
Data Security and Privacy 

Topic 11: Virtual Private Databases 

Based on Prof. Bertino’s Slides 

1 



Announcements 

• Next Quiz on Feb 15 

2 



Oracle VPD 

 Virtual Private Database (VPD) 
– Fine-grained access control: associate security policies with 

database objects 

– Application Context: define and access application or 

session attributes and use them in access control, for 

example for implementing temporal access control 

 

 By combining these two features, VPD enables 

administrators to define and enforce row-level 

access control policies based on session 

attributes 



• Scalability  
– Table Customers contains 1,000 customer records.  Suppose 

we want customers to access their own records only.  Using 
views, we need to create 1,000 views. Using VPD, it can be 
done with a single policy function. 

• Simplicity 
– Say, we have a table T and many views are based on T. 

Suppose we want to restrict access to some information in T.  
Without VPD, all view definitions have to be changed.  Using 
VPD, it can be done by attaching a policy function to T; as the 
policy is enforced in T, the policy is also enforced for all the 
views that are based on T.  

• Security 
– Server-enforced security (as opposed to application-enforced). 

 

Why VPD 



 How does it work? 

 When a user accesses a table (or view or synonym) 

which is protected by a VPD policy (function): 

1. The Oracle server invokes the policy function. 

2. The policy function returns a predicate, based on session 

attributes or database contents. 

3. The server dynamically rewrites the submitted query by 

appending the returned predicate to the WHERE clause. 

4. The modified SQL query is executed. 

Oracle VPD 



 Suppose Alice has (is the owner of) the following 

table. 

 my_table(owner varchar2(30), data varchar2(30)); 

 

 Suppose that we want to implement the following 

policy: 
– Users can access only data that refer to themselves. However 

Admins should be able to access any data without restrictions. 

Oracle VPD - Example 



1. Create a policy function 

 
Create function sec_function (object_schema varchar2, object_name varchar2) 

Return varchar2 

As  

 user VARCHAR2(100); 

Begin  

 if ( SYS_CONTEXT(‘userenv’, ‘ISDBA’) ) then 

  return ‘ ’;  

 else  

  user := SYS_CONTEXT(‘userenv’, ‘SESSION_USER’);  

  return ‘owner = ‘ || user; 

 end if; 

End; 

 

userenv is the pre-defined application context 

object_name is the name of table or view to which the policy will apply 

object_schema is the schema owning the table or view 

Oracle VPD - Example 



SYS_CONTEXT 

 In Oracle/PLSQL, the sys_context function is used to retrieve 

information about the Oracle environment. 

 The syntax for the sys_context function is: 

   sys_context( namespace, parameter, [ length ] ) 

 namespace is an Oracle namespace that has already been created. 

If the namespace is 'USERENV', attributes describing the current 

Oracle session can be returned. 

 parameter is a valid attribute that has been set using the 

DBMS_SESSION.set_context procedure. 

 length is optional. It is the length of the return value in bytes. If this 

parameter is omitted or if an invalid entry is provided, the 

sys_context function will default to 256 bytes 

 



USERENV namespace  

valid parameters 



USERENV namespace  

valid parameters 



2. Attach the policy function to my_table 
execute dbms_rls.add_policy (object_schema => ‘Alice’, 

                                        object_name => ‘my_table’, 

                                        policy_name => ‘my_policy’, 

                                        function_schema => ‘Alice’, 

                                        policy_function => ‘sec_function’, 

                                        statement_types => ‘select, update, insert’, 

                                        update_check => TRUE ); 

 

– The VPD security model uses the Oracle dbms_rls package (RLS 

stands for row-level security) 
 

– update_check: Optional argument for INSERT or UPDATE statement 

types. The default is FALSE. Setting update_check to TRUE causes 

the server to also check the policy against the value after insert or 

update. 

