
Data Security and Privacy

Topic 10: Database Security

Grant-Revoke Model

Based on Prof. Bertino’s Slides
1

Announcements

• Next Quiz on Feb 13

2

Access Control in

Commercial DBMSs
• Most commercial systems adopt DAC

• Current discretionary authorization models for

relational DBMS are based on the System R

authorization model [Griffiths and Wade76]

• It is based on ownership administration with

administration delegation

The System R

Authorization Model

• Objects to be protected are tables and views

• Privileges include: select, update, insert, delete,

drop, index (only for tables), alter (only for tables)

• Groups are supported, whereas roles are not

• Privileges can be granted with the GRANT

OPTION

The System R - Delegation

• Privilege delegation is supported through the

grant option: if a privilege is granted with the

grant option, the user receiving it can not only

exercise the privilege, but can also grant it to

other users

• A user can only grant a privilege on a given

relation if he/she is the table owner or if

he/she has received the privilege with grant

option

Grant operation

GRANT PrivilegeList| ALL[PRIVILEGES]
ON Relation | View
TO UserList | PUBLIC
 [WITH GRANT OPTION]

• it is possible to grant privileges on both relations

and views

• privileges apply to entire relations (or views)

• for the update privilege, one needs to specify
the columns to which it applies

• The authorization catalogs keep track for each

users of the privileges the user possesses and of

the ones that the user can delegate

• Whenever a user U executes a Grant operation,

the system intersects the privileges that U can

delegate with the set of privileges specified in the

command

• If the intersection is empty, the command is not

executed

Grant operation

Bob:
• is the owner of Employee table

• He thus has: Select, Insert, Update, Delete all with the
Grant privileges on table Employee

Grant operation

1. Bob: GRANT select, insert ON Employee TO Jim
WITH GRANT OPTION;

2. Bob: GRANT select ON Employee TO Ann WITH
GRANT OPTION;

3. Bob: GRANT insert ON Employee TO Ann;

4. Jim: GRANT update ON Bob.Employee TO Tim
WITH GRANT OPTION;

5. Ann: GRANT select, insert ON Bob.Employee TO
Tim;

Grant operation - example

• The first three GRANT commands are fully

executed (Bob is the owner of the table)

• The fourth command is not executed, because

Jim does not have the update privilege on the

table

• The fifth command is partially executed; Ann

has the select and insert but she does not

have the grant option for the insert --> Tim only

receives the select privilege

Grant operation - example

REVOKE PrivilegeList| ALL[PRIVILEGES]

ON Relation | View

FROM UserList | PUBLIC

• a user can only revoke the privileges he/she has

granted; it is not possible to revoke the grant option

only

• upon execution of a revoke operation, the user from

whom the privileges have been revoked looses these

privileges, unless (s)he has them from another user

independent from the one that has executed the

revoke

Revoke operation

• Bob: GRANT select ON Employee TO Jim WITH
GRANT OPTION;

• Bob: GRANT select ON Employee TO Ann WITH
GRANT OPTION;

• Jim: GRANT select ON Bob.Employee TO Tim;

• Ann: GRANT select ON Bob.Employee TO Tim;

• Jim: REVOKE select ON Bob.Employee FROM Tim;

• Tim continues to hold the select privilege on table
Employee after the revoke operation, since he has
independently obtained such privilege from Ann.

Revoke operation - example

• Bob: GRANT select ON Employee TO Jim
WITH GRANT OPTION;

The

grantor
The

grantee
The

permission

Revoke operation - example

• Bob: GRANT select ON Employee TO Jim
WITH GRANT OPTION;

The

grantor

The

grantee
The

permission

Time Grantor Privilege Grantee

10 BOB P1+G JIM

Revoke operation - example

• Bob: GRANT select ON Employee TO Jim WITH
GRANT OPTION;

• Bob: GRANT select ON Employee TO Ann WITH
GRANT OPTION;

• Jim: GRANT select ON Bob.Employee TO Tim;

• Ann: GRANT select ON Bob.Employee TO Tim;

• Jim: REVOKE select ON Bob.Employee FROM Tim;

• Tim continues to hold the select privilege on table
Employee after the revoke operation, since he has
independently obtained such privilege from Ann.

Revoke operation - example

Revoke operation

tabular representation

Time Grantor/

Revoker

Privilege Grantee/

Revokee

10 BOB G(P1+G) JIM

20 BOB G(P1+G) ANN

30 JIM G(P1) TIM

40 ANN G(P1) TIM

50 JIM R(P1) TIM

BOB

JIM

ANN

TIM

10, G(P1+G)

20, G(P1+G) 40, G(P1)

30, G(P1)

50, R(P1)

Revoke operation

graph representation

Revoke operations

• Recursive revocation: whenever a user
revokes an authorization on a table from
another user, all the authorizations that the
revokee had granted because of the revoked
authorization are removed

• The revocation is iteratively applied to all the
subjects that received the access
authorization from the revokee

Recursive revoke

• Let G1, …., Gn be a sequence of grant operations with a

single privilege on the same relations, such that i,k = 1,….,

n, if i<k, then Gi is executed before Gk. Let Ri be the revoke

operation for the privilege granted with operation Gi.

