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k-Anonymity [Sweeney, Samarati ] 

 Privacy is “protection from being brought to the attention of 

others.” 

 k-Anonymity 
 Each record is indistinguishable from   k-1 other records when only 

“quasi-identifiers” are considered 

 These k records form an equivalence class 

 To achieve k-Anonymity, uses 
 Generalization: Replace with less-specific values 

 Suppression: Remove outliers 

Male Female 

         * 

         476** 

47677 47678 47602 

         2* 

29 27 22 

Zipcode Age Gender 



k-Anonymity [Sweeney, Samarati ] 

QID SA 

Zipcode Age Gen Disease 

47677 29 F Ovarian Cancer 

47602 22 F Ovarian Cancer 

47678 27 M Prostate Cancer 

47905 43 M Flu 

47909 52 F Heart Disease 

47906 47 M Heart Disease 

QID SA 

Zipcode Age Gen Disease 

476** 

476** 

476** 

2* 

2* 

2* 

* 

* 

* 

Ovarian Cancer 

Ovarian Cancer 

Prostate Cancer 

4790* 

4790* 

4790* 

[43,52] 

[43,52] 

[43,52] 

* 

* 

* 

Flu 

Heart Disease 

Heart Disease 

The Microdata A 3-Anonymous Table 

 k-Anonymity 
 Each record is indistinguishable from   k-1 other records when only 

“quasi-identifiers” are considered 
 These k records form an equivalence class 
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Attacks on k-Anonymity 

Zipcode Age Disease 

476** 

476** 

476** 

2* 

2* 

2* 

Heart Disease 

Heart Disease 

Heart Disease 

4790* 

4790* 

4790* 

≥40 

≥40 

≥40 

Flu 

Heart Disease 

Cancer 

476** 

476** 

476** 

3* 

3* 

3* 

Heart Disease 

Cancer 

Cancer 

A 3-anonymous patient table 

Bob 

Zipcode Age 

47678 27 

Carl 

Zipcode Age 

47673 36 

 k-anonymity does not provide privacy if: 

 Sensitive values lack diversity 

 The attacker has background knowledge 

Homogeneity Attack 

Background Knowledge Attack 

Carl does not have heart disease 
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l –Diversity: [Machanavajjhala et al. 
2006] 

• Principle 
– Each equi-class contains at least l  well-

represented sensitive values 

• Instantiation 
– Distinct l-diversity 

• Each equi-class contains l distinct sensitive values 

 

– Entropy l-diversity 
• entropy(equi-class)≥log2(l) 
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The Skewness Attack on l-Diversity 

l-diversity does not consider the overall distribution of sensitive 

values 

 Two values for the sensitive attribute 

 HIV positive (1%) and HIV negative (99%) 

 Highest diversity still has serious privacy risk 

 Consider an equi-class that contains an equal number of positive 

records and negative records. 

 l-diversity does not differentiate: 

 Equi-class 1: 49 positive + 1 negative 

 Equi-class 2: 1 positive + 49 negative 
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The Similarity Attack on l-Diversity 

Bob 

Zip Age 

47678 27 

Zipcode Age Salary Disease 

476** 

476** 

476** 

2* 

2* 

2* 

20K 

30K 

40K 

Gastric Ulcer 

Gastritis 

Stomach Cancer 

4790* 

4790* 

4790* 

≥40 

≥40 

≥40 

50K 

100K 

70K 

Gastritis 

Flu 

Bronchitis 

476** 

476** 

476** 

3* 

3* 

3* 

60K 

80K 

90K 

Bronchitis 

Pneumonia 

Stomach Cancer 

A 3-diverse patient table 

Conclusion 

1. Bob’s salary is in [20k,40k], 

which is relative low. 

2. Bob has some stomach-related 

disease. 

l-diversity does not consider semantic meanings of sensitive values 
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t-Closeness 
• Principle: Distribution of sensitive attribute value in 

each equi-class should be close to that of the overall 
dataset (distance  t) 
– Assuming that publishing a completely generalized table is 

always acceptable 
– We use Earth Mover Distance to capture semantic relationship 

among sensitive attribute values 

• (n,t)-closeness: Distribution of sensitive attribute 
value in each equi-class should be close to that of 
some natural super-group consisting at least n tuples 

N. Li, T. Li, S. 

Venkatasubramanian:   t-

Closeness: Privacy Beyond k-

Anonymity and l-diversity. In 

ICDE 2007.  Journal version in 

TKDE 2010. 



