
Data Security and Privacy

Topic 13: Overview of Public-Key

Cryptography

1

Announcements

• Mid-term Exam

– Tuesday March 6, during class

2

3

Readings for This Lecture

• Required: On Wikipedia

– Public key cryptography

– RSA

– Diffie–Hellman key exchange

– ElGamal encryption

• Required:
– Differ & Hellman: “New Directions in

Cryptography” IEEE Transactions on

Information Theory, Nov 1976.

http://en.wikipedia.org/wiki/Public-key_cryptography
http://en.wikipedia.org/wiki/RSA
http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
http://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
http://en.wikipedia.org/wiki/ElGamal_encryption
http://en.wikipedia.org/wiki/Filesystem_permissions

Outline

• Public-Key Encryption

• Digital Signatures

• Key distribution among multiple parties

• Kerberos

• Distribution of public keys, with public key

certificates

• Diffie-Hellman Protocol

• TLS/SSL/HTTPS

4

5

Review of Secret Key (Symmetric)

Cryptography

• Confidentiality
– stream ciphers (uses PRNG)

– block ciphers with encryption modes

• Integrity
– Cryptographic hash functions

– Message authentication code (keyed hash functions)

• Limitation: sender and receiver must share the
same key
– Needs secure channel for key distribution

– Impossible for two parties having no prior relationship

– Needs many keys for n parties to communicate

6

Concept of Public Key Encryption

• Each party has a pair (K, K-1) of keys:

– K is the public key, and used for encryption

– K-1 is the private key, and used for decryption

– Satisfies DK-1[EK[M]] = M

• Knowing the public-key K, it is computationally infeasible

to compute the private key K-1

– How to check (K,K-1) is a pair?

– Offers only computational security. Secure Public Key encryption

is impossible when P=NP, as deriving K-1 from K is in NP.

• The public key K may be made publicly available, e.g., in

a publicly available directory

– Many can encrypt, only one can decrypt

• Public-key systems aka asymmetric crypto systems

7

Public Key Cryptography Early

History
• Proposed by Diffie and Hellman, documented in “New

Directions in Cryptography” (1976)
1. Public-key encryption schemes

2. Key distribution systems

• Diffie-Hellman key agreement protocol

3. Digital signature

• Public-key encryption was proposed in 1970 in a
classified paper by James Ellis
– paper made public in 1997 by the British Governmental

Communications Headquarters

• Concept of digital signature is still originally due to Diffie
& Hellman

8

Public Key Encryption Algorithms

• Most public-key encryption algorithms use either

modular arithmetic number theory, or elliptic

curves

• RSA

– based on the hardness of factoring large numbers

• El Gamal

– Based on the hardness of solving discrete logarithm

– Use the same idea as Diffie-Hellman key agreement

9

Diffie-Hellman Key Agreement

Protocol
Not a Public Key Encryption system, but can allow A and B

to agree on a shared secret in a public channel (against

passive, i.e., eavesdropping only adversaries)

Setup: p prime and g generator of Zp*, p and g public.

K = (gb mod p)a = gab mod p

ga mod p

gb mod p

K = (ga mod p)b = gab mod p

Pick random, secret a

Compute and send ga mod p

Pick random, secret b

Compute and send gb mod p

Diffie-Hellman

• Example: Let p=11, g=2, then

 A chooses 4, B chooses 3, then shared secret is

 (23)4 = (24)3 = 212 = 4 (mod 11)

 Adversaries sees 23=8 and 24=5, needs to solve one of

2x=8 and 2y=5 to figure out the shared secret.

10

 a 1 2 3 4 5 6 7 8 9 10 11

ga 2 4 8 16 32 64 128 256 512 1024 2048

ga mod p 2 4 8 5 10 9 7 3 6 1 2

Security of DH is based on Three

Hard Problems
• Discrete Log (DLG) Problem: Given <g, h, p>, computes a

such that ga = h mod p.

