
DATA SECURITY AND
PRIVACY

Week 1 Introduction to the Course and Overview of
Access Control
Prof. Ninghui Li (Purdue University)

Topics in the Course

 Access control (AC)
• Operating system AC, mandatory AC, discretionary AC, role based AC, attribute-based

AC, non-interference properties, integrity protection, AC in databases

 Data privacy
• Privacy policies, data anonymization (k anonymity, t closeness, l diversity), differential

privacy: concepts and algorithms, differential privacy in the local setting, membership
privacy, differential privacy and machine learning

 Using crypto for data protection
• secure multiparty computation, implementing crypto correctly, homomorphic encryption

Relationship to Other Courses

 Require basic knowledge from
• 526 Information Security

• 555 Cryptography

 Little overlap with
• 527 Software Security

• 528 Network Security

• 523 Social Econ Legal Asp Of Sec

• 529 Security Analytics

3

 Time and location: TTh 10:30-11:45pm, LWSN B134

 Instructor: Ninghui Li <ninghui@purdue.edu>,
• LWSN 2142K, office hours: after lecture and by appointment

 We will use piazza

 Teaching assistants: Zitao Li <li2490@purdue.edu>
• Office hours, Monday 1:30-2:30pm + Tuesday 4-5pm

• https://purdue-
edu.zoom.us/j/99058485354?pwd=MDVYdDFDN1lwVnd3a2lDZUhodm9aZz09

4

https://purdue-edu.zoom.us/j/99058485354?pwd=MDVYdDFDN1lwVnd3a2lDZUhodm9aZz09

Readings

 No required text, readings will be announced/distributed on course
webpage.

Grading

 Homeworks (50% of grade)
• About 6 assignments, which will be either written assignments, or small projects that

require programming
• Late policy: Three extension days to be used at your discretion

• Must be stated explicitly in header of work being turned in
• No fractional days
• May not be used to extend submission past last day of class.

 Exams
• 4 (in-class) quizs during the semester. (8% of grade)
• Mid-term exam. (18% of grade) Final exam. (24% of grade)

6

Policies for Homework Cheating

 It is allowed/encouraged to discuss homework problems

 However, if you looks at another student’s program code, or (written or
typed) answers , or let another student look at your program code or
answers, that is considered cheating.

 If caught for the first time, receive 0 in the assignment. For the second time,
receive a failing grade in class.

What is Information (Computer) Security?

 Security = Sustain desirable properties under intelligent adversaries

 Making the above statement precise requires clearly defining the following
two

 What are the desirable properties?

 What the intelligent adversaries can do?
• Needs to understand/model adversaries

• Always think about adversaries.

Security Goals/Properties (C, I, A)

 Confidentiality (secrecy, privacy)
• only those who are authorized to know can know

 Integrity (also authenticity in communication)
• only modified by authorized parties and in permitted ways

• do things that are expected

 Availability
• those authorized to access can get access

What is (Personal) Privacy?

 Sometimes people use privacy to refer to confidentiality.
 Personal privacy is complicated! It is primarily a social and legal concept.
 Some concepts from the book “Understanding Privacy” by Daniel J.

Solove:
1. the right to be let alone
2. limited access to the self
3. secrecy—the concealment of certain matters from others;
4. control over others' use of information about oneself
5. personhood—the protection of one’s personality, individuality, and dignity;
6. intimacy—control over, or limited access to, one’s intimate relationships or aspects of

life.

Robert H. Morris: The three golden rules to ensure computer
security are: (1) do not own a computer; (2) do not power it

on; and (3) do not use it.

 What protection/security mechanisms one has in the physical world?

 Why the need for security mechanisms arises?

 Security is secondary to the interactions that make security necessary.

Security is Secondary

Information Security is Interesting

 The most interesting/challenging threats to security are posed by human
adversaries
• Security is harder than reliability

 Information security is a self-sustaining field
• Can work both from attack perspective and from defense perspective

 Security is about benefit/cost tradeoff
• Although often the tradeoff analysis is not explicit

 Security is not all technological
• Humans are often the weakest link

Information Security is Challenging

 Defense is almost always harder than attack.
 In which ways information security is more difficult than physical security?