From Syntactical Privacy Notions to 
Differential Privacy 

• Limitation of previous privacy notions: 
– Requires identifying which attributes are quasi-identifier or 

sensitive, not always possible 
– Difficult to pin down due to background knowledge 
– Syntactic in nature (property of anonymized dataset) 

• Not exhaustive in inference prevented  

• Differential Privacy [Dwork et al. 2006] 
– Privacy is not violated if one’s information is not included 
– Output does not overly depend on any single tuple 
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Syntactic versus Algorithmic  
Privacy Notions 

𝑑1 

𝑑2 

𝑑𝑛−1 

𝑑𝑛 

Output 
Algorithm ⋮ 
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Syntactic Algorithmic 

In
p

u
t D

ata 



Differential Privacy [Dwork et al. 2006] 

• Idea: Any output should be about as likely  

            regardless of whether or not I am in the dataset 

𝐷′ D 
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𝐴(𝐷′) 𝐴(𝐷) 

Algo 𝐴 satisfies 𝜖-differential 
privacy if for any possible output 𝑡, 

 𝑒−𝜖 ≤
Pr⁡[𝐴 𝐷 =𝑡]

Pr⁡[𝐴 𝐷′ =𝑡]
≤ 𝑒𝜖 

Parameter 𝜖: strength of privacy 
protection, known as privacy budget. 

Algorithm A must be randomized. 



Key Assumption Behind DP:  
The Personal Data Principle 

• After removing one individual’s data, that 
individual’s privacy is protected perfectly. 
– Even if correlation can still reveal individual info, 

that is not considered to be privacy violation 

• In other words, for each individual, the 
world after removing the individual’s 
data is an ideal world of privacy for that 
individual.  Goal is to simulate all these 
ideal worlds.  
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Data mining 
Statistical queries Database 

+Noise 

  

Differential Privacy 

Trusted 

Data Data Data Data Data 
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Trust boundary 



Local Differential Privacy 

Data mining 
Statistical queries Database 

No worry about untrusted server 

Data+Noise Data+Noise Data+Noise 
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Trust boundary 



Mechanisms and Properties 

• Random Response  
– Most used in the local setting 

• Laplace 

• Exponential 

• Composition Theorem 
– Sequential composition 

– Parallel composition 

– Postprocessing 

– Advanced composition 
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The Warner Model (1965) 
• Survey technique for private questions 
• Survey people:  

– “Are you communist party?” 

• Each person: 
– Flip a secret coin 
– Answer truth if head (w/p 0.5) 
– Answer randomly if tail  
– E.g., a communist will answer “yes”  w/p 75%, and “no” w/p 25% 

• To get unbiased estimation of the distribution: 

– If 𝑛𝑣 out of 𝑛⁡people are communist, we expect to see  

⁡⁡⁡⁡⁡⁡𝐸[⁡𝐼𝑣] = 0.75𝑛𝑣 + 0.25(𝑛 − 𝑛𝑣) “yes” answers 

– 𝑐(𝑛𝑣) =
𝐼𝑣−0.25𝑛

0.5
 is the unbiased estimation of number of 

communists 

– Since 𝐸[𝑐(𝑛𝑣)] =
𝐸[𝐼𝑣]−0.25𝑛

0.5
= 𝑛𝑣 

 

 

Provide deniability:  
Seeing answer, not certain about the secret. 

This only handles binary attribute. 
We want to handle the more general 

setting. 

