
DATA SECURITY AND
PRIVACY

Week 2: Weakness of DAC

Readings for this lecture

 Seeley: “A Tour of the Worm”. In Proc. Winter Usenix Conf., February 1989.
• https://collections.lib.utah.edu/details?id=702918

 Hardy: “Confused Deputy.” ACM SIGOPS Operating Systems Review. Oct. 1988
• https://dl.acm.org/doi/10.1145/54289.871709

 Miller et al. “Capability Myths Demolished”
• https://srl.cs.jhu.edu/pubs/SRL2003-02.pdf

 Mao et al. “Combining Discretionary Policy with Mandatory Information Flow in
Operating Systems” ACM TISSEC, November 2011.
• https://dl.acm.org/doi/10.1145/2043621.2043624
• Reading the introduction is sufficient

https://collections.lib.utah.edu/details?id=702918
https://dl.acm.org/doi/10.1145/54289.871709
https://srl.cs.jhu.edu/pubs/SRL2003-02.pdf
https://dl.acm.org/doi/10.1145/2043621.2043624

Outline

Morris Worm as an example to illustrate the limitation of
UNIX DAC protection
 Analysis of DAC Weaknesses

• Confused deputy
• DAC’s implicit trust in programs being benign and correct
 Sandboxing/virtualization/isolation approaches
Create access control policies depend on programs

What is a Worm?

 What is a worm?
• Self-propagating malware

 Three steps
• Find targets

• Compromise target

• Copy itself and execute

4

 First major internet worm
 Written by Robert Morris Jr.

• Son of former chief scientist of NSA’s
National Computer Security Center

Morris Worm (November 1988)

Image from wiki Under CC BY_SA 2.0

https://en.wikipedia.org/wiki/Morris_worm#/media/File:Morris_Worm.jpg
https://creativecommons.org/licenses/by-sa/2.0/

Morris Worm Description

 Two parts
• Main program to spread worm

• look for other machines that could be infected

• try to find ways of infiltrating these machines

• Vector program (99 lines of C)

• compiled and run on the infected machines

• transferred main program to continue attack

Vector 1: Debug feature of sendmail

 Sendmail
• Listens on port 25 (SMTP port)

• Some systems back then compiled it with DEBUG option on

 Debug feature gives
• The ability to send a shell script and execute on the host

Vector 2: Exploiting fingerd

 What does finger do?
 Finger output

• arthur.cs.purdue.edu% finger ninghui
• Login name: ninghui In real life: Ninghui Li
• Directory: /homes/ninghui Shell: /bin/csh
• Since Jan 18 09:50:47 on pts/2 from pal-10-184-63-172.itap (4 seconds idle)
• No unread mail.
• No Plan.

Vector 2: Exploiting fingerd

 Fingerd
• Listen on port 79

 It uses the function char* gets(char *)
• Fingerd expects an input string

• Worm writes long string to internal 512-byte buffer

 Overrides return address to jump to shell code

Vector 3: Exploiting Trust in Remote Login

Host aaa.xyz.com
/etc/host.equiv

bbb.xyz.com

Host bbb.xyz.com

User alice
rlogin

 Remote login on UNIX
• rlogin, rsh

 Trusting mechanism
• Trusted machines have the same user

accounts
• Users from trusted machines
• /etc/host.equiv – system wide trusted hosts file
• /.rhosts and ~/.rhosts – users’ trusted hosts file

Vector 3: Exploiting Trust in Remote Login

 Worm exploited trust information
• Examining trusted hosts files
• Assume reciprocal trust

• If X trusts Y, then most likely Y trusts X

 Password cracking
• Worm coming in through fingerd was running as daemon (not root) so needed

to break into accounts to use .rhosts feature
• Read /etc/passwd, used ~400 common password strings & local dictionary to

do a dictionary attack

Other Features of The Worm

 Self-hiding
• Program is shown as 'sh' when ps
• Files didn’t show up in ls

 Find targets using several mechanisms:
• 'netstat -r -n‘, /etc/hosts, …

 Compromise multiple hosts in parallel
• When worm successfully connects, forks a child to continue the infection while the parent

keeps trying new hosts

 Worm has no malicious payload
 Where does the damage come from?