• adversaries can come from anywhere
• computers enable large-scale automation
• adversaries can be difficult to identify
• adversaries can be difficult to punish
• potential payoff can be much higher

 In which ways information security is easier than physical security?

ACCESS CONTROL

/2022

14

What is Access Control?

 Quote from Security Engineering by Ross Anderson
• “Its function is to control which principals (persons, processes, machines, …) have

access to which resources in the system --- which files they can read, which programs
they can execute, and how they share data with other principals, and so on.”

• Access control is the traditional center of gravity of computer security. It is where
security engineering meets computer science.

Access Control is Pervasive

 Application
• business applications

 Middleware
• DBMS

 Operating System
• controlling access to files, ports

 Hardware
• memory protection, privilege levels

Access Control is Interesting

 Has (relatively) well-developed theories
• 40+ years history

• some (quite involved) theory (apparently) not useful for other fields

 Many interesting and deep results

 Many misconceptions and debates

A BRIEF HISTORY OF ACCESS CONTROL
RESEARCH

18

Earlier Years: Time-Sharing Operating Systems

 Reference monitors (1972)

 Access matrix (1971)

 Discretionary access control
• trojan horse can leak information

Confidentiality

 Bell-LaPadula Model

 Noninterference (1982)

 Nondeducibility (1986)

 Covert channel

 Proving information flow properties of systems and programs

Integrity

 Biba model

 Clark-Wilson

 Chinese Wall

Database Access Control

 System R approach: grant/revoke, view

 Ingres approach (query rewriting)

 Multilevel databases

 Object/relational databases

 Real systems

 SQL grant/revoke, view, stored procedures, fine-grained access control

Role-Based Access Control

 First in database context

 Then a generic access control approach

 Constraints

 Administration

 Extensions

OPERATING SYSTEM SECURITY

24

What Security Goals Does Operating System Provide
(Past)?

 Originally: time-sharing computers: enabling multiple users to securely share a computer
• Separation and sharing of processes, memory, files, devices, etc.

 What is the threat model?
• Users may be malicious, users have terminal access to computers, software may be malicious/buggy, and so on

 What security mechanisms are used?
• Memory protection
• Processor modes
• User authentication
• File access control
• Logging & Auditing

What Security Goals Does Operating System Provide (Recent
Past and Current)?

 More recent past and present: Networked computers: ensure secure
operation in networked environment
 New threat?

• Attackers coming from the network. Network-facing programs on computers may be buggy. Users may
be hurt via online communication.

 Additional security mechanisms
• Secure Communication (using cryptography)
• Remote authentication
• Intrusion Prevention and Detection
• Recovery

What Security Goals Does Operating System Provide (Current
and Near Future)?

 Present and near future: mobile computing devices and cloud platforms
 New threat?

• Apps (programs) may be malicious or questionable.
• More tightly connected with personal life of the owner.

 Security mechanisms for mobile devices?
• Isolation of each app.
• Security scanning of apps in appstores.
• Help users assess risks of apps.
• Risk communication.

OPERATING SYSTEM
SECURITY MECHANISM

Memory Protection: Access Control to Memory

 Ensures that one user’s process cannot access other’s
memory
• Implemented using paging in modern operating systems

Operating system and user processes need to have
different privileges
• This is achieved using hardware support such as CPU modes

CPU Modes (a.k.a. processor modes or privilege modes)

 System mode (privileged mode, master mode, supervisor mode, kernel
mode)
• Can execute any instruction

• Can access any memory locations, e.g., accessing hardware devices,

• Can enable and disable interrupts,

• Can change privileged processor state,

• Can access memory management units,

• Can modify registers for various descriptor tables .