• Computational Diffie Hellman (CDH) Problem: Given <g,

ga mod p, gb mod p> (without a, b) compute gab mod p.

• Decision Diffie Hellman (DDH) Problem: distinguish

(ga,gb,gab) from (ga,gb,gc), where a,b,c are randomly and

independently chosen

• If one can solve the DL problem, one can solve the CDH

problem. If one can solve CDH, one can solve DDH.

11

Assumptions

• DDH Assumption: DDH is hard to solve.

• CDH Assumption: CDH is hard to solve.

• DLG Assumption: DLG is hard to solve

• DDH assumed difficult to solve for large p (e.g., at least

1024 bits).

• Warning:

– New progress can solve discrete log for p values with some

properties. No immediate attack against practical setting yet.

– Look out when you need to use/implement public key crypto

– May want to consider Elliptic Curve-based algorithms

12

ElGamal Encryption

• Public key <g, p, h=ga mod p>

• Private key is a

• To encrypt: chooses random b, computes

 C=[gb mod p, gab * M mod p].

• Idea: for each M, sender and receiver establish a shared secret

gab via the DH protocol. The value gab hides the message M by

multiplying it.

• To decrypt C=[c1,c2], computes M where

• ((c1
a mod p) * M) mod p = c2.

• To find M for x * M mod p = c2, compute z s.t. x*z mod p =1, and

then M = C2*z mod p

• CDH assumption ensures M cannot be fully recovered.

• IND-CPA security requires DDH.

13

14

RSA Algorithm

• Invented in 1978 by Ron Rivest, Adi Shamir
and Leonard Adleman
– Published as R L Rivest, A Shamir, L Adleman, "On

Digital Signatures and Public Key Cryptosystems",
Communications of the ACM, vol 21 no 2, pp120-126,
Feb 1978

• Security relies on the difficulty of factoring large
composite numbers

• Essentially the same algorithm was discovered
in 1973 by Clifford Cocks, who works for the
British intelligence

15

RSA Public Key Crypto System

Key generation:
1. Select 2 large prime numbers of about the same

size, p and q
Typically each p, q has between 512 and 2048 bits

2. Compute n = pq, and (n) = (q-1)(p-1)

3. Select e, 1<e< (n), s.t. gcd(e, (n)) = 1
Typically e=3 or e=65537

4. Compute d, 1< d< (n) s.t. ed 1 mod (n)
Knowing (n), d easy to compute.

Public key: (e, n)

Private key: d

16

RSA Description (cont.)

Encryption

Given a message M, 0 < M < n M Zn {0}

use public key (e, n)

compute C = Me mod n C Zn {0}

Decryption

Given a ciphertext C, use private key (d)

Compute Cd mod n = (Me mod n)d mod n = Med
mod n = M

17

RSA Example

• p = 11, q = 7, n = 77, (n) = 60

• d = 13, e = 37 (ed = 481; ed mod 60 = 1)

• Let M = 15. Then C Me mod n

– C 1537 (mod 77) = 71

• M Cd mod n

– M 7113 (mod 77) = 15

RSA Example 2

• Parameters:

– p = 3, q = 5, n= pq = 15

– (n) = ?

• Let e = 3, what is d?

• Given M=2, what is C?

• How to decrypt?

18

Hard Problems on Which RSA

Security Depends

19

Plaintext: M

C = Me mod (n=pq)

Ciphertext: C

Cd mod n

1. Factoring Problem: Given n=pq, compute p,q

2. Finding RSA Private Key: Given (n,e), compute d s.t. ed = 1 (mod (n)).

• Given (d,e) such that ed = 1 (mod (n)), there is a clever

randomized algorithm to factor n efficiently.

• Implication: cannot share the modulus n among multiple users

3. RSA Problem: From (n,e) and C, compute M s.t. C = Me

• Aka computing the e’th root of C.