We say a protocol satisfies 𝜀⁡-LDP iff 
for any 𝒗 and 𝒗′ from “yes” and “no”, 

Pr 𝑃 𝒗 = 𝒗

Pr 𝑃 𝒗′ = 𝒗
≤ 𝑒𝜀⁡ 
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Frequency Estimation Protocols 

• Randomised response: a survey technique for eliminating evasive 
answer bias 
– S.L. Warner, Journal of Ame. Stat. Ass. 1965 
– Direct Encoding (Generalized Random Response) 

• RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal 
Response. 
– Ú. Erlingsson, V. Pihur, A. Korolova, CCS 2014 
– Unary Encoding, Encode into a bit-vector 

• Local, Private, Efficient Protocols for Succinct Histograms 
– R. Bassily, A. Smith.  STOC 2015. 
– Binary Local Hash: Encode by hashing and then perturb 

• Locally Differentially Private Protocols for Frequency Estimation 
– T. Wang, J. Blocki, N. Li, S. Jha: USENIX Security 2017 
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Direct Encoding (Random Response) 

• User: 
– Encode 𝑥 = 𝑣 (suppose 𝑣 from 𝐷 = {1,2, … , 𝑑}) 
– Toss a coin with bias 𝑝  
– If it is head, report the true value 𝑦 = 𝑥 

– Otherwise, report any other value with probability 𝑞 =
1−𝑝

𝑑−1
 (uniformly 

at random) 

• 𝑝 =
𝑒𝜀

𝑒𝜀+𝑑−1
, 𝑞 =

1

𝑒𝜀+𝑑−1
⇒

Pr 𝑃 𝒗 =𝒗

Pr 𝑃 𝒗′ =𝒗
=

𝑝

𝑞
= 𝑒𝜀 

• Aggregator: 
– Suppose 𝑛𝑣 users possess value 𝑣, 𝐼𝑣 is the number of reports on 𝑣. 

– 𝐸[𝐼𝑣] = 𝑛𝑣 ⋅ 𝑝 + 𝑛 − 𝑛𝑣 ⋅ 𝑞 

– Unbiased Estimation: 𝑐(𝑣) =
𝐼𝑣−𝑛⋅𝑞

𝑝−𝑞
  

Intuitively, the higher 𝑝, the more accurate 

However, when 𝑑 is large, 𝑝 becomes small 
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Unary Encoding (Basic RAPPOR) 

• Encode the value⁡𝑣 into a bit string 𝒙 ≔ 0, 𝒙 𝑣 ≔ 1⁡ 
– e.g., ⁡⁡𝐷 = 1,2,3,4 , 𝑣 = 3, then⁡𝒙 = [0,0,1,0]  

• Perturb each bit, preserving it with probability 𝑝 

– 𝑝1→1 = 𝑝0→0 = 𝑝 =
𝑒𝜀/2

𝑒𝜀/2+1
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑝1→0 = 𝑝0→1 = 𝑞 =

1

𝑒𝜀/2+1
 

– ⇒
Pr 𝑃(𝐸 𝑣 )=𝒙

Pr 𝑃(𝐸 𝑣′ )=𝒙
≤

𝑝1→1

𝑝0→1
×

𝑝0→0

𝑝1→0
= 𝑒𝜀 

• Since 𝒙⁡is unary encoding of 𝑣, 𝒙 and 𝒙′ differ in two locations 

• Intuition:  
– By unary encoding, each location can only be 0 or 1, effectively reducing 𝑑 

in each location to 2. 
– When 𝑑 is large, UE is better than DE. 

• To estimate frequency of each value, do it for each bit. 
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• The protocol description in [Bassily-Smith ’15] is complicated 
• This is an equivalent description 
• Each user uses a random hash function from⁡𝐷⁡to⁡ 0,1 ⁡ 
• The user then perturbs the bit with probabilities 

– 𝑝 =
𝑒𝜀

𝑒𝜀+𝑔−1
=

𝑒𝜀

𝑒𝜀+1
, 𝑞 =

1

𝑒𝜀+𝑔−1
=

1

𝑒𝜀+1
 

⇒
Pr 𝑃(𝐸 𝒗 ) = 𝑏

Pr 𝑃(𝐸 𝒗′ ) = 𝑏
=

𝑝

𝑞
= 𝑒𝜀 

• The user then reports the bit and the hash function 
• The aggregator increments the reported group 