Reading: http://en.wikipedia.org/wiki/CPU_modes

http://en.wikipedia.org/wiki/CPU_modes

User Mode

 User mode
• Access to memory is limited,

• Cannot execute some instructions

• Cannot disable interrupts,

• Cannot change arbitrary processor state,

• Cannot access memory management units

 Transition from user mode to system mode can only happen via well
defined entry points, i.e., through system calls

System Calls (Guarded Gates)

 Guarded gates from user mode (space, land) into kernel mode (space,
land)
• use a special CPU instruction (often an interruption), transfers control to predefined

entry point in more privileged code; allows the more privileged code to specify where it
will be entered as well as important processor state at the time of entry.

• the higher privileged code, by examining processor state set by the less privileged
code and/or its stack, determines what is being requested and whether to allow it.

Kernel space vs User space

 Part of the OS runs in the kernel model
• known as the OS kernel

 Other parts of the OS run in the user mode, including service programs
(daemon programs), user applications, etc.
• they run as processes

• they form the user space (or the user land)

 When they need privileged access that only kernel can provide, they issue
system calls.

Privilege Levels

 Security is often achieved by running control/protection code at a higher
privilege level

 Components running at the same level can be isolated by a higher-privilege
component

 If attack and defense are at the same level, then it is an arms’ race and
there can be no guarantee

BASIC CONCEPTS IN
ACCESS CONTROL

Readings for This Lecture

Wikipedia
• Filesystem Permissions
Other readings
Unix file permissions

• http://www.unix.com/tips-tutorials/19060-unix-file-
permissions.html

http://en.wikipedia.org/wiki/Filesystem_permissions
http://www.unix.com/tips-tutorials/19060-unix-file-permissions.html

Access Control as a General Security Mechanism

 Access Control is a Protection Wall with a Guarded Gate.
• Build a wall to prevent access.

• Then design a guarded gate to decide what access should be allowed.

Resource

Policy?

?

Reference
monitor

access request
Subjects

 A reference monitor mediates all access to resources
 Complete mediation principle: control all accesses to resources

Access Control

rights

P G

U r w
own r

V r w
own

Objects (and Subjects)

S
u
b
j
e
c
t
s

Access Matrix Model for Policies

ACCESS MATRIX MODEL

 Basic Abstractions
• Subjects

• active entities that request accesses

• Objects

• entities on which accesses can be performed

• Rights
 The rights in a cell specify the access of the subject (row) to the

object (column)

Different Levels of Abstractions for Subjects

Human Users
• High-level policy objectives are usually regarding human users
 Principals: User Accounts in Unix

• Policy grants access rights to principals
 Subjects: Processes in Unix

• Processes run on behalf of principals

• Processes initiate access requests

The system authenticates the human
user to a particular principal

Unit of Access Control
and Authorization

PRINCIPALS

Real World User

USERS

USERS AND PRINCIPALS

What does the
above imply in

practice?

 There should be a one-to-many
mapping from users to principals
• a user may have many principals, but

• each principal is associated with an unique user

 This help ensures accountability
• A system can identify which principals performed

an action, and needs to uniquely identify the
human for accountability

USERS AND PRINCIPALS

Basic Concepts of UNIX Access Control: Users, Groups,
Files, Processes

 Each user account has a unique UID
• The UID 0 means the super user (system admin)
 A user account belongs to multiple groups

• This is needed to make policy specification more succinct
 Subjects are processes

• A sophisticated mechanism is used to determine which principal a subject/process is
acting on behalf of

 Most objects are modeled as files

OBJECTS IN UNIX

OBJECTS

 An object is anything on which a subject can perform operations
(mediated by rights)
 Usually objects are passive, for example:

• File

• Directory (or Folder)

• Memory segment
 But, subjects (i.e. processes) can also be objects, with operations

performed on them
• kill, suspend, resume, send interprocess communication, etc.

Organization of Objects

 In UNIX, almost all objects are modeled as files
• Files are arranged in a hierarchy

• Files exist in directories

• Directories are also one kind of files

 Each object has
• owner

• group

• 12 permission bits

• rwx for owner, rwx for group, and rwx for others

• suid, sgid, sticky

UNIX inodes:

Each file corresponds
to an inode

UNIX inodes

A directory stores a mapping from
names to inode numbers.

