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CHAPTER 3

What Does DP Mean?

3.1 LIMITATIONS OF SYNTACTIC NOTIONS

To understand why DP is appealing, it is also helpful to examine the alternatives. Before
DP was introduced, researchers had been focusing on syntactic privacy notions. The most
prominent of which is k-anonymity Samarati [2001], Sweeney [2002]. When applied to re-
lational data, this notion requires the division of all attributes into quasi-identifiers and
sensitive attributes, where the adversary is assumed to know the former, but not the latter.

Definition 3.1 k-Anonymity. A table satisfies k-anonymity relative to a set of quasi-
identifier attributes if and only if when the table is projected to include only the quasi-
identifier attributes, every record in the projected table appears at least k times.

The initial objective of k-anonymity was to prevent re-identification, i.e., an adversary
who knows the quasi-identifier values of an individual should not be able to point to a
record in the output and say “this is the record of the individual I know”. In a dataset
that satisfies k-anonymity, if there is any record matching an individual, there are at least k
such records, making re-identification difficult. Researchers have observed that k-anonymity
does not prevent attribute disclosure, i.e., information about sensitive attributes can still
be learned, perhaps due to the uneven distribution of their values. This leads to privacy
notions such as {-diversity Machanavajjhala et al. [2006], t-closeness Li et al. [2007], and
so on. All these notions, however, are syntactic, in the sense that they define a property
about the final “anonymized” dataset, and do not consider the algorithm or mechanism via
which the output is obtained. In contrast, DP is a property of the algorithm, instead of the
output.

Any anonymization algorithm must be designed to optimize for some utility objec-
tive. Without considering utility, one can trivially achieve privacy protection by publishing
nothing. Knowing that an algorithm would optimize for a certain utility objective enables
one to infer additional information about the input when given the output, as shown, e.g.,
in the minimality attack Cormode et al. [2010], Wong et al. [2007].

Another illustration of the limitation of the syntactic nature of k-anonymity is given
in Li et al. [2012a], which points out that one trivial way to satisfy k-anonymity is to
simply duplicate each record k times, or similarly, to select a subset of the records and
duplicating them. Furthermore, even though k-anonymity can be satisfied without providing
real privacy protection, some k-anonymization algorithms can provide protection similar to
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e-DP Li et al. [2012a]. However, here the privacy protection property is clearly associated
with the algorithm, and not with just the output.

3.2 SEMANTIC GUARANTEES OF DIFFERENTIAL PRIVACY

To assess whether DP offers sufficient protection of privacy, we have to examine social
and legal conceptions of privacy. Privacy as a social and legal concept is multi-faceted.
Solove [2010] identified 6 conceptions of privacy: (1) the right to be let alone Warren and
Brandeis [1890]; (2) limited access to the self; (3) secrecy—the concealment of certain
matters from others; (4) control over personal information; (5) personhood—the protection
of one’s personality, individuality, and dignity; (6) intimacy—control over, or limited access
to, one’s intimate relationships or aspects of life. These conceptions overlap with each other;
and some are not applicable in the context of data privacy.

Among these, we distill two related, yet different, conceptions that are most rele-
vant to data privacy: “privacy as secrecy” and “privacy as control (over personal
information)”. The former was stated as “right to conceal discreditable facts about him-
self” Posner [1998], and the latter was stated by Westin [1967] as: “Privacy is the claim
of individuals, groups, or institutions to determine for themselves when, how and to what
extent information about them is communicated to others”. These two conceptions can be
linked to two different approaches of defining privacy mathematically, which we explore in
this section. The former leads to a “prior-to-posterior” approach, and the latter leads to a
“posterior-to-posterior” approach.

3.2.1 INFEASIBILITY OF ACHIEVING “PRIVACY AS SECRECY”

To formalize privacy-as-secrecy mathematically, one naturally takes a Bayesian approach.
That is, one first specifies what the adversary believes a priori. After observing the output
of A(D), the adversary can update his belief using the Bayes’ rule. Privacy-as-secrecy
leads to defining privacy as bounding an arbitrary adversary’s prior-to-posterior belief
change regarding any specific individual. This view is taken in Dalenius [1977], which
defines privacy as: Access to a statistical database should not enable one to learn anything
about an individual that could not be learned without access. Unfortunately, achieving this
notion is only possible by destroying the utility. Consider the following example.

