CS555: Cryptography Spring 2012
Homework #6

Due date & time: 10:30am on April 24, 2012. Hand in at the beginning of class (preferred), or email to
the TA (jiang97 @purdue.edu) by the due time.

Late Policy: You have three extra days in total for all your homeworks. Any portion of a day used counts
as one day; that is, you have to use integer number of late days each time. If you emailed your homework
to the TA by 10:30am the day after it was due, then you have used one extra day. If you exhaust your three
late days, any late homework won’t be graded.

Additional Instructions: The submitted homework must be typed. Using Latex is recommended, but not
required.

Problem 1 (10 pts) (Katz and Lindell. Page 380. Exercise 10.7.)

Answer sketch. Construct A’ as follows. Given y, repeat for ¢ times, each time randomly chooses
r <+ Zn, obtain z + A(yr®), compute z = zr~! mod N, if ¢ = y, then output z.

The probability that this algorithm succeeds is 1 — (1 — 0.01)!, which is greater than 0.99 when
t > 459. The running time of A’ is the running time of .4 multiplied by the constant .

Problem 2 (5 pts) (Katz and Lindell. Page 380. Exercise 10.8.)

Answer sketch. Because then computing z° is more efficient.

Problem 3 (10 pts) (Katz and Lindell. Page 381. Exercise 10.11.)

Answer sketch. If this is not CPA-secure, there exists an adversary A. We use A to construct A’
to solve DDH. A’ is given G, ¢ and a DDH tuple (g, h1, ha, hs), and needs to tell whether they are

drawn from (g, g%, ¢°, g®) or (g, g%, ¢°, ¢°).

A’ initiates A with the public key (G, ¢, g, h1). In training phase, A’ simply follows the encryption
scheme and does not use ha, h3. When A is ready for the challenge, A uses (h2, h3) as the ciphertext.
If A predicts that the ciphertext is 0, then A" outputs that this is a DDH tuple; and if .4 predicts that
the ciphertext is 1, then A’ outputs that this is not a DDH tuple. A’ succeeds if and only if A succeeds.

Problem 4 (15 pts) (Katz and Lindell. Page 383. Exercise 10.17.)

Note. You do not need to define an appropriate notion of security. That is, you do not need to solve
the second half of part (c).

Answer sketch. (a) So long as B is honest, the bit B chooses is uniform from {0, 1} and inde-
pendent of A’s choice, then no matter what A does, the two bits equal each other with probability
exactly 1/2. (b) To bias the bit to 0, B takes A’s ciphertext c4 = (c1,c2) and compute his cipher-
text as cg = (c19",c2h”). We have cg # cg4, yet they encrypt the same value. To bias the bit to
1, B takes A’s ciphertext c4 = (c1, c2) and compute his ciphertext as cg = (c19”, coh”g?~ 1), where
q is the order of the group such that g = 1. (c) An appropriate encryption scheme is RSA with OAEP.



Problem 5 (10 pts) (Katz and Lindell. Page 454. Exercise 12.2.)

Answer sketch. (a) Textbook RSA signature is insecure in this setting. Given RSA public key (NN, e),
compute m’ = mr® mod N, obtain its signature o’ = (m’)® mod N, the signature for m is o/r~!
mod N. (b) Textbook RSA is secure in this setting, under the RSA assumption. Computing the sig-
nature on m is solving the RSA problem.

Problem 6 (10 pts) (Katz and Lindell. Page 454. Exercise 12.3.) Note: For the purpose of this homework,
we define “Textbook Rabin signatures” as follows: Given a message m € Z; to compute the signa-
ture of m, first find the smallest non-negative integer ¢ such that m + ¢ is QR modulo n, and let = be
the smallest square root of m + i in Z, the signature is (4, x); to verify that the signature is valid, one
verifies that 22 = m + i (mod n).

Answer. The adversary randomly chooses 7, compute m = 2 mod n, and then obtain a Rabin
signature; it is of the form (0, z), where 22 = m(mod n). If » # 2 and r # —z, then we can factor
n. The adversary can repeat this by choosing different 7.

Problem 7 (20 pts) (a) Prove that the protocol for proving one knows how to open a Pederson commitment
(Slide 27 of Topic 23) is honest-verifier Zero-knowledge. That is, provide a simulator that can generate
a transcript that is indistinguishable from one generated in the actual protocol run between the prover
and a verifier who honestly follows the protocol.

(b) Prove that this protocol is a proof of knowledge. It suffices to show that if the prover can success-
fully respond to two different challenges for the same d, then one can compute the values x and r for
opening the commitment.

Answer. In the protocol, P sends d, V sends e € [l..¢], and P sends u,v such that g“h¥ =
dc® (mod p).

(a) The simulator works as follows: randomly chooses e, randomly chooses » and v, and computes
d = g*h%(c®)~! mod p.
(b) The knowledge extractor works as follows: Suppose that the prover can successfully respond to
two different challenges e; and ey with uy, v, us, v2. We thus have

g h" = dc® and g“?h"? = dc®?
Thus we have

gUtTRITY2 = 172 (mod p)

and let z = (e; — e2)~! mod (p — 1), raising both side to the power of z, we have
¢ = gl—u2)zp(vi—ve)z (mod p)

We have extracted the secrets to open the commitment.

Problem 8 Pallier encryption. (20 pts) Let N = pg where p and q are two prime numbers. Let g € [0, N?]
be an integer satisfying ¢ = aN + 1(mod N?) for some a € Z%;. Consider the following encryption
scheme. The public key is (N, g). The private key is (p, ¢, a). To encrypt a message m € Zy, one
picks a random h € Z7;,, and computes C' = ¢™h"N mod N2. Our goal is to develop a decryption

algorithm and to show the homomorphic property of the encryption scheme.



a. (8 pts) Show that the discrete log problem mod N2 base ¢ is easy when knowing the private key.
That is, show that given g and B = ¢® mod N? there is an efficient algorithm to recover x
mod N. Use the fact that g = aN + 1 for some integer a € Z},.

Answer. As g = aN + 1, we have
B = g¢* mod N? = (aN +1)® mod N?> = KN? 4 azN + 1 mod N2, for some integer K

Thus we have B — 1 = axN (mod N?); and thus (B — 1)/N = ax (mod N), and one can

compute (x mod ) as

(B-1)
N

(x mod N) = (e~ mod N)

b. (8 pts) Show that given the public key and the private key, decrypting C = ¢"*h" mod N2 can
be done efficiently.

Hint: consider C*(N) mod N2, Use the fact that by Euler’s theorem 2N = 1(mod N?)
for any x € ZY,.

Answer. We have
CPWN) = (gmpN)oIN) = gme(N)p No(N) = g pd(N?) = Gm(N) (mod N?)
The key is to see that ¢(N?) = ¢(p?¢?) = p(p — 1)q(q — 1) = Np(N).

With part (a), we can compute the discrete log of C¢(Y ) mod N, let y be this value. We know
that m¢(N) mod N = 5. Thus m = y(¢(N)~! mod N).

Putting everything together, we can write

<(C’¢(N) - 1) mod N2

m =

((aqf)(N))_l mod N)> mod N

c. (4 pts) Show that this encryption scheme is additive homomorphic. Let x,y, z be integers in
[1, N]. Show that given the public key (N, g) and ciphertexts of a and b it is possible to con-
struct a ciphertext of = + y and a ciphertext of zx. More precisely, show that given ciphertexts
C) = gzh{V , Oy = gyhév , it is possible to construct ciphertexts C's = gm+yhév and Cy = gzzhiv .