 

Oracle VPD - Example 



DBMS_RLS.ADD_POLICY syntax 

DBMS_RLS.ADD_POLICY (  

  object schema IN VARCHAR2 NULL,  

  object_name IN VARCHAR2,  

  policy_name IN VARCHAR2,  

  function_schema IN VARCHAR2 NULL,  

  policy_function IN VARCHAR2,  

  statement_types IN VARCHAR2 NULL,  

  update_check IN BOOLEAN FALSE,  

  enable IN BOOLEAN TRUE,  

  static_policy IN BOOLEAN FALSE,  

  policy_type IN BINARY_INTEGER NULL,  

  long_predicate IN BOOLEAN FALSE,  

  sec_relevant_cols IN VARCHAR2,  

  sec_relevant_cols_opt IN BINARY_INTEGER NULL); 



3. Bob accesses my_table 
 

   select * from my_table;   

  

 => select * from my_table where owner = ‘bob’; 

 : only shows the rows such that owner is ‘bob’  

 

   insert into my_table values(‘Some data’, ‘bob’); OK! 

 

   insert into my_table values(‘Other data’, ‘alice’); NOT OK! 

 = because of the check option. 

Oracle VPD - Example 



Policy Commands 
• ADD_POLICY – creates a new policy 

 

• DROP_POLICY – drops a policy 
 DBMS_RLS.DROP_POLICY (  

  object schema  IN VARCHAR2 NULL,  

  object_name  IN VARCHAR2,  

  policy_name  IN VARCHAR2); 

 

• ENABLE_POLICY – enables or disables a fine-grained access 
control policy 

 DBMS_RLS.ENABLE_POLICY (  

  object schema  IN VARCHAR2 NULL,  

  object_name  IN VARCHAR2,  

  policy_name  IN VARCHAR2, 

  enable  IN BOOLEAN       ); 

 Enable - TRUE to enable the policy, FALSE to disable the policy  
 



Column-level VPD 

• Instead of attaching a policy to a whole table or a 

view, attach a policy only to security-relevant 

columns 

– Default behavior: restricts the number of rows returned by 

a query. 

– Masking behavior: returns all rows, but returns NULL 

values for the columns that contain sensitive information. 
 

• Restrictions 

– Applies only to ‘select’ statements 

– The predicate must be a simple Boolean expression. 



Column-level VPD: Example 

• Suppose Alice has (is the owner of) the following table. 

  

 Employees (e_id number(2),  name varchar2(10), salary number(3)); 

 

 

 

 

 

 

• Policy: Users can access e_id’s and names without any restriction.  

But users can access only their own salary information. 

e_id Name Salary 

1 Alice 80 

2 Bob 60 

3 Carl 99 



1. Create a policy function 

 

 Create function sec_function (object_schema varchar2, object_name 
varchar2) 

Return varchar2 

As  

 user VARCHAR2(100); 

Begin  

 user := SYS_CONTEXT(‘userenv’, ‘SESSION_USER’);  

 return ‘name = ‘ || user; 

End; 

Column-level VPD: Example 



2. Attach the policy function to Employees (default 

behavior) 

 

execute dbms_rls.add_policy (object_schema => ‘Alice’, 

                                           object_name => ‘employees’, 

                                           policy_name => ‘my_policy’, 

                                           function_schema => ‘Alice’, 

                                           policy_function => ‘sec_function’, 

                                           sec_relevant_cols=>’salary’); 

Column-level VPD: Example 



3. Bob accesses table Employees (with the default 
behavior). REMEMBER: default behavior restricts the 
number of rows returned by a query 

 a) select e_id, name from Employee; 

 
 

 

 

 b) select e_id, name, salary from Employee; 

 

 

 

  

 

 

e_id Name 

1 Alice 

2 Bob 

3 Carl 

e_id Name Salary 

2 Bob 60 

Column-level VPD: Example 



2’. Attach the policy function to Employees (masking behavior) 

 
execute dbms_rls.add_policy (object_schema => ‘Alice’, 

                                           object_name => ‘employees’, 

                                           policy_name => ‘my_policy’, 

                                           function_schema => ‘Alice’, 

                                           policy_function => ‘sec_function’, 

                                           sec_relevant_cols=>’salary’, 

                               sec_relevant_cols_opt=>dbms_rls.ALL_ROWS); 