Example 3.2 (Adapted from Dwork and Roth [2013].) Assume that smoking causes lung
cancer is not yet public knowledge, and an organization conducted a study that demon-
strates this connection. A smoker Carl was not involved in the study, but complains that
publishing the result of this study affects his privacy, because others would know that he
has a higher chance of getting lung cancer, and as a result he may suffer damages, e.g., his
health insurance premium may increase.
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Clearly, access to the study data enables one to change one’s belief about Carl’s chance
of getting cancer. Furthermore, even if one publishes the study result in a way that satisfies
e-DP, the degree of change from the prior belief to the posterior belief is independent from
the € value, and depends mostly on the strength of the correlation. Trying to avoid this
inference regarding Carl would destroy the utility of publishing the data in the first place.

The impossibility to bound an arbitrary adversary’s prior-to-posterior belief change
while providing utility has been proven in several forms Dwork [2006], Dwork and Naor
[2008], Kifer and Machanavajjhala [2011], Li et al. [2013]. In Dwork [2006], Dwork and
Naor [2008], this result is stated as “absolute disclosure prevention (while preserving utility
at the same time) is impossible because of the arbitrary auziliary information the adversary
may have”. In Kifer and Machanavajjhala [2011], this result takes the form of a “no free
lunch theorem”, which states that achieving both utility and privacy is impossible without
making assumptions about the data. In Li et al. [2013], the result is “without restricting the
adversary’s prior belief about the dataset distribution, achieving privacy requires publishing
essentially the same information for two arbitrary datasets”.

3.2.2 TOWARDS A “REAL-WORLD-IDEAL-WORLD” APPROACH

The privacy-as-secrecy notion is very similar to the notion of semantic security for cryp-
tosystems Goldwasser and Micali [1984]. While this appealing notion is achievable for en-
cryption, it is not achievable for data privacy. The reason is as follows. In encryption, there
are two classes of recipients; those who have the decryption key, and those who do not. The
utility requirement that the plaintext can be recovered applies only to those who have the
key. The secrecy requirement that nothing regarding the plaintext can be learned applies
only to those without the key. In the data privacy context, however, there is only one class
of recipients for which both secrecy and utility requirements apply.

A closer analogy can be found in the context of order-preserving encryption
(OPE) Boldyreva et al. [2009] or searchable encryption,where recipients without the de-
cryption key should be able to distinguish orderings between the plaintexts; however, other
information regarding plaintexts should remain hidden. In Boldyreva et al. [2009], security
of OPE requires that what an adversary can observe when an OPE scheme is used (called
the real-world view) is indistinguishable from what the adversary can observe when an
idealized scheme is used that reveals only ordering information and nothing else (called the
ideal-world view).

This real-world-ideal-world approach has been used in defining security of secure
multiparty computation (SMC) protocols. In SMC, similarly one cannot require that no in-
formation about input is leaked, because information about input may be inferred from the
output. Instead, one requires the real-world view to be cryptographically indistinguishable
from the ideal-world view, in which computation is carried out by a trusted third party,
who provides only the output and nothing else.
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3.2.3 DP AS APPROXIMATING THE IDEAL WORLD OF “PRIVACY AS
CONTROL”

DP applies this “real-world-ideal-world” approach to data privacy. The key is to define
what are the “ideal worlds” for privacy. One natural choice is to accept the “privacy as
control” conception, and define the ideal worlds to be the ones where “control over personal
data” is exercised. Interestingly, instead of having one ideal world (as typical in SMC), we
have many ideal worlds, one for each individual, in which the individual’s data is removed
(or rewritten with some arbitrary value). DP can be interpreted as requiring the real world
view to be close to the view in each and every ideal world.