Damage

 One host may be repeatedly compromised

 Supposedly designed to gauge the size of the Internet

 The following bug/feature made it more damaging.
• Asks a host whether it is already running the Morris Worm; however, even if it

answers yes, still compromise it with probability 1/8.

Review: How does a computer get compromised?

 Buggy programs accept malicious input
• daemon programs that receive network traffic
• client programs (e.g., web browser, mail client) that receive input data from network
• buggy programs (e.g., pdf readers) read malicious files saved from the network

 Configuration errors (e.g., weak passwords, guest accounts, DEBUG options,
etc)

 Human errors (e.g., leaking passwords due to social engineering attacks,
executing malicious code such as email attachment, or downloading and
executing trojan horses)

 Giving attacker physical access to computer

Outline

Morris Worm as an example to illustrate the limitation of
UNIX DAC protection
 Analysis of DAC Weaknesses

• Confused deputy and capability system
• DAC’s implicit trust in programs being benign and correct
 Sandboxing/virtualization/isolation approaches
Create access control policies depend on programs

Could Better Access Control Help Stop Morris Worm?

 Vector 1: Exploiting buffer overflow vulnerability in fingerd, and then take over
the fingerd process to execute a malicious shell script
• In UNIX access control, fingerd runs as a daemon user which can run shell and many other

programs
• If fingerd is prevented from running shell, then this attack would fail.

 Vector 2: Exploit DEBUG option
• Cannot be stopped by access control.

 Vector 3: Exploit mutual trust
• Cannot be stopped by access control, if the convenience is desired. This is an issue only

when a host on a local network is compromised.

16

Discretionary Access Control

 No precise definition. Basically, DAC allows access rights to be propagated at
subject’s discretion
• often has the notion of owner of an object
• used in UNIX, Windows, etc.

 According to TCSEC (Trusted Computer System Evaluation Criteria)
• "A means of restricting access to objects based on the identity and need-to-know of users

and/or groups to which they belong. Controls are discretionary in the sense that a subject with
a certain access permission is capable of passing that permission (directly or indirectly) to any
other subject."

 Often compared to Mandatory Access Control

Analysis why DAC is not Good enough

 DAC causes the Confused Deputy problem
• Solution: use capability-based systems

 DAC does not preserve confidentiality when facing Trojan horses
• Solution: use Mandatory Access Control (BLP)

 DAC implementation fails to keep track of for which principals a
subject (process) is acting on behalf of
• Solution: fixing the DAC implementation to better keep track of principals

• Solution: adding additional access control mechanism

The Confused Deputy Problem

SYSX/FORT $OUTPUT
Compiler Program

SYSX (Dir)
FORT
STAT
BILL

Write to
the bill
file

System
Admin

$OutputSYSX/BILL

Write
output
file

User

The Confused Deputy by Norm Hardy

Analysis of The Confused Deputy Problem

 The compiler runs with authority from two sources
• the invoker (i.e., the programmer)

• the system admin (who installed the compiler and controls billing and other info)

 It is the deputy of two masters
 There is no way to tell which master the deputy is serving when

performing a write
 Solution: Use capability

Different Notions of Capabilities

 Capabilities used in POSIX/Linux as a way to divide the root power
into multiple pieces that can be given out separately
 Capabilities as a row representation of Access Matrices
 Capabilities as a way of implementing the whole access control

systems
 We will examine the second and third notion next in this lecture

ACCESS MATRIX MODEL

U r w
own

V

F

S
u
b
j
e
c
t
s

Objects (and Subjects)

r w
own

G

r

rights

IMPLEMENTATION OF AN ACCESS MATRIX

 Access Control Lists
• Encode columns

Capabilities
• Encode rows

 Access control triples
• Encode cells

ACCESS CONTROL LISTS (ACLs)

