Data Security and Privacy

Topic 18: k-Anonymity, I-Diversity, and t-Closeness

Optional Readings for This Lecture

 t-Closeness: Privacy Beyond k-Anonymity and I-Diversity.
Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian.
In ICDE, April 2007.

All Kinds of Privacy Concerns

- Deciding what data to collect and why, how to use the data, and with whom to share data
- Communicate privacy policies to end users
- Ensure that data are used in ways consistent with privacy policies
- Protect collected data (security)
- Anonymity in communications
- Sharing data or using data for purposes in a way not allowed by privacy policies
 - How?

Privacy Preserving Data Sharing

- It is often necessary to share data
 - For research purposes
 - E.g., social, medical, technological, etc.
 - Mandated by laws and regulations
 - E.g., census
 - For security/business decision making
 - E.g., network flow data for Internet-scale alert correlation
 - For system testing before deployment
 - ...
- However, publishing data may result in privacy violations

3/20/2018

GIC Incidence [Sweeny 2002]

- Group Insurance Commissions (GIC, Massachusetts)
 - Collected patient data for ~135,000 state employees.
 - Gave to researchers and sold to industry.
 - Medical record of the former state governor is identified.

Re-identification occurs!

Real Threats of Linking Attacks

- Fact: 87% of the US citizens can be uniquely linked using only three attributes <Zipcode, DOB, Sex>
- Sweeney [Sweeney, 2002] managed to re-identify the medical record of the government of Massachusetts.

Census data (income), medical data, transaction data, tax data, etc.

AOL Data Release [NYTimes 2006]

- In August 2006, AOL Released search keywords of 650,000 users over a 3-month period.
 - User IDs are replaced by random numbers.
 - 3 days later, pulled the data from public access.

Netflix Movie Rating Data [Narayanan and Shmatikov 2009]

- Netflix released anonymized movie rating data for its Netflix challenge
 - With date and value of movie ratings
- Knowing 6-8 approximate movie ratings and dates is able to uniquely identify a record with over 90% probability
 - Correlating with a set of 50 users from imdb.com yields two records
- Netflix cancels second phase of the challenge

Re-identification occurs!

Genome-Wide Association Study (GWAS) [Homer et al. 2008]

- A typical study examines thousands of singenucleotide polymorphism locations (SNPs) in a given population of patients for statistical links to a disease.
- From aggregated statistics, one individual's genome, and knowledge of SNP frequency in background population, one can infer participation in the study.
 - The frequency of every SNP gives a very noisy signal of participation; combining thousands of such signals give high-confidence prediction

GWAS Privacy Issue

Published Data

Adv. Info & Inference

	Disease Group Avg	Control Group Avg	Populatio n Avg	Target individu al	Target in Disease
SNP1=A	43%			Info	Group
SNP2=A	11%		42%	yes	+
SNP3=A	58%		10%	no	-
SNP4=A	23%		59%	no	+
			24%	yes	-

Membership disclosure occurs!

3/20/2018

Main Research Problems

- How to define privacy for sharing data?
- How to publish/anonymize data to satisfy privacy while providing utility?

Attempts at Defining Privacy

- Preventing the following disclosures
 - Identification disclosure
 - Attribute disclosure
 - Membership disclosure

k-Anonymity [Sweeney, Samarati]

The Microdata

QID			SA
Zipcode	Age	Gen	Disease
47677	29	F	Ovarian Cancer
47602	22	F	Ovarian Cancer
47678	27	М	Prostate Cancer
47905	43	М	Flu
47909	52	F	Heart Disease
47906	47	М	Heart Disease

A 3-Anonymous Table

	QID	SA	
Zipcode	Age	Gen	Disease
476**	2*	*	Ovarian Cancer
476**	2*	*	Ovarian Cancer
476**	2*	*	Prostate Cancer
4790*	[43,52]	*	Flu
4790*	[43,52]	*	Heart Disease
4790*	[43,52]	*	Heart Disease

□ k-Anonymity

- Attributes are separated into Quasi-identifiers (QIDs) and Sensitive Attributes (SAs)
- Each record is indistinguishable from \geq k-1 other records when only "quasi-identifiers" are considered
- 3/20/2018 These k records form an equivalence class

k-Anonymity & Generalization

□ *k*-Anonymity

- Each record is indistinguishable from at least k-1 other records
- These *k* records form an *equivalent class*
- k-Anonymity ensures that linking cannot be performed with confidence > 1/k.
- Generalization
 - Replace with less-specific but semantically-consistent values

Data Publishing Methods

- Generalization
 - Make data less precise
- Perturbation
 - Add noise/errors
- Suppression
 - Remove certain data
- Data generating
 - Generate similar data
- Segmentation
 - Divide data up before publishing
- ???

Attacks on k-Anonymity

□ k-anonymity does not prevent attribute disclosure if:

Sensitive values lack diversity

The attacker has background knowledge

3/20/2018

l-Diversity [Machanavajjhala et al. 2006]

- The /-diversity principle
 - Each equivalent class contains at least / wellrepresented sensitive values
- Instantiation
 - Distinct /-diversity
 - Each equi-class contains / distinct sensitive values
 - Entropy /-diversity
 - entropy(equi-class)≥log₂(l)

$$H(X) = E(I(X)) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i)$$

Limitations of *l*-Diversity

I-diversity may be difficult and unnecessary to achieve.

