
Data Security and Privacy 

Topic 13: Overview of Public-Key 

Cryptography 
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Announcements 

• Mid-term Exam 

– Tuesday March 6, during class 
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Readings for This Lecture 

• Required: On Wikipedia 

– Public key cryptography 

– RSA 

– Diffie–Hellman key exchange 

– ElGamal encryption 

 

• Required:  
– Differ & Hellman: “New Directions in 

Cryptography” IEEE Transactions on 

Information Theory, Nov 1976. 

 

 

 
 

 

http://en.wikipedia.org/wiki/Public-key_cryptography
http://en.wikipedia.org/wiki/RSA
http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
http://en.wikipedia.org/wiki/ElGamal_encryption
http://en.wikipedia.org/wiki/Filesystem_permissions


Outline 

• Public-Key Encryption 

• Digital Signatures 

• Key distribution among multiple parties 

• Kerberos 

• Distribution of public keys, with public key 

certificates 

• Diffie-Hellman Protocol 

• TLS/SSL/HTTPS 
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Review of Secret Key (Symmetric) 

Cryptography  

• Confidentiality 
– stream ciphers (uses PRNG) 

– block ciphers with encryption modes 

• Integrity 
– Cryptographic hash functions 

– Message authentication code (keyed hash functions) 

• Limitation: sender and receiver must share the 
same key 
– Needs secure channel for key distribution 

– Impossible for two parties having no prior relationship 

– Needs many keys for n parties to communicate 
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Concept of Public Key Encryption 

• Each party has a pair (K, K-1) of keys:  

– K is the public key, and used for encryption 

– K-1 is the private key, and used for decryption 

– Satisfies    DK-1[EK[M]] = M 

• Knowing the public-key K, it is computationally infeasible 

to compute the private key K-1 

– How to check (K,K-1) is a pair? 

– Offers only computational security.  Secure Public Key encryption 

is impossible when P=NP, as deriving K-1 from K is in NP. 

• The public key K may be made publicly available, e.g., in 

a publicly available directory 

– Many can encrypt, only one can decrypt 

• Public-key systems aka asymmetric crypto systems 
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Public Key Cryptography Early 

History 
• Proposed by Diffie and Hellman, documented in “New 

Directions in Cryptography” (1976)  
1. Public-key encryption schemes 

2. Key distribution systems 

• Diffie-Hellman key agreement protocol 

3. Digital signature 

 

• Public-key encryption was proposed in 1970 in a 
classified paper by James Ellis 
– paper made public in 1997 by the British Governmental 

Communications Headquarters 

 

• Concept of digital signature is still originally due to Diffie 
& Hellman 
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Public Key Encryption Algorithms 

• Most public-key encryption algorithms use either 

modular arithmetic number theory, or elliptic 

curves 

• RSA 

– based on the hardness of factoring large numbers 

• El Gamal 

– Based on the hardness of solving discrete logarithm 

– Use the same idea as Diffie-Hellman key agreement 
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Diffie-Hellman Key Agreement 

Protocol 
Not a Public Key Encryption system, but can allow A and B 

to agree on a shared secret in a public channel (against 

passive, i.e., eavesdropping only adversaries) 

Setup: p prime and g generator of Zp*, p and g public. 

 

K = (gb mod p)a = gab mod p  

  

ga mod p  

gb mod p  

K = (ga mod p)b = gab mod p 

Pick random, secret a 

Compute and send ga mod p 

Pick random, secret b 

Compute and send gb mod p 



Diffie-Hellman 

• Example: Let p=11, g=2, then 

 

 

 

 

     A chooses 4, B chooses 3, then shared secret is  

 (23)4  =  (24)3  =  212  =  4  (mod 11) 

     Adversaries sees 23=8 and 24=5, needs to solve one of 

2x=8 and 2y=5 to figure out the shared secret. 
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  a 1 2 3 4 5 6 7 8 9 10 11 

ga 2 4 8 16 32 64 128 256 512 1024 2048 

ga mod p 2 4 8 5 10 9 7 3 6 1 2 



Security of DH is based on Three 

Hard Problems 
• Discrete Log (DLG) Problem: Given <g, h, p>, computes a 

such that ga = h mod p. 