F
U:r
U:w
U:own

G
U:r
V:r
V:w
V:own

each column of the access matrix is stored with the object
corresponding to that column

CAPABILITY LISTS

each row of the access matrix is stored with the subject
corresponding to that row

U F/r, F/w, F/own, G/r

V G/r, G/w, G/own

ACCESS CONTROL TRIPLES

Subject Access Object
U r F
U w F
U own F
U r G
V r G
V w G
V own G

commonly used in relational DBMS

Capability Based Access Control

 Subjects have capabilities, which
• Give them accesses to resources (similar to keys that can open doors)
• Can be transferred to other subjects
• Are unforgeable tokens of authority

 Example: a UNIX system where only owner of a file can open the file, and file
sharing is done by passing opened file descriptors around

 Why capabilities may solve the confused deputy problems?
• When access a resource, must select a capability, which also selects a master

How Do Capabilities Solve the Confused Deputy Problem

 Invoker must pass in a capability for $OUTPUT, which is stored in slot 3.
 Writing to output uses the capability in slot 3.
 Invoker cannot pass a capability it doesn’t have.

SYSX/FORT $OUTPUT

1 2 3

SYSX/ STAT SYSX/ BILL $OUTPUT

Capability vs. ACL

 Consider two security mechanisms for bank accounts.
 One is identity-based. Each account has multiple authorized

owners. You go into the bank and shows your ID, then you can
access all accounts you are authorized.
• Once you show ID, you can access all accounts.
• You have to tell the bank which account to take money from.

 The other is token-based. When opening an account, you get a
passport to that account and a PIN, whoever has the passport and
the PIN can access

Capabilities vs. ACL: Ambient Authority

 Ambient authority means that a user’s authority is
automatically exercised, without the need of being selected.
• Causes the confused deputy problem
• Violates the least privilege principle

No Ambient Authority in capability systems

Capability vs. ACL: Naming

 ACL systems need a namespace for objects
 In capability systems, a capability can serve both to designate a

resource and to provide authority.
 ACLs also need a namespace for subjects or principals

• as they need to refer to subjects or principals

 Implications
• the set of subjects cannot be too many or too dynamic
• most ACL systems grant rights to user accounts principals, and do not support fine-grained

subject rights management

Conjectures on Why Capability-based AC is Rarely Used

Capability is more suitable for process level sharing, but not
user-level sharing
• user-level sharing is what is really needed

 Processes are more tightly coupled in capability-based
systems because the need to pass capabilities around
• programming may be more difficult

Analysis why DAC is not Good enough

 DAC causes the Confused Deputy problem
• Solution: use capability-based systems

 DAC does not preserve confidentiality when facing Trojan horses
• Solution: use Mandatory Access Control (BLP)

 DAC implementation fails to keep track of for which principals a
subject (process) is acting on behalf of
• Solution: fixing the DAC implementation to better keep track of principals

• Solution: adding additional access control mechanism

Weakness OF DAC in Information Flow Control

Unrestricted DAC allows information flows from an object
which can be read to any other object which can be written
by a subject
• Suppose A is allowed to read some information and B is not, A can reads and

tells B

 Suppose that users are trusted not to do this deliberately. It
is still possible for Trojan Horses to copy information from
one object to another.

TROJAN HORSE EXAMPLE

File F
A:r
A:w

File G
B:r
A:w

Principal B cannot read file F

ACL

TROJAN HORSE EXAMPLE

File F
A:r
A:w

File G
B:r
A:w

Principal B can read contents of file F copied to file G

ACLPrincipal A

Program Goodies

Trojan Horse

executes

read

write

Buggy Software Can Become Trojan Horse

 When a buggy software is exploited, it execute the code/intention of
the attacker, while using the privileges of the user who started it.