Ganta et al. [2008], Kasiviswanathan and Smith [2008, 2014] provided what may be
the first attempt at formalizing the following characterization as DP’s guarantee: Regardless
of external knowledge, an adversary with access to the sanitized database draws the same
conclusions whether or not my data is included in the original database. This can be viewed
as defining multiple ideal worlds, in each of which one individual’s data is removed, as if
the individual has opted out.

More specifically, databases are assumed to be vectors in D", where D is the domain
or universe from which each tuple is drawn, and n is the length of the input dataset. That
is, this uses the Bounded DP setting where the size of the dataset is public information.
A-priori knowledge is captured via a prior probability distribution b on D". The posterior
belief of the adversary after observing a transcript of interacting with a mechanism A is
thus computed by

PrlA(x) = t] b(x)
> epn PriA(z) =] b(z)
There are then n different ideal worlds, in each of which one tuple in the input dataset
is replaced with a special value L. Using x_; to denote the result of replacing the i-th
component of the vector x with L, the posterior belief for the adversary in the i-th ideal
world is defined to be the following:

blx|t] = (3.1)

PrA(x—;) = t] b(x)
> epn PriA(z—i) =t]b(z)’
In Ganta et al. [2008], Kasiviswanathan and Smith [2008, 2014], a mechanism is said
to have é-semantic privacy if for any belief b, any possible transcript ¢ of A, and any
i=1,...,n, we have SD(b[-|t], b;[-|t]) < € where SD gives the statistical distance (i.e., total
variation distance) between two distributions; that is SD(P, Q) = maxyct |P(T) — Q(T)|,
where 7 is the set of all possible transcripts.

bix[t] = (3.2)

The main results regarding e-DP in Ganta et al. [2008], Kasiviswanathan and Smith
[2008, 2014] are as follows: (1) Any A that satisfies e-DP also satisfies €-semantic privacy
for € = e — 1. (2) For 0 < € < 0.45, ¢/2-semantic privacy implies 3e-differential privacy.

While we agree with the general conclusion that DP bounds the difference in posteri-
ors between real and ideal worlds, we find the above formulation not completely satisfactory
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for the following reasons. First and foremost, while the paper does not explicitly state what
exactly the prior belief b intends to model, the fact that it is a distribution over D™ (the
set of all possible input databases) and the way it is used in Eqgs. (3.1) and (3.2) mean that
it models the adversary’s prior knowledge about what the input dataset might be. This,
however, captures only the adversary’s prior knowledge about the input dataset, but not
any other knowledge about the world in general, including information of individuals the
adversary believes to be not in the dataset. For example, the following external knowledge
“Terry is not in the dataset, and Terry is two inches shorter than the average Lithuanian
woman.” includes information about individuals who are believed to be not in the dataset.
This information cannot be encoded by assigning probabilities to possible input datasets.

Second, the relationship between the parameters of e-DP and é-semantic privacy
seems a bit messy. For example, the guarantee that e-DP implies (e — 1)-semantic privacy
provides no guarantee when € > In 2, as the maximal possible value for statistical distance
is 1. Thus one obtains no support from this when using ¢ = 1, which is common in the
literature. Also, for € > 0.225, it is unclear whether é-semantic privacy implies e-DP for any
€.

3.2.4 A FORMULATION OF DP’S SEMANTIC GUARANTEE

We provide such a semantic formulation of privacy as follows. We model an adversary as a
decision function that takes a transcript A(D) =t as input, and outputs a decision from a
set of possible decisions. We assume that each dataset D consists of data of individuals, and
use D_, to denote the result of removing v’s data from D. We then define the neighboring
relation such that for any dataset D, and any individual v, D and D_, are neighboring. For
any algorithm A that satisfies e-DP, it follows from Property 2.2 (transformation invariance)
that for any adversary (i.e., decision function), any dataset D, any individual v, and any
decision ¢, the probability that the adversary decides ¢ in the real world (where A(D)
is observed) is e-close to the probability that the adversary decides ¢ in the ideal world
(where A(D_,) is observed). Here two probability values p and p’ are A-close (for A > 1)
when

p<M NP < AN0-p<r1-p) AN1-p)<A1-p) (3.3)

That is, e-DP ensures that for any arbitrary adversary, her posterior-to-posterior
belief difference is bounded by e€.