• Computational Diffie Hellman (CDH) Problem: Given <g, 

ga mod p,  gb mod p>  (without a, b) compute gab mod p. 

• Decision Diffie Hellman (DDH) Problem: distinguish 

(ga,gb,gab) from (ga,gb,gc), where a,b,c are randomly and 

independently chosen 

 

• If one can solve the DL problem, one can solve the CDH 

problem.  If one can solve CDH, one can solve DDH. 
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Assumptions 

• DDH Assumption: DDH is hard to solve. 

• CDH Assumption: CDH is hard to solve. 

• DLG Assumption: DLG is hard to solve 

 

• DDH assumed difficult to solve for large p (e.g., at least 

1024 bits). 

• Warning: 

– New progress can solve discrete log for p values with some 

properties.  No immediate attack against practical setting yet. 

– Look out when you need to use/implement public key crypto 

– May want to consider Elliptic Curve-based algorithms 
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ElGamal Encryption 

• Public key <g, p, h=ga  mod p> 

• Private key is a 

• To encrypt: chooses random b, computes    

 C=[gb mod p, gab * M mod p]. 

• Idea: for each M, sender and receiver establish a shared secret 

gab via the DH protocol.  The value gab hides the message M by 

multiplying it. 

• To decrypt C=[c1,c2], computes M where  

• ((c1
a mod p) * M) mod p = c2. 

• To find M for x * M mod p = c2, compute z s.t. x*z mod p =1, and 

then M = C2*z mod p 

• CDH assumption ensures M cannot be fully recovered. 

• IND-CPA security requires DDH. 
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RSA Algorithm 

• Invented in 1978 by Ron Rivest, Adi Shamir 
and Leonard Adleman 
– Published as R L Rivest, A Shamir, L Adleman, "On 

Digital Signatures and Public Key Cryptosystems", 
Communications of the ACM, vol 21 no 2, pp120-126, 
Feb 1978  

• Security relies on the difficulty of factoring large 
composite numbers  

• Essentially the same algorithm was discovered 
in 1973 by Clifford Cocks, who works for the 
British intelligence 
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RSA Public Key Crypto System 

Key generation: 
1. Select 2 large prime numbers of about the same 

size, p and q 
Typically each p, q has between 512 and 2048 bits 

2. Compute n = pq, and (n) = (q-1)(p-1) 

3. Select e,  1<e< (n), s.t. gcd(e, (n)) = 1 
Typically e=3 or e=65537 

4. Compute  d, 1< d< (n) s.t.  ed  1 mod (n) 
Knowing (n), d easy to compute.  

 

Public key:  (e, n) 

Private key:  d 
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RSA Description (cont.)  

Encryption 

Given a message M, 0 < M < n M  Zn {0} 

use public key (e, n)  

compute C = Me mod n    C  Zn {0} 

 

Decryption 

Given a ciphertext C, use private key (d)  

Compute Cd mod n = (Me mod n)d mod n = Med 
mod n = M 
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RSA Example 

• p = 11, q = 7, n = 77, (n) = 60  

• d = 13, e = 37   (ed = 481;  ed mod 60 = 1) 

• Let M = 15.  Then C  Me mod n 

– C  1537 (mod 77) = 71 

• M  Cd mod n 

– M  7113 (mod 77) = 15 

 

 



RSA Example 2 

• Parameters: 

– p = 3, q = 5, n= pq = 15 

– (n) = ? 

• Let e = 3, what is d? 

• Given M=2, what is C? 

• How to decrypt? 
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Hard Problems on Which RSA 

Security Depends 
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Plaintext: M 

C = Me mod (n=pq) 

Ciphertext: C 

Cd mod n 

1. Factoring Problem: Given n=pq, compute p,q 

2. Finding RSA Private Key: Given (n,e), compute d s.t. ed = 1 (mod (n)). 

• Given (d,e) such that ed = 1 (mod (n)), there is a clever 

randomized algorithm to factor n efficiently. 

• Implication: cannot share the modulus n among multiple users 

3. RSA Problem: From (n,e) and C, compute M s.t. C = Me  

• Aka computing the e’th root of C. 

