
Data Security and Privacy

Topic 17: Non-interference and Non-

deducibility

1

2

Optional Readings for This Lecture

• Security Policies and Security

Models. J.A.Goguen and

J.Meseguer. Oakland’1982

• Non-deducibility is from the

paper “A Model of

Information” by David

Sutherland
• Not available online

http://en.wikipedia.org/wiki/Filesystem_permissions

3

What is a Security Model?

• A model describes the system

– e.g., a high level specification or an abstract machine

description of what the system does

• A security policy

– defines the security requirements for a given system

• Verification techniques that can be used to show

that a policy is satisfied by a system

• System Model + Security Policy = Security Model

Motivations

• Multi-level security is about information flow

– Information in high level objects should not flow into low-level

subjects

• The BLP model describes access control mechanisms

that prevents illegal information flow, but not the meaning

of no illegal information flow

– BLP describes “how”, not “what” for information flow protection

• E.g., define secure encryption by giving a particular encryption

algorithm and say this is secure encryption

– As a result, BLP does not prevent information flow through covert

channels

– Also, it doesn’t say whether other mechanisms can be used do

information flow protection

4

Non-interference in Programs

• Consider the following functions, is there information flow

between x and output of the functions?

5

add(int x, int y) {

 return x+y;

}

check_pw(char *s) {

 char *x;

 return strcmp(x,s);

}

f(int x, int y) {

 if x>0 return y+y;

 else return 2*y;

}

g(int x, int y){

 return x*y/x;

}

Deterministic Non-Interference in

Programs

• A set X of inputs is non-interfering with a set Y of outputs

if and only if

– No matter what values X take, the outputs Y remain the same

• When one changes only values of inputs in X, the output

remain unchanged

• Observing only Y, one learns nothing about any input in X.

– More formally, let Y=f(X,Z), where f is a deterministic function,

and X,Z represents two sets of inputs, X is non-interfering with Y

iff Z0Y0 X0 f(X0, Z0) = Y0

 or equivalently, Z0 X0 X1 f(X0, Z0) = f(X1, Z0)

– X interferes with Y iff. Z0 X0 X1 f(X0, Z0)  f(X1, Z0)

• For randomized programs, non-interference is harder to

define, and we do not cover it in this course

6

More on Non-interference

Properties

• Two classes of techniques to ensure that security

properties are satisfied by programs

– Monitor execution of a program and deny illegal actions

or terminate the program if illegal action is detected.

• Can enforce BLP property.

• Cannot enforce non-interference.

– Why? Because non-interference is not defined on one

execution of a program; it is a property on a program’s

behaviors on different inputs.

– Statically verifying that certain non-interference relation

holds by analyzing the program

• Can be used only with access to source code

7

Language-Based Security

• Using programming language technique to ensure certain security

properties hold

– A large body of work focuses on using type theory and compiling-time

checks to ensure information-flow properties

• Challenges to apply in real world:

– Non-interference is often too strong

• Suppose that one want to ensure that a secret password is not

leaked, can one require non-interference between the password

input and observable output?

• Needs declassification mechanism that specify certain information

dependent on sensitive inputs can be leaked.

– Specifying such policies is impractical

• Too much work for programmers, especially for large programs

• Many policies need to be determined by end users, not programmers

– Need source code, unable to deal with the real security challenge of

external code.

8

9

The Non-Interference Model in the

Original Goguen-Meseguer paper

• A state-transition model, where state changes occur by
subjects executing commands
– S: set of states

– U: set of subjects

– SC: set of state commands

– Out: set of all possible outputs

– do: S×U×SC S

• do(s,u,c)=s’ means that at state s, when u performs command c, the
resulting state is s’

– out: S×U Out

• out(s,u) gives the output that u sees at state s

– s0 S initial state

Model focuses on interfaces (inputs/outputs) of a system,

rather than internal aspects (e.g., objects)

10

Security Policies in the Non-

interefence Model

• A security policy is a set of noninterference assertions

• Definition of noninterference: Given two group of users G

and G’, we say G does not interfere with G’ if for any

sequence of commands w,

– View_G’(w) = View_G’(PG(w))

• PG(w) is w with commands initiated by users in G removed.

• No matter what users in G do, users in G’ will observe the same.