3.2.5 THE PERSONAL DATA PRINCIPLE

The main insight underlying DP is that one can treat a hypothetical world in which one
individual’s data is removed as an ideal world where that individual’s privacy is protected
perfectly. By doing this, we can ignore any correlation between this individual’s data and
other data in the dataset. We observe that this insight can be supported by adopting the
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“privacy as control” interpretation. We formulate as the following principle as the bedrock
for DP.

[The Personal Data Principle (PDP)] Data privacy means giving an
individual control over his or her personal data. An individual’s pri-
vacy is not violated if no personal data about the individual is used.
Privacy does not mean that no information about the individual is
learned, or no harm is done to an individual; enforcing the latter is
infeasible and unreasonable.

We note that the widely accepted OECD (Organization for Economic Co-operation
and Development) OECD privacy principles (e.g., collection limitation, data quality, pur-
pose specification, use limitation, individual participation, and so on) all refer to personal
data.

As another support for PDP, we also note that a common way to protect privacy is
“opting out”. It is commonly accepted that once an individual has “opted out”, i.e., the
individual’s data has been removed, that individual’s privacy is protected.

Applying PDP to the Smoking-Causes-Cancer example (Example 3.2), we would say
that Carl’s complaint about his privacy being affected by the publishing of this dataset is
invalid, because what is at stake is not control of his personal data.

3.2.6 A CASE STUDY IN APPLYING PDP

We now apply the PDP principle to analyze a debate regarding DP. Kifer and Machanava-
jjhala [2011] asserted that: “Additional popularized claims have been made about the privacy
guarantees of differential privacy. These include: (1) It makes no assumptions about how
data are generated. (2) It protects an individual’s information (even) if an attacker knows
about all other individuals in the data. (3) It is robust to arbitrary background knowledge.”
They went on to refute these claims, by pointing out when there is correlation in the data,
the level of privacy protection provided when satisfying e-DP may not be e€.

Example 3.3 (Adapted from Kifer and Machanavajjhala [2011].) Bob and his family mem-
bers may have contracted a highly contagious disease, in which case the entire family would
have been infected. An attacker can ask the query “how many people at Bob’s address have
this disease?”” When receiving an answer computed while satisfying e-DP, the attacker’s
probability estimate (of Bob being sick) can change by a factor of e because of data
correlation, where k is the number of members in Bob’s family including Bob.

A natural question is whether satisfying e-DP provides a level of privacy protection
promised by the € value. It is true that an adversary’s belief about whether Bob has the
disease may change by a factor of e¥¢. This is an example that DP cannot bound prior-to-
posterior belief change against arbitrary external knowledge, which we know is impossible
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to achieve. However, DP’s guarantee that real-world-posterior and ideal-world-posterior are
ec-close remains valid, and one can apply PDP to say that e-DP indeed provides a level of
privacy protection promised by the e value. We will discuss challenges to this reasoning in
Section 3.3.3.

We want to point out that the three claims regarding DP listed in Kifer and
Machanavajjhala [2011] have roots in claims made regarding DP’s ability to provide prior-
to-posterior bound. In the Appendix of the seminal paper on differential privacy Dwork
et al. [2006], the authors introduce the following semantic privacy notion: A mechanism is
said to be (k,e)-simulatable if for every informed adversary who already knows all except
for k entries in the dataset D, every output, and every predicate f over the set of all input
datasets, the change in the adversary’s belief on f is multiplicative-bounded by e€. To sim-
plify our discussion, we focus on the case where k = 1. Let n denote the number of records
in the dataset. Being (1, €)-semantically secure means that no matter what the adversary’s
prior belief is (so long as it is consistent with the belief of n — 1 entries), after observing
the output, the adversary’s belief change is bounded. An algorithm satisfies e-DP iff. it is
(1, e)-simulatable.