- Consider a single sensitive attribute
 - Two values: HIV positive (1%) and HIV negative (99%)
 - Very different degrees of sensitivity
 - One would not mind being known to be tested negative but one would not want to be known/considered to be tested positive.
- □ I-diversity is unnecessary to achieve
 - 2-diversity is unnecessary for an equi-class that contains only negative records.
- □ I-diversity is difficult to achieve
 - Suppose there are 10000 records in total.
 - To have distinct 2-diversity, there can be at most 10000*1%=100 equi-classes.

The Skewness Attack: An Example

- □ Two values for the sensitive attribute
 - HIV positive (1%) and HIV negative (99%)
- □ Highest diversity still has serious privacy risk
 - Consider an equi-class that contains an equal number of positive records and negative records.
- □ Using diversity and entropy does not differentiate:
 - Equi-class 1: 49 positive + 1 negative
 - Equi-class 2: 1 positive + 49 negative

The overall distribution of sensitive values matters.

The Similarity Attack: An Example

476**

A 3-diverse patient table

3*

90K

- Bob's salary is in [20k,40k], which is relative low.
- 2. Bob has some stomach-related disease.

The semantic meanings of attribute values matters.

Stomach Cancer

How to Prevent These Attacks?

- Goal is to quantify/limit amount of information leakage through data publication.
- Looking only at the final output is inherently problematic because it cannot measure information gain.

Our Main Insight

- Revealing the overall distribution of the sensitive attribute in the whole dataset should be considered to have no privacy leakage (is an ideal world for privacy)
 - In other words, we assume that removing all quasi-identifier attributes preserves privacy
 - Seems unavoidable unless willing to destroy utility
 - Also seems desirable from utility perspective
- Goal is to simulate this ideal world.

t-Closeness [Li et al. 2007]

A compare the selected back formation

Age	Zipcode	he <u>di</u> str	botenter i	s alwonnyseasyeailabe	
2**	479** to	o the att o release	e the data	at all. Flu	
2**	47We s	epara	te ktow	edge gisgare	
2**	4791代わ	two pa	artøåle	Cancer	
	Д А	bout the	e whole po	pulation (from E_0	
	t	р В <u>1)</u>	· ·		
		bout sp	ecific indiv	iduals (from B_1 to	
≥50	4766*		knowled	Gastritis	
between B_1 and B_2 instead					

Principle

The distance between Q and P_i should be bounded by a threshold t.

t-Closeness

- Principle: Distribution of sensitive attribute value in each equi-class should be close to that of the overall dataset (distance ≤ t)
- How to measure distance between two distributions so that semantic relationship among sensitive attribute values is captured.
 - Assume distribution of income is (10K, 20K, 30K, ..., 90K); intuitively (20K,50K,80K) is closer to it than (10K,20K,30K).

The Earth Mover Distance

• We use Earth Mover Distance.

- Distance between (10K, 20K, 30K, ..., 90K) and (20K,50K,80K) is $0.1 \times \frac{1}{9} \times 6 = \frac{2}{30} \approx 0.0067$
- Distance between (10K, 20K, 30K, ..., 90K) and (10K,20K,30K) is $\frac{1}{9} \times (0.3 + 0.4 + 0.4 + 0.5 + 0.5 + 0.6) = 0.3$

Limitations of t-Closeness

- Utility may suffer too much, since interesting and significant deviation from global distribution cannot be learned.
- (n,t)-closeness: Distribution of sensitive attribute value in each equi-class should be close to that of some natural super-group consisting at least n tuples
 - Okay to learn information about a large group.

(n,t)-Closeness

- One may argue that requiring t-closeness may destroy data utility
- The notion of (n,t)-closeness requires distribution close to a large-enough natural group of size at least n
- Intuition:
 - It is okay to learn information about the a big group
 - It is not okay to learn information about one individual

Other Limitations

- Requires the distinction between Quasiidentifiers and sensitive attributes
- The t-closeness notion is a property of input dataset and output dataset, not that of the algorithm; thus additional information leakage is possible when the algorithm is known

Limitation of These Privacy Notions

- Limitation of previous privacy notions:
 - Requires identifying which attributes are quasi-identifier or sensitive, not always possible
 - Difficult to pin down adversary's background knowledge
 - There are many adversaries when publishing data
 - Syntactic in nature (property of anonymized dataset)

Privacy Notions: Syntactic versus Algorithmic

- Syntactic: Privacy is a property of only the final output
- Algorithmic: Privacy is a property of the algorithm
- Syntactic notions are typically justified by considering a particular inferencing strategy; however, adversaries may consider other sources of information
 - E.g., Minimality Attack

Illustrating the Syntactic Nature of k-Anonymity

- Method 1 for achieving k anonymity: Duplicating each record k times
- Method 2: clusters records into groups of at least k, use one record from each group to replace all other records in the group

– Privacy of some individuals are violated

- Method 3: cluster records into groups, then use generalized values to replace the specific values (e.g., consider a 2-D space)
 - Record with extraordinary values are revealed/reidentified

Differential Privacy [Dwork et al. 2006]

- Definition: A mechanism A satisfies ε-Differential Privacy if and only if
 - for any neighboring datasets D and D'
 - and any possible transcript $t \in \text{Range}(A)$, $\Pr[A(D) = t] \le e^{\epsilon} \Pr[A(D') = t]$
 - For relational datasets, typically, datasets are said to be neighboring if they differ by a single record.

Next Lecture

• Local Differential Privacy (By Tianhao Wang)