UNIX Directories

Basic Permissions Bits on Files (Non-directories)

 Read controls reading the content of a file
• i.e., the read system call

 Write controls changing the content of a file
• i.e., the write system call

 Execute controls loading the file in memory and execute
• i.e., the execve system call

Permission Bits on Directories

 Read bit allows one to show all file names in a directory

 The execution bit controls traversing a directory
• does a lookup, allows one to find inode # from file name

• chdir to a directory requires execution bit

 Write + execution control creating/deleting files in the directory
• Deleting a file under a directory requires no permission on the file

 Accessing a file identified by a path name requires execution to all directories along the
path

Some Examples

 What permissions are needed to access a file/directory?
• read a file: /d1/d2/f3

• write a file: /d1/d2/f3

• delete a file: /d1/d2/f3

• rename a file: from /d1/d2/f3 to /d1/d2/f4

• …

 File/Directory Access Control is by System Calls
 e.g., open(2), stat(2), read(2), write(2), chmod(2), opendir(2), readdir(2),

readlink(2), chdir(2), …

The Three Sets of Permission Bits

 Intuition:
• if the user is the owner of a file, then the r/w/x bits for owner apply

• otherwise, if the user belongs to the group the file belongs to, then the
r/w/x bits for group apply

• otherwise, the r/w/x bits for others apply

What are the other 3 bits? What do they control?

suid sgid sticky bit

non-
executable
files

no effect affect locking
(unimportant for
us)

not used anymore

executable
files

change euid
when executing
the file

change egid
when executing
the file

not used anymore

Directories no effect new files inherit
group of the
directory

only the owner of a file can
delete

The suid, sgid, sticky bits

Other Issues On Objects in UNIX

 Accesses other than read/write/execute
• Who can change the permission bits?

• The owner can

• Who can change the owner?

• Only the superuser

 Rights not related to a file
• Affecting another process

• Operations such as shutting down the system, mounting a new file system, listening on a low port

• traditionally reserved for the root user

FROM SUBJECTS TO
PRINCIPALS

Subjects vs. Principals

 Access rights are specified for user accounts (principals).

 Accesses are performed by processes (subjects)

 The OS needs to know on which user accounts’ behalf a process
is executing

 How is this done in Unix?

UNIX Access Control Overview

 Three concepts Our terminology
• Human Users Humans

• User Accounts Users/accounts/principals

• Process Processes/subjects

 UNIX Access Control System has
• A discretionary policy specification

• determines which user accounts have access to which objects

• A policy enforcement component

• determines on which user’s behalf a subject (process) is acting upon

Process User ID Model in Modern UNIX Systems

 Each process has three user IDs
• real user ID (ruid) owner of the process

• effective user ID (euid) used in most access
control decisions

• saved user ID (suid)
 and three group IDs

• real group ID

• effective group ID

• saved group ID

Process User ID Model in Modern UNIX Systems

When a process is created by fork
• it inherits all three users IDs from its parent process
When a process executes a file by exec

• it keeps its three user IDs unless the set-user-ID bit of the file is set, in
which case the effective uid and saved uid are assigned the user ID of the
owner of the file

 In addition, a process may change the user ids via system
calls

The Need for suid/sgid Bits

 Some operations are not modeled as files and require user id = 0
• halting the system

• bind/listen on “privileged ports” (TCP/UDP ports below 1024)

• non-root users need these privileges
 File level access control is not fine-grained enough
 System integrity requires more than controlling who can write, but

also how it is written

Security Problems of Programs with suid/sgid

 These programs are typically setuid root
 Violates the least privilege principle

• every program and every user should operate using the least privilege
necessary to complete the job

Why violating least privilege is bad?
How would an attacker exploit this problem?
How to solve this problem?