• 𝐸[𝐼𝑣] = 𝑛𝑣 ⋅ 𝑝 + 𝑛 − 𝑛𝑣 ⋅ (
1

2
𝑞 +

1

2
𝑝) 

• Unbiased Estimation: 𝑐(𝑣) =
𝐼𝑣−𝑛⋅

1

2

𝑝−
1

2

 

 

Binary Local Hash 
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Our Work 

• We measure utility of a mechanism by its variance 
– E.g., in Random Response,  

• 𝑉𝑎𝑟 𝑐 𝑣 = 𝑉𝑎𝑟
𝐼𝑣−𝑛⋅𝑞

𝑝−𝑞
=

𝑉𝑎𝑟[𝐼𝑣]

𝑝−𝑞 2 
≈

𝑛⋅𝑞⋅(1−𝑞)

𝑝−𝑞 2 
 

• We propose a framework called ‘pure’ and cast 
existing mechanisms into the framework. 
– Each output 𝑦 “supports” a set of input 𝑣⁡ 

• E.g., In Unary Encoding, a bi vector supports each value with a 
corresponding 1 

• E.g., In BLH, Support(𝑦) = 𝑣⁡ ⁡𝐻 𝑣 = 𝑦  

– A pure protocol is specified by 𝑝′ and 𝑞′  
• Each input is perturbed into a value  “supporting it” with 𝑝′, 

and into a value not supporting it with 𝑞′ 

𝑚𝑖𝑛𝑞′𝑉𝑎𝑟 𝑐 𝑣  

or 𝑚𝑖𝑛𝑞′
𝑛⋅𝑞′⋅(1−𝑞′)

𝑝′−𝑞 ′2 
 

where⁡𝑝′, 𝑞′⁡satisfy 𝜀-LDP 
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Optimized Unary Encoding (UE) 

• In the original UE, 1 and 0 are treated symmetrically 

– 𝑝1→1 = 𝑝0→0 =
𝑒𝜀/2

𝑒𝜀/2+1
, ⁡⁡⁡⁡⁡ 𝑝1→0 = 𝑝0→1 =

1

𝑒𝜀/2+1
⁡⁡ 

• Observation: In the input, there are a lot more 0’s than 1’s 
when 𝑑 is large.   

• Key Insight: We can perturb 0 and 1 differently and 
should reduce 𝑝0→1 as much as possible 

– 𝑝1→1 =
1

2
, ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 𝑝1→0 =

1

2
 

– 𝑝0→0 =
𝑒𝜀

𝑒𝜀+1
, ⁡⁡⁡⁡⁡⁡ 𝑝0→1 =

1

𝑒𝜀+1
 

•
𝑝1→1

𝑝0→1
×

𝑝0→0

𝑝1→0
⁡≤ ⁡ 𝑒𝜖  
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Optimized Local Hash (OLH) 

• In original BLH, secret is compressed into a bit, 
perturbed and transmitted. 

• Both steps cause information loss: 
– Compressing: loses much 
– Perturbation: information loss depends on 𝜖 

• Key Insight: We want to make a balance between 
the two steps: 
– By compressing into more groups, the first step carries 

more information 

• Variance⁡is optimized when 𝑔 = 𝑒𝜀 + 1 
• See our paper for details. 
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Laplace Mechanism 

0

0.2

0.4

0.6

-10 -8 -6 -4 -2 0 2 4 6 8 10

Laplace Distribution – Lap(λ) 

Database 

Researcher 

Query q 

True answer 

q(D) q(D) + η 

η 

h(η) α exp(-η / λ) 

Privacy depends on 
the λ parameter 

Mean: 0,  
Variance: 2 λ2 

[DMNS 06] 
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How much noise for privacy? 

 
Sensitivity: Consider a query q: I  R. S(q) is the 

smallest number s.t. for any neighboring tables D, 
D’,  

| q(D) – q(D’) |  ≤  S(q)  
 
 
Thm: If sensitivity of the query is S, then the 

following guarantees ε-differential privacy.  