• Implicit assumptions:

– Initial state of the system does not contain any sensitive

information

– Information comes into the system by commands

– Only way to get information is through outputs

11

Comparisons of the BLP work &

the Noninterference work

• Differences in model

– BLP models internals of a system (e.g., objects)

– GM models the interface (input & output)

• Differences in formulating security policies

– BLP specifies access control requirement, noninterference

specifies information flow goal

• Noninterference could address covert channels concerns

– Provided that one defines observable behavior to include those in

covert channels; doesn’t make stopping covert channel easier

• Under noninterference, a low user is allowed to copy one

high-level file to another high-level file

– In general not allowed by BLP

12

Evaluation of The Non-Interference

Policy

• The notion of noninterference is elegant and natural

– Focuses on policy objective, rather than mechanism, such as

BLP

– Could be useful in other settings

• Mostly concerned with deterministic systems

– For randomized or otherwise non-deterministic systems,

definition is more complicated

• May be too restrictive

– e.g., consider encrypt and then communicate

Non-deducibility

• Attempt to define information flow in non-deterministic as well as

deterministic systems

• Intuition: there is no information flow between X and Y, iff., when

observing only Y, one can never eliminate any value from the domain

in X as a possible value

• Definition: let Y=f(X,Z), where f is not necessarily deterministic, there

is information flow between X and Y in the non-deducibility sense iff.

 Y0  { f(X,Z) } X0 s.t. Y0  { f(X0, Z) }

– When one observes the value of Y is Y0, one learns that X≠X0.

– There is no information flow between X and Y in the non-deducibility

sense when Y0  { f(X,Z) } X0  Z0 s.t. Y0  { f(X0, Z0) }

• Go to the examples for non-interference

13

14

An Example Illustrating that Non-

deducibility is Too Weak

• A high user and a low user

– the high user can write to a file

• one letter at a time

– the low user can try to read the n’th character in a file

• if file is shorter than n, or if the the n’th character is blank,

returns a random letter

• otherwise, with 99.9% probability return the letter, and with

0.1% probalility return a random letter

• The system is nondeducible secure

• The system is intuitively insecure

• Non-deducibility can often be too weak. It deals with

possibilistic inference, not probabilistic inference

Examples:

15

High int x = …;

High int y = …;

Low int z;

if x>0 z= y+y;

else z=2*y;

• x does not interfere with z

• y interferes with z

• x and z are non-

deduciable secure

• y and z are not non-

deduciable secure

High int x = …;

High int y = …;

Low int z;

if x>0 z = y+y;

else z = 3*y;

• x interferes with z

• y interferes with z

• x and z are not non-

deduciable secure

• y and z are not non-

deduciable secure

Examples

16

High int x = …;

High int y = …;

Low int z1 = x + y;

Low int z2 = x – y;

• x interferes with z1

• x interferes with z2

• x and z1 are non-

deduciable secure

• x and {z1,z2} are not

non-deduciable secure

•

High char * x = …;

Low char * entered_pw = …;

Low boolean z;

z = strcmp(entered_pw,x);

• x interferes with z

• x and {z, entered_pw} are

not non-deduciable secure

17

Relationships Between Nondeducibility &

Noninterference

• For deterministic systems with just one high input

var (and possibly many other low input vars) and

one low output, a system is noninterference

secure if and only if it is nondeducibility secure.

• For deterministic systems with more than one

high input vars, non-interference is stronger than

non-deducibility

Proof.

• Theorem: For deterministic programs with just one high

input variable x, let Z be the set of all low variables, x does

not interfere with the set Z if and only if x and Z are

nondeducible secure.

• Proof. If x does not interfere with Z, no matter what values x takes, the

variables in Z are uniquely determined by inputs in Z. Observing

values in Z cannot eliminate any value for x.

• If x interferes with Z, then there exist x1≠ x2 and Z2≠Z1 such that Z=Z1

when x=x1 and Z=Z2≠Z1 when x=x2. Observing Z=Z2, one knows x≠x1,

making x and X not nondeduciable secure. This is because as x is the

only high var and the system is deterministic, when fixing input

variables in Z to values in Z2, the output variables are fixed as well.

18

Relationship Between Security

Notions

• Perfect secrecy

• IND-CPA security

• Non-interference

• Non-deducability

19

Next Lecture

• Data Privacy

20