Column-level VPD: Example 



3. Bob accesses table Employees (with masking behavior). 

REMEMBER: Masking behavior returns all rows, but 

returns NULL values for the columns that contain 

sensitive information. 

  select e_id, name from Employee; 

 

 

   

 

  Select e_id, name, salary from Employee; 

 

  

 

 

e_id Name 

1 Alice 

2 Bob 

3 Carl 

e_id Name Salary 

1 Alice 

2 Bob 60 

3 Carl 

Column-level VPD: Example 



Multiple Policies 
• It is possible to associate multiple policies with a 

database object. 

– The policies are enforced with AND syntax. 

– For example, suppose table T is associated with {P1, P2, P3}. 

– When T is accessed by query Q = select A from T where C. 

– Q’ = select A from T where C  (c1  c2  c3). 

 

• Different from Stonebraker’s approach 

– The policies are enforced with OR syntax. 

– Q’ = select A from T where C  (c1  c2  c3). 

 



VPD Related Privileges 
• Who can create VPD policies? That is, what privileges are needed to 

create a VPD policy on a database object? 
– EXECUTE on the DBMS_RLS package to attach a policy to an object 

• the package includes add_policy, drop_policy, enable_policy, and so on. 

– CREATE PROCEDURE to create a policy function 
• Not absolutely necessary as you can use somebody else’s policy functions. 

• Does not need to have any privilege on the policy functions. 

– Does not require any object privilege on the target objects unless you are 
defining the policy function (explained later). 

 

• Who can create application contexts? 
– CREATE ANY CONTEXT (there is no CREATE CONTEXT) 

– CREATE PROCEDURE 

– EXECUTE on the DBMS_SESSION package 

– Privileges on the objects that the setup functions access. 

 

• Two classes of users are exempt from VPD policies. 
– SYS user is exempt by default. 

– Users with the EXEMPT ACCESS POLICY system privilege. 



AC Based-on DB Content 

 It is possible to define VPD policy functions without using 

the application context.  Instead, we can directly query the 

database content from the policy functions. 

 

• Alice: Employees(e_id number(2), name varchar2(10), 

salary number(2));  

• Bob:   Values(p_id number(2), value number(2)); 

 

 Users can access the record of any employee whose 

salary is less than the maximum value in Values. 



AC Based-on DB Content 

1. Create a policy function 

create or replace function Policy_func (object_schema varchar2, object_name 
varchar2) 

return varchar2  

as 

   cond varchar2(100); 

   mxv number; 

begin 

   select max(value) into mxv from Bob.Values; 

   cond := 'salary < ' || mxv; 

   return (cond); 

end Policy_func ; 

 

2. Attach the function to Employee 

execute dbms_rls.add_policy('alice', 'employees', ‘policy', ‘alice', ‘Policy_func', 
'select'); 



Discussion 

 VPD provides a very powerful access control. 
 

 It is difficult, if not impossible, to verify whether 

or not a particular user has access to a 

particular data item in a particular table in a 

particular state. 

– Such verification requires checking all policy 

functions. 

– As policy functions are too “flexible”, it is 

computationally impossible to analyze them. 

 

 



Case Study of Labelled 

Databases 

Oracle Label Security  



Oracle label   

essential concepts 

• Oracle Label Security enables row-level access control, 

based on the virtual private database technology of 

Oracle9i Enterprise Edition 

• It controls access to the contents of a row by comparing 

that row's label with a user's label and privileges 

• Administrators can add selective row-restrictive policies to 

existing databases  

• Developers can add label-based access control to their 

Oracle9i applications 



Oracle label architecture 



Label policy features 

 Oracle label controls the access to data by 

using 3 factors: 

1.The label of the data row to which access is 

requested 

2.The label of the user session requesting access 

3.The policy privileges for that user session 



Data Labels 

• Every label contains three components: 
– a single level (sensitivity) ranking 

 

– zero or more horizontal compartments or categories 

 

– zero or more hierarchical group statements. 