 This means that computers with only DAC cannot be trusted to
process information classified at different levels
• Mandatory Access Control is developed to address this problem

• We will cover this in the next topic

Analysis why DAC is not Good enough

 DAC causes the Confused Deputy problem
• Solution: use capability-based systems

 DAC does not preserve confidentiality when facing Trojan horses
• Solution: use Mandatory Access Control (BLP)

 DAC implementation fails to keep track of for which principals a
subject (process) is acting on behalf of
• Solution: fixing the DAC implementation to better keep track of principals

• Solution: adding additional access control mechanism

DAC’s Weaknesses Caused by The Gap

 A request: a subject wants to perform an action
• E.g., processes in OS

 The policy: each principal has a set of privileges
• E.g., user accounts in OS

Challenging to fill the gap between the subjects and the
principals
• relate the subject to the principals

Unix DAC Revisited (1)

 When the Goodie process issues a request, what principal(s) is/are responsible for the request?
 Under what assumption, it is correct to say that User A is responsible for the request?

 Assumption: Programs are benign, i.e., they only do what they are told to do.

Action Process Effective
UID

Real
Principals

User A Logs In shell User A User A

Load Binary “Goodie”
Controlled by user B

Goodie User A ? ?

UNIX DAC Revisited (2)

 When the AcroBat process (after reading the file) issues a request, which principal(s) is/are
responsible for the request?

 Under what assumption, it is correct to say that User A is responsible for the request?

 Assumption: Programs are correct, i.e., they handle inputs correctly.

Action Process Effective UID Real Principals

shell User A User A

Load AcroBat Reader Binary AcroBat User A User A

Read File Downloaded from Network AcroBat User A ? ?

Why DAC is vulnerable?

 Implicit assumptions
• Software are benign, i.e., behave as intended
• Software are correct, i.e., bug-free

 The reality
• Malware are popular
• Software are vulnerable

 Arguably the problem is not caused by the discretionary nature of
policy specification!
• i.e., owners can set policies for files

Why DAC is Vulnerable? (cont’)

 A limitation in the enforcement mechanism
• UNIX DAC maintains a single principal (euid) for a subject/process; this is not

enough to capture on whose behalf the process is acting

 When the program is a Trojan
• The program-provider should also be responsible for the requests

 When the program is vulnerable
• It may be exploited by input-providers
• The requests may be issued by injected code from input-providers

 Solution: accept that a subject may be acting on behalf of multiple
principals, and that we are uncertain.

Proposals to Radically Change DAC

 DAC causes the Confused Deputy problem
• Solution: use capability-based systems

 DAC does not preserve confidentiality when facing Trojan horses
• Solution: use Mandatory Access Control, e.g., BLP

 DAC implementation fails to keep track of for which principals a
subject (process) is acting on behalf of
• Solution: UMIP and IFEDAC

 None of these is widely used in commercial systems

44

Outline

Morris Worm as an example to illustrate the limitation of
UNIX DAC protection
 Analysis of DAC Weaknesses

• Confused deputy
• DAC’s implicit trust in programs being benign and correct
 Sandboxing/virtualization/isolation approaches
Create access control policies depend on programs

Goal of Sandxboing/virtualization/Isolation

 Sandboxing: Separate running programs, to mitigate system failures
and/or software vulnerabilities
 Ensure that a program, even if compromised, causes only limited

damage.

46

Confinement by Virtualization (Option 1)

 Runs a single kernel, virtualizes servers on one operating system
using built-in mechanism
• e.g., chroot, FreeBSD jail, …

• used by service providers who want to provide low-cost hosting services to
customers.

• Pros: little performance overhead, easy to set up/administer

• Cons: some confinement can be broken, some servers cannot be easily
confined

chroot

 The chroot system call changes the root directory of the current and
all child processes to the given path.
 To use chroot,

• One first creates a temporary root directory for a running process,

• Then takes a limited hierarchy of a filesystem (say, /chroot/named) and
making this the top of the directory tree as seen by the application.

• Make the chroot system call: a network daemon program can call chroot itself,
or a script can call chroot and then start the daemon

Using chroot

 What are the security benefits?
• under the new root, many system utilities and resources do not exist, even if

the attacker compromises the process, damage can be limited
• consider the Morris worm, how would using chroot for fingerd affect its

propagation?