• The semantics of the recursive revoke requires that the

state of the authorization system after the execution of the

sequence

 G1, …., Gn , Ri

 be identical to the state that one would have after the

execution of the sequence

 G1, …., Gi-1, G i+1 , …., Gn

Recursive Revocation with

timestamp

Bob

Ann

Chris

Jim

Sue

Pat

Dave
10

20

30

50

40

60

70

Bob

Ann

Chris

Jim Pat

10

20 50

60

Recursive revocation

• Recursive revocation in the System R takes into account

the timestamps denoting when each authorization has

been granted

• Variations to this approach have been proposed that do

not take into account the timestamps; the reason is to

avoid cascades of revoke

• In such variations, the authorizations granted by the

revokee are kept as long as the revokee has other

authorizations for the same privilege (even if these

authorizations have a larger timestamps with respect to the

timestamps of the grant operations performed by the

revokee)

Bob

Ann

Chris

Jim

Pat

10

20

30

50

Sue Dave
40

60

70

Bob

Ann

Chris

Jim Pat

10

20 50

60

Sue Dave
40

70

Recursive Revocation without

timestamp

Views and content-based

authorization

• Views are a mechanism commonly used to

support content-based access control in RDBMS

• Content-based access authorizations should be

specified in terms of predicates

• Only the tuples of a relation verifying a given

predicate are considered as the protected

objects of the authorization

• The approach to support content-based access

control in RDBMS can be summarized as

follows:

– Define a view containing the predicates to select the

tuples to be returned to a given subject S

– Grant S the select privilge on the view, and not on the

underlying table

Views and content-based

authorization

• Example: suppose we want to authorize user Ann

to access only the employees whose salary is

lower than 20000. Steps:

- CREATE VIEW Vemp AS

 SELECT * FROM Employee

 WHERE Salary < 20000;

- GRANT Select ON Vemp TO Ann;

Views and content-based

authorization

• Queries against views are transformed through

the view composition in queries against base

tables

• The view composition operation combines in

AND the predicates specified in the query on the

view with the predicates which are part of the

view definition

Views and content-based

authorization

Ann: SELECT * FROM Vemp

 WHERE Job = ‘Programmer’;

Query after view composition:

SELECT * FROM Employee

 WHERE Salary < 20000 AND

 Job = ‘Programmer’;

Views and content-based

authorization

Steps in Query Processing

• Parsing

• Catalog lookup

• Authorization checking

• View Composition

• Query optimization

• Note that authorization is performed before view
composition; therefore, authorization checking is
against the views used in the query and not
against the base tables used in these views

• Views can also be useful to grant select

privileges on specific columns: we only need to

define a view as projection on the columns on

which we want to give privileges

• Views can also be used to grant privileges on

simple statistics calculated on data (such as

AVG, SUM,..)

Views and content-based

authorization

Authorizations on views

• The user creating a view is called the view

definer

• The privileges that the view definer gets on the

view depend upon:

– The view semantics, that is, its definition in terms of

the base relation(s)

– The authorizations that the definers has on the base

table

• The view definer does not receive privileges

corresponding to operations that cannot be

executed on the view

• For example, alter and index do not apply

to views

Authorizations on views

• Consider the following view:

Bob: CREATE VIEW V1 (Emp#,
 Total_Sal)

 AS SELECT Emp#, Salary + Bonus

 FROM Employee WHERE

 Job =‘Programmer’;

 The update operation is not defined on column
Total_Sal of the view; therefore, Bob will not receive
the update authorization on such column

Authorizations on views

• Basically, to determine the privileges that the

view definer has on the view, the system needs

to intersect the set of privileges that the view

definer has on the base tables with the set of

privileges corresponding to the operations that

can be performed on the view

Authorizations on views

• Consider relation Employee and assume Bob is

the creator of Employee

• Consider the following sequence of commands:

– Bob: GRANT Select, Insert, Update ON
Employee to Tim;

– Tim: CREATE VIEW V1 AS SELECT Emp#,
Salary FROM Employee;

– Tim: CREATE VIEW V2 (Emp#, Annual_Salary)
AS SELECT Emp#, Salary*12 FROM Employee;

Authorizations on views

example

• Tim can exercise on V1 all privileges he has on

relation Employee, that is, Select, Insert, Update

• By contrast, Tim can exercise on V2 only the

privileges of Select and Update on column

Emp#;

Authorizations on views

example

• It is possible to grant authorizations on a view: the

privileges that a user can grant are those that

he/she owns with grant option on the base tables

• Example: user Tim cannot grant any authorization

on views V1 and V2 he has defined, because he

does not have the authorizations with grant option

on the base table

Authorizations on views

• Consider the following sequence of commands:

– Bob: GRANT Select ON Employee TO Tim WITH
GRANT OPTION;

– Bob: GRANT Update, Insert ON Employee TO
Tim;

– Tim: CREATE VIEW V4 AS SELECT Emp#,
Salary FROM Employee;

– Authorizations of Tim on V4:

• Select with Grant Option;

• Update, Insert without Grant Option;

Authorizations on views

example

Next Lecture

• Virtual Private Databases

38