 

Level 

 

Compartmen

ts 

(zero or 

more) 

Groups 

(zero or 

more) 
Example: 

Confidential (10) 

Highly Confidential (20) 

Sensitive (30) 

 

(Note: labels have a character form and a numeric form) 

 

The more sensitive the information, the higher its level.  

The less sensitive the information, the lower its level. 



• Compartments identify areas that describe the sensitivity of the 

labeled data, providing a finer level of granularity within a level. 

• The compartment component is not hierarchical 

• Example of departments: 

• Financial ( it has Sensitive and Highly Confidential data ) 

• Chemical (it has Sensitive data) 

• Operation (it has Sensitive, Highly confidential and Confidential data).  

 

Single-level 

ranking 

Compartmen

ts 

(zero or 

more) 

Groups 

(zero or 

more) 
Example: 

Confidential (10) 

Highly Confidential (20) 

Sensitive (30) 

Example: 

Financial 

Chemical 

Operation  

Data Labels  

compartments 



Data Labels - compartments 

Levels: 

Financial Chemical Operation 

Financial Operation 

Operation 

Sensitive 

HC 

Confidential 



Data Labels - compartments 

 If compartments are specified, then a user 

whose level would normally permit access to 

a row's data will nevertheless be prevented 

from such access unless the user's label 

also contains all the compartments 

appearing in that row's label. 

 



Data Labels - groups 

• The group component is hierarchical and is used to 

reflect ownership  

• EXAMPLE: suppose one has two groups of users, 

Finance and Engineering. Users with the label Finance 

cannot access to data labeled Engineering (and vice 

versa), because they are “at the same level” 

• Suppose that one has a group Board of Directors (BoD). 

Users in this group must be allowed to access the data 

of both Finance and Engineering group.  

• To this end, one can establish a group hierarchy, where 

BoD is the group “father” of Finance and Engineering 

groups  

 



Data Labels – group example 

Single-level 

ranking 

Compartmen

ts 

(zero or 

more) 

Groups 

(zero or 

more) 
Example: 

Confidential (10) 

Highly Confidential (20) 

Sensitive (30) 

Example: 

BoD 

Finance 

Engineering 

Bo

D 

Finan

ce 

Engineer

ing 

Example: 

Financial 

Chemical 

Operation 



Data Labels 

 A label can be any one of the following four 

combinations of components: 
– a single level component, with no groups or compartments, 

such as U:: 

– a level and a set of compartments with no groups, such as 

U:Alpha, Beta: 

– a level and a set of groups with no compartments, such as 

U::FIN, ASIA 

– a level with both compartments and groups, such as 

U:Beta,Psi:ASIA,FIN 

•  

 



User Labels 

• A user label specifies that user's sensitivity level plus 

any compartments and groups that constrain the user's 

access to labeled data.  

• Each user is assigned a range of levels, 

compartments, and groups, and each session can 

operate within that authorized range to access labeled 

data within that range.  

 



User Labels and  

level authorizations 

User Default Level:  The level that is assumed by default when connecting to 

Oracle9i 

 

User Default Row Level: The level that is used by default when inserting data into 

Oracle9i 



•The administrator specifies the list of compartments that a user can place in her session 

label.  

•Write access must be explicitly given for each compartment 

•The Row designation indicates whether the compartment should be used as part of the 

default  row label for newly inserted data. 

•A user cannot directly insert, update, or delete a row that contains a compartment that she 

 does not have authorization to write. 

User Labels and  

compartments 



User Labels and  

authorized groups 

•The administrator specifies the list of groups that a user can place in her session label.  

•Write access must be explicitly given for each group listed. 

•Row designation indicates whether the group should be used as part of the default row 

label for newly inserted data. 



Session Labels 

• The session label is the particular combination of level, 

compartments, and groups at which a user works at 

any given time.  