Limitations of chroot

 Only the root user can perform a chroot.
• intended to prevent users from putting a setuid program inside a specially-crafted chroot jail

(for example, with a fake /etc/passwd file) that would fool it into giving out privileges.

 chroot is not entirely secure on all systems.
• With root privilege inside chroot environment, it is sometimes possible to break out

 process inside chroot environment can still see/affect all other
processes and networking spaces
 chroot does not restrict the use of resources like I/O, bandwidth,

disk space or CPU time.

Confinement by Virtualization (Option 2)

 Virtual machines: emulate hardware in a user-space process
• the emulation software runs on a host OS; guest OSes run in the emulation

software
• needs to do binary analysis/change on the fly
• e.g., Oracle VirtualBox, VMWare,
• Pros: can run other guest OS without modification to the OS
• Cons: significant performance overhead

Limitation of Confinement by Virtualization

 Pro. Policy is simple: just isolate each instance

Con. Things within one virtual machine can still affect each
other.

Outline

Morris Worm as an example to illustrate the limitation of
UNIX DAC protection
 Analysis of DAC Weaknesses

• Confused deputy
• DAC’s implicit trust in programs being benign and correct
 Sandboxing/virtualization/isolation approaches
Create access control policies depend on programs

Program-Based Access Control

 For each process, there is an additional policy limiting what
it can do, which is based on the binary file
• E.g., what system call it can make, what files it can access, et.c

• This is in addition to the DAC restriction based on the user ids

 The key challenge
• how to specify the policy

Examples of Program-Based Policies Access Control

 Security Enhanced Linux (SELinux)
• Developed by National Security Agency (NSA) and Secure Computing

Corporation (SCC) to promote MAC technologies

• Shipped with Fedora and some other Linux distributions

• Also part of Android as Security Enhanced Android

 AppArmor
• Shipped in Debian, Ubuntu, OpenSUSE Linux distributions

Main Idea of SElinux

 Consider more information (especially which program is running)
when making access control decisions
 Enable fine-grain control
 Support flexible security policies, “user friendly” security language

(syntax)
• Overall policy is extremely complex

Policy: Domain-type Enforcement

 The access matrix consisting of subjects and objects is too large
and impractical.
 To reduce the size of the access matrix, subjects are grouped into

domains, objects are grouped into types.
 A smaller (but still big) access matrix with domains and types can

then be specified.

Policy: Domain-type Enforcement

 Each object is labeled by a type
• Example:
• /etc/shadow etc_t
• /etc/rc.d/init.d/httpd httpd_script_exec_t

 Objects are grouped by object security classes
• Files, sockets, IPC channels, capabilities
• Operations are defined upon each security class

 Each subject (process) is associated with a domain
• E.g., httpd_t, sshd_t, sendmail_t

Policy: Domain-type Enforcement

 Access control decision
• When a process wants to access an object, the decision is based on process

domain, object type, object security class, type of operation

 Example access vector rules
• allow sshd_t sshd_exec_t: file { read execute entrypoint }
• allow sshd_t sshd_tmp_t: file { create read write getattr setattr link unlink

rename }

Policy: Domain-type Enforcement

 How the domain if a new process is determined?
• The domain for a new process is based on the domain of the parent process

and the label for the executable binary

 How the type of a new file is determined?
• Based on the domain of the creating process and the parent directory

 TE transition rules
• type_transition initrc_t sshd_exec_t: process sshd_t
• type_transition sshd_t tmp_t: notdevfile_class_set sshd_tmp_t

SELinux in Practice

 Strict policy
• A system where everything is denied by

default.
• Minimal privilege's for every daemon
• Separate user domains for programs like

GPG,X, ssh, etc
• Difficult to enforce in general purpose

operating systems
• Default in Fedora Core 2
• #1 Question: How do I turn off SELinux