We note that (1, €)-simulatable, which is equivalent to e-DP, bounds prior-to-posterior
belief change. The reasoning in Dwork et al. [2006], while technically correct, is potentially
misleading, because it gives the impression that DP provides prior-to-posterior bound for
an arbitrary prior belief of the adversary via the following arguments: Since DP is able to
provide such a bound against so strong an adversary as an “informed adversary”, intuitively
it should be able to provide the same bound against any other adversary, which must be
weaker. We know that providing such a prior-to-posterior bound is impossible without
destroying utility. The key in the apparent contradiction lies in the choice of how to define
an “informed adversary”, which might appear to be a strong model for adversaries, but
is in fact, quite limiting. It limits the adversary to being certain about n — 1 records and
requiring the adversary’s belief to be consistent with that. A perfectly reasonable adversary
who believes that either Bob’s family all have the disease or none has the disease cannot
be modeled as an “informed adversary”.

3.3 EXAMINING DP AND PDP

DP overcomes the challenges of data correlation by applying the PDP. However, there are
several caveats that undermine the application of PDP to justify DP in particular usage
scenarios.
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3.3.1 WHEN NOTION OF NEIGHBORING DATASETS IS DEFINED
INCORRECTLY

When the notion of neighboring datasets is defined incorrectly, one cannot use PDP to
claim that the real world approximates worlds where privacy is protected. Examples of
such problematic usages of DP are abundant in the literature.

In the context of graph data, two variants of DP are introduced: in edge-DP, two
graphs are neighboring if they differ on one edge; in node-DP, two graphs are neighboring
if by removing one node and all edges connected to it in one graph, one obtains the other
graph. Satisfying node-DP is much harder than satisfying edge-DP, since removing one node
may cause the removal of many edges. Because of this reason, most papers studying DP on
graph data consider edge-DP, under the justification that doing so protects the individual
relationship between two entities. We believe that using edge-DP is incorrect when each
node represents an individual, as removing an edge is not equivalent to exercising control
of personal data, and the graph resulted from removing an edge cannot be considered an
ideal world. In fact, attacks on anonymized graph data are in the form of re-identifying
nodes, illustrating that this is where the privacy concern lies. Finally, even if one accepts
the claim that the goal is to protect the relationship between two entities, edge-DP falls
short of achieving that because edges are correlated with each other, and the Personal Data
Principle cannot be used to justify the decision to ignore such correlation.

Data such as Netflix movie rating data can be represented via a matrix, where each
cell represents the rating of one user on a movie. Similar to graph data, one can consider
cell-DP and row-DP McSherry and Mironov [2009]. The criticisms of using edge-DP for
graph data similarly apply to cell-DP.

In McSherry and Mahajan [2010], DP techniques are applied to network trace analysis
where neighboring datasets differ in a single record representing a single packet for two
datasets considered in McSherry and Mahajan [2010]. While it is acknowledged that this is
only a starting point for beginning to understand the applicability of DP to network data,
we caution that this does not provides meaningful privacy protection, since protecting the
information about a single packet is unlikely to be the real privacy concern, and data
correlation destroys the quality of protection even for information about a single packet.

Theoretically one can compensate for the effect by analyzing and bounding the effect
of correlation and choosing a smaller e. However, doing so means giving up the main insight
underlying DP: by identifying ideal worlds, one can ignore correlations, and requires new
definitions and techniques beyond DP to explicitly analyze and deal with correlations.

3.3.2 WHEN USING DP IN THE LOCAL SETTING

The most high-profile applications of DP are in the local setting, where there is no trusted
data curator, and each participant perturbs and submits personal data. The only deployed
system using DP that we are aware of is Google’s RAPPOR (Randomized Aggregatable
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Privacy-Preserving Ordinal Response) system Erlingsson et al. [2014], which collects in-
formation from individuals in the local setting. This is a generalization of randomized re-
sponse Warner [1965], which is a decades-old technique in social science to collect statistical
information about embarrassing or illegal behavior. To report a single bit, one reports the
true value with probability p and the flip of the true value with probability 1 — p. Analogous
to DP, one can define a requirement that for two arbitrary possible inputs x; and x5, and
any output y: Prly|zi] < ePr[y|xs].