• The user can change the session label to any 

combination of components for which he is authorized. 

• When a user writes data without specifying its label, a 

row label is assigned automatically, using the user's 

session label. 



How Data Labels and  

User Labels Work Together 

• Each Oracle Label Security user can only access data 

within the range of his or her own label authorizations. 

• Each user has: 

• Maximum and minimum levels 

• A set of authorized compartments 

• A set of authorized groups (and, implicitly, authorization for any 

subgroups) 

• For each compartment and group, a specification of read-only 

access, or read/write access 

• Example: 
• if a user is assigned a maximum level of Highly Confidential, then the user 

potentially has access to Highly Confidential, and Confidential data. The 

user has no access to Sensitive data. 

 



Policy Privileges 

• The policy privileges enable a user or a stored program 

unit to bypass some aspects of the label-based access 

control policy  

• The administrator can also authorize the user or 

program unit to perform specific actions, such as the 

ability of one user to assume the authorizations of a 

different user  

• Privileges can be granted to program units, authorizing 

the procedure, rather than the user, to perform 

privileged operations  

 



Privileges in Oracle Label  

Security Policies 

Oracle Label Security supports special privileges that allow authorized users to 

bypass certain parts of the policy. 



Privileges in Oracle Label  

Security Policies 

• READ 

• A user with READ privilege can read all data protected by the 

policy, regardless of his authorizations or session label. The user 

does not even need to have label  authorizations.  

• A user with READ privilege can write to any data rows for which 

he or she has write access, based on any label authorizations. 

 useful for system administrators who need to export data, but 

who should not be allowed to change data 

 

• FULL 

• The FULL privilege has the same effect and benefits as the READ 

privilege, with one difference: a user with FULL privilege can also 

write to all the data. 



COMPACCESS 

 

• The COMPACCESS privilege allows a user to access data based 

on the row label's compartments, independent of the row label's 

groups.  

• If a row label has no compartments, then access is determined by 

the group authorizations. However, when compartments do exist, 

and access to them is authorized, then the group authorization is 

bypassed. 

 

Privileges in Oracle Label  

Security Policies 



Privileges in Oracle Label  

Security Policies 



Privileges in Oracle Label  

Security Policies 

• PROFILE_ACCESS 

• The PROFILE_ACCESS privilege allows a session to 

change its session labels and session privileges to 

those of a different user.  

• This is a very powerful privilege, since the user can 

potentially become a user with FULL privileges.  

• This privilege cannot be granted to a trusted stored 

program unit. 

 



• Once the label on a row has been set, Oracle Label 

Security privileges are required to modify the label. 

These privileges include WRITEUP, WRITEDOWN, 

and WRITEACROSS. 

• WRITEUP 
• The WRITEUP privilege enables the user to raise the level of data 

within a row, without compromising the compartments or groups. The 

user can raise the level up to his or her maximum authorized level. He 

can raise the level above his current session level, but cannot change 

the compartments. 

 

Privileges in Oracle Label  

Security Policies 



• Once the label on a row has been set, Oracle Label 

Security privileges are required to modify the label. 

These privileges include WRITEUP, WRITEDOWN, 

and WRITEACROSS. 

• WRITEDOWN 

• The WRITEDOWN privilege enables the user to lower the level 

of data within a row, without changing the compartments or 

groups. The user can lower the level to any level equal to or 

greater than his or her minimum authorized level. 

• WRITEACROSS 

• The WRITEACROSS privilege allows the user to change the 

compartments and groups of data, without altering its 

sensitivity level. 

 

Privileges in Oracle Label  

Security Policies 



Documentation 

 Oracle® Label Security Administrator’s Guide 10g 

Release 10g Release 2 (10.2) B14267-02 

http://www.oracle.com/pls/db102/to_pdf?pathname=net

work.102%2Fb14267.pdf&remark=portal+%28Administ

ration%29 

 

 



Next Lecture 

• Overview of Cryptography 

59 