• Can be solved if n can be factored 
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RSA Security and Factoring 

• Security depends on the difficulty of factoring n 

– Factor n  compute (n)  compute d from (e, n) 

– Knowing e, d such that ed = 1 (mod (n))  factor n 

• The length of n=pq reflects the strength 

– 700-bit n factored in 2007 

– 768 bit n factored in 2009 

• RSA encryption/decryption speed is quadratic in key length 

• 1024 bit for minimal level of security today 

– likely to be breakable in near future 

• Minimal 2048 bits recommended for current usage  

• NIST suggests 15360-bit RSA keys are equivalent in strength to 256-

bit  

• Factoring is easy to break with quantum computers 

• Recent progress on Discrete Logarithm may make factoring much 

faster 



RSA Encryption & IND-CPA 

Security 
• The RSA assumption, which assumes that the RSA 

problem is hard to solve, ensures that the plaintext 

cannot be fully recovered. 

 

• Plain RSA does not provide IND-CPA security. 

– For Public Key systems, the adversary has the public key, hence 

the initial training phase is unnecessary, as the adversary can 

encrypt any message he wants to. 

 

– How to break IND-CPA security? 

– How to use it more securely? 
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Real World Usage of Public Key 

Encryption 

• Often used to encrypt a symmetric key 

– To encrypt a message M under an RSA public key (n,e), 

generate a new AES key K, compute    

 [Ke mod n, AES-CBCK(M)] 

 

• Alternatively, one can use random padding.  
– E.g., computer (M || r) e mod n to encrypt a message M with a random 

value r 

– More generally, uses a function F(M,r), and encrypts as   F(M,r) e mod n  

– From F(M,r), one should be able to recover M 

– This provides randomized encryption 
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Digital Signatures: The Problem 

• Consider the real-life example where a person pays by 

credit card and signs a bill; the seller verifies that the 

signature on the bill is the same with the signature on 

the card 

• Contracts are valid if they are signed. 

• Signatures provide non-repudiation. 

– ensuring that a party in a dispute cannot repudiate, or refute the 

validity of a statement or contract. 

• Can we have a similar service in the electronic world?  

– Does Message Authentication Code provide non-repudiation?   
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Digital Signatures 

• MAC: One party generates MAC, one party verifies 

integrity. 

• Digital signatures: One party generates signature, 

many parties can verify. 

• Digital Signature: a data string which associates a 

message with some originating entity. 

• Digital Signature Scheme: 

– a signing algorithm: takes a message and a (private) signing 

key, outputs a signature 

– a verification algorithm: takes a (public) verification key, a 

message, and a signature 

• Provides: 
– Authentication, Data integrity, Non-Repudiation 
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Digital Signatures and Hash  

• Very often digital signatures are used 

with hash functions, hash of a 

message is signed, instead of the 

message. 

• Hash function must be: 

– Strong collision resistant  
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RSA Signatures 

Key generation (as in RSA encryption): 

• Select 2 large prime numbers of about the  

    same size, p and q 

• Compute n = pq, and  = (q - 1)(p - 1) 

• Select a random integer e,  1 < e < , s.t.  

    gcd(e, ) = 1 

• Compute  d, 1 <  d <   s.t.  ed  1 mod  

 

Public key:  (e, n)  used for verification 

Private key:  d,   used for generation 



27 

RSA Signatures with Hash (cont.)  

Signing message M 

• Verify 0 < M < n 

• Compute S = h(M)d mod n 

 

Verifying signature S 

• Use public key (e, n)  

• Compute Se mod n = (h(M)d mod n)e mod n = 

h(M) 

 



Non-repudiation 

• Nonrepudiation is the assurance that someone cannot 

deny something. Typically, nonrepudiation refers to the 

ability to ensure that a party to a contract or a 

communication cannot deny the authenticity of their 

signature on a document or the sending of a message 

that they originated.  

 

• Can one deny a digital signature one has made? 

 

• Does email provide non-repudiation? 
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The Big Picture 

Secrecy / 

Confidentiality 

Stream ciphers 

Block ciphers + 

encryption modes 

Public key 

encryption: RSA, 

El Gamal, etc. 

Authenticity / 

Integrity 

Message 

Authentication 

Code 

Digital Signatures: 

RSA, DSA, etc. 

Secret Key  

Setting 

Public Key  

Setting 



Next Lecture 

• Security Protocols 
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