Changing effective user IDs

• A process that executes a set-uid program can drop its privilege; it can

• drop privilege permanently

• removes the privileged user id from all three user IDs

• drop privilege temporarily

• removes the privileged user ID from its effective uid but stores it in its
saved uid, later the process may restore privilege by restoring privileged
user ID in its effective uid

fork()

The user types in the
passwd command to
change his password.

bash

pid 2235

euid 500

ruid 500

suid 500

exec(“bash”)

The login process then
loads the shell, giving
the user a login shell.

login

Pid 2235

euid 500

ruid 500

suid 500

setuid(500)

After the login
process verifies that
the entered password
is correct, it issues a
setuid system call.

login

pid 2235

euid 0

ruid 0

suid 0

What Happens during Logging in

password

pid 2297

euid 500

ruid 500

suid 500

Drop privilege
permanently

password

pid 2297

euid 500

ruid 500

suid 0
Drop privilege
temporarily

password

pid 2297

euid 0

ruid 500

suid 0

exec(“passwd”)

The fork call creates a new process,
which loads “passwd”, which is owned

by root user, and has setuid bit set.

bash

pid 2297

euid 500

ruid 500

suid 500

bash

pid 2235

euid 500

ruid 500

suid 500

What Happens during Logging in (2)

Issues to Consider in Designing an Access Control System

 What are the objects? How are they organized?
 What are the subjects? What are the principals?
 How to relate subjects to principals?
 Whether/how to map human users to principals?
 What kinds of operations subjects can perform on objects?
 Where to store the access control policy data?
 How can access control policy data be updated? How to control the update

operation?
 How to intercept access to perform the check? Are all access path covered?
 What are the limitations of the protection, i.e., what does it take to break the

protection? How to deal with such residue threats?

Learning Outcomes

 Describe the evolving threats for operating systems, and summarize the
main security mechanisms
 Explain the needs for protection modes and system calls for security
 Explain the differences and relationships between users, security principals,

and subjects in the context of Unix
 Describe how file system access control work in Unix/Linux
 Explain the mechanism in Unix/Linux to associate security principals with

subjects
 Explain potential security problems caused by setuid programs

How to deal with the threat
of malicious and/or buggy
software to enforcing access
control policies?

Coming Attractions …

	Data Security and Privacy�
	Topics in the Course
	Relationship to Other Courses
	Slide Number 4
	Readings
	Grading
	Policies for Homework Cheating
	What is Information (Computer) Security?
	Security Goals/Properties (C, I, A)
	What is (Personal) Privacy?
	Security is Secondary
	Information Security is Interesting
	Information Security is Challenging
	Access Control
	What is Access Control?
	Access Control is Pervasive
	Access Control is Interesting
	A BRIEF History of Access Control Research
	Earlier Years: Time-Sharing Operating Systems
	Confidentiality
	Integrity
	Database Access Control
	Role-Based Access Control
	Operating System Security
	What Security Goals Does Operating System Provide (Past)?
	What Security Goals Does Operating System Provide (Recent Past and Current)?
	What Security Goals Does Operating System Provide (Current and Near Future)?
	Operating System Security Mechanism
	Memory Protection: Access Control to Memory
	CPU Modes (a.k.a. processor modes or privilege modes)
	User Mode
	System Calls (Guarded Gates)
	Kernel space vs User space
	Privilege Levels
	Basic Concepts in Access Control
	Readings for This Lecture
	Access Control as a General Security Mechanism
	Access Control
	Access Matrix Model for Policies
	ACCESS MATRIX MODEL
	Different Levels of Abstractions for Subjects
	USERS AND PRINCIPALS
	USERS AND PRINCIPALS
	Basic Concepts of UNIX Access Control: Users, Groups, Files, Processes
	Objects in UNIX
	OBJECTS
	Organization of Objects
	UNIX inodes
	UNIX Directories
	Basic Permissions Bits on Files (Non-directories)
	Permission Bits on Directories
	Some Examples
	The Three Sets of Permission Bits
	The suid, sgid, sticky bits
	Other Issues On Objects in UNIX
	from Subjects to Principals
	Subjects vs. Principals
	UNIX Access Control Overview
	Process User ID Model in Modern UNIX Systems
	Process User ID Model in Modern UNIX Systems
	The Need for suid/sgid Bits
	Security Problems of Programs with suid/sgid
	Changing effective user IDs
	What Happens during Logging in
	What Happens during Logging in (2)
	Issues to Consider in Designing an Access Control System
	Learning Outcomes
	Coming Attractions …