λ = S/ε 

26 

[Dwork et al., TCC 2006] 



Sensitivity: COUNT query 

• Number of people having disease 

• Sensitivity = 1 

 

 

• Solution: 3 + η,  
where η is drawn from Lap(1/ε) 
– Mean = 0  

– Variance = 2/ε2  
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Disease 
(Y/N) 

Y 

Y 

N 

Y 

N 

N 

D 



More on Sensitivity 

• Suppose all the n values x are in [a,b] 

• Quiz (3 min break): 

– Sensitivity for sum? 

– Sensitivity for mean 

– Sensitivity for median 
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More on Sensitivity 

• Suppose all values x are in [a,b] 

• Sensitivity for sum: b 

– One record can increase sum up to b 

• Sensitivity for mean: (b-a)/(n+1) 

– Change the total from na to na+b  

– Thus mean: na/n->(na+b)/(n+1) 

• Sensitivity for median: (b-a)/2 

– Consider a,a,b->a,a,b,b 
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Privacy of Laplace Mechanism 

• Consider neighboring 
databases D and D’ 

• Consider some output O 
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Laplace Distribution: 



Utility of Laplace Mechanism 

• Laplace mechanism works for any function 
that returns a real number 

 

• Error: E(true answer – noisy answer)2  
    
   = Var( Lap(S(q)/ε) ) 
    
   = 2*S(q)2 / ε2 
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Exponential Mechanism 

• For functions that do not return a real number 
… 

– “what is the most common nationality in this room”:  
Chinese/Indian/American… 

 

• When perturbation leads to invalid outputs … 

– To ensure integrality/non-negativity of output 
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Exponential Mechanism 

Consider some function f (can be deterministic or probabilistic): 
 
 
 
 
 
 
 
 
 

How to construct a differentially private version of f? 
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Inputs Outputs 

[MT 07] 



Exponential Mechanism 

• Scoring function w: Inputs x Outputs  R 

 

• D: nationalities of a set of people  

• #(D, O): # people with nationality O 

• f(D): most frequent nationality in D 

•  w(D, O) = |#(D, O) - #(D, f(D))| 
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Exponential Mechanism 

• Scoring function w: Inputs x Outputs  R 

 

• Sensitivity of w 

 

 

   

  where D, D’ differ in one tuple 
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Exponential Mechanism 

Given an input D, and a scoring function w,  
 
Randomly sample an output O from Outputs with probability 

 
 
 
 
 
 

• Note that for every output O, probability O is output > 0.  
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Randomized Response (a.k.a. local randomization) 

Disease 
(Y/N) 

Y 

Y 

N 

Y 

N 

N 
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With probability p,  
     Report true  value 
 
With probability 1-p, 
     Report flipped value 

Disease 
(Y/N) 

Y 

N 

N 

N 

Y 

N 

D O 

[W 65] 



Differential Privacy Analysis 

• Consider 2 databases D, D’ (of size M) that 
differ in the jth value 

– D[j] ≠ D’[j]. But, D[i] = D’[i], for all i ≠ j 

 

• Consider some output O 
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Randomized Response (a.k.a. local randomization) 

Disease 
(Y/N) 

Y 

Y 

N 

Y 

N 

N 
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With probability p,  
     Report true  value 
 
With probability 1-p, 
     Report flipped value 

Disease 
(Y/N) 

Y 

N 

N 

N 

Y 

N 

D O 

[W 65] 



Differential Privacy Analysis 

• Consider 2 databases D, D’ (of size M) that 
differ in the jth value 

– D[j] ≠ D’[j]. But, D[i] = D’[i], for all i ≠ j 

 

• Consider some output O 
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Laplace Mechanism vs Randomized Response 

Privacy 

• Provide the same ε-differential privacy guarantee 

 

• Laplace mechanism assumes data collected is trusted 

• Randomized Response does not require data 
collected to be trusted 

– Also called a Local Algorithm, since each record is 
perturbed 
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Laplace Mechanism vs Randomized Response 

Utility 

• Suppose a database with N records where μN 
records have disease = Y.  

• Query: # rows with Disease=Y 

 

• Std dev of Laplace mechanism answer: O(1/ε) 

• Std dev of Randomized Response answer: O(√N) 
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Why Composition?  