The key issue here is how many questions for which answers will be collected via the
system, and how to choose the parameter e. Systems such as RAPPOR are designed to
answer many (hundreds of or more) questions while using the same fixed privacy budget
e =In9 for each question. When answers to these questions are correlated, it is unclear
what kind of protection is achieved. Correlation has the potential to enable more accurate
answers to be obtained. Attempts to use PDP to say this is not a concern amount to taking
the absurd position that revealing answers to all except one question is an ideal world for
the individual.

Similar concerns exist when applying DP to stream data in the local setting. When
neighboring datasets are defined as differing on a single event, correlation exists between
different events must be explicit considered, and cannot be ignored by applying PDP. In
other words, using DP in the local setting is closer to the “privacy-as-secrecy” interpreta-
tion, since one’s goal is to hide one piece of info. When one’s ultimate goal is to hide pieces
of information, then one needs to consider the effect of data correlation.

3.3.3 WHAT CONSTITUTES ONE INDIVIDUAL’S DATA

To apply PDP, we first need to identify what is one individual’s personal data. Doing
so becomes difficult when dealing with genomic and health data. Genomic information are
highly correlated. For example, DeCode Genetics, a company based in Reykjavk, Iceland,
collected full DNA sequences from 10, 000 consenting Iceland residents. Combining this with
genealogy records, DeCode is able to guess BRAC2 gene mutations (which dramatically
increases the chance of ovarian and breast cancer among women) for approximately 2,000
individuals who did not participate in original DNA collection. They face a moral and legal
dilemma of whether to notify these individuals, as there is preventive surgery which can
significantly decrease the chances of mortality.

Given correlation in genomic data, should my parents’ genomic data be also con-
sidered to be part of my genomic data? What about my children, siblings, grandparents,
and other relatives? What about non-genomic medical information regarding hereditary
disease? These legal and ethical questions still need to be resolved, although evidences sug-
gest that such privacy concerns will be recognized. In 2003, the supreme court of Iceland
ruled that a daughter has the right to prohibit the transfer of her deceased father’s health
information to a Health Sector Database, not because her right acting as a substitute of
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her deceased father, but in the recognition that she might, on the basis of her right to
protection of privacy, have an interest in preventing the transfer of health data concerning
her father into the database, as information could be inferred from such data relating to the
hereditary characteristics of her father which might also apply to herself. ! When dealing
with genomic and health data, one cannot simply say correlation doesn’t matter because
of PDP, and may have to quantify and deal with such correlation.

3.3.4 AN INDIVIDUAL’S PERSONAL DATA OR PERSONAL DATA UNDER
ONE INDIVIDUAL’S CONTROL

Sometimes, one individual is given legal control over other individual’s personal data, e.g., a
parent is the legal guardian over minors. Applying DP may be problematic when this occurs.
Let us return to Example 3.3, and assume that the dataset contains the information of Bob
and his £ — 1 minor children for whom Bob is the legal guardian. Can we still claim that
satisfying e-DP offers privacy protection at e-level by wielding the PDP? We believe that
this position can be challenged. Even though the children’s data are not Bob’s personal
data, they are under the control of Bob. Applying the “opting-out” analysis, when Bob
wants to opt out because of privacy concern, he can and likely will remove data of all his
children as well. In other words, Bob may not accept that removing only his record results
in an “ideal” world for him. However, we acknowledge that reasonable people can disagree
on this, based on different legal and philosophical arguments.

3.3.5 GROUP PRIVACY AS A POTENTIAL LEGAL ACHILLES’ HEEL FOR DP

Let us return to Example 3.3, and change the setting to Bob lives in a dorm building
with k£ — 1 other unrelated individuals. Clearly we can wield PDP and argue that DP
provides appropriate protection. This position is perfectly justifiable if individuals other
than Bob have agreed to have their data used. However, it is likely that nobody in Bob’s
dorm has explicitly given consent to the data usage (if they do, then DP is not needed).
Now, accurate information regarding whether individuals in the dorm have the disease or
not can be learned; and this information may cause damage for these individuals. When
this happens, can the individuals in Bob’s dorm come together and complain that their
collective privacy or group privacy is violated?