• Can be solved if n can be factored

20

RSA Security and Factoring

• Security depends on the difficulty of factoring n

– Factor n compute (n) compute d from (e, n)

– Knowing e, d such that ed = 1 (mod (n)) factor n

• The length of n=pq reflects the strength

– 700-bit n factored in 2007

– 768 bit n factored in 2009

• RSA encryption/decryption speed is quadratic in key length

• 1024 bit for minimal level of security today

– likely to be breakable in near future

• Minimal 2048 bits recommended for current usage

• NIST suggests 15360-bit RSA keys are equivalent in strength to 256-

bit

• Factoring is easy to break with quantum computers

• Recent progress on Discrete Logarithm may make factoring much

faster

RSA Encryption & IND-CPA

Security
• The RSA assumption, which assumes that the RSA

problem is hard to solve, ensures that the plaintext

cannot be fully recovered.

• Plain RSA does not provide IND-CPA security.

– For Public Key systems, the adversary has the public key, hence

the initial training phase is unnecessary, as the adversary can

encrypt any message he wants to.

– How to break IND-CPA security?

– How to use it more securely?

21

Real World Usage of Public Key

Encryption

• Often used to encrypt a symmetric key

– To encrypt a message M under an RSA public key (n,e),

generate a new AES key K, compute

 [Ke mod n, AES-CBCK(M)]

• Alternatively, one can use random padding.
– E.g., computer (M || r) e mod n to encrypt a message M with a random

value r

– More generally, uses a function F(M,r), and encrypts as F(M,r) e mod n

– From F(M,r), one should be able to recover M

– This provides randomized encryption

22

23

Digital Signatures: The Problem

• Consider the real-life example where a person pays by

credit card and signs a bill; the seller verifies that the

signature on the bill is the same with the signature on

the card

• Contracts are valid if they are signed.

• Signatures provide non-repudiation.

– ensuring that a party in a dispute cannot repudiate, or refute the

validity of a statement or contract.

• Can we have a similar service in the electronic world?

– Does Message Authentication Code provide non-repudiation?

24

Digital Signatures

• MAC: One party generates MAC, one party verifies

integrity.

• Digital signatures: One party generates signature,

many parties can verify.

• Digital Signature: a data string which associates a

message with some originating entity.

• Digital Signature Scheme:

– a signing algorithm: takes a message and a (private) signing

key, outputs a signature

– a verification algorithm: takes a (public) verification key, a

message, and a signature

• Provides:
– Authentication, Data integrity, Non-Repudiation

25

Digital Signatures and Hash

• Very often digital signatures are used

with hash functions, hash of a

message is signed, instead of the

message.

• Hash function must be:

– Strong collision resistant

26

RSA Signatures

Key generation (as in RSA encryption):

• Select 2 large prime numbers of about the

 same size, p and q

• Compute n = pq, and = (q - 1)(p - 1)

• Select a random integer e, 1 < e < , s.t.

 gcd(e,) = 1

• Compute d, 1 < d < s.t. ed 1 mod

Public key: (e, n) used for verification

Private key: d, used for generation

27

RSA Signatures with Hash (cont.)

Signing message M

• Verify 0 < M < n

• Compute S = h(M)d mod n

Verifying signature S

• Use public key (e, n)

• Compute Se mod n = (h(M)d mod n)e mod n =

h(M)

Non-repudiation

• Nonrepudiation is the assurance that someone cannot

deny something. Typically, nonrepudiation refers to the

ability to ensure that a party to a contract or a

communication cannot deny the authenticity of their

signature on a document or the sending of a message

that they originated.

• Can one deny a digital signature one has made?

• Does email provide non-repudiation?

28

29

The Big Picture

Secrecy /

Confidentiality

Stream ciphers

Block ciphers +

encryption modes

Public key

encryption: RSA,

El Gamal, etc.

Authenticity /

Integrity

Message

Authentication

Code

Digital Signatures:

RSA, DSA, etc.

Secret Key

Setting

Public Key

Setting

Next Lecture

• Security Protocols

30