 Targeted policy
• System where everything is allowed. use

deny rules.
• Only restrict certain daemon programs
• Default in Fedora Core 3
• No protection for client programs

AppArmor

 Provide a sufficiently fine-grained mechanism
 Try to achieve least privilege for programs
 For each program one wants to confine, one provides a profile,

which specifies the activities the program can perform
• Files, Operations

Example Profile

/lib/lib*.so* mr,
/proc/[0-9]** r,
/usr/lib/** mr,

/tmp/ r,
/tmp/foo.pid wr,
/tmp/foo.* lrw,
/@{HOME}/.foo_file rw,
/@{HOME}/.foo_lock kw,

a comment about foo's subprofile,
bar.

^bar {
/lib/ld-*.so* mr,
/usr/bin/bar px,
/var/spool/* rwl,

}
}

#include <tunables/global>

a comment naming the
application to confine
/usr/bin/foo
{

#include <abstractions/base>

capability setgid,
network inet tcp,

/bin/mount ux,
/dev/{,u}random r,
/etc/ld.so.cache r,
/etc/foo.conf r,
/etc/foo/* r,
/lib/ld-*.so* mr,

Summary

 Buggy programs can be exploited
 Existing DAC mechanisms allow exploited programs to control a

whole system
 Existing DAC has some fundamental weaknesses

• Attempts to fix them have their own limitations and are not widely deployed

 Additional access control can help at the cost of the need to specify
additional policies

64

Next Topic

Multi-level Security (MLS) and Bell-La Padula Model
 Biba Integrity Model, Clark-Wilson Model, and Chinese Wall

Policy

	Data Security and Privacy
	Readings for this lecture
	Outline
	What is a Worm?
	Morris Worm (November 1988)
	Morris Worm Description
	Vector 1: Debug feature of sendmail
	Vector 2: Exploiting fingerd
	Vector 2: Exploiting fingerd
	Vector 3: Exploiting Trust in Remote Login
	Vector 3: Exploiting Trust in Remote Login
	Other Features of The Worm
	Damage
	Review: How does a computer get compromised?
	Outline
	Could Better Access Control Help Stop Morris Worm?
	Discretionary Access Control
	Analysis why DAC is not Good enough
	The Confused Deputy Problem
	Analysis of The Confused Deputy Problem
	Different Notions of Capabilities
	ACCESS MATRIX MODEL
	IMPLEMENTATION OF AN ACCESS MATRIX
	ACCESS CONTROL LISTS (ACLs)
	CAPABILITY LISTS
	ACCESS CONTROL TRIPLES
	Capability Based Access Control
	How Do Capabilities Solve the Confused Deputy Problem
	Capability vs. ACL
	Capabilities vs. ACL: Ambient Authority
	Capability vs. ACL: Naming
	Conjectures on Why Capability-based AC is Rarely Used
	Analysis why DAC is not Good enough
	Weakness OF DAC in Information Flow Control
	TROJAN HORSE EXAMPLE
	TROJAN HORSE EXAMPLE
	Buggy Software Can Become Trojan Horse
	Analysis why DAC is not Good enough
	DAC’s Weaknesses Caused by The Gap
	Unix DAC Revisited (1)
	UNIX DAC Revisited (2)
	Why DAC is vulnerable?
	Why DAC is Vulnerable? (cont’)
	Proposals to Radically Change DAC
	Outline
	Goal of Sandxboing/virtualization/Isolation
	Confinement by Virtualization (Option 1)
	chroot	
	Using chroot
	Limitations of chroot
	Confinement by Virtualization (Option 2)
	Limitation of Confinement by Virtualization
	Outline
	Program-Based Access Control
	Examples of Program-Based Policies Access Control
	Main Idea of SElinux
	Policy: Domain-type Enforcement
	Policy: Domain-type Enforcement
	Policy: Domain-type Enforcement
	Policy: Domain-type Enforcement
	SELinux in Practice
	AppArmor
	Example Profile
	Summary
	Next Topic