Indeed legal and philosophy literature have acknowledged that a group can hold the
right to privacy and it is known as “group privacy”. Bloustein [2002] defines group privacy
as: “Group privacy is an extension of individual privacy. The interest protected by group
privacy is the desire and need of people to come together, to exchange information, share
feelings, make plans and act in concert to attain their objectives.” This concept of group
privacy, however, appears to be somewhat different from what we are considering. To our
knowledge, currently there are no explicit regulations protecting the privacy of a group

Ihttps://epic.org/privacy/genetic/iceland_decision.pdf
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of people in the context of data publishing or sharing. In the era of big data and data
publishing, and especially with the application of DP, the issue of group privacy is likely
to become a pressing concern that needs to be addressed by legal, philosophy, and other
social science scholars. If such “collective privacy” or “group privacy” is recognized, then
using DP for personal data appears fundamentally flawed.

3.3.6 A MORAL CHALLENGE TO PRIVATE PARTY BENEFITING FROM DP

FEven when using DP in a setting where the above challenges do not apply, there is a
moral challenge to private parties benefitting from the application of DP. One natural
application of DP is when a company wants to sell (or otherwise profit from) data collected
from individuals in a way that the individuals do not authorize. That is, DP is useful
in situations similar to when the Group Insurance Commission (GIC) sells (supposedly)
anonymous medical history data Sweeney [2002], or when AOL publishes search log Barbaro
and Tom Zeller [2006]. Suppose that a company processes the data in a way that satisfies
e-DP for € = 0.01 and then makes money from it. Is this acceptable? Many applications of
DP seem to suggest that the answer is “yes”.

Now let us consider the following hypothetical situation: A company takes 2 cents
from every bank account, and justifies the action by saying that every individual is mini-
mally affected. 2 Is this acceptable? We believe that almost everyone will say “no”, because
stealing is stealing, no matter how small the amount is. A similar argument would apply if a
company benefits from data processed in a way that satisfies DP. We note that one can still
support using DP where the public in general benefits from the data sharing. When only
private parties benefit from such sharing, than a moral challenge can be levered against the

party.

3.4 ADDITIONAL CAVEATS WHEN USING DP

Beyond the validity of using PDP to justify DP, there are a few additional caveats when
applying DP, which we now discuss.

3.4.1 USING AN ¢ THAT IS TOO LARGE

One caveat when applying e-DP is to use a large e value. How large is too large? The
inventors of DP stated Dwork and Smith [2010]: “The choice of € is essentially a social
question. We tend to think of € as, say, 0.01, 0.1, or in some cases, In2 or In3”. These
values are also broadly consistent with most papers in this domain Hsu et al. [2014]. We
now offer some support for these numbers. Table 3.1 gives the range of p’ that is e close
to p. For example, when € = 0.1, the adversary’s belief may increase from 0.001 to 0.0011,
2This is inspired by a question on Quora https://www.quora.com/Say-I-steal-2-cents-from-every-bank-

account-in-America-I-am-proven-guilty-but-everyone-I-stole-from-says-theyre-fine-with-it-What-
happens
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c 0.01 0.1 1 5 10
X = et T.01 T11 2.72 148 22026
p = 0.001 | (0.0010, 0.0010) | (0.0009, 0.0011) | (0.0004, 0.0027) ]| (0.0000, 0.1484) | (0.0000, 1.0000)
p=0.01 | (0.0099, 0.0101) | (0.0090, 0.0111) | (0.0037, 0.0272) | (0.0001, 0.9933) | (0.0000, 1.0000)
p=01 (0.0990, 0.1010) | (0.0905, 0.1105) | (0.0368, 0.2718) | (0.0007, 0.9939) | (0.0000, 1.0000)
p=05 (0.4950, 0.5050) | (0.4524, 0.5476) | (0.1839, 0.8161) | (0.0034, 0.9966) | (0.0000, 1.0000)
p=0.75 | (0.7475, 0.7525) | (0.7237, 0.7738) | (0.3204, 0.9080) | (0.0051, 0.9983) | (0.0000, 1.0000)
p =099 | (0.9899, 0.9901) | (0.9889, 0.9910) | (0.9728, 0.9963) | (0.0067, 0.9999) | (0.0000, 1.0000)

