVE

Policy: Domain-type Enforcement

= Access control decision

 When a process wants to access an object, the decision is based on process
domain, object type, object security class, type of operation

» Example access vector rules
 allow sshd _t sshd_exec t: file { read execute entrypoint }

 allow sshd _t sshd_tmp_t: file { create read write getattr setattr link unlink
rename }

27 FORRVE

Policy: Domain-type Enforcement

* How the domain if a new process is determined?

* The domain for a new process is based on the domain of the parent process
and the label for the executable binary

* How the type of a new file is determined?
» Based on the domain of the creating process and the parent directory

= TE transition rules

e type transition initrc_t sshd_exec_t: process sshd_t
 type_transition sshd_t tmp_t: notdevfile class_set sshd_tmp t

E PURDUE

UNIVERSITY.

SELinux in Practice

= Strict policy = Targeted policy
* A system where everything is denied by « System where everything is allowed. use
default. deny rules.
* Minimal privilege's for every daemon * Only restrict certain daemon programs
« Separate user domains for programs like e Default in Fedora Core 3

GPG,X, ssh, etc

« Difficult to enforce in general purpose
operating systems

e Default in Fedora Core 2
 #1 Question: How do | turn off SELinux

* No protection for client programs

27 FORRVE

AppArmor

* Provide a sufficiently fine-grained mechanism
* Try to achieve least privilege for programs

* For each program one wants to confine, one provides a profile,
which specifies the activities the program can perform

* Files, Operations

27 FORRVE

Example Profile

#include <tunables/global> /lib/lib*.so* mr,
/proc/[0-9]** r,
[usr/lib/** mr,

a comment naming the
application to confine

/usr/bin/foo Itmp/ r,
{ /tmp/foo.pid W,
#include <abstractions/base> /tmp/foo.* Irw,
|@{HOMEY}/.foo_file rw,
capability setgid, |@{HOMEY}/.foo_lock kw,

network inet tcp,
a comment about foo's subprofile,

/bin/mount Ux, bar.
/dev/{,ujrandom r, Apar {
/etc/ld.so.cache I, /lib/ld-*.so* mr
;etcﬁooﬁonf r, Justibin/bar px,
etc/foo r

. ' Ivar/spool/* rwil,
fibld-*s0* mr, } P

E PURDUE }

UNIVERSITY.

= Buggy programs can be exploited

= Existing DAC mechanisms allow exploited programs to control a
whole system

= Existing DAC has some fundamental weaknesses
« Attempts to fix them have their own limitations and are not widely deployed

= Additional access control can help at the cost of the need to specify
additional policies

E PURDUE 64

UNIVERSITY.

Next Topic

» Multi-level Security (MLS) and Bell-La Padula Model

» Biba Integrity Model, Clark-Wilson Model, and Chinese Wall
Policy

27 FORRVE

	Data Security and Privacy
	Readings for this lecture
	Outline
	What is a Worm?
	Morris Worm (November 1988)
	Morris Worm Description
	Vector 1: Debug feature of sendmail
	Vector 2: Exploiting fingerd
	Vector 2: Exploiting fingerd
	Vector 3: Exploiting Trust in Remote Login
	Vector 3: Exploiting Trust in Remote Login
	Other Features of The Worm
	Damage
	Review: How does a computer get compromised?
	Outline
	Could Better Access Control Help Stop Morris Worm?
	Discretionary Access Control
	Analysis why DAC is not Good enough
	The Confused Deputy Problem
	Analysis of The Confused Deputy Problem
	Different Notions of Capabilities
	ACCESS MATRIX MODEL
	IMPLEMENTATION OF AN ACCESS MATRIX
	ACCESS CONTROL LISTS (ACLs)
	CAPABILITY LISTS
	ACCESS CONTROL TRIPLES
	Capability Based Access Control
	How Do Capabilities Solve the Confused Deputy Problem
	Capability vs. ACL
	Capabilities vs. ACL: Ambient Authority
	Capability vs. ACL: Naming
	Conjectures on Why Capability-based AC is Rarely Used
	Analysis why DAC is not Good enough
	Weakness OF DAC in Information Flow Control
	TROJAN HORSE EXAMPLE
	TROJAN HORSE EXAMPLE
	Buggy Software Can Become Trojan Horse
	Analysis why DAC is not Good enough
	DAC’s Weaknesses Caused by The Gap
	Unix DAC Revisited (1)
	UNIX DAC Revisited (2)
	Why DAC is vulnerable?
	Why DAC is Vulnerable? (cont’)
	Proposals to Radically Change DAC
	Outline
	Goal of Sandxboing/virtualization/Isolation
	Confinement by Virtualization (Option 1)
	chroot	
	Using chroot
	Limitations of chroot
	Confinement by Virtualization (Option 2)
	Limitation of Confinement by Virtualization
	Outline
	Program-Based Access Control
	Examples of Program-Based Policies Access Control
	Main Idea of SElinux
	Policy: Domain-type Enforcement
	Policy: Domain-type Enforcement
	Policy: Domain-type Enforcement
	Policy: Domain-type Enforcement
	SELinux in Practice
	AppArmor
	Example Profile
	Summary
	Next Topic