• Reasoning about privacy of  
a complex algorithm is hard.  

 

 

• Helps software design 

– If building blocks are proven to be private, it 
would be easy to reason about privacy of a 
complex algorithm built entirely using these 
building blocks. 
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Sequential Composition 

• If M1, M2, ..., Mk are algorithms that access a private 
database D such that each Mi  satisfies εi -differential 
privacy,  
 
then running all k algorithms sequentially satisfies  
ε-differential privacy with ε=ε1+...+εk  
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Privacy of Sequential Composition 

• Consider neighboring databases D and D’ 

• Consider some output O 
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Pr⁡[𝐴(𝐷) = 𝑂, 𝑂′]

Pr⁡[𝐴(𝐷′) = 𝑂, 𝑂′]
=

Pr[𝑞(𝐷) + 𝜂 = 𝑂] Pr[𝑞′ (𝐷) + 𝜂′ = 𝑂′ ]

Pr⁡[𝑞(𝐷′) + 𝜂 = 𝑂]Pr[𝑞′(𝐷′ ) + 𝜂′ = 𝑂′ ]
 

=
𝑒−|𝑂−𝑞(𝐷)| 𝜆 × 𝑒−|𝑂′−𝑞′(𝐷)| 𝜆 

𝑒−|𝑂−𝑞(𝐷′ )| 𝜆 × 𝑒−|𝑂′ −𝑞′(𝐷′)| 𝜆 
 

≤ 𝑒 𝑞(𝐷)−𝑞 𝐷′   𝜆 × 𝑒 𝑞′(𝐷)−𝑞′ 𝐷′   𝜆 ≤ 𝑒𝜀
 



Parallel Composition 

• If M1, M2, ..., Mk are algorithms that access 
disjoint databases D1, D2, …, Dk such that each 
Mi  satisfies εi -differential privacy,  
 
then running all k algorithms in “parallel” 
satisfies ε-differential privacy  
with ε= max{ε1,...,εk} 

 

46 



Postprocessing 

• If M1 is an ε-differentially private algorithm 
that accesses a private database D,  
 
then outputting M2(M1(D)) also satisfies ε-
differential privacy. 
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Advanced Composition  

• Composing 𝑘 algorithms, each satisfying 𝜖-DP 
ensures 𝜖𝑔-DP with probability 1 − 𝛿 

             𝜖𝑔 = 𝑂 𝜖⁡ 𝑘 ln
1

𝛿
+ 𝑘𝜖2     

 

• Analyze privacy loss as a random variable: 
given output 𝑜 and neighbors 𝐷, 𝐷′  

                𝑃𝐿 𝑜 = ln
Pr⁡[𝑀 𝐷 =𝑜]

Pr⁡[𝑀 𝐷′ =𝑜]
⁡ 

48 
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Advanced Composition  

• Composing 𝑘 algorithms, each satisfying 𝜖-DP 
ensures 𝜖𝑔-DP with probability 1 − 𝛿 

             𝜖𝑔 = 𝑂 𝜖⁡ 𝑘 ln
1

𝛿
+ 𝑘𝜖2  

 

• Each algorithm has privacy loss 𝑃𝐿(𝑜) 
– Worst case (DP): Pr 𝑃𝐿 𝑜 ≤ 𝜖 = 1 
– Expected loss: E 𝑃𝐿(𝑜) ≤ 𝜖(𝑒𝜖−1) 

– Total privacy loss 𝜖𝑔 is bounded by Azuma’s inequality 

49 

[DRV10] 



What Can Be Achieved Under 
Centralized DP? 

• Possible to publish high-quality statistical 
information for low-dimensional data  

• For high-dimensional data (data with 
hundreds or more attributes), achieving 
privacy while preserving arbitrary statistical 
information is hard 

– Possible to perform specific tasks, such as learning 
a classifier, learning frequent itemsets (and 
association rules) 
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Summary 

• Motivation to use DP 

• LDP Mechanisms 

• DP Mechanisms 

– Laplace 

– Exponential 

– Random Response 

• DP Properties 

– Sequential/parallel/advanced composition 

– Postprocessing is free 
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