Table 3.1: The range of the probability p’ that is e¢-close to the probability value p.

or from 0.5 to 0.5476. Our, necessarily subjective, interpretation of these numbers is that
€ = 0.1 offers reasonably strong privacy protection and should suffice for most cases, and
€ = 1 may be acceptable in a lot of cases. Using € = 5 is probably unsuitable in most cases.
Finally, ¢ > 10 offers virtually no privacy protection and should not be used. If acceptable
utility can be obtained only when € > 10, we think that demonstrates a failure of effectively
applying DP in that setting.

3.4.2 APPLYING A MODEL TO PERSONAL DATA

The fact that a model is learned while satisfying DP does not remove privacy concern
caused by applying the model to personal data. A typical data-drive prediction scenario
involves two steps. In the first step, one learns some model/knowledge from the data of
a group of individuals (we call this group A). DP can be used in this step. In the second
step, one applies the model to make predictions regarding each individual in a group B.
DP cannot be applied in this step. To make a prediction regarding an individual, one has
to use some of the individual’s attributes. Satisfying DP would destroy any possible utility
in this step. This step creates new privacy concerns that should not be confused with those
during the learning of a model.

This problem can be confusing when A and B are the same group, in which case
an individual’s personal information is used twice, first in learning the model and again
in making prediction about the individual. Satisfying DP in the former does not address
privacy concerns in the latter. In Duhigg [2012], it is reported that a father learned the
pregnancy of his daughter, who was in high school, through coupons for baby clothes
and cribs mailed by Target. This is predicted by applying a model to the family’s purchase
record. As Target’s frequent shopper program (and likely any other such program) consents
to the merchant using the data for marketing purpose, this cannot be considered a privacy
violation in the legal sense. However, if such user consent does not exist, then even if the
model is learned while satisfying DP, this should be considered a privacy violation because
of usage of shopping record in the prediction.
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3.4.3 PRIVACY AND DISCRIMINATION

Supposed one has learned a classifier in a way that satisfies DP. What if one applies the
classifier to the public attributes of an individual (such as gender, age, race, nationality, etc),
and makes decisions accordingly? Even if one argues that the privacy concern is addressed
vt DP, doing so can be considered a form of discrimination.

A subtle and interesting point is that sometimes better privacy can result in more dis-
crimination. Wheelan [2010] had an interesting discussion: ¢ Statistical discrimination, or
so-called “rational discrimination,” takes place when an individual makes an inference that
is defensible based on broad statistical patterns but (1) is likely to be wrong in the specific
case at hand; and (2) has a discriminatory effect on some group. Suppose an employer has
no racial prejudice but does have an aversion to hiring workers with a criminal background.
[...] If this employer has to make a hiring decision without access to applicants’ criminal
backgrounds |[...], then it is entirely plausible that he will discriminate against black male
applicants who are far more likely to have served in prison. [...] If this employer can ac-
quire that information with certainty, then the broader patterns don’t matter. Data shows
that access to criminal background checks reduce discrimination against black men without
criminal records.”

In summary, applying statistical knowledge could lead to discrimination that is con-
sidered illegal by law. This is an issue orthogonal to privacy. On the one hand, one should
not criticize DP because discrimination remains possible with DP. On the other hand, one
should be aware that the discrimination concern is not addressed by using DP.

3.5 BIBLIOGRAPHICAL NOTES

Li et al. [2012a] discussed limitations of k-anonymity and relationship between k-
anonymization and DP. Dwork [2006] and Dwork and Naor [2008] discussed the impossibil-
ity of preventing any inference of personal information. Ganta et al. [2008], Kasiviswanathan
and Smith [2008, 2014] provided an attempt at formalizing a bayesian guarantee of DP.
Kifer and Machanavajjhala [2011] examined the impact of correlation on guarantee of DP.
Li et al. [2013] examined DP from the perspective of protecting against membership dis-
closure, i.e., the information whether an individual’s data is in the dataset or not.




